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Chapter 9

Calculation of Binding Free Energies

Vytautas Gapsys, Servaas Michielssens, Jan Henning Peters, 
Bert L. de Groot, and Hadas Leonov

Abstract

Molecular dynamics simulations enable access to free energy differences governing the driving force 
 underlying all biological processes. In the current chapter we describe alchemical methods allowing the 
calculation of relative free energy differences. We concentrate on the binding free energies that can be obtained 
using non-equilibrium approaches based on the Crooks Fluctuation Theorem. Together with the theoretical 
background, the chapter covers practical aspects of hybrid topology generation, simulation setup, and free 
energy estimation. An important aspect of the validation of a simulation setup is illustrated by means of calcu-
lating free energy differences along a full thermodynamic cycle. We provide a number of examples, including 
protein–ligand and protein–protein binding as well as ligand solvation free energy calculations.

Key words Free energy, Molecular dynamics, Alchemical transitions, Protein–ligand binding, Protein–
protein interaction, Non-equilibrium methods, Hybrid topology, Crooks Fluctuation Theorem

1 Introduction

Whether or not a process happens spontaneously is determined  
by its free energy. This is because, without an external source of 
energy, systems evolve to their lowest free energy state. Likewise, 
the rate at which that state is reached depends on free energy 
 barriers along the pathways to that minimum. Hence, free  energies 
are of central importance as they determine, e.g., binding affini-
ties (spontaneous binding or not) or protein folding (the folded 
state is usually the free energy minimum). In addition, as barriers 
are linked to rates via rate theory, free energy barriers determine 
binding, folding, permeation, and reaction kinetics. Therefore, 
free energies are among the most critical thermodynamic quantities 
to accurately be derived by computational techniques, not only 
because they play such a fundamental role, but also because they 
can be directly and quantitatively compared to experimental data.
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Thermodynamically, a distinction is made between the so- called 
Helmholtz and Gibbs free energies. The Helmholtz free energy is 
defined as:

 F = -U TS  (1)

with U the internal energy, T the temperature, and S the entropy 
of the system. The Gibbs free energy is defined as: 

 G TS= -H  (2)

with H the enthalpy of the system, defined as H = U + pV, with p 
the pressure and V the volume of the system.

Importantly, note that both definitions contain a term that is 
dependent on the internal (or potential) energy of the system, and 
another that depends on the entropy. This has the important impli-
cation that free energies, and hence, affinities or stabilities, are 
affected by both changes in interatomic interactions as well as 
entropic changes. Particularly, changes in solvent entropy can play 
a substantial or even dominant role as, e.g., in the hydrophobic 
effect, where solvent molecules are set free upon the formation of 
a hydrophobic protein or membrane core.

The difference between the Helmholtz and Gibbs free energy 
lies in the pV term. The Helmholtz free energy is applicable at 
constant volume, whereas the Gibbs free energy is used at constant 
pressure, where the pV term quantifies the work associated with a 
change in volume. Under physiological conditions and for a typical 
experimental setup we usually have isobaric conditions, hence the 
Gibbs free energy gradient acts as a driving force for a system. 
While we will return to the concepts of the Helmholtz and Gibbs 
free energies in Subheading 2.1, for the practical examples in this 
chapter we will focus on the Gibbs free energy.

In addition to being the quantity that is minimized at equilib-
rium, the free energy is also the maximum amount of energy that 
can be obtained from a spontaneous process at constant tempera-
ture, or conversely, the minimum amount of energy required to 
drive an uphill process. More precisely, the free energy is the energy 
obtained from (or required to drive) a process slow enough such 
that it is in equilibrium with its surroundings at all times. If enforced 
faster, friction results in non-equilibrium work values that on aver-
age are larger than the associated free energy change. The excess 
energy is dissipated as heat. Traditional free energy methods there-
fore require transitions slow enough such that the systems under 
investigation can be considered to be in equilibrium at all times. 
Remarkably, however, with the Jarzynski equality and the Crooks 
Fluctuation Theorem (CFT) given, free energies can also be 
derived from non-equilibrium work distributions, as described 
 further below.
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An important implication of the free energy follows from its 
role in statistical mechanics, stating that the probability to be in 
state x is directly related to its free energy: 

 p x e G x k TB( ) ( )µ - /

 (3)

where kB is the Boltzmann constant. The term e G x k TB- ( )/  is called the 
Boltzmann factor. This relation is particularly useful to estimate 
free energy differences between two states A and B: 

 

p A
p B

e eG A G B k T G k TB B
( )
( )

( ( ) ( ))= =- - -/ D /

 
(4)

which also presents the most straightforward way to estimate free 
energies from simulation: provided that a sufficiently converged 
ensemble is available, usually requiring several reversible transitions 
between A and B, the free energy difference ΔG can directly be esti-
mated from this relation by evaluating the populations in A and B.

