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Computational Biophysics, University of Los Andes, Bogotá, Colombia; and 5Interdisciplinary Center for Scientific Computing, Heidelberg
University, Heidelberg, Germany
ABSTRACT We introduce a computational toolset, named GROmars, to obtain and compare time-averaged density maps
from molecular dynamics simulations. GROmars efficiently computes density maps by fast multi-Gaussian spreading of atomic
densities onto a three-dimensional grid. It complements existing map-based tools by enabling spatial inspection of atomic
average localization during the simulations. Most importantly, it allows the comparison between computed and reference
maps (e.g., experimental) through calculation of difference maps and local and time-resolved global correlation. These compar-
ison operations proved useful to quantitatively contrast perturbed and control simulation data sets and to examine howmuch bio-
molecular systems resemble both synthetic and experimental density maps. This was especially advantageous for multimolecule
systems in which standard comparisons like RMSDs are difficult to compute. In addition, GROmars incorporates absolute and
relative spatial free-energy estimates to provide an energetic picture of atomistic localization. This is an open-sourceGROMACS-
based toolset, thus allowing for static or dynamic selection of atoms or even coarse-grained beads for the density calculation.
Furthermore, masking of regions was implemented to speed up calculations and to facilitate the comparison with experimental
maps. Beyond map comparison, GROmars provides a straightforward method to detect solvent cavities and average charge
distribution in biomolecular systems.We employed all these functionalities to inspect the localization of lipid and water molecules
in aquaporin systems, the binding of cholesterol to the G protein coupled chemokine receptor type 4, and the identification of
permeation pathways through the dermicidin antimicrobial channel. Based on these examples, we anticipate a high applicability
of GROmars for the analysis of molecular dynamics simulations and their comparison with experimentally determined densities.
INTRODUCTION
Molecular dynamics (MD) is a well-established method for
the study of biomolecular systems. By monitoring the time
evolution of these systems at atomic (or quasiatomic) level
or resolution, MD provides key structural, energetic, and
(thermo)dynamic information. This information has been
instrumental in uncovering the molecular mechanisms of a
growing number of bio-macromolecular systems at an un-
precedentedly broad spatiotemporal scale range (1).

An inherent challenge of MD is the a posteriori analysis
of the simulations. MD users are typically confronted with
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complex trajectories of hundreds of thousands or even mil-
lions of atoms generated by the simulations. To extract
relevant information from this large amount of data, it is
usually important to focus the analyses to particular regions
of interest. Molecular visualization programs such as VMD
(2), PyMOL (3), or CHIMERA (4) have greatly contributed
to this task by allowing a visual inspection of MD simula-
tions. Moreover, MD packages such as GROMACS (5),
NAMD (6) via VMD, AMBER (7), or CHARMM (8)
contain plenty of subpackages to quantitatively analyze
MD trajectories. In addition, there are a handful of external
tools and scripts (9–12) to compute observables from MD
simulations.

Because of the dynamic nature of a trajectory, atoms and
molecules might exchange positions. If the region of interest
is localized, such as a binding pocket or a protein surface,
multiple molecules such as solvent or lipids may visit
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FIGURE 1 Density maps from atomic positions. (A) A group of N atoms

is considered (here, a lipid molecule). The position of the i-th atom is ri(t).

A lattice enclosing the N atoms of dimensions (Lx, Ly, Lz) and origin defined

by the vector Lmin is considered. (B) Atomic Gaussian spreading on the lat-

tice is sketched for one atom in red. Spreading is shown in two dimensions

for clarity. The density contribution of the i-th atom at the lattice position gj
depends on the separation jgj � ri(t)j. Lattice resolution is indicated at the

top right corner. (C) The resulting density map for the lipid molecule is ob-

tained by summing up all atomic contributions onto all lattice points (con-

toured at 1s). For MD trajectories, the density map is time averaged over an

ensemble of positions sampled by the group of atoms. To see this figure in

color, go online.
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such locations during the course of a simulation. Therefore,
density maps, which average over the identity of individual
molecules, are a natural choice for analyses in such cases. In
fact, different tools have been developed to include this
functionality (GridMAT (13), g_lomepro (14), volmap in
VMD (2,15), or PackMem (16), among others).

