Marina Bennati
Research Group Leader, Professor at the University of Göttingen
Phone:+49 551 201-1911Fax:+49 551 201-1383

Curriculum Vitae

Monika Frömel
Phone:+49 551 201-1905

Marina Bennati

Dynamic Nuclear Polarization (DNP)

The large magnetization of an electron spin can be used to polarize nuclei via dynamic nuclear polarization, a method which could potentially enhance the sensitivity of solution NMR on biological systems by orders of magnitude. In the past years, we have defined the physical parameters that govern the polarisation transfer in solution to water molecules with different types of paramagnetic polarizers. We have implemented lowand medium-field DNP spectrometers operating at 0.34 T and 3.4 T, which enabled us to achieve very large DNP enhancements for such fields. Investigations are in progress to use pulse microwave excitation that accelerates the DNP transfer kinetics. The successful low field results have prompted the design of a new shuttle DNP spectrometer, in which the sample is polarized at 0.34 T (X-band) and the NMR is detected at 14 T (collab. with NMR Dept. of the MPIbpc and Bruker BioSpin, EU Design Study Bio-DNP). An optimized spectrometer, which is designed to minimize polarization losses during the sample transfer and to polarize large biomolecules with inherently short relaxation times, is under construction.

Instrumental Development at 94 and 263 GHz

Dual mode resonator for 94 GHz. Recently, we have designed and constructed a new dual mode resonator that can be tuned over a frequency range up to about 1 GHz. The resonator allows us to perform PELDOR/DEER experiments at 94 GHz with high sensitivity and covering the whole spectral range of a nitroxide radical (spin label) in frozen solution. The resonator can also be used for other experiments such as saturation transfer and ELDOR in liquid solution of nitroxide radicals for mechanistic DNP inverstigations.

Quasi-optical pulse EPR at 263 GHz. In December 2011 we have installed the world-wide second commercial 263 GHz pulsed EPR spectrometer that uses a quasi-optical microwave bridge. The instrument will be tested and optimized for studies of biological samples, particularly for two purposes: 1) to record high-resolution EPR spectra of radical intermediates during enzymatic catalysis in combination with rapid freeze quenching techniques and 2) for distance measurements with high sensitivity towards long inter-spin distances (> 5 nm). 

Enzyme catalysis

Long-range electron transfer pathway in class I ribonucleotide reductases. Zoom Image
Long-range electron transfer pathway in class I ribonucleotide reductases.

Ribonucleotide Reductases (RNRs).In the past two decades, it has been recognized that several biological processes, in particular enzymatic reactions, occur over paramagnetic intermediates that are generated via redox reactions or electron/radical transfer. RNRs enzymes, which catalyze the reduction of RNA to DNA building blocks in every living organism, provide a paradigm for enzymatic mechanisms involving radical chemistry. In a long-standing collaboration with the group of J. Stubbe (MIT) we have been employing a wide repertoire of EPR techniques to elucidate several steps in the catalytic cycle. Currently, we are investigating the long-range (3.5 nm) proton-coupled electron transfer (PCET) between the RNR subunits using site-specifically incorporated unnatural amino acids as radical traps. With high field EPR and ENDOR we are mapping the hydrogen bond network proposed to be involved in PCET mechanism. The results will be essential to formulate a mechanism for a long-range PCET.

Heterodisulfide reductase (HDR).HDR is a key enzyme in the energy metabolism of methanogenic archaea. Based on the current knowledge of methanogenesis, it has been recently postulated that HDR-enzyme complexes could play a new role in energy conservation processes of many different organisms. By means of W-band (95 GHz) and X-band (9 GHz) ENDOR spectroscopy we have demonstrated that HDR contains a unique FeS cluster, which functions as a catalytic centre and directly binds substrate to carry out substrate chemistry. In a collaborative effort with several research groups in Germany (DFG network SPP1319), we are currently elucidating the structural details of the interaction between the cluster and the substrate as well as the unusual binding motif of the cluster.

Ppo enzymes.So-called psi factors (fatty acid based substances) regulate the balance between fungal life cycles and are produced by psi-factor producing oxygenases (Ppo). In a new collaboration with the Dept. of Plant Biochemistry (I. Feussner, Univ. Göttingen) and supported by the IRTG 1422, we have characterized two heme domains discovered in the monomeric subunit of the tetrameric PpoA enzyme. Experiments on samples prepared by freeze quenching the enzyme with the substrate, i.e. PpoA with either (8R)-HPODE or linoleic acid, showed the formation of several tyrosyl radical species, presumably formed on different monomeric subunits. The results provide the first evidence for an enzymatic mechanism involving amino acid radicals and further studies are planned to elucidate more intermediate steps.

loading content