Supplemental Information

Structural Basis for Polyproline-Mediated Ribosome Stalling and Rescue by the Translation Elongation Factor EF-P

SUPPLEMENTAL FIGURES

A 121,704 particles (Dataset 1)
 A/P P/E
 10,391 particles (9%)
 vacant 70S
 36,224 particles (30%)
 P-IRNA
 53,961 particles (44%)
 A+P - 17%
 21,128 particles (17%)

B 3.6 A
 0.1 0.2 0.3
 0 0.2 0.4

C 3.9 A
 0.1 0.2 0.3
 0 0.2 0.4

D 3.6 A
 0.1 0.2 0.3
 0 0.2 0.4

E

F 229,613 particles (Dataset 2)
 P-IRNA
 75,089 particles (33%)
 undefined EF-P subpopulations
 46,826 particles (21%)
 A+P+EF-P
 21,655 particles (9%)
 E-IRNA
 8,971 particles (4%)
 vacant 70S
 44,265 particles (19%)
 50S bias
 32,797 particles (14%)

G 3.7 A
 0.1 0.2 0.3
 0 0.2 0.4

H

I 3.2 A
 0.1 0.2 0.3
 0 0.2 0.4

J

K 229,455 particles (Dataset 3)
 A/P P/E
 8,835 particles (4%)
 P+EF-P-“L1 in”
 69,761 particles (30%)
 P+subEF-P-“L1 out”
 99,883 particles (44%)
 P + E
 50,979 particles (22%)

L 3.1 A
 0.1 0.2 0.3
 0 0.2 0.4

M

N 3.2 A
 0.1 0.2 0.3
 0 0.2 0.4

O

3D classification w/o alignment
3D classification with mask w/o alignment
Figure S1 - Related to Figure 1-3. Data processing of the cryo-EM structures of polyproline-stalled ribosomes ± EF-P. (A) *In silico* sorting procedure for Dataset 1 derived from the PPP-stalled ribosome complexes prepared in the absence of EF-P. (B) Fourier-shell-correlation (FSC) curve (green) and (C) transverse section of the P-site tRNA only structure colored according to local resolution. (D) FSC curve (orange) and (E) transverse section of the A- and P-site tRNAs containing structure colored according to local resolution. In (B) and (D), the resolution at FSC=0.143 is indicated with a dashed line. (F) *In silico* sorting procedure for Dataset 2 derived from the PPP-SRC prepared in the presence of EF-P. (G) FSC curve (orange), as well as self and cross-validated correlations FSC\textsubscript{work} (red) and FSC\textsubscript{test} (purple), respectively. The resolutions at FSC=0.143 and FSC=0.5 (C\textsubscript{ref}) are indicated with dashed lines. (H) Transverse section of the A- and P-site tRNA- and EF-P-containing structure colored according to local resolution. (I) FSC curve (green), as well as self and cross-validated correlations as in (G) but for the P-site tRNA only structure. (J) as (H) but for P-site tRNA only structure. (K) *In silico* sorting procedure for Dataset 3 derived from the PP-SRC prepared in the presence of EF-P. (L) FSC curve (orange), as well as self and cross-validated correlations FSC\textsubscript{work} (red) and FSC\textsubscript{test} (purple), respectively. The resolutions at FSC=0.143 and FSC=0.5 (C\textsubscript{ref}) are indicated with dashed lines. (M) Transverse section of the P-site tRNA and EF-P structure colored according to local resolution. (N) FSC curve (green) for the P- and E-site tRNA containing structure. (O) as (M) but for P- and E-site tRNA containing structure.
Figure S2 - Related to Figure 1. Flexibility of tRNA^{Pro} in A- and P-sites in the absence of EF-P. (A-C) Cryo-EM densities coloured according to local resolution of the ASL of P-site tRNA^{Pro} (green) or A-site tRNA^{Pro} (orange) in comparison to nucleotides 947-972 (purple) of the 16S rRNA at high threshold (7σ). (D-G) Cryo-EM densities of (D and E) P-site tRNA^{Pro} (green) and (F and G) tRNA^{Pro} (orange) coloured according to local resolution at (D-F) high (7σ) or (G) low threshold (3.5σ). (H-J) Cryo-EM densities of the CCA-ends of (H) P-site tRNA or (I and J) P- and A-site tRNAs including modeled fMet (cyan) and Phe (green) (from PDB: 1V4Y) (Polikanov et al., 2014), coloured according to local resolution. (K) Cryo-EM density colored according to local resolution for the N-terminus of ribosomal protein L27 (purple).
Figure S3 - Related to Figure 4. Comparison of *E. coli* EF-P, *T. thermophilus* EF-P and yeast eIF5A on the ribosome. (A) Cryo-EM density for EF-P coloured according to local resolution, with EF-P domains labeled (d1-d3). (B and C) Superimposition of ribosome-bound conformations of *E. coli* EF-P (salmon) with (B) *T. thermophilus* EF-P (grey) (PDB: 3HUX) (Blaha et al., 2009) and (C) yeast eIF5A (light blue) (PDB: 5GAK) (Schmidt et al., 2016). Root mean square deviations (RMSD) for the individual domains are indicated. (D) Interaction of D69 of *E. coli* EF-P with nucleotide U17a of the
D-loop of P-site tRNA^{Pro} (green). (E) Interaction of N67 of *T. thermophilus* with nucleotide U17a of the D-loop of P-site tRNA^{fMet} (grey)(PDB: 3HUX) (Blaha et al., 2009). (F) Absence of interaction of D69 of *E. coli* EF-P with the D-loop of a tRNA^{Tyr} (cyan, PDB: 4WQ1) modeled into the P-site of the ribosome. (G-I) Interaction of (G) *E. coli* EF-P, (H) *T. thermophilus* EF-P (grey)(PDB: 3HUX) (Blaha et al., 2009) and (I) yeast eIF5A (light blue) (PDB: 5GAK) (Schmidt et al., 2016), with the CCA-end of P-site tRNA as well as A2439 (blue) of 23S rRNA (A2808 of 28S rRNA in yeast).
Figure S4 - Related to Figure 4. Interactions of Loop I of domain 3 with S7 and the E-site codon. (A) Electron density (grey mesh) for loop I of domain 3 (salmon). (B) Same as (A) but coloured according to local resolution. (C) Potential hydrogen bonds between loop I of EF-P (salmon), S7 (cyan) and the E-site codon (light blue) are indicated as dashed lines. (D) as (C) but only focusing on interactions between S7 and loop I of EF-P. (E) as (C) but only focusing on the interactions between the E-site codon and loop I. In (C) and (E), -1, -2 and -3 nucleotides of the E-site codon are relative to the first position of the P-site codon. (F) Weblogo of residues of EF-P loop I (based on 12 different bacterial EF-P sequences) and mutation scheme for EF-P variants.
Figure S5 - Related to Figure 4. Interaction of Loop I of EF-P with the E-site codon.