Alternative simulation approaches to derive free energies are 
frequently tailored towards overcoming or avoiding free energy 
barriers associated, e.g., with binding, unbinding, conformational 
transitions, or (re)folding. Examples include, umbrella sampling 
[1] and thermodynamic integration [2]. In umbrella sampling, a 
biasing potential is employed to enforce transitions across high 
energy states along a predefined reaction coordinate. The effect of 
the biasing potential can be corrected for afterwards, yielding  
the free energy profile for a one-dimensional reaction coordinate  
or the free energy landscape for a multi-dimensional reaction coor-
dinate. In thermodynamic integration and other alchemical appro-
aches, the sampling of cumbersome binding and unbinding events 
is prevented by instead carrying out a transition in chemical space 
where the Hamiltonian describing system A is transformed into  
B. Making use of the fact that the free energy is a state variable, the 
relative free energy change can be estimated from the difference of 
the associated transition free energy for example in the context of 
a protein binding pocket and the same transformation in solution, 
for the calculation of relative binding free energies.

A remarkable characteristic of the free energy is that in many 
cases, its estimate converges faster than either the individual 
enthalpy and entropy contributions. This is due to the fact that the 
largest contributions to both arise from a solvent–solvent term  
that occurs in both but that exactly cancels out in the free energy 
estimate [3].

This chapter mainly focuses on the use of non-equilibrium 
methods for the calculation of binding free energies. For equilib-
rium approaches, we refer to excellent reviews in the literature 
[4–6].

Calculation of Binding Free Energies
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2 Theory

The free energy surface of a system completely describes its 
 thermodynamic and kinetic properties. An intuitive interpretation  
of the free energy is provided by its relation to the probability pA of 
finding the system in a phase space volume A: 

 
p

e
eA

F

F

A

=
-

-

b

b
 

(5)

where FA is the free energy of a phase space volume A, F is the 
Helmholtz free energy evaluated over the whole phase space, and 
β = 1∕kBT, with the Boltzmann constant kB and temperature T.  
In most practical cases the differences between the state popula-
tions are of interest in contrast to the absolute free energy values. 
By considering two states, A and B, the free energy difference  
ΔFAB can be expressed as 

 
DF F F

p Q
QAB B A

B

A

B

A

= - = - = -
1 1
b

ln ln
p b  

(6)

Q denotes the canonical partition function: Q = Q (N, V, T  ), with  
N number of particles and V volume of a container. The free energy 
is related to the partition function via F = −1 ∕ β ln Q (N, V, T ).

From the latter expression (Eq. 6) several approaches to obtain-
ing ΔF can be deduced. Firstly, a direct counting of events sam-
pling phase space volumes A and B immediately enables access to 
the probabilities pA and pB. For example, in case of molecular bind-
ing, this method could be employed by simulating two molecules 
of interest (ligands A and B) and directly counting their respective 
probabilities of being in bound/unbound forms. While the 
approach is simple, its computational cost for large biologically 
 relevant systems is usually beyond reach for the current state-of-
the-art atomistic simulations.

Another method requires evaluation of the partition functions. 
However, while for an ideal gas example, the partition function has 
an analytical expression, for particles with complex interactions  
a numerical integration over the coordinates and momenta is 
required. A canonical partition function is defined as follows: 

 
Q N V T

h N
e d d d dN

H
N N

N N( , , )
!

( , )= ¼ ¼ ¼- ¼ ¼1
3 1 1

1 1ò ò b p p q q p p q q
 

(7)

where H(p, q) is a Hamiltonian of a system, q and p denote coor-
dinates and momenta, respectively, h is Planck’s constant. For a 
multi-particle system, integration over all the degrees of freedom is 
not computationally feasible. Hence, a simulation is often used to 
sample the accessible phase space volume. In a simulation, high 

2.1 Definition 
of Free Energy
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energy microstates will be visited only rarely (or will not be visited 
at all), hence, rendering this approach unsuitable for the estimation 
of absolute free energies. For the free energy differences, however, 
the inaccessible phase space regions will be discarded for both 
states, A and B, thus allowing for an accurate assessment of ΔF due 
to cancellation of errors.

