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Many nonequilibrium, active processes are observed at a coarse-grained level, where
different microscopic configurations are projected onto the same observable state. Such
“lumped” observables display memory, and in many cases, the irreversible character
of the underlying microscopic dynamics becomes blurred, e.g., when the projection
hides dissipative cycles. As a result, the observations appear less irreversible, and it is
very challenging to infer the degree of broken time-reversal symmetry. Here we show,
contrary to intuition, that by ignoring parts of the already coarse-grained state space
we may—via a process called milestoning—improve entropy-production estimates. We
present diverse examples where milestoning systematically renders observations “closer
to underlying microscopic dynamics” and thereby improves thermodynamic inference
from lumped data assuming a given range of memory, and we hypothesize that this
effect is quite general. Moreover, whereas the correct general physical definition of
time reversal in the presence of memory remains unknown, we here show by means of
physically relevant examples that at least for semi-Markov processes of first and second
order, waiting-time contributions arising from adopting a naive Markovian definition
of time reversal generally must be discarded.

entropy production | milestoning | semi-Markov processes | waiting-time distribution

Although the nonequilibrium character of active systems may often be self-evident,
e.g., the directed motion of a kinesin motor or persistent rotation of the F1-ATPase
(1), differentiating in general between equilibrium and nonequilibrium steady states
at mesoscopic and microscopic scales is surprisingly difficult (2–6). A key reason is that
broken time-reversal symmetry often emerges on length scales where detailed microscopic
information is unavailable, e.g., below the diffraction limit. In particular, single-molecule
experiments probe inherently coarse-grained representations of microscopic dynamics (7)
and may thus underestimate (2) or even “be blind to” relevant slow dissipative degrees
of freedom (8).

Coarse-graining may be a consequence of experimental limitations as well as of data
analysis: For example, the location of a microscopic probe is, most optimistically, limited
by the pixel size, which introduces spatial coarse-graining (9). Similarly, when protein
folding is probed using optical tweezers (10) or fluorescence resonance energy transfer
(2, 11, 12), many molecular conformations with, respectively, the same extension or with
the same distance between fluorescent probes are lumped onto a single state. This projects
the high-dimensional conformational dynamics onto a single lumped coordinate.

Consider the total steady-state entropy-production rate (i.e., dissipation rate),
estimated as (13, 14)

〈Ṡ[x]〉 ≡ lim
t→∞

1
t

〈
ln

P[{x(�)}0≤ � ≤ t ]
P[{�x(�)}0≤ � ≤ t ]

〉
, [1]

where x(�) denotes the system’s state at time �, P[{x(�)}0≤ � ≤ t ] is the probability of
a forward path {x(�)}0≤ � ≤ t , and � denotes the physically consistent time-reversal
operation such that P[{�x(�)}0≤ � ≤ t ] corresponds to the probability of the time-
reversed path. In Eq. 1, Boltzmann’s constant was set to 1, 〈·〉 indicates averaging
over P[{x(�)}0≤ � ≤ t ], and we tacitly assumed ergodic dynamics. When x(�) is a Markov
process, {�x(�)}0≤ � ≤ t = {�x(t−�)}0≤ � ≤ t where � denotes a sign change of all degrees
of freedom that are odd under time reversal (such as momenta).

Note that in the presence of memory, the physically consistent form of time

reversal � is generally not known. In particular, naively setting {�x(�)}0≤ � ≤ t
!=

{x(t − �)}0≤ � ≤ t in Eq. 1 may yield an erroneous positive entropy production even for
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coarse-grained representations of manifestly reversible micro-
scopic dynamics, as shown in refs. 15–17 and elaborated below.

If the time-reversal operation and coarse-graining are carried
out correctly, projected representations of microscopic dynamics
are usually “less irreversible” than the true dynamics (16, 18–22).
That is, if a coarse-grained representation x̂(t) of the full
dynamics is considered, we typically expect to underestimate*

the true entropy production (16, 18, 19, 23), i.e.,

0 ≤ 〈Ṡ[x̂]〉 ≤ 〈Ṡ[x]〉. [2]

Recently, there has been a surge in interest in thermody-
namic inference from coarse-grained, partially observed dynamics
(16, 19, 20, 22, 24–26). The arguably most direct method to
infer a lower bound on the entropy production is via the ther-
modynamic uncertainty relation (TUR) (9, 27–39). Moreover,
approaches were developed that exploit the information encoded
in the non-Markovian character to infer bounds on dissipation
(21, 22, 40–42).

