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Ammonia is a biologically potent molecule, and the regula-
tion of ammonia levels in the mammalian body is, therefore,
strictly controlled. The molecular paths of ammonia perme-
ation across plasma membranes remain ill-defined, but the
structural similarity of water and NH3 has pointed to the aqua-
porins as putative NH3-permeable pores. Accordingly, a range
of aquaporins from mammals, plants, fungi, and protozoans
demonstrates ammonia permeability. Aquaporin 4 (AQP4) is
highly expressed at perivascular glia end-feet in the mammalian
brain and may, with this prominent localization at the blood-
brain-interface, participate in the exchange of ammonia, which
is required to sustain the glutamate-glutamine cycle. Here we
observe that AQP4-expressing Xenopus oocytes display a reflec-
tion coefficient <1 for NH4Cl at pH 8.0, at which pH an
increased amount of the ammonia occurs in the form of
NH3. Taken together with an NH4Cl-mediated intracellular
alkalization (or lesser acidification) of AQP4-expressing oocytes,
these data suggest that NH3 is able to permeate the pore of
AQP4. Exposure to NH4Cl increased the membrane currents to
a similar extent in uninjected oocytes and in oocytes expressing
AQP4, indicating that the ionic NH4

� did not permeate AQP4.
Molecular dynamics simulations revealed partial pore perme-
ation events of NH3 but not of NH4

� and a reduced energy barrier
for NH3 permeation through AQP4 compared with that of a
cholesterol-containing lipid bilayer, suggesting AQP4 as a
favored transmembrane route for NH3. Our data propose that
AQP4 belongs to the growing list of NH3-permeable water
channels.

Ammonia is an integral constituent in cell metabolism, but
its homeostasis is, due to the biological toxicity of ammonia
(1– 4), highly regulated around 10 –35 �M in plasma (5).
Ammonia is a base and thus exists in two forms: NH3 (ammo-
nia) or NH4

� (ammonium ion). Henceforward, the term ammo-
nia will be used as a general form, whereas NH3 and NH4

� will be
used when referring to a specific form. At physiological pH, its

pKa of 9.25 dictates that �1.5% of the ammonia is found as
NH3, whereas the rest exists as NH4

�, the latter of which abso-
lutely requires membrane transporters or channels to cross the
plasma membrane. Although dedicated NH4

� transport pro-
teins have been identified (6), NH4

� is, due to its resemblance to
K�, in addition transported by a range of K� transporters and
channels, such as the Na�/K�-ATPase, the Na�/K�/2Cl�
cotransporter, the K�/Cl� cotransporter, and inwardly rectify-
ing, voltage-, and Ca2�-activated K� channels (7–16). The per-
meability of NH4

� through K� channels usually amounts to
�10 –20% of the permeability of K� (7). It was long believed
that NH3 could permeate the cell membrane by simple diffu-
sion because of its small size and lack of electric charges. NH3 is,
however, a polar molecule with a dipole moment of 1.47 D
(close to that of water � 1.85 D; see Fig. 1 for a structural com-
parison) and may thus permeate poorly through lipid bilayers.
Indeed, plasma membranes with poor NH3 permeability have
been demonstrated (17–19), indicating that membrane trans-
port proteins may facilitate NH3 permeation. The structural
similarity of water and NH3 points to water channels, the aqua-
porins, as putative NH3-permeable pores; the plant aquaporins
of the tonoplast intrinsic membrane protein (TIP) family, the
nodulin-26 like intrinsic protein (NIP) family, and aquaporins
from the human-pathogenic protozoans Plasmodium falcipa-
rum, Toxoplasma gondii, and Trypanosoma brucei have indeed
been shown to allow NH3 permeation (20 –26). The 13 mam-
malian aquaporins are classified into three families based on
their permeability profile and sequence homology: the aqua-
porins (AQP0, AQP1, AQP2, AQP4,6 AQP5, AQP6, and
AQP8), the aquaglyceroporins (AQP3, AQP7, AQP9, and
AQP10), which in addition to water are permeable to small
hydrophilic molecules such as urea and glycerol, and the
unorthodox aquaporins (AQP11 and AQP12), which share lit-
tle sequence homology with the other aquaporins (27, 28). Sev-
eral of both the aquaporins and aquaglyceroporins have been
reported to be permeable to ammonia as well as water; AQP1,
AQP3, AQP6, AQP7, AQP8, and AQP9 have been found to be
permeable for NH3 (21, 22, 29 –31), although the NH3 perme-
ability of AQP1 has been questioned (21, 22, 32), whereas
AQP0, AQP2, AQP5, and AQP4 have been reported to lack
NH3 permeability (29, 31). The sensitivity of the different
experimental approaches employed to determine the NH3 per-
meability is not defined, and it is possible that, as most K�
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channels are permeable to NH4
�, NH3 permeability may be a

general feature in most aquaporins, albeit to a varying degree
and, therefore, to a variable degree of detectability. In support
of a common water and NH3 permeability pathway, a H�-cou-
pled NH3 co-transporter (SLC4A11) has been demonstrated to
allow for water permeation (33, 34).

During acute liver failure, ammonia levels increase in the
plasma followed by brain accumulation approaching 5 mM in
severe cases (35). This ammonia rise is thought to be the key
factor in the pathogenesis of hepatic encephalitis and affects a
range of brain functions, i.e. cerebral blood flow, cerebral glu-
cose metabolic rate, synaptic transmission, glutamate homeo-
stasis, and cell volume regulation (36 – 41). However, the paths
of ammonia entry into the brain as well as into the cellular
compartments of the brain are unresolved. The robust expres-
sion of AQP4 at the perivascular glial end-feet surrounding the
brain capillaries (42) and the ammonia-dependent regulation of
AQP4 membrane expression (43, 44) may suggest AQP4 as a
possible entry point of NH3 into the glial compartments. In the
present study, we therefore determine the ammonia permeabil-
ity of AQP4 by both experimental approaches and molecular
dynamics simulations.