Up to now, we considered a canonical ensemble with the asso-
ciated canonical partition function Q and Helmholtz free energy F. 
In practice, however, experimental measurements are usually 
 performed at isothermal-isobaric conditions generating an NPT 
ensemble. In such a case, a partition function is defined as 

 
Q N P T

h N
e dVd d d dN

H PV
N N

N N( , , )
!

( ( , ) )= ¼ ¼ ¼- ¼ ¼ +1
3 1 1

1 1ò ò b p p q q p p q q
 

(8)

where P is the pressure. The Gibbs free energy is defined as 
G = −1 ∕ β lnQ (N, P, T  ). For the remainder of this chapter we 
assume constant pressure and therefore focus on the NPT ensem-
ble with the associated Gibbs free energy. By considering the fact 
that a Hamiltonian of a system consists of a kinetic and potential 
energy components H(p, q) = K(p) + U(q), the partition function 
can be separated into kinetic and configurational partition func-
tions. As the K(p) component depends only on the particle 
momenta, the kinetic partition function for states A and B does 
not change as long as there is no perturbation of mass between the 
states. Therefore, for the sake of simplicity, often only the configu-
rational partition function is used. However, in this chapter, we 
will use a more general approach by considering the full Hamiltonian 
of a system.

In the following section, we will briefly introduce the most 
popular approaches for free energy estimation from equilibrium 
simulations. Further, we will concentrate on the conceptually dif-
ferent approaches relying on non-equilibrium transitions between 
states.

The free energy perturbation (FEP) method introduced by 
Zwanzig [7] (Pohorille et al. [8] attribute the first derivation to 
Landau [9]) can be derived from Eq. 6: 

 
DG G G

Q
Q

eAB B A
B

A

H H

A
B A= - = - = - - -1 1

b b
bln ln ( ( , ) ( , ))p q p q

 
(9)

where the angular brackets ¼  denote an ensemble average. The 
approach relies on equilibrium sampling at state A and subsequent 
evaluation of the produced configurations with the Hamiltonian of 
state B. The Hamiltonian is controlled by an external parameter 
often denoted as λ: H Hl l( , ) ( , , )p q p q= . The accuracy of the FEP 
method is strongly dependent on the phase space overlap of the 
states A and B. In case the overlap is small, the configurations 

2.2 Free Energy 
Estimates 
from Equilibrium 
Simulations: 
Perturbation Method
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 generated at state A will be identified as high energy microstates 
when evaluated with the Hamiltonian HB(p, q), in turn contributing 
little to the exponential average. Hence, the approach is known to 
converge slowly and is only tractable for the ΔG estimation between 
the states exhibiting large overlap in the phase space. More informa-
tion concerning the accuracy, convergence, and usage of FEP can be 
found in [8, 10–12].

Another method to estimate ΔG from end state equilibrium 
sampling was proposed by Bennet and is referred to as Bennet’s 
Acceptance Ratio (BAR) [13]. Bennet’s estimate is expressed by: 

 
DG

f H H C

f H H C
CAB

A B B

B A A

=
- +

- -
+

1
b

ln
( ( , ) ( , ) )

( ( , ) ( , ) )

p q p q
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(10)

here f represents Fermi function f(x) = 1∕(1 + exp(βx)) and 
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b

ln , nA and nB are the numbers of configurations 

generated in the states A and B, respectively. Equation (10) can be 
solved numerically by finding such C, that 

 
å å- + = - -

B
A B

A
B Af H H C f H H C( ( , ) ( , ) ) ( ( , ) ( , ) )p q p q p q p q

 
(11)

Having determined C yields the free energy difference: 

DG
n
n

CB

A

= - +
1
b

ln . BAR is a minimal variance free energy estimate. 

Shirts et al. [14] also derived Bennet’s formula using maximum 
likelihood formulation, thus, demonstrating that BAR provides  
the most likely free energy estimate for the observed work 
distributions.