Milestoning at Coarse Resolution
Given the inequality in Eq. 2, optimal estimation of entropy
production from experimental observations remains an open
question. Indeed, different coarse-grained representations yield
different estimates; moreover, in any realistic experimental
setting, neither the microscopic dynamics nor the precise coarse-
graining are known. Recently, it was found that coarse-graining
microscopic Markov dynamics via a method called “milestoning”
(to be explained below) preserves the microscopic entropy
production even in the absence of a timescale separation between
hidden and observed degrees of freedom, if no dissipative
cycles† become hidden by the coarse-graining, and the resulting
milestone process is a 1st order semi-Markov process (16, 43).
However, milestoning arbitrary Markov dynamics like other
types of coarse-graining generally yields arbitrarily complex non-
Markovian processes with long-range memory. Moreover, one
can also milestone non-Markovian processes. The thermody-
namics of such “long-range” non-Markovian processes remains
only poorly understood.

The idea of milestoning, a method originally developed for
efficient computation (44–46), is illustrated in Fig. 1, where we
consider the example of a molecular motor whose dynamics is
modeled as driven diffusion in a periodic potential on a ring
(47). Owing to experimental limitations, the observation yields
a binned version of the original microscopic trajectory ' → '̂
(Fig. 1 A and C ) with a finite-time resolution. This is an example
of the common coarse-graining approach known as “lumping”
(18). The binned trajectory may be highly non-Markovian even
when the underlying detailed dynamics is Markov. As a result, the
entropy production estimated with Eq. 1 under the assumption
that the binned trajectory is a Markov random walk is far lower
than the true value, see Fig. 1D as well as (43).

Milestoning involves further postprocessing of the binned
trajectory, resulting in a trajectory hopping between a set of
milestones that do not cover the entire configuration space‡

* In case of a perfect timescale separation between the observed and hidden degrees
of freedom, the total entropy production is not necessarily underestimated by a coarse-
grained representation.
†A dissipative cycle in a Markov process is a cycle for which the Kolmogorov cycle criterion
is violated. The cycle is said to be hidden if the states of said cycle are coarse-grained into
the same lump.
‡Note that in this example and throughout the rest of the paper milestones are (coarse)
states, as in refs. 16, 43, 48, unlike in earlier versions (45, 46) where milestones were
defined as interfaces between pairs of coarse states. In this example, both versions of
milestoning give indistinguishable results. See ref. 43 for further discussion.

C D

A B

Fig. 1. Milestoning a coarse observation of a molecular motor. (A) Micro-
scopic trajectory of a cyclical molecular motor modeled as diffusion along
a periodic potential (the precise parameters of the model are given in
SI Appendix). Owing to a finite spatiotemporal resolution, the motor state
encoded in the angle ' is further binned into intervals of size Δ' (here
Δ' = 2�/15). Milestoning involves further postprocessing of the coarse
trajectory: Some coarse states (here, the bins A, B, and C) are declared to
be milestones (blue). Upon entering a milestone, the state of the milestone
trajectory remains in said milestone until entering a different milestone for
the first time. (B) Unobservable microscopic trajectory of the motor. (C)
Observable binned trajectory of the motor (green), and the corresponding
milestoned trajectory (blue). The entropy-production rate is estimated using
Eq. 1 assuming different ranges of memory encoded in the so-called semi-
Markov order; in the kth semi-Markov order, it is assumed that the motor’s
state at any given time t depends on the time it entered the state and
the sequence of k − 1 previously visited states. (D) Quality factor Q—the
ratio of estimated entropy production and its exact value Eq. 6)—for the
observed (green) and milestoned (blue) trajectories, shown as a function of
the assumed semi-Markov order. The strong dependence of the estimate
on the assumed semi-Markov-order of the observed (i.e., binned) trajectory
reflects memory in coarse dynamics (despite the fact that the microscopic
trajectory is itself Markovian). In stark contrast, the milestoned trajectory,
here approximately a 1st order semi-Markov process, yields the essentially
exact entropy production.

(Fig. 1C ). In the particular case of Fig. 1, milestoning of the
highly non-Markov binned trajectory yields a 2nd order semi-
Markov random walk, and the application of Eq. 1 recovers
the true microscopic entropy production. Note that as a result
of placing the milestones at equivalent sites in the potential,
and taking a small bin size, the process is in fact approximately
a 1st order semi-Markov random walk (recall that transition
path-times of one-dimensional diffusion processes are reflection
symmetric).

Here, we show—more generally and intriguingly—that mile-
stoning, if used to postprocess lumped dynamics, can improve
thermodynamic inference for a broad class of systems. In other
words, milestoned trajectories obtained by discarding certain
details of lumped trajectories (Fig. 1), can provide improved
estimates of dissipation; as such, the milestoning analysis is
directly applicable to experimentally observed dynamics, which
are inherently lumped.

We explicitly address the scenario where lumping hides dissipa-
tive cycles and compare the milestoning estimate with the bound
inferred from the TUR. We show how postlumped milestoning
may be used systematically to improve thermodynamic inference,
i.e., to enhance the precision of dissipation estimates from
coarse observations. We stress the importance of considering
a physically consistent time-reversal operation in the presence
of memory and show that distinct end-state dependent waiting-

2 of 9 https://doi.org/10.1073/pnas.2318333121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 A
lja

z 
G

od
ec

 o
n 

A
pr

il 
16

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
84

.5
9.

