Max Planck Research Group Biological Micro- and Nanotechnology

Publications

Journal Article (25)

  1. 1.
    Bassu, M.; Holik, P.; Schmitz, S.; Steltenkamp, S.; Burg, T. P.: Continuous high throughput nanofluidic separation through tangential-flow vertical nanoslit arrays. Lab on a Chip 16 (23), pp. 4546 - 4553 (2016)
  2. 2.
    Modena, M. M.; Burg, T. P.: Mass correlation spectroscopy for mass- and size-based nanoparticle characterization in fluid. Journal of Applied Physics (2015)
  3. 3.
    Wang, Y.; Modena, M. M.; Platen, M.; Schaap, I. A. T.; Burg, T. P.: Label-free measurement of amyloid elongation by suspended microchannel resonators. Analytical Chemistry 87 (3), pp. 1821 - 1828 (2015)
  4. 4.
    Mejia, Y. X.; Feindt, H.; Zhang, D.; Steltenkamp, S.; Burg, T. P.: Microfluidic cryofixation for correlative microscopy. Lab on a Chip 14 (17), pp. 3281 - 3284 (2014)
  5. 5.
    Modena, M. M.; Wang, Y.; Riedel, D.; Burg, T. P.: Resolution enhancement of suspended microchannel resonators for weighing of biomolecular complexes in solution. Lab on a Chip 14 (2), pp. 342 - 350 (2014)
  6. 6.
    Jain, R.; Petri, M.; Kirschbaum, S.; Feindt, H.; Steltenkamp, S.; Sonnenkalb, S.; Becker, S.; Griesinger, C.; Menzel, A.; Burg, T. P. et al.; Techert, S.: X-ray scattering experiments with high-flux X-ray source coupled rapid mixing microchannel device and their potential for high-flux neutron scattering investigations. The European Physical Journal E (2013)
  7. 7.
    Wang, Y.; Lowe, R. D.; Mejia, Y. X.; Feindt, H.; Steltenkamp, S.; Burg, T. P.: A fluorescence based method for the quantification of surface functional groups in closed micro- and nanofluidic channels. Biomicrofluidics (2013)
  8. 8.
    Dextras, P.; Payer, K. R.; Burg, T. P.; Shen, W.; Wang, Y.-C.; Han, J.; Manalis, S. R.: Fabrication and characterization of an integrated microsystem for protein preconcentration and sensing. Journal of Microelectromechanical Systems 20 (1), pp. 221 - 230 (2011)
  9. 9.
    Lee, J.; Chunara, R.; Shen, W.; Payer, K.; Babcock, K.; Burg, T. P.; Manalis, S. R.: Suspended microchannel resonators with piezoresistive sensors. Lab on a Chip 11 (4), pp. 645 - 651 (2011)
  10. 10.
    Sader, J. E.; Burg, T. P.; Lee, J.; Manalis, S. R.: Energy dissipation in microfluidic beam resonators: Effect of Poisson's ratio. Physical review E (2011)
  11. 11.
    Weng, Y.; Delgado, F. F.; Son, S.; Burg, T. P.; Wasserman, S. C.; Manalis, S. R.: Mass sensors with mechanical traps for weighing single cells in different fluids. Lap on a Chip 11, pp. 4174 - 4180 (2011)
  12. 12.
    Lee, J.; Shen, W.; Payer, K.; Burg, T. P.; Manalis, S. R.: Toward attogram mass measurements in solution with suspended nanochannel resonators. Nano Letters 10 (7), pp. 2537 - 2542 (2010)
  13. 13.
    Sader, J. E.; Burg, T. P.; Manalis, S. R.: Energy dissipation in microfluidic beam resonators. Journal of Fluid Mechanics 650, pp. 215 - 250 (2010)
  14. 14.
    Burg, T. P.; Sader, J. E.; Manalis, S. R.: Nonmonotonic energy dissipation in microfluidic resonators. Physical Review Letters 102 (22), 228103 (2009)
  15. 15.