Both methods introduced so far (FEP and BAR) were defined 
for free energy calculations by sampling physical end states of a 
system. Simulations, however, allow accessing unphysical (alchemi-
cal) pathways as well, by coupling the Hamiltonians of the two 
states H H HA Bl l l= - +( )1 . Different λ dependent coupling 
functions have been investigated [15, 16]. For the λ values 0 and 1, 
the system is at the physical states A and B, respectively, whereas for 
the values 0 < λ < 1 the system is in a mixed unphysical state. The 
path between the states A and B can be divided into discrete states 
(also called stratification). Performing equilibrium simulations at 
the intermediate states ensures a larger phase space overlap between 
the ensembles adjacent to one another along the λ coordinate. FEP 
or BAR estimators can be employed to obtain free energy differ-
ences between the intermediate states which can later be summed 
up to yield ΔGAB between the physical end states. The weighted 
histogram analysis (WHAM) [17] and multistate Bennet Acceptance 
Ratio (MBAR) [18] methods were developed to estimate free 
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energy difference by considering all intermediate states simultaneously. 
Ways to achieve an optimal distribution of the discrete states to 
ensure maximal phase space overlap along the path have also been 
investigated [19, 20].

A conceptually different method from the ones described above, 
termed thermodynamic integration (TI) [2], obtains the free energy 
difference by integrating the average force exerted on the system 
along the λ variable during an alchemical transition: 

 
D l

l

G
H

dAB =
¶
¶ò

0

1

l  
(12)

Several approaches have been developed to use thermodynamic 
integration in simulations. The slow growth TI requires perform-
ing transition between the states very slowly, such that the system 
remains close to equilibrium at all times. In this case, the free energy 
value is equal to the work done during the transition. Another 
assumption states that an instantaneous ¶ lH / ¶  value at any λi is 
equal to an ensemble average at that λi. In practice, due to limited 
sampling the system is kept at a quasi-equilibrium state, which in 
turn results in inaccurate free energy estimates as some work is dis-
sipated. Convergence issues related to the slow growth TI are well 
known and have been thoroughly investigated [21–23].

A discrete thermodynamic integration method (DTI) is based 
on dividing the path along the λ coordinate into discrete steps, 
similarly as for the FEP and BAR approaches discussed in the previ-
ous section. An equilibrium simulation is started at every λi state 

and an average ¶
¶
H

i
l l

 is evaluated. A numerical integration of 

the averages directly yields a ΔG value. The accuracy of DTI 

depends on the sampling time and distribution of the discrete 
states. As it was the case for the multi-state FEP and BAR methods, 
DTI requires phase space overlap between the neighboring ensem-
bles along the λ coordinate. The numerical integration scheme was 
also demonstrated to influence accuracy of the free energy esti-
mates [20, 24, 25].

The methods described in the current section rely on the work 
measurements over non-equilibrium transitions, and hence are 
sometimes termed NEW. In 1997 Jarzynski derived an identity 
relating an exponential average of work during non-equilibrium 
transitions to the free energy difference of the canonical ensemble 
[26] (it was later shown by Cuendet [27], that the equality also 
holds for an NPT ensemble): 

 e eG WAB- -=b bD  (13)

2.3 Free Energy 
Estimates 
from Equilibrium 
Simulations: 
Thermodynamic 
Integration

2.4 Theory of Non- 
equilibrium Free 
Energy Calculations
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The Jarzynski equality requires the transitions to be started 
from an equilibrium ensemble. The work values can be obtained 
from a relation similar to that of thermodynamic integration: 

 
W

H
d=

¶
¶ò 0

1

l
l 

 
(14)

In contrast to TI, in Eq. 14 instantaneous ¶ ¶H / l values are 
integrated. The resulting work contains both a contribution from 
the free energy difference and the dissipated work along the transi-
tion path. The FEP approach (Eq. 9) can be viewed as a special case 
of the Jarzynski equality, where a transition from A to B is per-
formed instantaneously.

Similarly to FEP, of which the convergence strongly depends 
on the phase space overlap between the end states, the accuracy of 
the free energy differences calculated using Jarzynski’s formula 
depends on rare events, where little work is dissipated. Fast transi-
tions, driving a system far from equilibrium, would yield large work 
values, contributing little to the exponential average, hence slow-
ing the convergence of the ΔG estimation.

Several free energy estimators have been developed based on 
the Jarzynski equality. In case the transitions are performed in the 
near equilibrium regime, a Gaussian approximation for the work 
distribution P(W) is valid due to the central limit theorem [28]. 
Cumulant expansion of a Gaussian distribution allows expressing 
the free energy difference as 

 
DĜ W

n

W= -
b s 2

2  
(15)

where W
n

 is the mean and s W
2  is the variance of a P(W) dis tri-

bution. The variance of a free energy estimate is given by 
s b s



W Wn n2 2 4 2 2/ /+ -( ) , with n denoting number of measured 
work values. The estimator ought to be used only if the assump-
tions for the Gaussian approximation of a work value distribution 
are fulfilled, i.e. many work values are obtained and the transitions 
keep the system near equilibrium [29]. Otherwise, the free energy 
difference can be estimated from the Jarzynski equality directly. 
Such an estimator, however, has been shown to be biased given a 
limited number of observed work values [29]. The Jarzynski esti-
mator is defined as 

 
D ˆ lnG = - -1

b
be W

n
 

(16)

A more general relation, enabling the combination of the work 
value distributions from forward and backward transitions to obtain 
the Helmholtz free energy difference was derived by Crooks [30, 31]. 