54
.7

9.

https://www.pnas.org/lookup/doi/10.1073/pnas.2318333121#supplementary-materials


time contributions that emerge upon milestoning generally do
not contribute to dissipation.

Milestoning Coarse Dynamics with Hidden
Cycles
We begin with a toy model that contains hidden dissipative cycles
(see refs. 49–51 for similar toy models). Models of this kind
can emerge as descriptions of a system of magnetically coupled
colloidal particles (8, 52), chemical reaction networks (53),
circular hidden Markov models (54, 55), and conformational
rearrangements in molecular machines (3). Here we consider a
discrete-time Markov process as shown in Fig. 2A. The observed
dynamics involves Nlump observable states arranged along a ring,
and each such observable state contains Nhid microscopic states
forming a smaller ring (Fig. 2A), such that the total number of
states is given by Nlump ×Nhid. Within each lump there are two
neighboring microstates which are connected to two microstates
within the previous lump (e.g., microstate 1↔ 31 and 2↔ 30
in Fig. 2A), and two neighboring microstates which are connected
to two microstates within the next lump (e.g., microstate 3↔ 5
and 4 ↔ 8 in Fig. 2A). The transition probabilities for internal
microstates (i.e., microstates not connecting two lumps for
Nhid > 4) are whid,+ in the clockwise direction, and whid,− =
1 − whid,+ in the counterclockwise direction. For microstates
connecting two lumps, we setwlump,± for transitions between the
lumps, and (1 − wlump,±)whid,± for internal transitions. Thus,
for whid,+ 6= whid,−, the lumped states hide dissipative cycles
when Nhid > 2. We now milestone the trajectory by declaring
four equidistant lumps as milestones (see lumps I, III, V, and VII
in Fig. 2A).

To evaluate 〈Ṡ[x̂i]〉, where the subscript i = {lump,mil}
indicates whether the entropy production is estimated for the

A B

C

Fig. 2. Estimating entropy production from a coarse-grained discrete-time
Markov chain with hidden cycles. (A) Schematic of a discrete-state Markov
chain with 32 hidden microstates (indicated with Arabic numerals) lumped
into eight domains (indicated with Roman numerals). In this example, each
of the eight lumps contains Nhid = 4 microstates. Such a partitioning arises
naturally when the underlying process is observed with coarse resolution.
Milestoning involves further postprocessing of the lumped process: Some
lumped states (here, the domains I, III, V, and VII encircled in blue) are
declared to be milestones. Once the trajectory enters a milestone, the
coarse-grained state of the milestone trajectory remains in said milestone
until it enters a different milestone for the first time. We choose transition
rates {whid,+ , whid,−} = {wlump,+ , wlump,−} = {0.6,0.4}, 32 lumped states,
2 × 108 discrete time steps, and we vary the number of hidden states from
4 to 10. (B and C) Quality factor Q given by Eq. 6 for the entropy production
estimated from the lumped (green bars) and postlumped milestoned (blue
bars) trajectory assuming (B) 1st order semi-Markov (Eq. 3) and (C) 2nd order
semi-Markov (Eq. 5).

lumped trajectory or the milestone trajectory, we use Eq. 1 and
measure lump/milestone-sequence frequencies in the trajectory
(56–58). In the presence of long-range memory, this is a
computationally demanding task requiring many independent
steady-state trajectories or one extremely long trajectory. Even
if this is given, a finite range of memory must be assumed in
practical computations of path probabilities P[{x(�)}0≤ � ≤ t ] and
P[{�x(�)}0≤ � ≤ t ]. A numerical implementation of the inference
is provided in ref. 59.

Note that the lumped trajectory x̂i(t) is indeed a non-
Markovian process. This is manifested in the fact that the estimate
of 〈Ṡ[x̂i]〉 strongly depends on the assumption of the underlying
extent of memory. That is, considering only the preceding step—
in the 1st order semi-Markov approximation—we assume that
x̂i(t) depends only on x̂i(t − 1) but not on x̂i(t − k) for k ≥ 2,
leading to the one-step affinity estimate (assuming all coarse states
are equivalent as in Fig. 2A)

〈Ṡaff
1 [x̂i]〉 =

pi+ − pi−
〈�i〉

ln

(
pi+
pi−

)
, [3]

where 〈�i〉 is the average waiting time within a coarse-grained
state (i.e., the time spent in a coarse-grained state before entering
a new coarse-grained state), and pi± are the forward/clockwise
(+) and backward/counterclockwise (−) jump probabilities in
the sequence of distinct coarse-grained states (i.e., upon removing
repeated consecutive coarse-grained states).

