Supplementary material for
Partial least squares for dependent data

BY MARCO SINGER, TATYANA KRIVOBOKOVA, AXEL MUNK

Institute for Mathematical Stochastics, Goalgorithm2e.stylschnidstr. 7, 37077 Göttingen, Germany
msinger@gwdg.de tkrivob@uni-goettingen.de munk@math.uni-goettingen.de

AND BERT DE GROOT

Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
bgroot@gwdg.de

S1. Derivation of the population partial least squares components

Let denote $K_i \in \mathbb{R}^{k \times i}$ the matrix representation of a base for $K_i(\Sigma^2, Pq)$. Then

$$
\sum_{t=1}^{n} E (y_t - X_t^T K_i \alpha)^2 = \sum_{t=1}^{n} [V^2]_{t,t} (\|q\|^2 + \eta_2^2 - 2 \alpha^T K_i^T Pq + \alpha^T \Sigma^2 K_i \alpha).
$$

Minimizing this expression with respect to $\alpha \in \mathbb{R}^i$ gives $K_i^T \Sigma^2 K_i \alpha = K_i Pq$. Since the matrix $K_i^T \Sigma^2 K_i$ is invertible, we get the least squares fit β_i in Section 2.

Assume now that the first $i < a$ partial least squares base vectors w_1, \ldots, w_i have been calculated and consider for $\lambda \in \mathbb{R}$ the Lagrange function

$$
\sum_{t,s=1}^{n} \text{cov} (y_t - X_t^T \beta_i, X_s^T w) - \lambda (\|w\|^2 - 1) = w^T (Pq - \Sigma^2 \beta_i) \sum_{t,s=1}^{n} [V^2]_{t,s} - \lambda (\|w\|^2 - 1).
$$

Maximizing with respect to w yields

$$
w_{i+1} = (2\lambda)^{-1} (Pq - \Sigma^2 \beta_i) \sum_{t,s=1}^{n} [V^2]_{t,s} \propto Pq - \Sigma^2 \beta_i.
$$

Since $\beta_i \in K_i(\Sigma^2, Pq)$, we get $w_{i+1} \in \bar{K}_{i+1}(\Sigma^2, Pq)$ and w_{i+1} is orthogonal to w_1, \ldots, w_i.

S1-2. Proof of Theorem 1

First consider

$$
E \left(\|b - Pq\|^2 \right) = E \left(\left\| \frac{1}{\|V\|^2} \left((PN^T + \eta_1 F^T) V^2 Nq + \eta_2 (PN^T + \eta_1 F^T) V^2 f \right) - Pq \right\|^2 \right)
$$

$$
= \left\{ E \left(\left\| \frac{1}{\|V\|^2} PN^T V^2 Nq - Pq \right\|^2 \right) + \frac{\eta_2^2}{\|V\|^4} E \left(\|PN^T V^2 f\|^2 \right) \right\} + \frac{\eta_1^2}{\|V\|^4} \left\{ E \left(\|F^T V^2 Nq\|^2 \right) + \eta_2^2 E \left(\|F^T V^2 f\|^2 \right) \right\} = S_1 + S_2,
$$
due to the independence of \(N, F \) and \(f \). It is easy to see that

\[
S_2 = \frac{\|V^2\|^2}{\|V\|^4} \eta_2^2 k (\|q\|^2 + \eta_2^2).
\]

Furthermore, with notation \(A_0 = N^T V^2 N \) we get

\[
S_1 = \frac{1}{\|V\|^4} E(q^T A_0 P^T P A_0 q) - \|Pq\|^2 + \frac{\eta_2^2}{\|V\|^4} E\left(\|P N^T V^2 f\|^2 \right).
\]

