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Abstract: The prediction of mutation-induced free-energy
changes in protein thermostability or protein–protein binding
is of particular interest in the fields of protein design,
biotechnology, and bioengineering. Herein, we achieve re-
markable accuracy in a scan of 762 mutations estimating
changes in protein thermostability based on the first principles
of statistical mechanics. The remaining error in the free-energy
estimates appears to be due to three sources in approximately
equal parts, namely sampling, force-field inaccuracies, and
experimental uncertainty. We propose a consensus force-field
approach, which, together with an increased sampling time,
leads to a free-energy prediction accuracy that matches those
reached in experiments. This versatile approach enables
accurate free-energy estimates for diverse proteins, including
the prediction of changes in the melting temperature of the
membrane protein neurotensin receptor 1.

Evolution has optimized proteins to perform their specific
functions in the environmental conditions native to the host
organism. Altering certain thermodynamic properties of
a protein is often sought after by the pharmaceutical and
chemical industries,[1] for example, enhancing the thermal
stability of a molecule or altering the strength of a specific
protein–protein interaction. Such modifications may be
achieved by means of amino acid mutations, and the
prediction of free-energy changes upon mutation is thus of
key interest.

For an ideal free-energy prediction method, the predictive
accuracy should be of the same range as that reached in
experiments. A perfect method ought to be system-independ-
ent, and hence not require fitting to experimental data. It
should be able to robustly predict thermostabilities (or

binding affinities) for different mutation types in the core of
a protein as well as in the solvent-exposed regions, which
requires that solute–solvent interactions are taken into
account. The ability to change the environmental conditions,
for example, the temperature, pressure, pH, or salt concen-
tration, is another necessary requirement.

Alchemical free-energy calculations have the potential to
fulfill these requirements. The approach relies on molecular
dynamics (MD) simulations, where both the solute and
solvent are modeled atomistically. MD simulations are not
restricted to any particular protein class and allow for precise
control over the simulation conditions. The estimation of the
free-energy differences is based on rigorous theories.[2–4] The
major bottlenecks to a routine employment of these methods
are high computational costs (subsequently leading to the
related undersampling problem), the complex simulation
setup, and the dependence of the results on the chosen
molecular mechanics force field. Whereas the former two
aspects are merely technical caveats, the force-field develop-
ment is an active field requiring constant updates and
benchmarks.[5, 6]

Herein, we utilized a state-of-the-art setup[7] for alchem-
ical free-energy calculations to carry out a large-scale protein
thermostability scan, in total comprising 762 mutations
employing six contemporary force fields. We provide insight
into the remarkable prediction accuracy that can be reached
with these rigorous alchemical methods and subsequently
propose a method to reduce the inherent force-field bias by
adopting a consensus approach. An in-depth analysis of the
error sources related to the free-energy estimates revealed
that the alchemical approaches are able to reach the
experimental level of uncertainty. In addition, a simple
“rule of thumb” was found, stating that the error is due to
the force field, the sampling, and the experimental uncer-
tainty with comparable contributions. Furthermore, we inves-
tigated the versatility of the methods in staphylococcal
nuclease and a membrane protein, namely neurotensin
receptor 1. Finally, we provide insight into the application of
the approach to the calculation of changes in the relative
protein–protein binding free energies upon an amino acid
mutation.

A set of 119 mutations in the enzyme barnase was
subjected to alchemical free-energy calculations (Figure 1a).
We estimated the relative unfolding free energies for all of the
mutations in six contemporary MD force fields (see the
Supporting Information). The overall best-performing force
field, Charmm36H, achieved a remarkable prediction accu-
racy of 3.8 kJmol¢1 in terms of the averaged unsigned error
(AUE) with respect to the experimental measurements
(Figure 1b). In general, predicting thermostability changes
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for the charge-conserving mutations proved to be an easier
task: The best results achieved an AUE of 3.3 kJmol¢1 and
a correlation of 0.77.

Charge-changing mutations, however, were more chal-
lenging (Figure 1c,d, bottom row). The best simulation,
Amber99sb*ILDN, on average deviates from experiment by
4.32 kJ mol¢1 with a correlation of 0.62. For an independent
reference to the alchemical free-energy calculations, we
estimated the relative thermostability changes by means of
specialized Rosetta protocols.[8] For the charge-conserving
mutations, Rosetta performed comparably to the alchemical
calculations, yielding correlations ranging from 0.36 to 0.71
depending on the protocol and the crystal structure used.
However, the statistical Rosetta potential was not able to
capture the trends in the charge-changing mutations (corre-
lations from ¢0.04 to ¢0.26; see Table S1 in the Supporting
Information).