In the kth order semi-Markov approximation, we assume
that the probability of x̂i(t) depends on the sequence {x̂i(t −
1), . . . , x̂i(t − k)}. To be concrete, for a 2nd order semi-Markov
process (40) the jump probabilities and waiting times depend

on the previous state. Naively, taking {�x̂(�)}0≤ � ≤ t
!={x̂(t −

�)}0≤ � ≤ t in Eq. 1, yields two contributions:

lim
t→∞

1
t

〈
ln

P[{x̂i(�)}0≤ � ≤ t ]
P[{x̂i(t−�)}0≤ � ≤ t ]

〉
=〈Ṡaff

2 [x̂i]〉+ 〈Ṡwt
2 [x̂i]〉, [4]

where 〈Ṡaff
2 [x̂i]〉 is the two-step affinity contribution, and

〈Ṡwt
2 [x̂i]〉 a contribution of waiting times (40). In particular, for

the model in Fig. 2A the two-step affinity contribution reads
(40, 43) (assuming all coarse states are equivalent)

〈Ṡaff
2 [x̂i]〉 =

pi+ − pi−
〈�i〉

ln

(
�i

++

�i
−−

)
, [5]

where �i
±± are conditional splitting probabilities of making a

forward/backward jump, given that the previous jump occurred
in the forward/backward direction. In anticipation that waiting
times do not contribute to dissipation, we ignore them in the
inference of 〈Ṡk[x̂i]〉. Later, we also prove that they indeed
result in a spurious contribution to the estimate for 〈Ṡ[x]〉. For
nonequivalent coarse states the correct expression for 〈Ṡaff

1 〉 and
〈Ṡaff

2 〉 are given in SI Appendix.
Taking a single ergodically long trajectory, we use Eq. 3 or

Eq. 5 for the microscopic, lumped, and postlump milestoned
trajectories to estimate the entropy production. To determine
the accuracy of the estimates, we calculate the quality factor 0 ≤
Q ≤ 1, equal to the ratio of the estimated entropy production to
the true entropy production of the microscopic process:

Q = 〈Ṡaff
k [x̂i]〉/〈Ṡ[x]〉, [6]

PNAS 2024 Vol. 121 No. 17 e2318333121 https://doi.org/10.1073/pnas.2318333121 3 of 9
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where i = {lump,mil}. We apply the 1st order (i.e., k = 1) semi-
Markov and 2nd order (i.e., k = 2) semi-Markov approximation
to estimate 〈Ṡ[x̂i]〉, and the results are shown in Fig. 2 B
and C. For Nhid ≥ 4 the estimates from both coarse-grained
trajectories (i.e., lumped and milestoned) are significantly lower
than the true entropy-production rate. This is due to the
presence of hidden dissipative cycles. Nevertheless, within the
1st order semi-Markov approximation, milestoning the lumped
trajectory improves the entropy-production estimate (compare
green and blue bars in Fig. 2B). On the 2nd order semi-Markov
level milestoning neither improves nor worsens the estimate
(Fig. 2C ).

Interestingly, milestoning lumped dynamics apparently may
improve the entropy-production estimate using Eq. 1 even in the
presence of hidden dissipative cycles. Notably, in practice, the
extent of memory is unlikely to be known, and computations at
orders higher than 2 quickly become unfeasible.

Milestoning in Driven Single-File Diffusion
Next, we consider tracer-particle dynamics in discrete-time
single-file diffusion on a ring (Fig. 3), a paradigmatic model of
dynamics with long memory and anomalous diffusion (60–66)
as well as a paradigm for diffusion in crowded media (67–71)
and transport through biological channels (72). Let Nsites be
the total number of sites on the ring, and Nvac the number of
empty sites (vacancies), such that the total number of particles is
N = Nsites −Nvac. At each discrete time step a particle is picked
at random and shifted with a given probability to the left or
right if the new site is unoccupied. Note that the latter condition
introduces waiting times between jumps, i.e., it effectively gives
rise to local Poissonian clocks in the limit of continuous time. We
track the position of a tracer particle (see e.g., Fig. 3A, dark blue),
which results in a lumped process, where multiple microscopic
states correspond to the same location of the tracer particle but
different arrangements of the unobserved “bath” particles.

A B C

D E F

G H I

J K L

Fig. 3. Estimating the entropy production in single-file diffusion for different driving schemes. (A–C) Schematic of the different driving scenarios, where the
tracer particle is indicated in dark blue and bath particles in light blue. Red sites indicate the milestone positions for the tracer particle. In each panel, we
consider Nsites = 6 sites and vary the number of vacancies Nvac from 1 to 5. Asymmetric transition probabilities are {1−q, q}={0.55,0.45}. Entropy-production
estimates are obtained from trajectories with 2× 108 discrete steps. (D–F ) Quality factor of the entropy production estimated with the 1st order semi-Markov
approximation (Eq. 3). (G–I) Quality factor of the entropy production estimated with the 2nd order semi-Markov approximation (Eq. 5). (J–L) Quality factor of the
entropy production estimated with the continuous-time TUR (Eq. 7) using the tracer particle current.

