A brownian dynamics interpretation of membrane protein clustering

Carsten Kutzner, Helmut Grubmüller

Jochen J. Sieber¹, Katrin I. Willig², Claas Gerding-Reimers¹, Benjamin Harke², Gerald Donnert², Burkhard Rammner, Christian Eggeling², Stefan W. Hell², Thorsten Lang¹

Departments of ¹Neurobiology, ²NanoBiophotonics

Questions & motivation

- fluid mosaic model of cell membrane (Singer, Nicolson 1972): individual proteins diffuse freely in a sea of lipids
- however, most membrane proteins are organized in clusters
- no satisfactory explanation! (subplasmalemmal fences that form compartment boundaries?)
- cluster formation is likely functionally important since syntaxin clusters represent sites for docking & fusion of vesicles

- physical principles underlying most membrane protein clusters poorly understood
- explain the experimentally accessible properties of the syntaxin-I (SxI) clusters

SNARE protein involved in membrane fusion

Experiments I: cluster density and cluster diameter

- STED microscopy on plasma sheets yields density of 19.6(5.7) clusters / μm²
- average cell surface area is 460 µm² ⇒ 9000 clusters per cell
- quantitative immunoblotting: 830 000 Sx1 per cell
 ⇒ max. 90 Sx1 per cluster (if all Sx1 in clusters)
- STED: average cluster diameter 50-60 nm
 ⇒ dense package
- ► overexpression ⇒ more clusters

Experiments 2: syntaxin mobility

FRAP measurements with green fluorescent protein (GFP)-labeled Sx1 overall mobility

 recovery half times t_{1/2} range from 40–60 s, much longer than expected for a freely diffusing protein with a single transmembrane region (TMR)

Experiments 3: which region of SxI is responsible for mobility restriction?

study mutants and deletion constructs of SxI
 C-term TMR – SNARE – linker – N-term domain

- SNARE motifs are responsible for reduced syntaxin mobility (whereas closed conformation plays no role)
- reduced mobility is caused by the assembly of syntaxin into clusters

Experiments 4 – molecule exchange or whole cluster diffusion?

FRAP recovery du to ...

1 diffusion of entire clusters?

2 exchange of individual molecules?

- syntaxin spots do not change over minutes
 - \Rightarrow Clusters are immobile. \Rightarrow Equilibrium of free and clustered syntaxins.

The BD model

can size and dynamics of the syntaxin clusters be explained by simple physical principles?

(rather than by elaborate layers of biological regulation)

- MD not feasible, since we eventually need 250 s trajectories to compare with the FRAP experiments
- no need to describe in detail the collisions of syntaxins with surrounding lipids, consider them as a heat bath only
- MD becomes BD (Newtons eq. of motion \Rightarrow Langevin):
- Position Langevin eq. (Lax 1966, Zwanzig 1969):

 $\frac{d\mathbf{r}}{dt} = D\mathbf{F}(t) + \frac{d\mathbf{r}_S}{dt} \qquad \text{positions } \mathbf{r}, \text{ diffusion coefficient D, random velocity process } d\mathbf{r}_S/dt$

• Recursive update of molecular positions with algorithm by Ermak (1975):

$$\mathbf{r}_{i}(t + \Delta t) = \mathbf{r}_{i}(t) + D\Delta t \mathbf{F}_{i}(t) + \xi \sqrt{2D\Delta t}$$
random number drawn
from a 2d normal distribution
with variance I

 lateral diffusion coefficient of TMR construct D = 0.075(25) µm² / s determined from half time of recovery according to Ficz et al. (2005)

The BD model

- diffusion on a 2d plane, periodic boundary conditions
- interaction potential between individual molecules i, j at distance r = r_{ij}:

$$V(r_{ij}) = E_1 \cdot e^{-r^2/(2\sigma^2)} - E_2 \cdot f_s \cdot e^{-r^2/\{2(2\sigma)^2\}}$$

(I) (2) and (3)

- (I) mutal repulsion of strength E₁ and range σ that prohibits molecules to run into each other (Pauli repulsion)
- (2) effective attraction of strength E₂ and range 2σ between the molecules, mediated by the SNARE motifs
- (3) f_s steric hindrance due to crowding $f_s = 1 \frac{n_c}{n_{max}}$
- force

 $\vec{F}(\vec{r}_i) = -\nabla_i U(\vec{r}_1, \dots, \vec{r}_n)$

 $U = \sum_{i < j} V(r_{ij})$

 σ is chosen such that an approximate area per TM helix of I.5 nm² is obtained (Takamori et al. 2006)