Consider now \(E(q^T A_0 P^T P A_0 q) \) as a quadratic form with respect to the matrix \(P^T P \). Denote \(\kappa = E(N^4_{1,1}) - 3 \). First, \(E(A_0 q) = E(N^T V^2 N q) = \|V\|^2 q \) and

\[
\text{var}(A_0 q) = \left[\sum_{a,b=1}^l q_a q_b \sum_{t,s,u,v=1}^n V^a_t V^s_t V^v_t E(n_{a,i} n_{a,i} n_{t,j} n_{v,b}) \right]_{i,j=1}^l - \|V\|^4 q^T q
\]

\[
= \left[q_i q_j \|V\|^4 + (q_i q_j + \delta_{i,j}) \|q\|^2 \right] \|V^2\|^2 + \kappa \sum_{t=1}^n \|V_t\|^4 \delta_{i,j} \|q\|^2 - \|V\|^4 q^T q
\]

\[
= \|V^2\|^2 (q^T q + \|q\|^2 I_l) + \kappa \sum_{t=1}^n \|V_t\|^4 \text{diag} (q^2_1, \ldots, q^2_l),
\]

where \(\text{diag}(v_1, \ldots, v_l) \) denotes the diagonal matrix with entries \(v_1, \ldots, v_l \in \mathbb{R} \) on its diagonal and \(\delta \) is the Kronecker delta. In the second equation we make use of \(E(n_{s,i} n_{a,b} n_{t,j} n_{v,b}) = \delta_{i,a} \delta_{j,b} + \delta_{s,t} \delta_{j,b} \delta_{i,a} + \delta_{t,j} \delta_{a,b} \delta_{s,u} + \kappa \delta_{i,a} \delta_{j,b} \delta_{t,j} \delta_{a,b} \). Hence,

\[
\frac{1}{\|V\|^4} E(q^T A_0 P^T P A_0 q) = \frac{1}{\|V\|^4} \text{tr} \{ P^T P \text{var}(A_0 q) \} - \frac{1}{\|V\|^4} E(q^T A_0) P^T P E(A_0 q)
\]

\[
= \|V^2\|^2 q^T P q + \|P\|^2 \|q\|^2 + \kappa \sum_{t=1}^n \|V_t\|^4 \|P_t\|^2 \|q_t\|^2.
\]

The remaining term in \(S_1 \) follows trivially, proving the result. \(E\|\Sigma^2 - A\|^2 \) is obtained using similar calculations.

\[\square \]

Lemma S1. Assume that for \(\nu \in (0, 1) \) and some constants \(\delta, \epsilon > 0 \) it holds that \(\Pr \left(\|A - \Sigma^2\|_\mathcal{L} \leq \delta \right) \geq 1 - \nu/2 \) and \(\Pr \left(\|b - Pq\| \leq \epsilon \right) \geq 1 - \nu/2 \). Then each of the inequalities

\[
\|A^{1/2} - \Sigma\|_{\mathcal{L}} \leq 2^{-1} \delta \|\Sigma^{-1}\| \|1 + o(1)\|,
\]

\[
\|A^{-1/2} b - \Sigma^{-1} Pq\| \leq \epsilon \|\Sigma^{-1}\|_{\mathcal{L}} + 2^{-1} \delta (\|Pq\| + \epsilon) \|\Sigma^{-2}\| \|\Sigma^{-1}\| \|1 + o(1)\|
\]

hold with probability at least \(1 - \nu/2 \).

Proof: We show the result by using the Frechét-derivative for functions \(F : \mathbb{R}^{k \times k} \rightarrow \mathbb{R}^{k \times k} \). Due to the fact that \(\eta_1 > 0 \) it holds that \(\Sigma^2 \) is positive definite and thus invertible.