4 of 9 https://doi.org/10.1073/pnas.2318333121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 A
lja

z 
G

od
ec

 o
n 

A
pr

il 
16

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
84

.5
9.

54
.7

9.



We consider three different driving scenarios: i) a uni-
formly driven system with clockwise (w+) and counter-
clockwise (w−) transition probabilities {w+, w−}={1−q, q}
(Fig. 3A), ii) a driven tracer particle with transition probabilities
{wt

+, wt
−}={1−q, q} and bath particles with symmetric hopping

probabilities {w+, w−}={1/2, 1/2} (Fig. 3B) (73–77), and iii)
the opposite scenario where the bath particles are driven, and the
tracer particle hops symmetrically (Fig. 3C ) (78).

We further consider three maximally separated postlumped
milestones on the ring (see e.g., Fig. 3A, red sites). This type
of milestoning corresponds to that implemented in (43) and
yields the exact entropy production in the case of a single particle
(16, 43).

In each driving scenario, we evaluate, numerically, the exact
(microscopic) entropy production 〈Ṡ[x]〉 and compare it with
〈Ṡaff

k [x̂i]〉 assuming 1st order (i.e., k = 1) (Fig. 3 D–F ) and
2nd order (i.e., k = 2) semi-Markov (Fig. 3 G–I ) statistics for
the lumped and postlumped milestoned trajectories, respectively.
For all driving scenarios, and both semi-Markov approximations,
we find that milestoning of the lumped trajectories significantly
improves the entropy-production estimate.

For further comparison, we also estimate 〈Ṡ[x̂i]〉 via the TUR
(27, 79), which provides a universal trade-off between precision
of any thermodynamic flux and the dissipation in the system
(27, 38, 79). We choose the tracer-particle current J ik(n) ≡ x̂i
(n + k)− x̂i(n) in the lumped and postlumped milestoned
trajectories, and determine the average 〈J ik〉 and variance var(J ik).
The entropy production estimate obtained with the continuous-
time TUR reads (27)

〈ṠTUR[x̂i]〉 ≡ sup
k|1≤k�T

[
2〈J ik〉

2

var(J ik)k

]
, [7]

where the mean and variance of the current can be inferred as time
averages from long trajectories (note that the particle position is
a weakly ergodic process)

〈J ik〉 =
1

T − k

T−k∑
n=1

J ik(n), [8]

var(J ik) =
1

T − k

T−k∑
n=1

(〈J ik〉 − J ik(n))
2, [9]

where T is the total trajectory length. The result for the quality
factor is shown in Fig. 3 J–L. Here, by using the continuous-time
TUR, we invoke the standard convergence of the discrete-time
Markov chain to a continuous-time Markov process in the limit
k, T → ∞ under the condition T � k, justifying the above
approach. Note, moreover, that for lumped dynamics it was
proven that 0 ≤ 〈ṠTUR[x̂lump]〉 ≤ 〈Ṡ[x]〉 (79), but is a priori not
clear whether the TUR holds also for the postlumped milestoned
dynamics. Here, we simply assume this to be true based on
the numerical evidence and find that the milestoned estimates
outperform the lumped estimates (see Bottom panel in Fig. 3).

Increasing Ignorance
We now show that, at first sight paradoxically, when milestoning
is used, a larger distance between milestones and hence “more
ignorance” may improve thermodynamic inference.

Let us focus on uniformly driven single-file diffusion with
one vacancy, i.e., Nvac = 1, as shown in Fig. 4. In this case,

Fig. 4. Microscopic description of single-file diffusion with one vacancy.
The outer circular layer depicts the hidden microstates: The underlying
microscopic model is a random walk on this outer ring of states, with
transition probabilities as indicated. The inner circle depicts the lumped
states, where we only observe the location of the tracer particle (dark blue).
Each lumped state contains Nsites−1 hidden microstates. The random walk
on milestones is a 2nd order semi-Markov process, with the sequence of
milestones visited by the random walker determined by the corresponding
splitting probabilities �±± indicated by the outer lines.

the microscopic dynamics of the system can be described by a
particularly simple kinetic scheme, with the microscopic states
arranged on a ring. Specifically, for a given number of sites Nsites,
there are Nsites−1 microstates with a fixed location of the tracer
particle. There are in total Nsites(Nsites−1) microscopic states,
with groups of Nsites−1 states forming the lumped states of
the macroscopic system (i.e., the position of the tracer particle).
We now designate some of those coarse states to be milestones.
Specifically, suppose we take 3 milestones with NC coarse states
between adjacent milestones, such that 3 + 3NC = Nsites (see
Fig. 4 where Nsites = 6 and NC = 1). For simplicity, we
here assume that the milestones are equidistantly placed. In SI
Appendix, we also consider nonequidistant milestones, for which
the final result given by Eq. 10 remains identical.