Results

A Low Reflection Coefficient of Ammonia Indicates Ammonia
Permeability in AQP4 —To determine whether ammonia per-
meates AQP4, we monitored the ability of ammonia to drive
osmotic water flux in Xenopus oocytes expressing AQP4 and, as
a positive control, the ammonia-permeable AQP8 (22, 31, 45,
46). An inherent advantage in this heterologous expression sys-
tem is the low intrinsic water permeability of the native oocyte
membrane; expression of AQP4 increases the osmotic water
permeability of the oocyte membrane �20-fold (47, 48), thus
providing a robust signal-to-noise ratio. AQP4- and AQP8-ex-
pressing oocytes exposed to an osmotic challenge consisting of
the impermeable osmolyte NaCl (10 mM; 20 mosM) therefore,
as opposed to uninjected oocytes, displayed robust cell shrink-
age (water permeabilities at pH 7.4 in � 10�3 cm/s: 2.99 � 0.49,
n � 12 for AQP4, 2.04 � 0.39, n � 9 for AQP8, and 0.14 � 0.01,
n � 7 for uninjected oocytes, p � 0.05 for both AQP4 and AQP8
when compared with uninjected); see the representative traces
in black in Fig. 2A. To obtain the reflection coefficient of
ammonia, the same oocytes were then exposed to an identical
osmotic challenge of 20 mosM but obtained with NH4Cl (10
mM) as the osmolyte. Both oocytes expressing AQP4 and AQP8

as well as uninjected oocytes responded to the osmotic chal-
lenge in a manner essentially identical to that observed with
NaCl as the osmolyte (water permeabilities with NH4Cl as the
osmolyte in � 10�3 cm/s: 3.04 � 0.42, n � 12 for AQP4, 1.94 �
0.37, n � 9 for AQP8, and 0.13 � 0.01, n � 7 for uninjected
oocytes, p � 0.05 for both AQP4 and AQP8 when compared
with uninjected); see the representative traces in red in Fig. 2A.
The reflection coefficient for ammonia at pH 7.4, �7.4, was
therefore not significantly different from 1 (1.00 � 0.03, n � 12
for AQP4, 0.96 � 0.04, n � 9 for AQP8, and 0.96 � 0.03, n � 7
for uninjected oocytes), illustrated as white bars in Fig. 2C. Of
the 10 mM NH4Cl, only 0.14 mM exists as NH3 at pH 7.4 and the
reminder exists as NH4

� (according to the Henderson-Hassel-
balch equation). To increase the fraction of NH3 in the test
solution without changing the ammonia concentration, a par-
allel experimental series was carried out with test solutions of
pH 8.0, in which the NH3 concentration is 4-fold higher (0.56
mM). The slightly basic test solutions did not significantly affect
the water permeability obtained with NaCl as the osmolyte
(water permeabilities at pH 8.0 in � 10�3 cm/s: 2.34 � 0.28 n �
12 for AQP4, 1.16 � 0.25, n � 9 for AQP8, and 0.23 � 0.04, n �
7 for uninjected oocytes); see the representative traces in black

FIGURE 1. The Lewis structure of NH3 (left) and H2O (right). NH3 and H2O
have several similarities including dipole moment (1.47 D for NH3 and 1.85 for
H2O), tetrahedral electronic structure, bond angle (106.7° for NH3 and 104.5°
for H2O), and bond length (101.7 pm for NH3 and 95.8 pm for H2O).

FIGURE 2. The reflection coefficient is reduced for ammonia in AQP4- and
AQP8-expressing oocytes. A and B, volume traces from an AQP4-express-
ing, AQP8-expressing, or uninjected oocyte challenged with a hyperosmotic
gradient of 20 mosM (marked with a black bar) of either 10 mM NaCl (black
trace) or 10 mM NH4Cl (red trace) at pHo 7.4 (A) or pHo 8.0 (B). C, A summary of
the reflection coefficients for ammonia for AQP4-expressing (left panel),
AQP8-expressing (middle panel), and uninjected oocytes (right panel) at pHo
7.4 and pHo 8.0. The reflection coefficient is calculated from two control mea-
surements (10 mM NaCl as the osmolyte) and two measurements using 10 mM

NH4Cl as the osmolyte for each oocyte; n � 7–12. Statistical significance was
determined with paired Student’s t test. **, p � 0.01; ***, p � 0.001; ns, not
significant.
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in Fig. 2B. These results demonstrate that the higher pH of the
extracellular solution in itself did not affect the water permea-
bility of either the AQPs or the native plasma membrane. An
osmotic challenge based on NH4Cl (at pH 8.0) provided a cell
shrinkage of the uninjected oocytes identical to that obtained
with NaCl; see the red trace in Fig. 2B, right panel, for a repre-
sentative trace. Oppositely, the osmotic water permeability was
significantly smaller for both AQP4- and AQP8-expressing
oocytes when obtained with NH4Cl instead of NaCl; see the red
traces in Fig. 2B, left and middle panels, for representative
traces. The reflection coefficient for NH4Cl at pH 8, �8.0, was,
therefore, significantly �1 for the AQP-expressing oocytes
(0.80 � 0.05, n � 12 for AQP4, p � 0.01 and 0.68 � 0.04, n � 9
for AQP8, p � 0.001), whereas for the uninjected oocytes, �8.0
was not significantly different from 1 (1.07 � 0.04, n � 8), sum-
marized as black bars in Fig. 2C. These data suggest that at pH
8.0, at which the test solutions contain a significant NH3 con-
tent, we detect ammonia permeation into the pore of the
expressed aquaporins, thus preventing ammonia from exerting
the full osmotic force as observed with the impermeable NaCl.