Vytautas Gapsys et al.



181

The relation is also known as the Crooks Fluctuation Theorem (CFT). 
Chelli demonstrated the  validity of the Crooks equation for an NPT 
ensemble [32]. 

 

P W

P W
ef

r

W G( )

( )
( )

-
= -b D

 
(17)

where Pf (W) and Pr(−W) correspond to the work distributions 
during forward and reverse processes, respectively. The Jarzynski 
identity can be derived from the Crooks equality, as demonstrated 
by Crooks [30]. CFT requires that the transitions between the 
states were started from equilibrium ensembles. However, similar 
to the Jarzynski identity, there is no requirement for a system to 
reach an equilibrium at the final state of a transition. A number of 
estimators have been developed to extract the free energy difference 
from the work distributions using Crooks equality [14, 33–35].

For the cases where an overlap between the work distributions is 
large, the free energy difference can be estimated directly from the CFT: 

 
ln

( )

( )
^P W

P W
W Gf

r -
= -b bD

 
(18)

Plotting the left hand of Eq. 18 against the work values yields 
a line with the slope β. The line intercepts the work axis at a value 
equal to DĜ . While the approach is easy to implement, there are 
several caveats regarding such a direct estimation. Firstly, a sufficient 
overlap between the work histograms is achieved only for near-
equilibrium transitions where little work is dissipated. Secondly, 
only the work values from the overlap region will contri bute to the 
free energy estimate, whereas the rest of the measurements will not 
be used.

To alleviate the latter problems, the work histograms can be 
approximated by an analytical distribution. Following from the 
CFT, the intersection point of the two distributions corresponding 
to the forward and reverse transitions marks a work value equal to 
ΔG. Nanda et al. [33] proposed using a universal probability den-
sity function [36] allowing to account for the asymmetry of the 
distributions. Goette and Grubmüller showed that in practice a 
Gaussian approximation also yields accurate free energy estimates 
[35]. They derived a Crooks Gaussian Intersection (CGI) estima-
tor which is expressed as 
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where Wf n f
, Wr nr

 are work averages and s f
2 , s r

2  are  variances 

of the work distributions for the forward and reverse transitions, 
respectively. The estimator predicts two intersection points, unless 
the distributions overlap completely, which would only be the case 
for equilibrium transitions. The intersection point in between of 

the Wf n f
 and - Wr nr

 is of relevance. The statistical error for 

the estimator can be calculated by means of bootstrapping. As the 
estimator depends on a Gaussian approximation, the validity of this 
assumption can be assessed using a  statistical test, e.g. Kolmogorov–
Smirnov [37].

The already introduced BAR estimator (Eq. 10) can also  
be used for non-equilibrium simulations. Shirts et al. provide the 
following expression for BAR [14] 
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where nf and nr are the numbers of transitions in forward and 
reverse directions, respectively. A numerical solution of Eq. 20 
 provides a maximum likelihood estimator of the free energy differ-
ence. The estimator is asymptotically unbiased and its variance 
converges to the inverse of a Fisher information when the number 
of work observations goes to infinity. An analytical expression for 
the variance [14] is given by 
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where nf+r corresponds to the total number of forward and reverse 
transitions and the angular brackets denote averaging over the 
transitions in both directions. The maximum likelihood estimator 
was later generalized by Maragakis et al. who introduced a Bayesian 
free energy estimator based on CFT [34].

As discussed in the previous sections, alchemical free energy calcu-
lations explore unphysical pathways by combining Hamiltonians of 
physical states with an external parameter λ. Having two (or more) 
separate Hamiltonians implies the necessity to define multiple 
topologies for the system at every end state. To be able to couple 
Hamiltonians, a mapping between the topologies needs to be 
established. Two approaches of constructing the topologies for 
alchemical free energy calculations have been introduced [38, 39].