We apply milestoning to obtain the trajectory x̂mil(t) as
described before: The position of the tracer particle corresponds
to the last visited milestone, resulting in a 2nd order semi-Markov
process. Specifically, the milestone sequence can be described by
the conditional splitting probabilities in the sequence of distinct
states (i.e., upon removing repeated consecutive milestoned
states) {�++,�+−,�−+,�−−}, where �+−, for example, is the
conditional probability of making a clockwise jump from one
milestone to the next, given that the previous milestone jump
was counterclockwise (i.e., III→ I→ III in Fig. 4).

To calculate the splitting probabilities �++ and �−+, for
example, we consider the random walker starting in the leftmost
state of the segment ofNsites−1 forming a milestone. If we denote
this state by k, then�−+ and�++ are the probabilities to exit the
interval {k−Δ−, ..., k+Δ+} through its left and right boundaries
with {Δ−,Δ+}={NC (Nsites−1)+1, (NC+1)(Nsites−1)}. One
may recognize that this problem is equivalent to the Gambler’s
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A B C D

Fig. 5. Asymmetrically placed milestones result in distinct direction-dependent waiting-time distributions irrespective of the driving. (A) Symmetric single-file
diffusion, that is, with no driving (i.e., q = 1/2), for Nsites = 5, and Nvac = 1. The three milestones correspond to the positions of the tracer particle (dark blue)
indicated in red. (B–D) Waiting-time distributions  j

±±
(k) in each of the milestones obtained by simulations (blue + orange) and by exact analytical results (full +

dashed black lines, see SI Appendix).

ruin problem (80); its analytical solution is given explicitly in SI
Appendix. Given these splitting probabilities, we can determine
the entropy production at the level of the 1st order semi-Markov
approximation using Eq. 3, which gives

〈Ṡaff
1 [x̂mil]〉 =

3/(Nsites − 1) + 3NC

3(1 + NC )
〈Ṡ[x]〉

=
3/(Nsites − 1) + Nsites − 3

Nsites
〈Ṡ[x]〉, [10]

where 〈Ṡ[x]〉 is the exact entropy production given by§

〈Ṡ[x]〉 =
2q − 1
N

ln
(

q
1− q

)
. [11]

We immediately see that Eq. 10 yields the exact entropy
production in the limit Nsites → ∞. This behavior can be
understood, qualitatively, as follows: As the total intermile-
stone spacing increases, the relative difference between splitting
probabilities such as, e.g., �+− and �++ becomes negligible
because the relative milestone size (in the microscopic view) is
negligible compared to the milestone territory, which suppresses
correlations between entry- and exit-directions to and from the
milestone, respectively. In other words, the milestone trajectory
approaches a 1st order semi-Markov process. But in the latter
case, we expect milestoning to become exact (16, 43).

For the “bare” lumped trajectory, we simply set NC = 0 in
the first line of Eq. 10, which gives

〈Ṡaff
1 [x̂lump]〉 =

1
Nsites − 1

〈Ṡ[x]〉. [12]

Hence, in the limit Nsites → ∞, the 1st order semi-Markov
entropy production estimate in the lumped dynamics vanishes.

Spurious Waiting-Time Contribution and
Kinetic Hysteresis
Notably, using Eq. 5 on the uniformly driven single-file system
with one vacancy, we recover the exact entropy production, i.e.,

〈Ṡaff
2 [x̂mil]〉 = 〈Ṡaff

2 [x̂lump]〉 = 〈Ṡ[x]〉, [13]

§The exact entropy production is conveniently calculated, in the case of a single vacancy,
by using the fact that there is one-to-one correspondence between the trajectory of the
tracer particle and that of the vacancy, and that the latter undergoes a biased Markovian
random walk

which we also observe in Fig. 3 G–I at Nvac = 1. The two-step
affinity also remains exact when the milestones are not placed
equidistantly, which is shown explicitly in SI Appendix.

Importantly, in Eq. 13, we have systematically discarded the
waiting-time contribution 〈Ṡwt

2 [x̂i]〉 from Eq. 4 that follows from
naively applying Eq. 1 to 2nd order semi-Markov trajectories
(40). A direct computation shows (40)

〈Ṡwt
2 [x̂mil]〉 =

1
〈�mil〉

∑
j

∑
±

pj,±±D[ j
±±|| 

j
∓∓] ≥ 0, [14]

where pj,±± = �j∓1pj∓1,±�j,±± are the jump probabilities
centered around milestone j to make two consecutive jumps
in the clockwise (j − 1 → j → j + 1) or counterclockwise
(j + 1→ j→ j − 1) direction, and where

D[ j
±±|| 

j
∓∓] ≡

∑
k≥1

 j
±±(k) ln[ j

±±(k)/ j
∓∓(k)], [15]

is the Kullback–Leibler divergence between the conditional
waiting-time distributions for consecutive forward  j

++(k) and
backward  j

−−(k) transitions ( analytical results for the waiting
time distributions are shown in SI Appendix). Note that as soon as
the conditional forward and backward waiting time distributions
are distinct (i.e., asymmetric), i.e.,  j

++(k) 6=  j
−−(k) for

some k, Eq. 14 implies dissipation, irrespective of whether the
microscopic dynamics is truly dissipative or not.