It holds due to Higham (2008), Problem 7.4, that \(F'(\Sigma^2) B \) for an arbitrary \(B \in \mathbb{R}^{k \times k} \) is given as the solution in \(X \in \mathbb{R}^{k \times k} \) of \(B = X \Sigma + \Sigma X \), i.e. due to the symmetry and positive definiteness of \(\Sigma \) we have \(F'(\Sigma^2) B = 2^{-1} \Sigma^{-1} B \). We take the orthonormal base \(\{E_{i,j}, i,j = 1, \ldots, k\} \)
for the space \((\mathbb{R}^{k \times k}, \| \cdot \|)\) with \(E_{i,j}\) corresponding to the matrix that has zeros everywhere except at the position \((i, j)\), where it is one. The Hilbert-Schmidt norm \(\|F'(\Sigma^2)\|_{HS}\) is
\[
\|F'(\Sigma^2)\|^2_{HS} = 4^{-1} \sum_{i,j=1}^{k} \|\Sigma^{-1}E_{i,j}\|^2 = 4^{-1} \sum_{i,j=1}^{k} (\Sigma^{-1})_{i,j}^2 = 4^{-1}\|\Sigma^{-1}\|^2.
\]
This yields with the Taylor expansion for Fréchet-differentiable maps
\[
\|A^{1/2} - \Sigma\|_C \leq \|F'(\Sigma)(A - \Sigma^2)\| + o(\|A - \Sigma^2\|) \leq 2^{-1}\|\Sigma^{-1}\|\delta\{1 + o(1)\}.
\]
For the second inequality we see first that
\[
\|A^{-1/2}b - \Sigma^{-1}Pq\| \leq \epsilon\|\Sigma^{-1}\|C + \epsilon\|A^{-1/2} - \Sigma^{-1}\|\delta\|Pq\|.
\]
The Fréchet-derivative of the map \(F : \mathbb{R}^{k \times k} \rightarrow \mathbb{R}^{k \times k}, A \mapsto A^{-1/2}\) is \(F'(\Sigma^2)B = -2^{-1}\Sigma^{-2}B\Sigma^{-1}\) and
\[
\|F'(\Sigma^2)\|^2_{HS} = 4^{-1} \sum_{i,j=1}^{k} \|\Sigma^{-2}E_{i,j}\|_2^2 \leq 4^{-1}\|\Sigma^{-2}\|\|\Sigma^{-1}\|^2.
\]
Here we used the submultiplicativity of the Frobenius norm with the Hadamard product of matrices. Thus we get via Taylor’s theorem
\[
\|A^{-1/2} - \Sigma^{-1}\| \leq 2^{-1}\|\Sigma^{-2}\|\|\Sigma^{-1}\|\|A - \Sigma^2\| + o(\delta).
\]
Plugging this into (S1) yields
\[
\|A^{-1/2}b - \Sigma^{-1}Pq\| \leq \epsilon\|\Sigma^{-1}\|C + 2^{-1}\delta(\|Pq\| + \epsilon)\|\Sigma^{-2}\|\|\Sigma^{-1}\|^2\{1 + o(1)\},
\]
where we used that \(\|b\| \leq \|Pq\| + \epsilon.\) \(\square\)

Equivalence of conjugate gradient and partial least squares: We denote \(\tilde{A} = A^{1/2}\) and \(\tilde{b} = A^{-1/2}b\). The partial least squares optimization problem is
\[
\min_{v \in \mathcal{K}_{i}(\tilde{A}, \tilde{b})} \|y - Xv\|^2,
\]
whereas the conjugate gradient problem studied in Nemirovskii (1986) is
\[
\min_{v \in \mathcal{K}_{i}(\tilde{A}^2, \tilde{b})} \|\tilde{b} - \tilde{A}v\|^2. \tag{S2}
\]
It is easy to see that the Krylov space \(\mathcal{K}_{i}(\tilde{A}^2, \tilde{b}) = \mathcal{K}_{i}(A, b)\) \((i = 1, \ldots, k)\). We have
\[
\arg \min_{v \in \mathcal{K}_{i}(\tilde{A}^2, \tilde{b})} \|\tilde{b} - \tilde{A}v\|^2 = \arg \min_{v \in \mathcal{K}_{i}(A, b)} \|y - Xv\|^2, \quad i = 1, \ldots, k.
\]
Thus it holds
\[
\hat{\beta}_i = \arg \min_{v \in \mathcal{K}_{i}(\tilde{A}^2, \tilde{b})} \|\tilde{b} - \tilde{A}v\|^2,
\]
Furthermore we have \(\Sigma\hat{\beta}(\eta_i) = \Sigma^{-1}Pq\), i.e. the correct problem in the population is solved by \(\beta(\eta_i)\) as well. Now we will restate the main result in Nemirovskii (1986) in our context:

Theorem S1. Nemirovskii

Assume that there are \(\delta = \delta(\nu, n) > 0, \bar{\epsilon} = \bar{\epsilon}(\nu, n) > 0\) such that for \(\nu \in (0, 1]\) it holds that
We will now apply Theorem S1 to our problem. Due to the fact that with probability at least \(1 - \nu/2\) it holds that

\[
\max \{ \| A^{1/2} \|_{L^2}, \| \Sigma \|_{L^2} \} \leq L,
\]

1. there is an \(L = L(\nu, n)\) such that with probability at least \(1 - \nu/2\) it holds that
2. there is a vector \(u \in \mathbb{R}^k\) and constants \(R, \mu > 0\) such that \(\beta(\eta_1) = \Sigma^\mu u, \| u \| \leq R\)

are satisfied. If we stop according to the stopping rule \(\alpha^*\) as defined in (4) with \(\tau \geq 1\) and \(\varsigma < \tau^{-1}\) then we have for any \(\theta \in [0, 1]\) with probability at least \(1 - \nu\)

\[
\| \Sigma \theta \{ \beta_{\alpha^*} - \beta(\eta_1) \} \|^2 \leq C^2(\mu, \tau, \zeta) R^{2(1 - \theta)/(1 + \mu)} (\bar{\epsilon} + \delta R L)^{(2(\theta + \mu))/(1 + \mu)}.
\]

Proof: Note first that on the set where \(\| \Sigma - A^{1/2} \|_{L^2} \leq \bar{\delta}\) holds with probability at least \(1 - \nu/2\) condition 1 also holds with \(L = \| \Sigma \|_{L^2} + \bar{\delta}\). Constrained on the set where all the conditions of the theorem hold with probability at least \(1 - \nu\) we consider Nemirovskii’s \((\Sigma, A^{1/2}, \Sigma - 1) P q, A^{-1/2} b\) problem with errors \(\bar{\delta}\) and \(\bar{\epsilon}\). Furthermore by assumption Nemirovskii’s \((2\theta, R, L, 1)\) conditions hold and thus the theorem follows by a simple application of the main theorem in Nemirovskii (1986). \(\square\)

We will now apply Theorem S1 to our problem. Due to the fact that \(\eta_1 > 0\) it holds that \(\Sigma^2\) is positive definite and thus invertible. We note that the spectral norm is dominated by the Frobenius norm. From Markov’s inequality we get

\[
\text{pr}\left(\|A - \Sigma^2\| \leq \bar{\delta}\right) \leq \bar{\delta}^{-2} E \left(\|A - \Sigma^2\|^2 \right).
\]

Using Theorem 1, \(\sum_{i=1}^n \|V_i\|^4 \leq \|V^2\|^2\) and setting the right hand side to \(\nu/2\) for \(\nu \in (0, 1]\) gives \(\bar{\epsilon} = \nu^{-1/2} \|V\|^{-2} \|V^2\| C_\delta\). In the same way \(\bar{\epsilon} = \nu^{-1/2} \|V\|^{-2} \|V^2\| C_\delta\). Lemma S1 gives with probability at least \(1 - \nu/2\) the concentration results required by Theorem S1 with

\[
\bar{\delta} = \nu^{-1/2} \|V^2\| C_\delta \{1 + o(1)\}
\]

\[
\bar{\epsilon} = \left(\nu^{-1/2} \|V^2\| C_\epsilon + \nu^{-1/2} \|V^2\|^2 \|C\| \|C_\delta\| \right) \{1 + o(1)\}
\]

Conditions 1 and 2 of Theorem S1 hold with a probability of at least \(1 - \nu/2\) by choosing \(L = \bar{\delta} + \|\Sigma\|_{L^2}, \mu = 1\) and \(R = \|\Sigma^{-3} P q\|\). Here we used that \(\beta(\eta_1) = \Sigma^{-3} P q\). Thus the theorem yields for \(\theta = 1\)

\[
\|\Sigma \theta \{ \beta_{\alpha^*} - \beta(\eta_1) \} \| \leq C(1, \tau, \zeta) \left(\bar{\epsilon} + \delta R L \right).
\]