2.5 Concepts 
of Single and Dual 
Topology

Vytautas Gapsys et al.
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In a single topology approach every atom of state A is mapped 
to an atom of state B. In case the states have different number of 
atoms, dummy particles are introduced. The total number of atoms 
in a system corresponds to the atom number of the larger state. The 
bonded interactions of dummy atoms are usually left intact during 
a transition, resulting in an ideal gas molecule state (i.e., the bonded 
interactions are not switched off) in one of the end-states [40].

In a dual topology approach, atoms that are different for the 
two states are defined separately, i.e. they are present in the system 
simultaneously. The atoms that are different for the states A and B 
do not interact with each other and are controlled by a λ parame-
ter. It was found that the ideal gas molecule approach (the same as 
for the single topology) ought to be used to avoid convergence 
problems [40].

The ΔG values for a transition calculated using different topol-
ogy mappings will give rise to different free energy estimates, since 
the actual end states will differ for the single and dual topologies. 
The ΔΔG values, however, do not depend on the choice of the 
topology mapping as long as the same procedure is used across the 
thermodynamic cycle [40, 41]. In principle, both topology map-
ping approaches can be combined if required. For example, the 
topology for a part of a molecule may be designed to follow the 
single topology approach, while the other part may be represented 
by a dual topology (Fig. 1).

Transitions exploiting unphysical pathways across a thermody-
namic cycle may require particle creation or annihilation. This is 
always the case for a dual topology approach, whereas for a single 
topology particle creation/annihilation is required only when the 

2.6 Soft-Core 
Potential

Fig. 1 Two topology generation approaches illustrated by an example of a methyl- to ethyl- benzamidinium 
mapping. The dummy atoms are represented as transparent spheres. (a) In the single topology approach a 
methyl group is morphed into an ethyl. (b) For the dual topology mapping, the whole group is annihilated upon 
a transition and a new group is created

Calculation of Binding Free Energies
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number of atoms at the end states differs. In a classical molecular 
mechanics force field description, non-bonded terms described by 
the Coulomb and Lennard-Jones potentials contain a singularity at 
inter-particle distances r = 0. For the end state simulations, reach-
ing a singularity point is prohibited by strong Pauli repulsion term 
(r−12) of the Lennard-Jones potential. For the unphysical transi-
tions, however, very short inter-atomic distances may be encoun-
tered when approaching the end states. Another caveat along  
the alchemical paths comes from simultaneous switching of the 
electrostatic and van der Waals interactions. When the system 
approaches an end state, the created/annihilated atoms have weak 
van der Waals repulsion, whereas electrostatic attraction may be 
strong enough to bring particles to distances close to zero. To 
avoid the latter problem, decoupling electrostatic and van der 
Waals interactions involved in transitions were suggested [42]. In 
this approach, firstly, the Coulomb interactions are switched off. In 
a subsequent separately performed transition the van der Waals 
interactions are modified and finally the electrostatic interactions 
are restored. The numerical instability problem, however, still 
remains for the part of the procedure involving the Lennard–Jones 
interaction modification. To avoid numerical instabilities using the 
classical non-bonded interaction potentials, the integration time step 
needs to be decreased with the change of the λ parameter [43].

Another approach is to “soften” the non-bonded interactions 
along an alchemical transition [43, 44]. The “soft-core” potential 
for the Coulomb and van der Waals interactions can be written as 
follows: 
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where p and s are integer parameters, rij is an interatomic distance, 
qi and qj denote partial charges, eij  and σij represent Lennard–Jones 
parameters, e0  and er  are the dielectric constant in vacuum and 
relative dielectric constant, respectively.

“Softening” of the non-bonded interactions alleviates the 
problems of singularity points and numerical instability. The “soft- core” 
potential can be used for both, the Coulomb and van der Waals 
interactions, hence, the switching of all the non-bonded interac-
tions can be performed simultaneously. While the “soft- core” 
potential defined in Eq. 22 is routinely used in the equilibrium free 
energy calculations, its application for a number of non-equilibrium 
simulation setups revealed potential caveats [45]. As the potential 
becomes flat for the very short inter-particle distances, overlapping 
particles exert no repulsive force on each other. This situation may 
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create unwanted additional minima in the potential, where parti-
cles are kept in a close proximity throughout a transition, eventu-
ally leading to a strong repulsion when reaching an end state. The 
strong repulsions result in large work dissipation decreasing accu-
racy of the free energy estimation. A different “soft- core” the 
approach was proposed to solve the problems of singularity points, 
numerical instabilities and additional minima [45]. In the latter 
approach the “softening” of the non-bonded interactions is applied 
at the force level by modifying the non-bonded interactions such 
that a finite, but non-zero, force is reached at short inter-particle 
distances.