Likewise, atomistic density maps are ubiquitous to struc-
tural biology. Obtained by experimental techniques such
as x-ray crystallography, cryo-electron microscopy (cryo-
EM), or cryo-electron crystallograpy (cryo-EC), density
maps enable the determination of the structure of bio-mac-
romolecules and their assemblies. In practical terms, den-
sity maps have the advantage to work at a grid level,
therefore allowing straightforward analysis operations
such as difference, correlation between maps, or region
masking. In fact, structural biology suites (e.g., PHENIX
(17) or CCP4 (18)) and visualization packages (like those
mentioned above (2–4)) routinely handle and operate
with density maps.

The use of density maps in MD simulations, not only for
analysis but also for structure refinement, is becoming
increasingly popular with experimentally biased methodol-
ogies in which structural models are fitted, for instance, into
x-ray or cryo-EM density maps (19,20). Moreover, pack-
ages such as CHIMERA (4) or VMD (2) offer modules to
compute occupancy maps from a structure ensemble, e.g.,
representing different snapshots of an MD trajectory. Apart
from the occupancy, the possibility of using density maps to
compare sets of MD simulations has been less explored by
the current available tools.

Here, we exploit this possibility by introducing
GROmars, an open-source GROMACS-based toolset, to
efficiently compute and compare time-averaged density
maps derived from MD simulations. GROmars produces
density maps that allow us to spatially inspect the average
location of atoms of interest during a simulation. Thus,
it constitutes an alternative to the current map-based tools
designed for this purpose. Most importantly, GROmars ex-
pands these tools by enabling quantitative comparison of the
computed map with a reference map derived, for instance,
from experiments or control simulations. In this work, we
describe the methods behind GROmars and illustrate its
comparison capabilities by revealing important details of
the localization of lipids and water molecules around and
inside two aquaporin membrane proteins, the binding of
cholesterol at the surface of CXCR4, and the solute perme-
ation through the dermicidin antimicrobial channel.
METHODS

Density maps derived from MD simulations

Let us consider a group of N atoms whose time-dependent coordinates are

ri(t), with i ¼ 1...N. We define a three-dimensional lattice, enclosing the

N atoms, of dimensions Lx, Ly, and Lz along the x, y, and z axes, respec-

tively (Fig. 1 A). The lattice position is defined by the vector Lmin
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(Fig. 1 A). The lattice is divided into Nx, Ny, and Nz bins, thus yielding

a resolution of Dx ¼ Lx/Nx, Dy ¼ Ly/Ny, and Dz ¼ Lz/Nz along the three

principal coordinate axes (Fig. 1 B). The coordinates of the j-th lattice

point are given by the vector gj.

We assume that each atom spreads isotropically and model the spatial

decay of the atomic density with a linear combination of NG Gaussians.

For a point located at a distance d from the atom, the density reads

PðdÞ ¼
XNG

g¼ 1

Age
�Bgd

2

: (1)

Here, Ag and Bg are coefficients that change depending on the atom type.

These coefficients can be obtained from the atomic scattering factors—typi-

cally fitted by using NG ¼ 2, 4, or 5 Gaussians—from x-ray crystallography

or electron microscopy data. Gaussians are by default truncated after five

standard deviations, SDs (neglecting less than 1.5 � 10�5 of the total inte-

grated density). The density at each lattice point is estimated by summing

up the P contributions from all atoms to that point (Fig. 1 B):

rðj; tÞ ¼
XN
i¼ 1

P
���gj � riðtÞ

�� �: (2)
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To reduce the computational cost of evaluating the Gaussian functions at

many grid points, we take advantage of the factorization of the Gaussian

function in Eq. 1, as suggested in (21). The average density is computed

as the ensemble average, for example, recovered from an MD simulation

from S discrete, equally spaced time steps tn as

rðjÞ ¼ 1

S

XS
n¼ 1

rðj; tnÞ: (3)

Accordingly, an estimate of the SD of the density reads

s2ðrðjÞÞ ¼ 1

S� 1

XS
n¼ 1

�
rðj; tnÞ � rðjÞ

�2
: (4)

Therefore, the density map produced by GROmars consists of the time

average and the SD of the density, computed by using Eqs. 3 and 4, at all

grid points j of the lattice.
Comparison with a reference density map

GROmars allows the comparison of the computed density map with an

external reference map, rref. This reference map may be derived, for

instance, from a control simulation or an experimentally determined map

from x-ray crystallography, cryo-EM, or cryo-EC. Several arithmetic and

statistical operations are enabled to quantitatively compare the maps.