AQP4 Alters the pHi Response to Ammonia Treatment of
Oocytes—Cellular influx of NH3 causes intracellular alkaliniza-
tion, whereas NH4

� influx causes intracellular acidification, as
illustrated in Fig. 3A. To further resolve the ability of ammonia
to permeate AQP4, we monitored the intracellular pH of unin-
jected and AQP4-expressing oocytes with a H�-sensitive
microelectrode during the addition of ammonia to the extracel-

lular solution. A stable pHi baseline was obtained in control
solution before exposure of the oocytes to an isosmotic solu-
tion containing 10 mM NH4Cl for 15 min. NH4Cl caused an
intracellular acidification of all uninjected oocytes (represen-
tative trace in Fig. 3B and summarized data in Fig. 3C; com-
pare pHi of 7.10 � 0.02 in control solution with 6.72 � 0.06
in the presence of ammonia, n � 15, p � 0.001, inset). AQP4-
expressing oocytes responded in a graded manner with the
majority of the tested oocytes responding to NH4Cl with
either a robust intracellular alkalization or a lesser acidifica-
tion than observed with the uninjected oocytes (representa-
tive traces are illustrated in Fig. 3D; summarized data are in
Fig. 3E, n � 33). 6 of the 33 tested oocytes responded with a
pHi change that fell within the confidence interval of the pHi

change observed in the uninjected oocytes (	pHi of �0.38
(CI �0.49 to �0.26) pH units, n � 15). Summarized data
illustrate that the intracellular acidification observed in
uninjected oocytes was abolished in the AQP4-expression
oocytes; compare pHi of 7.31 � 0.01 in control solution with
7.39 � 0.07 in NH4Cl-containing solution, n � 33, p � 0.26,
Fig. 3E, inset. The NH4Cl-induced pHi change in AQP4-ex-
pressing oocytes (0.08 � 0.07 pH units, n � 33) was thus
significantly different from that obtained in uninjected
oocytes (�0.38 � 0.06 pH units, n � 15), p � 0.001, Fig. 3F.
The observed alkalization (or lesser acidification) in a sub-
stantial fraction of the AQP4-expressing oocytes (27/33),

FIGURE 3. pHi changes in response to exposure to ammonia in uninjected and in AQP4-expressing oocytes. A, transport of ammonia as either NH4
� or NH3.

If NH4
� crosses the cell membrane, it will cause an intracellular acidification, whereas influx of NH3 will cause an intracellular alkalization. B and D, pHi traces from

an uninjected oocyte (B) and from two AQP4-expressing oocytes (D) exposed to 10 mM NH4Cl (marked with a black bar). C, overview of the individual pHi
changes in uninjected oocytes after 15 min of exposure to 10 mM NH4Cl, summarized in the inset, n � 15. E, overview of the individual pHi changes in
AQP4-expressing oocytes after 15 min of exposure to 10 mM NH4Cl, summarized in the inset, n � 33. F, overview of the NH4Cl-induced 	pHi in uninjected
(Uninj.) oocytes (n � 15) and AQP4-expressing oocytes (n � 33). Statistical significance was determined with paired Student’s t test (unpaired Student’s t test
in panel F). ***, p � 0.001; ns, not significant.
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therefore, suggests that ammonia is able to permeate the
pore of AQP4 in the form of NH3.

Expression of AQP4 Does Not Induce NH3/NH4
�-dependent

Membrane Current in Oocytes—To determine if AQP4 was
permeable to NH4

�, we monitored the current response of unin-
jected oocytes and AQP4- and AQP8-expressing oocytes dur-
ing ammonia exposure. NH4

� membrane permeation results in
a membrane current in voltage clamped oocytes which is absent
with NH3 permeation. At pH 7.4, isosmotic addition of 5 mM

NH4Cl to the test solution caused a small inward current in
both uninjected oocytes and AQP-expressing oocytes; see the

representative current traces in Fig. 4A. Voltage step protocols
applied before and after the addition of ammonia illustrated
comparable membrane currents in uninjected oocytes and
AQP4- and AQP8-expressing oocytes both in control solution
and after exposure to ammonia (see representative I/V current
traces in Fig. 4B, summarized I/V relations in Fig. 4C, and sum-
marized currents at �60 mV displayed as the inset); although
the membrane current increased in the presence of ammonia
for all tested oocytes (uninjected oocytes: compare �26.3 � 9.9
nA with �63.7 � 22.7 nA in the presence of ammonia, n � 9,
p � 0.05; AQP4: compare �35.1 � 6.0 nA with �79.9 � 22.1

FIGURE 4. No aquaporin-mediated NH4
� permeation. A and D, representative current traces in uninjected (left panel), AQP4 (middle panel)-, and AQP8 (right

panel)-expressing oocytes at pHo 7.4 (A) and pHo 8.0 (D) before and in the presence of 5 mM NH4Cl, marked with a black bar. The currents were recorded from
single oocytes at a holding potential of �50 mV. B and E, representative I/V relationships of uninjected (left panels), AQP4 (middle panels)-, or AQP8 (right
panels)-expressing oocytes at pHo 7.4 (B) and pHo 8.0 (E) before and after 5 min of treatment with 5 mM NH4Cl. C and F, summarized I/V relationships of
uninjected (Uninj.) oocytes (white) and oocytes expressing AQP4 (gray) or AQP8 (black) before and after treatment with 5 mM NH4Cl at pHo 7.4 (C) and pHo 8.0
(F), n � 9 of each, with the currents obtained at Vm � �60 mV summarized in the insets. Statistical significance was determined with two-way analysis of
variance with Šídák’s multiple comparison post hoc test. *, p � 0.05; **, p � 0.01; ***, p � 0.001; ns, not significant.