    Dextras, P.; Burg, T. P.; Manalis, S. R.: Integrated measurement of the mass and surface charge of discrete microparticles using a suspended microchannel resonator. Analytical Chemistry 81 (11), pp. 4517 - 4523 (2009)
  16. 16.
    Son, S.; Grover, W. H.; Burg, T. P.; Manalis, S. R.: Suspended microchannel resonators for ultralow volume universal detection. Analytical Chemistry 80 (12), pp. 4757 - 4760 (2008)
  17. 17.
    Burg, T. P.; Godin, M.; Shen, W.; Carlson, G.; Foster, J. S.; Babcock, K.; Manalis, S. R.: Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, pp. 1066 - 1069 (2007)
  18. 18.
    Godin, M.; Bryan, A. K.; Burg, T. P.; Babcock, K.; Manalis, S. R.: Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator. Applied Physics Letters (2007)
  19. 19.
    Burg, T. P.; Mirza, A. R.; Milovic, N.; Tsau, C. H.; Popescu, G. A.; Foster, J. S.; Manalis, S. R.: Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection. Journal of Microelectromechanical Systems 16 (6), pp. 1466 - 1476 (2006)
  20. 20.
    Kummer, A. M.; Burg, T. P.; Hierlemann, A.: Transient signal analysis using complementary metal oxide semiconductor capacitive chemical microsensors. Analytical Chemistry 78 (1), pp. 279 - 290 (2006)
  21. 21.
    Shusteff, M.; Burg, T. P.; Manalis, S. R.: Measuring Boltzmann’s constant with a low-cost atomic force microscope: An undergraduate experiment. American Journal of Physics 74 (10), pp. 873 - 879 (2006)
  22. 22.
    Burg, T. P.; Manalis, S. R.: Suspended microchannel resonators for biomolecular detection. Applied Physics Letters 83 (13), pp. 2698 - 2700 (2003)
  23. 23.
    Savran, C. A.; Burg, T. P.; Fritz, J.; Manalis, S. R.: Microfabricated mechanical biosensor with inherently differential readout. Applied Physics Letters 83 (8), pp. 1659 - 1661 (2003)
  24. 24.
    Savran, C. A.; Sparks, A. W.; Sihler, J.; Li, J.; Wu, W. C.; Berlin, D. E.; Burg, T. P.; Fritz, J.; Schmidt, M. A.; Manalis, S. R.: Fabrication and characterization of a micromechanical sensor for differential detection of nanoscale motions. Journal of Microelectromechanical Systems 11 (6), pp. 703 - 708 (2002)
  25. 25.
    Liu, S. C.; Kramer, J.; Indiveri, G.; Delbrück, T.; Burg, T. P.; Douglas, R.: Orientation-selective aVLSI spiking neurons. Neural Networks 14 (6-7), pp. 629 - 643 (2001)

Book Chapter (3)

  1. 26.
    Burg, T. P.: Particles in microfluidic systems: Handling, characterization, and applications. In: Microsystems for pharmatechnology : manipulation of fluids, particles, droplets, and cells., pp. 221 - 255 (Ed. Dietzel, A.). Springer, Cham (2016)
  2. 27.
    Burg, T. P.: Devices with embedded channels. In: Resonant MEMS: fundamentals, implementation, and application, pp. 261 - 286 (Eds. Brand, O.; Dufour, I.; Heinrich, S.; Josse, F.). Wiley-VCH, Weinheim (2015)
  3. 28.
    Wandell, B. A. ..; Wade, A. R. ..; Burg, T. P.: Functional MR image visualization and signal processing methods. In: Signal processing for magnetic resonance imaging and spectroscopy., pp. 189 - 208 (Ed. Yan, H.). Dekker; CRC Pr., New York, N.Y.; Boca Raton, Fla. (2002)
 
loading content