3 Topology Generation

Topology generation is the particular aspect of an alchemical free 
energy setup that makes it different from a regular molecular 
dynamics simulation. The topology must describe both states of a 
molecule undergoing a transition. Therefore, regardless of which 
topology approach one chooses, single or dual, a mapping between 
the atoms of the two states needs to be established.

At the first step, a mapping algorithm, when provided with the 
structures of two molecules, should list atoms that need to be 
morphed into one another or be turned into dummies. To auto-
mate such a process several approaches are available. A graph the-
ory based connectivity analysis of the molecules can be used to find 
a subset of connected atoms for morphing, e.g. a maximum com-
mon subgraph algorithm. The atoms not falling within the identi-
fied subset would be marked to become dummies in one of the 
states. The drawback of a graph based approach is the fact that 
while the atoms mapped for morphing may be close to each other 
in a graph representation, in Cartesian coordinates the distance 
between them may be large, resulting in potential convergence 
issues in the simulations.

A different approach to atom mapping is based on a Euclidean 
distance criterion. For the two superimposed molecules distances 
between all the atom pairs need to be calculated. By defining a 
threshold value (e.g., 0.5 Å) pairs of atoms with distances below 
the threshold are selected for morphing. The threshold parameter 
can be adjusted depending on a specific situation. However, one 
needs to be careful and avoid introducing unreasonable mappings 
of spatially distant atoms. Creating fragments in a molecule con-
nected via dummies should be avoided, since bonded interactions 
of the dummies would restrain the degrees of freedom that need 
not to be restricted. Similarly, breaking ring systems when morph-
ing atoms may lead to stability and convergence issues. Therefore, it 
is better to follow a dual topology approach and create/annihilate 
intact rings.
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Superpositioning of the molecules plays an important role in 
the distance based topology generation. The atoms to be used for 
superpositioning can either be defined in advance based on the 
knowledge of the molecular structures at hand or an unsupervised 
alignment and superpositioning method can be applied, as, e.g., 
implemented in Open3DALIGN algorithm [46].

In the second step, a merged topology file should be created. 
The merged file needs to contain the atoms that are to be morphed 
during a transition, as well as the dummies of both states. The 
structure file has to be adjusted accordingly to contain all the atoms 
described by the topology. In a GROMACS [47] topology file, the 
atomic details, as well as bonded and non bonded parameters  
for every interaction can be defined for the two λ = 0 and λ = 1 
states separately. In that case, the generation of a merged topology 
requires assigning the parameters for the two states where a change 
occurs, and carefully adjusting atom numbering due to the possi-
ble introduction of dummies. The Python based package pmx 
(formerly known as Pymacs [48]) contains a set of tools for the 
distance based atom mapping and merged topology generation.

In case the merged topologies for a set of molecules are 
intended to be used frequently, it is convenient to generate a library 
containing the rules for atom mapping. For example, calculating 
amino acid mutation effects is often of interest when assessing pro-
tein thermostability, protein–protein or protein–ligand binding. 
The aforementioned pmx package provides a pre-calculated 
 mapping for all amino acid mutations, as well as the required tools 
for the merged topology and mutated structure generation.

For ligands, however, establishing the mapping between the 
atoms beforehand is not possible, hence, the topology generation 
process needs to be carried out from the beginning for every 
 molecule pair of interest. In fact, it is often the case that the 3D 
structures and topologies of individual ligands need to be genera-
ted from a simplified molecule representation (a 2D structure, a 
SMILES, or SMARTS string). As a starting point here, an empirical 
3D structure generator can be employed, e.g., OpenBabel [49], 
ChemAxon’s Marvin package tool MolConverter, CORINA [50]. 
A decision on the protonation state of a ligand must be made at this 
step as well. If the protonation state is expected to play an impor-
tant role for the binding of a particular ligand, the different proton-
ation states can be treated as separate molecules and the topologies 
for each of them could be generated. Subsequently, the calculated 
free energy differences can be used to estimate the relative pKa 
shifts for the titratable sites. If the molecular 3D structure was gen-
erated from scratch, it is suggested to optimize the geometry with 
a quantum chemical package of choice. Several methods for the 
atomic partial charge assignment are available: one such method 
requires the calculation of an electrostatic potential (ESP) followed 
by a procedure of fitting the ESP surface onto atoms [51, 52]. 
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Alternatively, the computationally less demanding semiempirical 
AM1-BCC [53] partial charges have been shown to be of compa-
rable quality in the solvation free energy estimation [54]. Generation 
of the bonded parameters for a molecule depends on the force field 
of choice. Nowadays the main biomolecular force fields have been 
generalized to include small organic compounds. In addition, auto-
mated atom typing and bonded parameter assignment procedures 
are readily available: the Antechamber [55]  module allows topology 
generation for the Generalized Amber Force Field (GAFF) [56]; 
CHARMM General Force Field (CGenFF) [57] topologies can be 
created with the ParamChem [58, 59] utility; GROMOS force field 
compatible topologies can be generated with an Automated 
Topology Builder (ATB) [60]; ligand topologies for the OPLS 
force field can be generated using MKTOP [61] software.