In Fig. 5, we show that as soon as the distance to the
left/right neighboring milestone is not symmetric, we obtain
D[ j

±±|| 
j
∓∓] > 0, and thus it follows from Eq. 13 that

〈Ṡaff
2 [x̂i]〉 + 〈Ṡwt

2 [x̂i]〉 > 〈Ṡ[x]〉. Moreover, even under perfect
(microscopic) detailed balance (i.e., q=1/2), we find that the
waiting-time distributions are asymmetric (Fig. 5). Therefore,
D[ j

±±|| 
j
∓∓]>0 and thus 〈Ṡwt

2 [x̂mil]〉>〈Ṡ[x]〉=0. The above
2nd order semi-Markov example and the family of 1st order
semi-Markov counterexamples in refs. 15–17 disprove that
waiting times in general contribute to dissipation in Eq. 1. The
waiting-time contribution in Eq. 14 in our example quantifies
the difference between the waiting-time distributions between
forward versus backward transitions but does not contribute to
dissipation.

Note that the postlumped milestoned process displays kinetic
hysteresis (i.e., coarse-graining and time reversal do not commute;
see SI Appendix) (16), whereas the original lumped dynamics
does not. For the latter, the waiting-time distributions are
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symmetric irrespective of the lump sizes and presence or absence
of driving, resulting in a vanishing waiting-time contribution
〈Ṡwt

2 [x̂lump]〉 = 0. Therefore, in the presence of kinetic hysteresis
in coarse-grained dynamics, the waiting-time contribution in
Eq. 14 does not contribute to dissipation, and in its absence it
typically (i.e., in our examples) seems to vanish (see, however,
nonvanishing contributions in ref. 40). And since it does not
seem to be possible in practice to test for the presence of
kinetic hysteresis without the knowledge of the full dynamics,
asymmetric waiting-time distributions generally cannot be used
to infer dissipation via Eq.14, i.e., there is no implication between
the two: 〈Ṡ[x]〉 > 0 6H⇒ 〈Ṡwt[x̂]〉 > 0 and in turn 〈Ṡwt[x̂]〉 >
0 6H⇒ 〈Ṡ[x]〉 > 0. Notably, the complete thermodynamically
consistent definition of dissipation for 1st order semi-Markov
processes has been established in ref. 16, while for 2nd order
semi-Markov processes the affinity contribution 〈Ṡaff

2 [x̂]〉 seems
to provide a correct lower bound, 〈Ṡ[x]〉 ≥ 〈Ṡaff

2 [x̂]〉.

Discussion
Correct Notion of Time Reversal. Contrasting the setting where
all hidden degrees of freedom relax instantaneously fast, that is
solved essentially completely within the notion of local detailed
balance (18), inferring dissipation from general coarse observa-
tions remains both conceptually and technically challenging and
is still understood very poorly. Sufficiently far from equilibrium,
challenges appear even in the presence of a timescale separation
between the hidden and observed degrees of freedom (43). In the
absence of such timescale separation, and for an arbitrary extent of
memory, the problem remains unsolved. This is because a correct
general mathematical definition of dissipation in the presence of
memory is not known. In particular, the definition in Eq. 1 is
incomplete, because the correct general form of the time-reversal
operation � remains elusive. Memory reflects (anti)persistence in
dynamics, and it is therefore not surprising that it manifests some
abstract analogy to momenta.

Whereas practical methods are available to infer the presence
(81, 82) and range (58, 83, 84) of memory in coarse observations,
the precise flavor of non-Markovianity is typically not known. In
particular, if only coarse-grained trajectories are accessible, such
as in experimental studies, it seems to be inherently impossible to
check for the presence of kinetic hysteresis. Therefore, referring
to the absence of kinetic hysteresis as a “mild assumption” (85)
seems somewhat inappropriate. Either way, since 〈Ṡwt[x̂]〉 can be
positive even under detailed balance, and one cannot check for
kinetic hysteresis, a nonvanishing 〈Ṡwt[x̂]〉 generally cannot be
used to infer dissipation.