Difference density maps

A difference map is calculated by subtracting the reference from the

computed map:

DrðjÞ ¼ rðjÞ � rrefðjÞ: (5)

Dr(j) allows to detect the changes in the average atomic localization, for

instance, of a perturbed simulation in comparison to a control simulation.

Global correlation

A global correlation coefficient (cc) between the computed and the refer-

ence map is retrieved as

cc ¼
P

j r jð Þ � m
h i

� rref jð Þ � mref½ �
P

j r jð Þ � m
h i2

� P
j rref jð Þ � mref½ �2

� �1
2

; (6)

where the summations add up all the j points of the density map. Here,

m and mref denote the spatial mean of the density mapsr and rref, respec-

tively. The global correlation is also obtained in a time-resolved fashion

by block averaging the density for a moving time window of size Dt.

Accordingly, for each time tR Dt, the density map entering into Eq. 6 cor-

responds to that obtained within the time range [t � Dt, t].

Local correlation

The local correlation at different points of the lattice is computed, following

a similar implementation as the one from CHIMERA (4). A small cubic lat-

tice of size rlocal in each dimension is considered. The cubic lattice is

centered at a grid position j. Subsequently, the correlation coefficient be-

tween the computed map and the reference map is obtained using Eq. 6,

but only considering the grid points that are within the cubic lattice. The re-

sulting value is stored at the center grid point j. The process is repeated by

sliding the cubic lattice over the space, thus yielding a local correlation

map. To avoid a different number of grid points in the calculation, the
grid points at the borders of thickness rlocal/2 of the original lattice are

not considered as centers for the cubic lattice. Hence, the correlation map

has a reduced number of bins along the three principal axes.

Spatial free energy

Absolute (Gabs(j)) and relative (Grel(j)) spatial free-energy estimates are

defined according to the formulas

GabsðjÞ ¼ G0 � ln
�
rðjÞ

�
(7)

and

GrelðjÞ ¼ G0 � ln

 
rðjÞ
rrefðjÞ

!
: (8)

Here, G0 is an arbitrarily chosen reference value. These two values permit

us to obtain an energetic picture of the atomistic localization, by contrasting

different regions within the same map (absolute estimate) or different maps

at the same position (relative estimate). Regions of zero density can be

masked to avoid singularities in the calculation (see Atom Selection and

Region Masking below).
Atom selection and region masking

A density calculation may be restricted to a fixed or a dynamic set of atoms,

e.g., protein atoms for the former or ligand atoms located within 5 Å from a

protein for the latter. In addition, GROmars allows us to mask regions using

an external map file with the same geometry and resolution of the computed

density map. The mask value at the j-th lattice point isM(j). Accordingly, if

M(j) is smaller than a threshold mask cutoff Mcutoff, then the calculation of

the average density at this point is excluded:

rðjÞ is
�
masked; if MðjÞ<Mcutoff

unmasked; otherwise:
(9)

The masking attribute allows to focus the comparison between maps within

regions of interest that cannot be specified by atom selections. Accordingly,

comparison operations are carried out only for the unmasked points. If no

external mask map is provided, then the whole lattice is considered for

the comparison.
Simulation and density-calculation details

Gaussian coefficients (Ag and Bg) were derived from electron crystallog-

raphy structure factors (22). These values were set as the default values

of the toolset, although any other arbitrary set can be specified by the

user. The toolset features are illustrated through four membrane protein ex-

amples (see below), although its applicability is not restricted to these types

of proteins. Previous MD trajectories (23–26) and experimental density

maps (24,27) were considered. See trajectory preparation and density-

calculation details in the Supporting Materials and Methods.
RESULTS AND DISCUSSION