NH3 Permeation through AQP4

SEPTEMBER 2, 2016 • VOLUME 291 • NUMBER 36 JOURNAL OF BIOLOGICAL CHEMISTRY 19187

 at M
ax Planck Inst.B

iophysikalische C
hem

ie,O
tto H

ahn B
ibl,Pf.2841,37018 G

oettingen on D
ecem

ber 22, 2017
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


nA in the presence of ammonia, n � 9, p � 0.05; AQP8: com-
pare �32.7 � 6.0 nA with �97.5 � 12.4 nA in the presence of
ammonia, n � 9, p � 0.001), the increase observed in the AQP-
expressing oocytes was not significantly different from that of
the uninjected oocytes; see the Fig. 4C inset. To obtain an
increased fractional NH3 content, a parallel experimental series
was carried out at pHo 8.0. Although the ammonia-induced
membrane currents intrinsic to the native oocyte membrane
was enlarged at this extracellular alkalinization, the observed
current pattern resembled that obtained at pHo 7.4; see the
representative current traces in Fig. 4D, representative I/V cur-
rent traces in Fig. 4E, and the summarized I/V relations in Fig.
4F with an inset summarizing the current obtained at Vm �
�60 mV (uninjected: compare �21.8 � 8.0 nA with �256.4 �
32.9 nA in the presence of ammonia, n � 9, p � 0.05; AQP4:
compare �35.0 � 5.5 nA with �255.7 � 42.4 nA in the pres-
ence of ammonia, n � 9, p � 0.05; AQP8: compare �35.7 � 6.4
nA with �336.3 � 29.5 nA in the presence of ammonia, n � 9,
p � 0.001). At pHo 8.0 as well as pHo 7.4, the ammonia-induced
membrane currents were independent of aquaporin expression
in the plasma membrane, which supports that AQP4- and
AQP8-dependent ammonia permeation takes place via NH3
rather than via NH4

�.
Partial Ammonia Permeation Was Observed in Free Sim-

ulations—To obtain details on ammonia entry into the pore
of AQP4 on a molecular scale, we performed molecular dynam-
ics on this permeability event. Free simulations were initially
carried out to observe the behavior of both NH3 and NH4

� near
the surface of AQP4. In these simulations we introduced, sep-
arately, 100 molecules each of NH3 and NH4

� with appropriate
neutralization for the latter. Each simulation was carried out for
500 ns. For any further analysis, only the latter 400 ns were
considered to account for equilibration effects. We observed
several partial permeation events of NH3 entering the channel
and exiting from the same end. Together, these partial perme-
ation events cover almost the entire protein pore. In contrast,
NH4

� never penetrated the pore to any significant extent.
Remarkably, NH4

� showed high propensity to cluster around
several anionic amino acids such as glutamate and aspartate on
either protein surface (Fig. 5). Most of these clustering
“hotspots” are placed closely to the opening of the channel pore.

The Free Energy Barrier for NH3 Permeation through AQP4 Is
Surmountable but Higher Than for Water Permeation—To
determine the free energy profiles of NH3 permeation via AQP4
versus via lipid membranes of different composition, we carried
out umbrella sampling (US) simulations, in which we calculated
the potential of mean force (PMF) for NH3 permeation through
the pore of AQP4. The uncertainty in the PMF calculation was
ascertained using a bootstrapping algorithm as implemented in
the g_wham tool from GROMACS and is illustrated as a shaded
margin around the PMF curves, see Fig. 6A. The radius profile
for the channel is shown for reference in Fig. 6B. To gauge the
permeability of AQP4 to NH3, we compared these PMFs to free
energy profiles calculated across lipid bilayers. We used two
lipid membranes for comparison; a pure 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC) bilayer and a hybrid
bilayer with 20% cholesterol and 80% POPC. This latter com-
parison is shown in Fig. 6A. The free energy barrier for NH3

permeation through AQP4 is comparable with that of the
POPC pure membrane, whereas the barrier is �3– 4 kJ/mol
lower in the AQP4 pore than in the lipid membrane containing
20% cholesterol. These results suggest that the free energy
barrier of NH3 permeation may indeed favor permeation
through AQP4 rather than through a cholesterol-containing
lipid membrane. The radius profile shown in Fig. 6B allows
us to understand where the channel is narrowest. This can
contribute to the entropic barrier for entering the channel
and also to the overall loss of the hydrogen bonding from
water as hydration of the NH3 decreases in a narrow region
of the channel. In addition to the channel pore profile, the
pore-lining residues are illustrated in Fig. 6C as a histogram
of their position along the z axis. These residues could poten-
tially supplement the hydrogen bonding to the NH3 depleted
from the lack of hydration.