Even if the order of memory is known, the correct notion
of physical time-reversal generally remains elusive. For semi-
Markov processes of 1st order, it has been proven that the
transition-path periods (i.e., the duration of successful transitions
between coarse states) are odd under time reversal (i.e., transition
paths between any pair of states must be reverted in the
time-reversed trajectory like momenta in inertial systems), and
the thermodynamically consistent time-reversal operation was
established (16). Importantly, by explicit counterexamples it was
proven that waiting-time effects in 1st and 2nd order semi-
Markov processes generally do not measure dissipation via Eq. 1
and Eq. 14. Note that reverting all transition paths in the time-
reversed trajectories ensures 〈Ṡwt[x̂]〉 = 0, and thus has the
same effects as simply ignoring 〈Ṡwt[x̂]〉. Moreover, we found
that for the 2nd order semi-Markov process with no hidden

dissipative cycles in Fig. 3 G–I (see also refs. 17 and 43), the
two-step affinity exactly recovers the microscopic dissipation,
which requires all waiting time contributions to be systematically
discarded. To what extent and under which conditions this
equality, i.e., 〈Ṡaff

k [x̂i]〉 = 〈Ṡ[x]〉 in the absence of hidden cycles,
is true for general kth order semi-Markov processes (k > 2)
still needs to be established. Whether a general form of time
reversal � exists that would always yield a consistent waiting-time
contribution to dissipation remains unknown. One can construct
2nd (but not 1st) order semi-Markov processes without kinetic
hysteresis that have “asymmetric” waiting time distributions
whose contribution does not violate the inequality Eq. 2 (40).
However, our results show that for 1st and 2nd order semi-
Markov processes waiting-time effects as encoded in 〈Ṡwt[x̂]〉 are
either nominally zero or else must be discarded, since one cannot
know (nor can one test) for the presence of kinetic hysteresis
without the knowledge of microscopic dynamics. We believe
this to be a result of an incorrect or incomplete definition of
time reversal � when applying Eq. 1 to 1st and 2nd order semi-
Markov processes. We expect this to also be true for processes with
longer memory, where, however, evaluating the path probabilities
becomes challenging.

Note, however, that we do not claim that waiting-time
statistics generally do not contain information about dissipation
(see e.g., refs. 19–21 for how to extract information from
waiting time statistics). We only argue that the waiting-time
contribution 〈Ṡwt[x̂]〉 in Eq.14 emerging from a naive application

of Markovian time reversal {�x̂�}0≤�≤t
!= {x̂t−�}0≤�≤t in Eq. 1

generally does not measure dissipation.

Practical Aspects of Milestoning. From a practical perspective,
one therefore does not generally know how to correctly apply
Eq. 1 to infer dissipation from observed non-Markovian trajec-
tories. A convenient, practical, and consistent approach we push
forward here is to first milestone trajectories and thereafter assume
1st or 2nd order semi-Markov correlations in the evaluation of
Eq. 1 excluding any waiting-time contributions. Even if this
assumption is not satisfied exactly (i.e., the memory is actually
longer-ranged), a meaningful milestoning will systematically
render the observations “closer” to the underlying microscopic
dynamics and thus improve thermodynamic inference. More-
over, a sparser placement of milestones increases the accuracy of
inference and is numerically more efficient.

One is therefore tempted to think that milestones should gen-
erally be placed as sparsely as possible for optimal thermodynamic
inference. There is, however, a practical limitation. Consider the
example of observing a tracer particle in a single-file. If we increase
the spacing between milestones, the estimate for 〈Ṡ[x̂mil]〉 per
milestone transition indeed gradually improves (i.e., increases).
At large distances between milestones, however, the sequence
of visited milestones will appear nearly deterministic, whereby
transitions against the driving (i.e., time-reversed trajectory
segments) will become increasingly unlikely. Thus, the evaluation
of Eq. 1 using trajectory-derived path probabilities will require
better and better sampling (see SI Appendix for a quantitative
statement). Analytical estimates of transition probabilities (such
as presented here) are of course not affected. In general, the
placement of milestones should be optimized as a trade-off
between accuracy and statistical feasibility.

Finally, we stress that the proposed postlumped milestoning
based thermodynamic inference requires at least one dissipative
cycle to be observable. If some dissipative cycles are hidden by
the coarse-graining, milestoning-based estimation will yield a
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true lower bound on dissipation. However, if truly all dissipative
cycles become hidden, the method will fail, and one should resort
to alternative transition-based approaches developed recently
(19–22) to infer some lower bound on dissipation.

Materials and Methods

Stochastic simulations of the continuous-time model of a molecular motor
were performed by integrating an overdamped Langevin equation using the
Euler–Maruyama method (see, e.g., ref. 46. Stochastic trajectories of discrete-
time models such as single-file random walk were generated using the standard
kinetic Monte Carlo approach (46). Depending on the problem, the splitting
probabilities required for entropy production estimates, as well as the waiting
time distributions, were either estimated numerically from the trajectories or,
in some cases, calculated analytically as further described in SI Appendix. The
results of this work are derived in the main text, with some technical details
relegated to SI Appendix, as indicated.

Supplementary Material. In SI Appendix, we provide details of all the
calculations and simulation parameters for the results shown in Figs. 1-5.

Data,Materials, and Software Availability. The raw data and source codes to
reproduce the results shown in this manuscript are publicly available at ref. 59.
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