Denote \(c(\tau, \zeta) = C(1, \tau, \zeta) \{1 + o(1)\}\). Finally we have \(\|\Sigma^{-1}\|_{L^2}^{-1} \|v\| \leq \|\Sigma v\|\) for any \(v \in \mathbb{R}^k\) and thus the theorem is proven with

\[
c_1(\nu) = \nu^{-1/2} \|c(\tau, \zeta)\| \|\Sigma^{-1}\|_{L^2} \left(C_\epsilon + \|\Sigma\|_{L^2} \|\Sigma^{-3} P q\| C_\delta \right)
\]

\[
c_2(\nu) = \nu^{-1} \|c(\tau, \zeta)\| \|\Sigma^{-1}\|_{L^2} \left(C_\epsilon C_\delta + \|\Sigma^{-3} P q\| C_\delta^2 \right).
\]

\(\square\)
S1.4. Proof of Theorem 3

The theorem is proved by contradiction. Assume that \(\hat{\beta}_1 \rightarrow \beta_1 \) in probability. Choosing \(v \in \mathbb{R}^k \), \(v \neq 0 \), orthogonal to \(\beta_1 \) that \(v^T \beta_1 \) converges in probability to zero. Next we show that the second moment vanishes as well.

Let \(M_d(z) = \max_{i \in \{1, \ldots, n\}} |E(\prod_{v=1}^{d} z_{i,v}^2) | \) for a random vector \(z = (z_1, \ldots, z_n)^T \) with existing mixed \((2d)\)th moments. Using \((a + b)^2 \leq 2(a^2 + b^2) \) for \(a, b \in \mathbb{R} \) we obtain

\[
E(v^2 b)^4 \leq \frac{8^2 ||v||^4}{||v||^4} E \left(\left| \prod_{v=1}^{d} T N V^2 N q \right| \right)^4 + \eta_1^4 \left| \prod_{v=1}^{d} T N V^2 f \right|^4 + \eta_2^4 \left| \prod_{v=1}^{d} T N V^2 f \right|^4
\]

Thus, \((v^T b)^2\) is uniformly integrable by the theorem of de la Vallée-Poussin and it follows that the directional variance \(\text{var}(v^T b) \) has to vanish in the limit as well. Now, calculations similar to Theorem 1 yield

\[
\text{var}(v^T b) = \frac{||V^2||^2}{||V||^4} \left\{ \eta_2^2 ||v||^2 (||q||^2 + \eta_2^2) + ||P^T v||^2 (||q||^2 + \eta_2^2) + (v^T P q)^2 \right\}
\]

\[
+ \sum_{i=1}^{n} \frac{||V_i||^4}{||v||^4} \sum_{i=1}^{l} q_i^2 (v^T P_i)^2 \left\{ E(N_{i,1}^4) - 3 \right\}, \quad v \in \mathbb{R}^k.
\]

We assumed that \(||V||^2 ||V^2|| \) does not converge to zero. It remains to check under which conditions \(\text{var}(v^T b) \) is larger than zero. This will always be the case if \(v \neq 0 \) and \(\eta_1 > 0, l = 1 \). For \(\eta_1 = 0 \) and \(l > 1 \) a vector \(v \) that lies in the range of \(P \) and is orthogonal to \(\beta_1 \propto P q \) exists, thus contradicting \(\hat{\beta}_1 \rightarrow \beta_1 \) in probability.

S1.5. Proof of Theorem 4

It is easy to verify that \(||V||^2 = \text{tr}(T^2) = n \gamma(0) \) and \(||V^2||^2 = n \gamma^2(0) + 2 \sum_{i=1}^{n-1} \gamma^2(t)(n - t) \). If (6) is fulfilled, then

\[
n \gamma(0) \leq ||V||^2 \leq n \gamma^2(0) \left\{ 1 + 2 e^{\frac{1 - \exp(-2 \rho (n - 1))}{\exp(2 \rho) - 1}} \right\} \leq n \gamma^2(0) \left\{ 1 + \frac{2c}{\exp(2 \rho) - 1} \right\}.
\]

It follows that \(||V||^2 \sim n^{1/2} \).