To compare the free energy barrier for NH3 with that of
water, we performed free simulations in the absence of NH3
or NH4

� and calculated the PMF for water across AQP4 (Fig.
7A). The uncertainty in the PMF for these simulations is
represented by the standard deviation of the PMF along the
four monomers and illustrated as a shaded margin around

FIGURE 5. Accumulation of NH4
� close to the channel surface. In free sim-

ulations the NH4
� density (illustrated as blue mesh) is placed closely to the

glutamate and aspartate residues on the protein surface, shown in red licorice
representation.
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the PMF curve in Fig. 7A. The differences in the free energy
profile for NH3 compared with water are illustrated as a
hatched region in Fig. 7A and points to the fact that water is
preferred to ammonia for channel entry along almost the
entire channel axis. To understand the origin of contribution
of protein-NH3 and NH3-water hydrogen bonding to the
PMF, we calculated the average number of hydrogen bonds
of NH3 with pore-lining amino acid residues from the US
windows (Fig. 7B). The overall loss of hydrogen-bonding
energy for the system as a whole observed when NH3 enters
the channel, by convention a positive number, is shown in
Fig. 7C. This loss is quantified by use of the US windows by
comparing the total hydrogen-bonding energy of a water-
filled AQP4 pore against a pore in which NH3 was intro-
duced. For calculating the hydrogen-bonding energy of the
water-filled pore, we took into account the protein and the
30 water molecules nearest to the channel center. We found
that these consistently accounted for all the hydration inside
the channel pore. The choice of this smaller number allowed
us to minimize the fluctuations in the evaluation of hydrogen
bonding energy. In the case of the US simulation windows,
we chose only the first 29 water molecules to account for the
presence of NH3, which sterically replaces approximately
one water molecule in the pore. An average over the trajec-
tories in each window was used to calculate the mean differ-
ence in the hydrogen-bonding energy, and the standard

error indicated the uncertainty in the estimation of the dif-
ference in energy thus obtained.

Discussion

In the present study we observed an ability of NH3, but not
NH4

�, to gain access to the pore of AQP4 in a manner suggesting
that AQP4 may belong to the growing number of aquaporins
acting as NH3 channels. The permeation of small hydrophobic
molecules such as CO2 or O2 is expected to take place via pas-
sive diffusion across the lipid bilayer. In contrast, charged or
polar molecules such as ions or water require a dedicated chan-
nel for their optimal conduction across the membrane. NH3
presents an intriguing intermediate case with a capacity for
hydrogen-bonding and low polarity. Thus, deciphering the per-
meation path of NH3 across the lipid bilayer requires further
study. Hub et al. (49) have shown that NH3 experiences a low
barrier (�6 kT or about 14 kJ/mol) for its passage across pure
lipid membranes such as those composed of phosphatidyletha-
nolamine or phosphocholine lipids. However, pure lipid mem-
branes are generally only present in synthetic setups and do not
represent a physiological situation. Biological membranes are
often complex assemblies made up of several lipid types and
sterols. Animal membranes, in particular, are rich in choles-
terol, which can drastically alter the permeation properties of
small molecules. Additionally, the cell membrane may be
obstructed for entry due to high concentration of proteins or

FIGURE 6. Potential of mean force for NH3 permeation (A). Shown is a comparison of the PMF for NH3 through the AQP4 channel with the membrane. The
PMF of NH3 through AQP4 is shown in blue. The PMF for NH3 through a pure POPC lipid bilayer is shown in cyan. The PMF for NH3 through a lipid bilayer
with 20% cholesterol is shown in purple. The uncertainty measured via bootstrapping is shown in the shaded region around the curves. The broken violet
curve is the PMF for NH3 through AQP4 extracted from the free simulations. B, radius profile of the AQP4 pore along the channel axis. The shaded region
represents the standard deviation in the profile over the simulation trajectory. C, population histogram of the important pore lining residues along the
channel axis.
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even because of glycosylation of lipids or protein covering the
membrane surface. This might make an otherwise convenient
means of diffusive passage less accessible. Thus, it might be
necessary to take into account alternative means available for
NH3 conductance. Sometimes, these alternative routes might
be as or more effective than passive membrane diffusion. Aqua-
porins have been long speculated to be involved in gas transport
across cell membranes, and a range of aquaporins from plants,
protozans, and mammals have been demonstrated to share the
ability of NH3 permeation in addition to their intrinsic water
permeability (20 –26, 29 –31, 46, 50). Our experimental data
show NH3 permeation through AQP4 expressed in Xenopus
oocytes measured as a reduced reflection coefficient of NH4Cl
and as the ability of NH4Cl to promote intracellular alkaliniza-
tion of AQP4-expressing oocytes. A low reflection coefficient
(� � 1) suggests that the osmolyte in question gains access to
the aqueous pore and, therefore, is unable to osmotically
extract water from the cell as efficiently as that of a non-perme-
able (reflected) osmolyte. We were, however, unable to detect a
reduced reflection coefficient at pH 7.4, at which the NH3 con-
tent in our 10 mM NH4Cl-containing test solution was exceed-

ingly low. At pH 8.0, the NH3 fraction was calculated to reach
0.56 mM, and under these conditions oocytes expressing either
AQP4 or AQP8 (a well established NH3 channel (Refs. 22, 31,
45, and 46)) both displayed a lower osmotic water permeability
with NH4Cl as the osmolyte. The water permeability of the
native oocyte membrane was unaffected by the choice of
osmolyte and pHo, indicating that the observed changes in
water permeability originated in the expressed AQPs and sug-
gests NH3 permeation through both AQP4 and AQP8. Expo-
sure of uninjected oocytes to NH4Cl persistently caused an
intracellular acidification, as previously observed (22, 30,
51–54), which is assigned to NH4