Difference maps: Comparison between perturbed
and control simulations

We studied the localization of lipids around aquaporin-0
(AQP0) to illustrate the basic features of GROmars.
AQP0 is the most abundant protein in the eye lens, where
Biophysical Journal 116, 1–8, January 8, 2019 3
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it acts as an anchor between membrane junctions (28)
(Fig. 2 A). AQP0 is an ideal system to systematically assess
lipid-protein interactions in biological membranes with both
cryo-EC (27,29,30) and MD simulations (23,31,32). As a
validation of our implementation, we first reproduced with
GROmars the density maps we obtained earlier for dimyr-
istoylglycerophosphocholine (DMPC) lipids (23). In fact,
we obtained identical maps as before, highlighting that
annular lipids display a high level of localization, whereas
bulk lipids show smearing of their positions (31) (Fig. 2,
B and C). We then computed with GROmars a difference
map to contrast a perturbed and a control simulation. In
the perturbed simulation, AQP0 was maintained as a rigid
body, whereas the lipids, water molecules, and ions were
fully flexible (Fig. 2 B). In the control simulation, AQP0
was also fully flexible (23) (Fig. 2 C). The difference map
revealed regions with increased density (blue), which is an
indication of stronger localization for the acyl chains in
front of the rigid AQP0 (Fig. 2 D). The reduced-density
red areas (red) corresponded mainly to zones affected
by the protein expansion in the unrestrained control simu-
FIGURE 2 Difference map highlights changes between perturbed and

control simulations (A). Aquaporin-0 (AQP0) is displayed (tetramer:

cartoon and one monomer: surface). (B and C) Normalized density maps

for DMPC lipids (color) around an AQP0 monomer (gray) are shown.

The protein was position restrained (B: r) or free to move (C: rref).

(D) The difference map between the perturbed and the reference map is dis-

played (Dr ¼ r � rref). The density is contoured as isosurfaces at different

SD levels (s) in (B and C) and at absolute arbitrary units (au) in (D). In all

panels, top and side views are displayed (extra: extracellular; intra: intracel-

lular, and S1 and S2: surface sides for each monomer). To see this figure in

color, go online.
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lation, which were not visited in the restrained simulations.
By symmetry, the lipid-exposed protein surface could be
divided into two adjacent surfaces, S1 and S2 (Fig. 2 A).
Increments in the density are more notable on the S2
surface, which was found to be more rigid than S1. Differ-
ence maps are routinely computed in crystallography.
Here, by applying the same strategy to maps derived
from MD simulations, we could visually stress the
effect of protein mobility on the localization of annular
lipids (31).
Correlation between MD and experimental maps

We next examined for the DMPC-AQP0 system the correla-
tion between the map obtained from MD simulations and
the map determined by cryo-EC (Fig. 3). In the simulations,
the protein was free to move. To focus on the annular lipids,
we masked all the lattice voxels except those overlapping
with the solved cryo-EC annular-lipid positions (Fig. 3 A).
The global correlation coefficient was 0.40 for S1 and
0.49 for S2. Despite the moderate global correlation, the
local correlation map displayed regions of high correlation
(Fig. 3 B). In particular, at the crystallographic position
FIGURE 3 Correlation between MD and experimental maps (A). Crys-

tallographic annular-lipid positions (color) around AQP0 (black) were

considered for the correlation calculation. The remaining regions were

masked. The lipid masks were separated by symmetry into surface S1

(magenta) and S2 (green). (B) Local correlation map around AQP0 is dis-

played in color according to the color scale at the right. Global correlation

values at surfaces S1 and S2 are indicated. (C) The local correlation map

near the crystallographic lipid PC1 is depicted (same color code as in B).

(D) Global correlation as a function of the mask cutoff,Mcutoff, is presented

for the indicated regions. The correlation maps presented in (B) and (C)

correspond to Mcutoff ¼ 0.03 and 0.02, respectively. To see this figure in

color, go online.
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PC1, the global correlation coefficient was found to be 0.54,
and this value locally increased up to values of up to 0.8
(Fig. 3 C). We observed that the global correlation increased
when increasing the masked region by augmenting the mask
cutoff Mcutoff (Fig. 3 D). This suggest that for the regions of
high lipid localization (high density), there is a good corre-
spondence between the experimental and the MD maps. In
contrast, diffuse experimental lipid positions (low density)
cannot be uniquely attributed to the smearing out of the den-
sity by the lipid dynamics in the simulations. The correla-
tion analysis presented here thus allowed us to expand our
previous studies (23,31) by including a more quantitative
comparison of the cryo-EC and the MD data sets.
Time-resolved global correlation

We next examined the localization of water molecules
inside the yeast aquaporin channel, Aqy1 (Fig. 4 A). Aqy1
aids yeast to counteract sudden osmotic shocks by regu-
lating membrane water permeation through a gating
mechanism involving phosphorylation and potentially
membrane-mediated mechanical stress (33). Because the
water molecules inside the Aqy1 pore are constantly
FIGURE 4 Time-resolved global correlation allows to monitor how

much multimolecule systems deviate from initial (or reference) states.