S1.6. Proof of Theorem 5

Let \(\gamma : \mathbb{N} \rightarrow \mathbb{R} \) be the autocovariance function of a stationary time series that has zero mean. For the autocovariance matrix \(V^2 \) of the corresponding integrated process of order one we get

\[
[V^2]_{t,s} = \sum_{i,j=1}^{t,s} \gamma(|i - j|), \quad (t, s = 1, \ldots, n). \]

Let \(t \geq s \). By splitting the sum into parts with \(i < j \) and \(i > j \) we get \([V^2]_{t,s} = s \gamma(0) + \sum_{j=1}^{s} \sum_{i=1}^{t-j} \gamma(i) + \sum_{j=2}^{s} \sum_{i=1}^{j-1} \gamma(i) \). Due to symmetry, \([V^2]_{t,s} = [V^2]_{s,t} \) for \(s > t \).

First, consider the case that all \(\gamma(j), j > 0 \) are negative. Using (6) we obtain

\[
\gamma(0)s \geq [V^2]_{t,s} \geq \gamma(0) \left\{ s - c \sum_{j=1}^{s} \sum_{i=1}^{t-j} \exp(-\rho j) - c \sum_{j=2}^{s} \sum_{i=1}^{j-1} \exp(-\rho j) \right\}, \quad t \geq s.
\]
Evaluation of the geometric sums gives

\[
[V^2]_{t,s} \geq \gamma(0) \left(s \left(1 - \frac{2c}{\exp(\rho) - 1} \right) + c \frac{\exp(\rho)}{(\exp(\rho) - 1)^2} \{1 - \exp(-\rho s)\} \{1 + \exp(\rho(s-t))\} \right).
\]

The second term on the right is always positive and the positivity of the first term is ensured by the condition \(\rho > \log(2c + 1)\). Hence, \(\gamma(0) \left[1 - 2c \{\exp(\rho) - 1\}^{-1} \right] s \leq [V^2]_{t,s} \leq \gamma(0) s, \ s \geq 1.

If \(\gamma(t), t \geq 1\) is not purely negative, it can be bound by

\[
\gamma(0) \left[1 - 2c \{\exp(\rho) - 1\}^{-1} \right] s \leq [V^2]_{t,s} \leq \gamma(0) \left[1 + 2c \{\exp(\rho) - 1\}^{-1} \right] s.
\]

We write \(\delta_1\) and \(\delta_2\) for the constants in the lower and upper bound, respectively, so that \(\delta_1 \min\{s,t\} \leq [V^2]_{t,s} \leq \delta_2 \min\{s,t\}\) \((t, s = 1, \ldots, n)\). This yields upper and lower bounds on the trace of \(V^2\) and shows that \(\|V\|^2 \sim n^2\). Additionally,

\[
[V^2]_{t,t} = \sum_{l=1}^{n} [V^2]_{t,l} [V^2]_{l,t} = \sum_{l=1}^{t} [V^2]_{t,l}^2 + \sum_{l=t+1}^{n} [V^2]_{t,l}^2 \leq \frac{\delta_2^2}{6} t (6nt - 4t^2 + 3t + 1)
\]

\[
[V^2]_{t,t} \geq \frac{\delta_2^2}{6} t (6nt - 4t^2 + 3t + 1).
\]

This implies upper and lower bounds on the trace of \(V^4\) in the form \(c n(n + 1)/2\) for \(c \in \{\delta_1^2/6, \delta_2^2/6\}\) and thus \(\|V^2\|^2 \sim n^2\).

S1.7. **Proof of Theorem 6**

First consider \(n^{-1}X^\top \hat{V}^{-2}y\). Define \(X_u = (X_{u,1}, \ldots, X_{u,n})^\top = N P^\top + \eta_1 F\) and \(y_u = (y_{u,1}, \ldots, y_{u,n})^\top = N q + \eta_2 F\) such that \(X = VX_u\) and \(y = VX_u\). By the triangle inequality

\[
\left\| n^{-1}X^\top \hat{V}^{-2}y - Pq \right\| \leq \left\| n^{-1}X^\top V^{-2}y - Pq \right\| + \left\| n^{-1}X^\top \left(\hat{V}^{-2} - V^{-2} \right) y \right\|.
\]