� entry through still unidenti-
fied pathways, presumably cation-selective ion channels (53,
55). Although a small fraction of the AQP4-microinjected
oocytes displayed a similar acidification, the majority of the
tested AQP4-expressing oocytes displayed either a lesser acid-
ification or a robust alkalization upon exposure to ammonia
with no obvious correlation to initial pHi or days in culture. We,
therefore, cannot explain the graded response in these oocytes,
which was also observed in AQP1-expressing oocytes (30). The
exact placement of the electrode tip could affect the extent of

FIGURE 7. Comparison of water and NH3 permeation in AQP4. A, NH3 has a significantly larger (�5 kJ/mol) free energy barrier over water in AQP4 calculated
from free simulations. B, as NH3 loses hydration via hydrogen bonding on its entry into the channel, the average number of hydrogen bonds to the channel axis.
C, hydrogen bonding energy (HBE) difference for water and NH3 along the channel axis (HBENH3 � HBEwater). The positive difference indicates that hydrogen
bonding with water is favored in the channel.
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detection of a given pHi change, and different levels of AQP4
expression in the tested oocytes likely affects the level of alkal-
ization (functional AQP4 expression was tested for all oocytes
by a simple, non-quantitative swelling assay that reveals the
presence of an aquaporin in the oocyte membrane but not its
abundance). This alkalization (or lesser acidification) suggests
the ability of AQP4 to allow permeation of NH3. The observed
AQP4-mediated NH3 permeation is at odds with previous
reports by Boron and co-workers (29, 31) who were unable to
demonstrate NH3 permeability in AQP4-expressing oocytes. In
those studies, NH3 permeation was evaluated by monitoring
the pHo at the external face of the oocyte plasma membrane
with a blunt microelectrode pushed against the surface of an
AQP-expressing oocyte. A reason for the discrepancy with our
result may rely on the 20-fold difference in applied NH4Cl (0.5
mM in Refs. 29 and 31) versus 10 mM in this study. At the low
NH4Cl concentration employed by Boron and co-workers
(29, 31), only 0.007 mM exists as NH3 and in case AQP4 has a
lower NH3 permeability capacity than the other tested aqua-
porins, it may simply be experimentally undetectable at this
concentration.

Exposing oocytes to NH4Cl increased the transmembrane
currents, irrespective of the presence of an aquaporin in the
plasma membrane, by as yet unidentified pathways (52). We
detected, however, no significant difference between the currents
obtained in AQP4-expressing oocytes and uninjected oocytes at
either of the tested pH values, indicating a lack of NH4

� permeation
through AQP4. There was a tendency (although statistical signifi-
cance was not reached in the present study) for the ammonia-
induced transmembrane current to be slightly increased in the
AQP8-expressing oocytes compared with that of the uninjected
oocytes, as previously observed in oocytes expressing AQP8 and
other ammonia-permeable aquaporins (22, 26, 32).

To shed light on the thermodynamic parameters that govern
the NH3 permeation in AQP4, we employed molecular simula-
tions. US simulations show that the free energy barrier of �14
kJ/mol (�6 kT) for NH3 permeation through AQP4 is sur-
mountable at room temperature. At higher temperatures such
as at 37 °C, the attempt rate could encourage the permeation
even further. The magnitude of this barrier is comparable with
the one associated with a POPC lipid bilayer. Interestingly, the
addition of cholesterol to this lipid makes the barrier rise up to
�20 kJ/mol, which is �5 kJ/mol larger than the free energy
barrier for AQP4. The permeation barrier increase observed
upon the addition of cholesterol is to be expected, as cholesterol
has a tendency to “thicken” the membrane by ordering the lipid
tails and closing the small gaps in lipid tails that facilitate diffu-
sion of the gas (49). This might have a real physiological effect in
vivo, making the AQP4, rather than the plasma membrane, a
favored route for NH3 permeation. Also, 20% cholesterol is a
lower limit of the sterol portion in the membrane, and an
increased percentage could, therefore, lead to an even further
increase in the relative passage of NH3 through AQP4. In the
sub-microsecond time scale employed for the free simulations,
we observed partial permeation events of NH3 through AQP4
that together span almost the complete AQP4 pore. The free
simulations are hampered by the potential lack of sampling of
putative permeation events due to the finite simulation time.

Spontaneous barrier crossing in an unbiased, “free” MD simu-
lation is a stochastic event that may or may not happen in a
finite simulation time. Therefore, we took the more systematic
approach of US that computes the energetic profile for solute
permeation. The US method, due to the enforcement on the
coordinate of ammonia across the permeation pathway,
ensures that the relevant thermodynamic information con-
cerning permeation is recovered. The barrier of �14 kJ/mol (6
kT) observed using this method is surmountable under physi-
ological conditions, indicating that the channel is a viable
means of permeation. Indeed, the statistics collected from sev-
eral partial entries of ammonia in the channel allowed us to
compare the PMF calculated from the US method to the PMF
from the partial permeations (Fig. 6A). The barrier, as calcu-
lated by the two methods, is remarkably similar, further
strengthening the hypothesis that ammonia permeates the
channel by diffusion. Thus, overall, the molecular dynamics
simulations support the permeation of ammonia across AQP4
at physiological conditions as compared with the lipid bilayer,
especially in a lipid environment rich in cholesterol.