Having obtained free-energy estimates for a large number
of force fields, we were able to construct a set of consensus
DDG values with the aim to minimize the force-field bias. A
partial least squares (PLS) regression based consensus model
(see the Supporting Information) presents a significant
improvement over any single force field taken separately
(Figure 1c,d) with an overall AUE of 2.94 kJ mol¢1 and
a correlation of 0.74. Interestingly, further investigations
revealed that a simple averaging of the DDG values obtained
from the simulations with different force fields yielded
a comparable result to the PLS model (with an AUE of
3.19 kJ mol¢1 and a correlation of 0.74). However, by training
a regression model or averaging over the calculated values, we
not only addressed the force-field-related artefacts, but also
implicitly combined the sampling times of individual trajec-
tories. Thus, the sampling-related error was effectively
attenuated as well. Another consensus model was therefore

Figure 1. Thermodynamic force-field benchmark. a) Structure of barnase with the mutated residues marked in red (1BNI).[14] b) Experimentally
measured double free-energy differences plotted against the DDG values calculated with the Charmm36H force field. The shaded area marks the
�1 kcalmol¢1 region around the DDGcalc = DDGexp line. c, d) Comparison of the calculated and experimental thermostabilities in terms of the
average unsigned error and the correlation, respectively. The comparison considers all mutations (top row), charge-conserving mutations (middle
row), and charge-changing mutations (bottom row). The gray areas in (c) and (d) mark the ranges of the AUE and correlation, respectively,
between the best and worst performing force fields.
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constructed by averaging over the thermostability estimates
from different force fields and considering a fraction of the
sampling time from each trajectory such that the combined
simulation time was equivalent to the trajectory of a single
force field. This approach still outperformed estimates by
single force fields. In fact, a consensus of only two estimates
obtained by the Amber and Charmm family force fields
overall performed better than the best single force field in
terms of the AUE (Figure 1c and Figure S12). This observa-
tion also holds deeper implications regarding the force-field
evolution. It appears that in spite of the continuous force-field
development and fine-tuning of individual parameters, the
overall free-energy gradients generated by different force
fields do not necessarily point in the same direction. An
investigation of the discrepancies between the force fields
may therefore provide a novel path for an improved amino
acid parameterization (Figures S15–S17).

The consensus approaches provide a way to decrease both
the force-field- and the sampling-related artefacts that may
affect the free-energy estimates. We quantified the magnitude
of both effects. The diagonal elements of the matrix (Fig-
ure 2a) denote intra-force-field errors and correlations, hence
reporting solely on the sampling-related inaccuracies: The
obtained effective sampling error for a single trajectory is
approximately 1.5 kJ mol¢1 (cor> 0.8). The off-diagonal ele-
ments in the matrix combine the insufficient sampling
artefacts and force-field errors: The maximal AUE for any
two force fields with the sampling error discarded reaches
approximately 2 kJ mol¢1.

Another source of error contributing to the disagreement
in Figure 1c,d comes from the experimental side. For an
experimental error estimate, we parsed the thermodynamic
database ProTherm,[9] extracting those free-energy values for
any protein that have been reported multiple times (Fig-
ure 2b). A remarkable deviation from perfect correlation

(cor = 0.71) and a substantial AUE (3.38 kJ mol¢1) were
observed. In part, this can be explained by inaccuracies in
database annotation: An analysis of some of the outliers in
Figure 2b identified a number of mismatches with respect to
the original publications. Hence, the experimental error has
a dual character in this case: It comprises the actual disagree-
ment between the experiments and the potential error from
the subsequent processing. A similar pairwise comparison of
experimental values for the mutations restricted to barnase
shows a better, though not an ideal agreement between
multiple experimental observations with a correlation of 0.93
and an AUE of 1.29 kJmol¢1 (Figure 2c). Thus the exper-
imental error ranges from 1 to 3 kJmol¢1, which is of
comparable magnitude to the computational error.