The first term on the right hand side is convergent to zero in probability due to Theorem 1. The second term can be bounded as

\[
n^{-2} \left\| X^\top \left(\hat{V}^{-2} - V^{-2} \right) y \right\|^2 \leq \left\| V \hat{V}^{-2} V - I_n \right\|_F^2 n^{-1} \| X_u \|_F^2 n^{-1} \| y_u \|^2.
\]

Since both \(X_{u,1}, \ldots, X_{u,n}\) and \(y_{u,1}, \ldots, y_{u,n}\) are independent and identically distributed, it follows that \(n^{-1} \| y_u \|^2\) is a strongly consistent estimator for \(E(y_{u,1}^2)\), as well as that \(n^{-1} \| X_u \|_F^2\) is bounded from above by \(n^{-1} \| X_u \|_F^2\), which is a strongly consistent estimator of \(E(\|X_{u,1}\|_F^2)\).

Convergence in probability of \(\left\| V \hat{V}^{-2} V - I_n \right\|_F\) to zero implies the convergence of \(b(\hat{V})\) to \(Pq\) in probability. To obtain the convergence rate \(\|n^{-1}X^\top V^{-2}y - Pq\| = O_p(r_n)\), use Theorem 1 and \(\| V \hat{V}^{-2} V - I_n \|_F = O_p(r_n)\). The convergence of \(\|n^{-1}X^\top V^{-2}X - \Sigma^2\|\) is proven in a similar way.

To show the consistency and the rate of the corrected partial least squares estimator, we follow the same lines as in the proof of Theorem 2. First, \(\delta = r_n c_A(\nu)\) and \(\epsilon = r_n c_b(\nu)\) for \(\nu \in (0,1]\) with constants \(c_A(\nu), c_b(\nu)\) are taken, such that

\[
\Pr\{\|A(\hat{V})^{1/2} - \Sigma\|_F \leq r_n c_A(\nu)\} \geq 1 - \nu/2,
\]

\[
\Pr\{\|A(\hat{V})^{1/2} b(\hat{V}) - \Sigma^{-1} Pq\| \leq r_n c_b(\nu)\} \geq 1 - \nu/2.
\]
Moreover, \(L = \| \Sigma \|_L + \delta \) and \(R = \| \Sigma^{-3} P q \| \), \(\mu = 1 \), satisfies conditions 1 and 2 in Theorem S1 with probability at least \(1 - \nu/2 \). Thus, with probability at least \(1 - \nu \) we get by setting \(\theta = 1 \)

\[
\| \hat{\beta}_{a^*}(\hat{V}) - \beta(\eta_1) \| \leq r_n C(1, \tau, \zeta) \{ 1 + o(1) \} \| \Sigma^{-1} \|_L \left[c_b(\nu) + c_A(\nu) \| \Sigma^{-3} P q \| \right]^{\{ \| \Sigma \|_L + r_n c_A(\nu) \}},
\]

where the constants \(\zeta, \tau \) are taken from the definition of \(a^* \).

\[\square \]

S2. **Addendum to Section 5, Simulations**

Figure S1 shows the differences in empirical mean squared error of \(\hat{\beta}_1 \) for various dependence structures considered in Section 5 in the setting with \(l = i = 1 \). We calculated

\[
n_{MSE}(\hat{\beta}_1) = n 500^{-1} \sum_{i=1}^{500} (\hat{\beta}_{1,i} - \beta_1)^2,
\]

where \(\hat{\beta}_{1,i} \) denotes a partial least squares estimator in the \(i \)th Monte Carlo simulation based on \(n \) observations. If an autoregressive dependence is present in the data and is ignored in the partial least squares algorithm, \(n_{MSE}(\hat{\beta}_1) \) is proportional to a constant, which is larger than in the corrected partial least squares case. Ignoring the integrated dependence in the data leads to \(n_{MSE}(\hat{\beta}_1) \) growing linearly with \(n \), which confirms our theoretical findings in Section 3.

References

Fig. S1: Empirical mean squared error of $\hat{\beta}_1$ multiplied by n. The dependence structures are: autoregressive (grey), autoregressive integrated moving average (black, dashed) and corrected partial least squares on integrated data (black, solid).