AQP4 seems to facilitate the transport of NH3 by stabilizing
the molecule in the channel pore. In the highly conserved and
narrow aromatic/arginine (ar/R) region of the protein, we
observe several stabilizing hydrogen bonding interactions that
seem to partially replace the loss of hydration for NH3. How-
ever, this dehydration appears quite significant (�5 kJ/mol) and
seems to be contributed due to a lack of replacement of the
hydrogen bonding in the channel compared with the bulk. This
“hydrophobic” effect seems to underlie the favored permeation
of water over NH3 through AQP4, as was previously reported to
be the main permeation barrier for apolar gas molecules such as
O2 and CO2 (56). The only region where the PMF for ammonia
dips below the PMF for water is close to the asparagine-proline-
alanine (NPA) duplex. This dip can be explained based on the
enthalpic contribution of hydrogen bonding to the total free
energy. We observe that in this region difference in enthalpy of
hydrogen bonding of water compared with NH3 reaches its
minimum. Additionally, AQP4 seems to provide a platform for
attracting NH4

� due to the preponderance of the acidic amino
acids that decorate its either face. Speculatively, this could be a
potential mechanism to facilitate the conversion of excess NH4

�

into NH3. The presence of the negatively charged surface
amino acids could thus be of physiological relevance, as these
residues could be catalytic sites for accelerating the rate of both
forward and backward conversion of NH3 to NH4

� and hence
lead to a locally enhanced concentration of NH3.

NH4
� is readily transported by a range of K� transporting

mechanisms (7–16), whereas NH3, probably due to its resem-
blance to water, appears to cross cell membranes by facilitated
diffusion through a range of aquaporins, among which we here
propose that AQP4 is featured. The cerebral glutamate-gluta-
mine cycle encompasses vesicular release of glutamate from the
presynapse with subsequent astrocytic uptake, amidation of
glutamate to glutamine (a process requiring free ammonia),
shuttling of glutamine to the neuronal structures, and its hydro-
lyzation to glutamate and ammonia. Due to the toxic property
of ammonia, operation of the glutamate-glutamine cycle thus
requires that astrocytes exhibit an efficient way of accumulat-
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ing and removing ammonia (57). AQP4 is robustly expressed at
the perivascular glial end-feet and covers �50% of the surface
area of this membrane (42, 58). It may, with this prime location
at the interface between the brain and the blood, participate in
facilitation of NH3 permeation across the glial membrane both
under physiological conditions and during hyperammonemia.
Hyperammonemia occurs in association with various patholo-
gies, among these acute liver failure, and associates with meta-
bolic alkalosis (59). Increased plasma ammonia levels in com-
bination with alkaline pH will thus, in combination, increase
the fraction of ammonia existing as NH3 and, therefore, even
further enhance the AQP4-mediated brain accumulation of
ammonia that is consistently observed during hepatic enceph-
alopathy (35). AQP4 may, therefore, be a potential pharmaceu-
tical target in the attempt to limit brain ammonia accumulation
during hepatic encephalopathy.

Experimental Procedures

Molecular Biology—Rat AQP4.M23 and rat AQP8 was sub-
cloned into the oocyte expression vector pXOOM, linearized
downstream from the poly-A segment, and in vitro transcribed
using T7 mMessage Machine (Ambion, Austin, TX) according
to the manufacturer’s instructions. MEGAclear (Ambion) was
used to extract the cRNA before micro-injection into defollicu-
lated Xenopus laevis oocytes.

Oocyte Preparation—X. laevis frogs were obtained from
Nasco (Fort Atkinson, WI) or Xenopus Express (Le Bourg, Ver-
nassal, France). All animal protocols comply with the European
Community guidelines for the use of experimental animals, and
were approved and performed under a license issued for the use
of experimental animals by the Danish Ministry of Justice
(Dyreforsøgstilsynet) or by The Landesuntersuchungsamt
Rheinland-Pfalz (Koblenz, Germany). Oocytes were surgically
removed, and their follicular membrane was removed by incu-
bation in Kulori medium (90 mM NaCl, 1 mM KCl, 1 mM CaCl2,
1 mM MgCl2, 5 mM HEPES, pH 7.4) containing 10 mg/ml col-
lagenase (Type 1, Worthington, Lakewood, NJ) and 1 mg/ml
trypsin inhibitor (Sigma) as previously described (48). The
oocytes were kept in Kulori medium at 18 °C to recover until
the following day, at which time they were microinjected with
cRNA encoding AQP4 or AQP8 (25 ng RNA/oocyte) and left at
18 °C for 3–5 days before experiments. All oocyte experiments
were performed at room temperature.

Oocyte Volume Measurements—The experimental setup for
measuring water permeability of oocytes has been described in
detail previously (60). Briefly, the oocyte was placed in a small
chamber with a glass bottom and perfused with a control solu-
tion at room temperature (95 mM NaCl, 2 mM KCl, 1 mM CaCl2,
1 mM MgCl2, 10 mM HEPES, 5 mM choline chloride, pH 7.4 or
pH 8.0). The oocyte was viewed from below via a long distance
objective, and oocyte images were captured continuously at a rate
of 25 images/s. To determine the water permeability, the oocytes
were challenged with a hyperosmotic solution (control solution
containing either additional 20 mosM NaCl (10 mM) or 20 mosM

NH4Cl (10 mM)), osmolarities of all solutions verified with an accu-
racy of 1 mosM with an osmometer Type 15 (Löser Messtechnik,
Berlin, Germany), and the water permeability was calculated as,

Lp �
�Jv

A � 	� � Vw
(Eq. 1)

where Jv is the water flux during the osmotic challenge, A is the
true membrane surface area (about nine times the apparent
area due to membrane folding (Ref. 61), 	� is the osmotic chal-
lenge, Vw is the partial molal volume of water (18 cm3/mol), and
Lp is the water permeability given in units of (cm/s).