(A) The x-ray structure of yeast aquaporin (Aqy1) is shown (24) (backbone:

yellow, tyrosine residue occluding the pore at the cytoplasmic side: orange,

and electron density associated to the water molecules inside the pore: con-

toured in blue at s ¼ 1.5). (B) The density map was computed for the water

molecules inside the Aqy1 pore for different time windows Dt. The corre-

lation coefficient (cc) between the computed map and the map calculated

for the first time window ([0, Dt]) is presented as a function of the time.

(C) The cc of the computed map and the x-ray density map is depicted as

a function of the time. The calculation was restricted to the volumes enclos-

ing the crystallographic water molecules depicted at the right side (cystallo-

graphic positions: redþ symbols). The color indicates the mask cutoff value

Mcutoff. To see this figure in color, go online.
exchanging their positions (among themselves and also
with water molecules from the bulk media), it is difficult
to establish how much they deviate from their original (or
other reference) positions with conventional similarity mea-
sures such as root-mean-square deviations (RMSDs). To
tackle this difficulty, we computed the density map of this
set of water molecules within time windows Dt and deter-
mined the correlation coefficient with the map computed
during the first time window (Fig. 4 B). The correlation sta-
bilized at around a value of 0.8 after �40 ns of relaxation,
thereby indicating that inside the channel, the water posi-
tions preserved a high correlation with the initial water
localization. Note that increasing Dt increased the relaxa-
tion time (by about twofold), but the correlation converged
to the same value. We also considered the x-ray density map
(24) as a reference for the correlation calculation (Fig. 4 C).
We restricted the calculations to a volume that enclosed the
crystallographic water molecules by masking the rest of the
space (Fig. 4 C, right). Because 40 ns of equilibration pre-
ceded this simulation (and this part was omitted from this
analysis), the correlation coefficient did not start at a value
of one but at lower values. Subsequently, the correlation co-
efficient fluctuated around a converged value that increased
by reducing the considered volume enclosing the crystallo-
graphic water molecules. The high correlation encountered
here for small enclosing volumes is consistent with our pre-
vious observation that the average positions of the water
molecules inside the channel (related to local minima in
the free-energy profile along the pore coordinate) agree
well with the x-ray crystallographic positions (24). When
extending to larger volumes, energetically unstable regions
are also considered, and they may not be captured compa-
rably well in the simulation and in the experiment. In addi-
tion, the density of the protein atoms contributed to the x-ray
map but not to the MD-computed map. These two may be
the reasons for the low correlation for large enclosing vol-
umes. Overall, the time-resolved correlation analysis pre-
sented here allowed us to quantitatively monitor how
much this multimolecular system deviates from its initial
state (Fig. 4 B) and to expand the comparison between
simulated and experimental data beyond average positions
(Fig. 4 C). This type of analysis is extremely useful
to compare non-covalently bonded multimolecular systems,
for which conventional similarity measures, like the RMSD,
are difficult to obtain.
Spatial free energies: An energetic view of atomic
localization

In this example, the energetics associated to the localization
of cholesterol molecules around the transmembrane G pro-
tein coupled chemokine receptor type 4 (CXCR4) was eval-
uated. The function of this important receptor has been
shown to depend on the cholesterol level in the membrane
(25,34). From the study of Pluhackova et al. (25), we took
Biophysical Journal 116, 1–8, January 8, 2019 5
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a 1-ms coarse-grained (CG) MD trajectory of CXCR4
embedded in a lipid bilayer composed of 1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphocholine (POPC) and choles-
terol (�1:10 cholesterol/POPC ratio). We computed spatial
free energy maps for cholesterol as defined by Eqs. 7 and 8
(Fig. 5). We considered scaled Gaussian coefficients for the
CG beads (see details in the Supporting Materials and
Methods). The absolute free energy map revealed regions
at the protein surface that were energetically favorable for
cholesterol binding (Fig. 5 A). These regions might be
considered as sites with moderate binding affinity because
these presented a difference of ��2.0 kBT with respect to
the bulk regions. The relative free energy map displayed
the localization of cholesterol weighted by that of POPC
lipids (Fig. 5 B). Distant from the protein, the 1:10 choles-
terol/POPC ratio resulted in a relative free-energy difference
of �2.3 kBT. At the cholesterol binding sites on the surface
of the protein, the difference shifted toward a higher affinity
for cholesterol by at least 1.0 kBT from the bulk value.
In consequence, representation of the density in terms of
spatial free energies shows an energetic picture of the
cholesterol localization. These results also demonstrate
that the chosen Gaussian coefficients properly account for
the spreading of CG beads, extending the GROmars appli-
cation range from all-atom to CG systems.
Beyond map comparison: GROmars as path and
charge distribution finder