(A and B) Modeling of an (A) AAA (magenta) or (B) GGG (blue) codon in the E-site suggests a steric clash with residues within loop I of EF-P (salmon). (C and D) Interaction of (C) UUU (olive) or (D) CCG (light blue) codon in the E-site with loop I of EF-P and S7 (cyan). Potential hydrogen bonds are indicated with dashed yellow lines. Note an additional interaction of loop I of EF-P with the -2 position of the (D) proline codon CCG, as compared with (C) phenylalanine UUU codon. (E) Lack of interaction of T. thermophilus (grey) loop I of EF-P with S7 and mRNA (PDB: 3HUX) (Blaha et al., 2009). (F) Comparison of position of R78 of S7 (grey) from the T. thermophilus EF-P (grey) 70S structure (PDB: 3HUX) (Blaha et al., 2009) or S7 (cyan) from our E. coli EF-P-PP-70S structure.
Figure S6 - Related to Figure 5. Conformation of polyproline nascent chain on the ribosome. (A-D) Comparison of cryo-EM density (mesh) and model for Pro-Pro nascent chain (cyan) compared with conformation of diprolyl residues found in (A) S11 (residues 122-124, deep olive), (B) L11 (residues 73-75, yellow), (C) the antimicrobial peptide Onc112 (residues 3-5, olive, PDB: 4ZER) (Seefeldt et al., 2015), and (D) the CMV-stalling peptidyl-tRNA (orange, PDB: 5A8L) (Matheisl et al., 2015). (E and F) Comparison of cryo-EM density (mesh) and model for Pro-Pro nascent chain (cyan ribbon) with (E) TnaC (yellow, PDB: 4UY8) (Bischoff et al., 2014), VemP (dark green, PDB: 5NWY) (Su et al., 2017) as well as (F) MifM (pink, PDB: 3J9W) (Sohmen et al., 2015) and SecM (tan, PDB: 3JBV) (Zhang et al., 2015). The relative position of nucleotide G2061 (grey) of the 23S rRNA is shown for reference.
Figure S7 - Related to Figure 6. Conformation of polyproline nascent chain on the ribosome. Logarithm of the probability of finding a given peptide bond distance along the first (left panel) or the second (right) conformational mode of the CCA-end and the C-terminal proline backbone atoms obtained from all the simulations. Mode 2 highly correlates (cc=0.89) with the peptide bond distance, while mode 1 describes motions that are largely uncorrelated with the peptide bond distance (cc=0.23).