The reflection coefficient for NH4
�/NH3, as previously

described (22), was calculated as,

�s �
Lp,s

Lp (Eq. 2)

where Lp,s is the apparent water permeability obtained with s as
the osmolyte, in the present study NH[ inf]4Cl, and Lp as the
true osmotic water permeability obtained with an impermeable
osmolyte, in the present study NaCl.

Electrophysiology—Conventional two-electrode voltage
clamp studies were performed with a DAGAN CA-1B High
Performance oocyte clamp (DAGAN, Minneapolis, MN) with
DigiData 1322A interface controlled by pCLAMP software,
version 9.2 (Axon Instruments, Burlingame, CA). The mem-
brane potential was clamped at �50 mV and the current-volt-
age (I/V) relationship was determined by stepping the clamp
potential from �50 mV to test potentials ranging from �40 mV
to �120 mV in 20-mV increments (100-ms pulses). Currents
measured at the holding potential were sampled at 5 Hz, and
currents measured at the test potentials were low pass-filtered
at 1 kHz and sampled at 2 kHz.

Intracellular pH Measurements—Changes in pHi in oocytes
were determined with ion-selective microelectrodes under
voltage-clamp conditions. For measurement of intracellular pH
and membrane potential, double-barreled microelectrodes
were used; the manufacture and application have been
described in detail previously (62). Electrodes were superfused
with control solution (100 mM NaCl, 2 mM KCl, 1 mM CaCl2, 1
mM MgCl2, 10 mM HEPES, pH 7.4) for calibration, and after a
stable electrode potential was reached, control solution pH 7.0
was applied until the electrode again reached a stable potential.
The subsequent measurements of oocyte pHi were stored dig-
itally using homemade phosphocholine software. For two-elec-
trode voltage clamp, a borosilicate glass capillary, 1.5 mm in
diameter, was pulled to a micropipette and backfilled with 3 M

KCl. This electrode was used for current injection and was con-
nected to the head-stage of an Axoclamp 2A amplifier (Molec-
ular Devices, Sunnyvale, CA). The actual membrane voltage was
recorded by the reference barrel of the double-barreled pH-sensi-
tive microelectrode. Oocytes were clamped to a holding potential
of �40 mV. A stable pHi baseline was obtained in control solution
(100 mM NaCl, 2 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 10 mM cho-
line chloride, 10 mM HEPES, pH 7.4) before exposure of the
oocytes to an isosmotic solution containing 10 mM NH4Cl replac-
ing choline chloride. Optimal pHi changes were detected when the
ion-selective electrode was located near the inner surface of the
plasma membrane as described previously (63).

Molecular Dynamics Simulations—Molecular dynamics
simulations were carried out with the software GROMACS 5.0
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(64). The CHARMM36 force field was used for the AQP4 pro-
tein, ions, ammonia, ammonium, and the lipid parameters (65).
The AQP4 protein was embedded in a patch with 361 POPC
lipids and was solvated with �27,000 CHARMM TIP3P explicit
water molecules (66). The choice of the lipids was motivated by
phosphocholine lipids (with mixed saturated-unsaturated tails)
as the dominant lipids in eukaryotic cell membranes (67).
Throughout the simulations, temperature and pressure were
maintained at 310 K, 5 degrees above the lipid critical tem-
perature and at 1 atm with a v-rescale thermostat and a Par-
rinello-Rahman barostat (68). An ionic strength of 150 mM

NaCl was maintained to mimic physiological conditions.
Explicit electrostatics were used with the Particle Mesh
Ewald method for simulating long range interactions (69)
with a cut-off of 1.2 nm, whereas the short range van der
Waals interactions were simulated using a shift function
with a switch at 0.8 nm and the cutoff at 1 nm. The crystal
structure with a resolution of 0.18 nm (PDB code 3GD8) was
used as the protein model (70). The package WHATIF (71)
was used to predict the protonation of the protein residues at
neutral pH conditions. Later analysis was carried out using
GROMACS tools, the MDANALYSIS library (72), and the
HOLE2.0 suite of programs (73).

Umbrella Sampling Simulations—To calculate the free
energy profile of ammonia across the AQP4 channel, we used
the US-enhanced sampling technique, as implemented in
GROMACS. We used the WHAM algorithm to calculate the
resulting PMF, and the statistical uncertainty associated with it
was calculated via bootstrapping (74). To have unambiguous
comparison between multiple profiles, we used a radial flat bot-
tom potential as implemented in GROMACS 5.0 to constrain
the ammonia molecule subjected to umbrella “pulling.” This
allowed us to take into account entropic and concentration
effects of entering the channel from a given “bulk” volume sur-
rounding the channel. The sampling itself was carried out with
280 windows, spread across 7 nm across and beyond the chan-
nel, with each window as small as 0.025 nm. A harmonic force
of 500 kJ�mol�1�nm�1 was used to restrain the ammonia mole-
cule in a given window. Each window was simulated for 6 ns, of
which the first nanosecond was discarded during analysis to
account for equilibration.

Statistics—Data are presented as the means � S.E. Student’s
t test or analysis of variance with Šidák’s multiple comparison
post hoc test were used for the statistical analysis (GraphPrism
6.0, GraphPad, CA). A probability level of p � 0.05 was consid-
ered statistically significant. All oocyte experiments were car-
ried out on individual oocytes obtained from at least three dif-
ferent animal donors.
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