In the last example, we explored the potential ofGROmars to
detect pathways and cavities through biomolecules and to
determine charge distributions. We considered dermicidin,
a human antimicrobial membrane channel, which reduces
Staphylococcus aureus growth on the epidermal surface
(35). This channel is an interesting test system because it ac-
FIGURE 5 Spatial free energy for cholesterol (color) around CXCR4

(white cartoon) is shown. Absolute (A) and relative (B) estimates are pre-

sented (side views: left, and top view: right). Top view was taken at the

height indicated with the gray arrows. Spatial free energy is color coded ac-

cording to the shown scales. The region shown in green was masked. To see

this figure in color, go online.
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commodates in a tilted position inside the membrane and al-
lows the passage of ions through an unusual side pathway
(26) (Fig. 6 A). We took the last 75 ns of a previous 150-ns
all-atom simulation of dermicidin embedded in a mixed lipid
bilayer, whichwas fully solvated by explicit water molecules
(26). The densitymap of all thewatermolecules of the system
revealed the tilted channel connecting the two water com-
partments and, in addition, a small side cavity (Fig. 6 B). In
fact, ions use this side path either to exit or to enter the chan-
nel (26). Thus, GROmars constitutes a straightforward tool
to detect pathways through channels and in general cavities
through biomolecules, provided that solvent molecules
(water molecules in our case) fill these cavities. GROmars
is thus complementary to the pool of packages created for
this purpose (HOLE (36), MOLE (37), and CAVER (38),
among others). When the partial charges of the atoms are
spread instead of the atomic densities, the resulting map
corresponds to the average charge distribution, as presented
for dermicidin in Fig. 6 C. Hence, another extension of
GROmars is to help describe the average charge distribution
of biomolecular systems.
CONCLUSIONS

Here, we present GROmars, an open-source GROMACS-
based toolset for the efficient calculation and comparison
FIGURE 6 GROmars applications beyond map comparison include the

finding of cavities and charge distributions of biomolecules. (A) The dermi-

cidin antimicrobial channel (green) is found in a tilted conformation inside

a phospholipid bilayer (phosphorous atoms: orange) (26). (B). The density

map of the water molecules around and inside the bilayer revealed a main

(yellow arrow) and an unconventional (red arrow) conduction pathway for

the passage of solutes. The density is shown in volume representation, con-

touring it at blue-shade values of 0.6, 1.0, and 1.4 s. (C) The charge density

of dermicidin, lipid molecules, and ions is contoured at two arbitrary (nega-

tive and positive) values. To see this figure in color, go online.
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of density maps from MD simulations. GROmars repre-
sents an alternative to current map-based methodologies
(2,4,13,14,16) to visually inspect the average location
of atoms of interest during simulations. Most notably,
GROmars uses the concepts of density maps used in struc-
tural biology, such as difference and correlation maps, to
allow the comparison of perturbed and control MD data
sets, as well as MD and experimental information. It is a
powerful method to tackle multimolecular simulations for
which RMSD or related comparison operations are not
straightforward. GROmars exploits the power of working
with densities rather than with atomic positions, and its
functionalities revealed important localization details of
various biomolecular test systems. Therefore, we consider
this tool to be of high applicability for the analysis of bio-
molecular simulations and their comparison with experi-
mental data.

GROmars is available at the site https://mptg-cbp.github.
io/gromaps.html.
SUPPORTING MATERIAL

Supporting Materials and Methods, one figure, and one table are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(18)

34448-5.
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