 $min(V) = \sqrt{1.5}$ nm

Global algorithm

- generate starting configuration
- calculate forces
 - make neighbourlists (every 10th step)
 - detect clusters (every 10th step)
 - calculate forces for particles within cutoff radius
- update positions
- calculate fluorescence recovery
- output
 - $\mathbf{r}_i = (x, y)_i$, bleached?
 - potential energy
 - FRAP signal intensity
 - cluster size distribution

gridded neighbour searching with cutoff >3.5 nm

Cluster detection

needed for cluster penalty term

$$=1-\frac{n_c}{n_{max}}$$

 f_s

- if distance d between 2 molecules < r_d = 1.5 nm they belong to same cluster
- HOW TO AUTOMATICALLY DETECT THAT?
- if 2 molecules belong to same cluster, they must be in same neighbourlist, since r_d < r_{cutoff}

- go through all molecules
- (if not already assigned to a cluster), build the network that connects all molecules with a mutual distance of less than 1.5 nm; mark each of those molecules with a unique clusternumber.

snapshots every 250 steps

Time step length

Parallel force calculation

- ▶ fastest CPUs (roc) need ≈3 days for 80M time steps (250 s)
- icc ./synsim.c -O3 -openmp -o synsim.x

#include <omp.h>

. . .

```
start omp parallel region
                                                                     */
#pragma omp parallel for \setminus
 default(none) \setminus
 shared(signal, dvdx, dvdy, stderr) \setminus
 firstprivate(bleachedarr, cluster_size, cluster_no, numneighbours, ind, x, y) \setminus
 private(xoffset, yoffset, signalindex, xdum, ydum, xblock, yblock, blockindex, \
   j, jsize, ijsize, isize, neighbour_no, index, r2, dx, dy, fac, a, \setminus
    exp1, exp2) \setminus
 reduction(+ : etot) \setminus
  schedule(static)
/* loop over molecules */
for (i = 0; i < nsyntaxins; i++)
                                          Benchmark on Kea:
{
                                          CPUs time/s speedup scaling
   (calculate potential & force)
                                                             00.1
                                                                   serial code
                                                 165.1 1.00
                                                 170.6 0.97
                                                             0.97
                                                                   threaded code
                                              L
}
                                                 93.4 1.77
                                                             0.88
                                             2
                                                 54.0 3.06
                                             4
                                                             0.76
```

Simulation protocol

- make a parameter study: vary E₂ and n_{max}
 - $E_2 \Rightarrow$ depth of well
 - n_{max} ⇒ at which cluster size force becomes repulsive
- start with 1391 random positions r_i
- iterate until equilibrated (potential energy)
- if cluster density matches exp. density of 19.6
 (5.7) clusters / µm²
 - bleach (simulate FRAP experiment)
 - record 250 s of fluorescence recovery
 - now match experimental FRAP curve
 - extract number of molecules per cluster, fraction of free molecules

Equilibration

Parameter study

Example 0-11s

- experiment measures intensity of white molecules in central area
- bleached molecules (orange) are invisible

Example 0-257 s

- experiment measures intensity of white molecules in central area
- bleached molecules (orange) are invisible

Simulation of FRAP data

- each unbleached molecule in the middle area adds one count to the intensity each time step
- bleach central area
- bleach 9 areas: assign each syntaxin a number from 1-9 depending on where it is at bleach time
- displace by half a bleach box size in x, y, x&y directions
- $\Rightarrow altogether 36 bleach areas$

Image acquisition correction

FRAP experiments: bleach fraction s of molecules during each image acquisition

$$s = 1 - (I_a^{exp} - I_b^{exp})^{1/10} \approx 0.005$$

Image acquisition correction

- FRAP experiments: bleach fraction s of molecules during each image acquisition
- $s = 1 (I_a^{exp} I_b^{exp})^{1/10} \approx 0.005$

include this bleaching effect in the simulated curves by simulating 68 data acquisitions

Image acquisition correction

Simulated fluorescence recovery

for simulations that match experimentally observed cluster density

- simulated curves are average of 2 trajectories each
- ► 1:10 scale \Rightarrow 10² x faster diffusion and FRAP recovery

Snapshots

Conclusions

 experimental data on composition and dynamics of Sx1 clusters can be explained by simple physical principles

protein-protein attraction ↔ steric hindrance

- Sx1 molecules are quasi-immobile when in clusters
- A fraction of ≈16% of the molecules diffuse freely between the clusters which contain 70–80 Sx1
- Clustering via self-assembly likely applies to a variety of membrane protein clusters
- presented a framework with syntaxin-I as an example

Acknowledgments

Jochen Sieber & Thorsten Lang – experiments, experiments,
 Helmut Grubmüller – Idea & model layout
 10500 – thanks to all of you!

Let's make a

model!