The generality of the findings from the large mutation
scan in barnase was assessed by application to other proteins.
A set of 24 charge-conserving mutations with experimentally
measured DDG values in staphylococcal nuclease was col-
lected (Figure 3a). The thermostabilities were calculated
using the Amber99sb*ILDN and Charmm36H force fields.
The achieved accuracy was similar to that of the barnase
mutations (Figure 3c). For the analyzed mutations in staph-
ylococcal nuclease, Amber99sb*ILDN performed better than
Charmm36H in terms of the AUE (3.52 kJ mol¢1 and
4.82 kJ mol¢1, respectively). However, the AUE appears to
be biased by a few mutations where Charmm36H predicted
a significantly stronger destabilizing effect than measured
experimentally (Figure S14). For both force fields, correla-
tions of the results with the experimental DDG values show
a similar level of accuracy. An average consensus model
constructed similarly to the one for the barnase mutations
yielded a more accurate prediction than either of the force
fields taken separately (Figure 3c).

MD-based free-energy calculations are not limited to
soluble proteins. Therefore, we set out to investigate whether

Figure 2. Error assessment and quantification. a) Matrix of the AUE values (top right) and correlations (bottom left) between the DDG values for
different force fields. The diagonal elements compare intra-force-field calculations, hence reporting solely on the sampling error. The off-diagonal
elements combine the sampling and force-field errors. b) Experimentally measured double free-energy differences for mutations with multiple
entries in 66 proteins extracted from the ProTherm database.[9] Experiments reporting on the same mutation were performed at identical
temperatures, pH, and ion concentration (if reported in ProTherm). c) Experimentally measured DDG values for barnase mutations with multiple
entries extracted from the ProTherm database. Experiments reporting on the same mutation were performed at identical temperatures and pH.
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the alchemical free-energy calculations would be able to
capture the effects of mutations in a membrane protein. The
G-protein-coupled neurotensin 1 receptor (NTR1) has been
the subject of a number of studies aiming at identifying
thermally stabilizing mutations.[10,11] Discovering such muta-
tions culminated in the successful crystallization of NTR1 and
the subsequent resolution of its structure.[12, 13] We selected
five mutants that are known to achieve higher NTR1 stability
(Table S4) to be evaluated. For the NTR1 case, a direct
comparison of the computed free-energy differences to the
experimental measurements was not possible as the experi-
ments only reported on changes in the protein melting
temperature (DTm).[11, 13] Therefore, we used experimental
data to estimate the correlation that ought to be expected
between the DDG and DTm values for a number of proteins
(Figure 3d and Table S5). Subsequently, the experimentally

measured melting temperatures for NTR1 were compared
with the calculated DDG values. A remarkable agreement
with a correlation of 0.86 was observed (Figure 3d).

The presented approach is not limited to thermostability
calculations and can be applied to estimate free-energy
changes in protein–protein binding upon amino acid muta-
tion. This challenge proved to be more complex than
a thermostability calculation as accurate free-energy esti-
mates are required for the residues exposed to the solvent (for
unbound proteins) and the buried amino acids (for proteins
forming a complex). We calculated the relative free-energy
differences in protein binding for 12 mutations in the turkey
ovomucoid third domain complexed with a-chymotrypsin,
and 13 mutations in an antibody HyHEL-10 Fv with hen egg
lysozyme. The free-energy estimates (summarized in
Table S6) demonstrate that the alchemical approaches per-

Figure 3. Thermostability estimates for staphylococcal nuclease and neurotensin receptor 1. a) Structure of staphylococcal nuclease with the
mutated residues shown in red (1STN).[15] b) Structure of NTR1 with the mutated residues shown in red (4BUO).[13] c) AUE values (top row) and
correlations (bottom row) for the calculated DDG values and experimental measurements for staphylococcal nuclease (squares). Results for
barnase are shown in circles for comparison. d) Changes in the experimentally measured melting temperatures upon amino acid mutations
plotted against the double free-energy differences, also measured experimentally, for five proteins (partially transparent symbols). The DDG values
for NTR1 were calculated using the alchemical approach. Literature sources for the experimental DTm and DDG values are provided in the
Supporting Information.

Angewandte
ChemieCommunications

7367Angew. Chem. Int. Ed. 2016, 55, 7364 –7368 Ó 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

http://www.angewandte.org


form on par with or better than the empirical methods in the
relative free-energy calculations of several protein complexes.

To summarize, alchemical free-energy calculations are
readily available for large-scale protein thermostability
estimates. A consensus approach based on predictions in
multiple force fields has been introduced. The approach
increases the prediction accuracy, bringing the prediction well
within the accuracy range of experimental measurements.
Such predictions are expected to aid protein engineering and
design as well as protein stabilization for crystallization, for
example.
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