4 Thermodynamic Cycles

As previously mentioned, the absolute free energy of a system is 
difficult to determine, but fortunately most problems can be for-
mulated in terms of relative free energies. Free energy differences 
are both more approachable and contain important information 
about the system. The change in free energy due to binding  
(ΔGbinding) can be determined experimentally (e.g., by means of 
calorimetry). Although absolute binding affinities can be calcu-
lated using, for example, umbrella sampling, such calculations are 
usually cumbersome, as the whole binding/unbinding process 
needs to be taken into account, while its path is unknown in most 
cases. Therefore, investigating the effect of a change of the system 
(e.g., an amino acid mutation or a ligand modification) on binding 
is usually more feasible. For this, the double free energy difference 
(ΔΔGmutation,binding) is calculated.

The alchemical methods calculate the work needed to “move” 
a system from one state to another through unphysical pathways. 
As the free energy of a system is a function of its state, the free 
energy difference found between the states is independent of the 
path taken between them. Sufficient sampling is of critical impor-
tance in all free energy methods, and the computational  difficulty 
of reaching convergence dramatically increases with the magnitude 
of the perturbation.

Binding free energies usually involve a large perturbation—in 
one state, both binding partners are free in solution, in the other 
they are in a complex. The phase space overlap between these two 
states is often small resulting in a slow convergence. An alchemical 
transition from state A (a wild-type protein or a ligand) to the state 
B (a mutated or modified molecule), while physically impossible, 
requires a much smaller perturbation. As we are interested in the 
difference in the binding free energies between the states A and B, 
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we can make use of the fact that the free energy of a state does not 
depend on the path taken to reach it. Hence, the free energy dif-
ferences along a closed cycle of reactions (like the one depicted in 
Fig. 2) will always add up to zero. This feature allows calculation of 
the double differences in free energy (ΔΔG) of binding, thermo-
stability, partitioning in different solvents, etc. between two states 
of a system 

 DD D D D DG G G G G= - = -2 1 4 3  (23)

The resulting ΔΔG is often more accurate than the ΔG values 
used to calculate it, as systematic errors (like those caused by the 
presence of dummy particles and limited sampling) cancel out 
when the free energy differences are subtracted. Note that this way, 
relative binding affinities are obtained without studying the actual 
binding/unbinding event.

The two branches of a thermodynamic cycle can be combined 
into a single transition by performing both transitions in the same 
box. This is important to bear in mind, when an alchemical modifi-
cation involves a charge change between the states. In such a case, 
the simulation box in one of the end states carries a non-zero 
charge, hence, treatment of the electrostatic interactions by means 
of the Ewald summation introduces artifacts. Meanwhile methods 
that would not introduce such artifacts, e.g. a simple cut-off based 
Coulomb interaction calculation, are generally less accurate. Hence, 
the best solution is to design a specific simulation setup to keep the 
system neutral at all times during a transition. One such simulation 
setup is to combine both branches of a thermodynamic cycle in one 
simulation box (Fig. 3). In such a double-system/single- box setup,  

Fig. 2 Schematic representation of a thermodynamic cycle. To determine the 
change in binding affinity upon a protein mutation or ligand modification,  
the difference between the binding free energy of the ligand or protein in state A 
(ΔG1) and that of the state B (ΔG2) need to be determined. However, the values 
(ΔG3) and (ΔG4) are more accessible to the free energy perturbation methods. 
Using the conservation of energy in this closed cycle, we can derive 
DD D D D DG G G= - = -2 1 4G G3
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a state A molecule bound to an enzyme is positioned in the same 
box with the solvated state B molecule. The other end state  contains 
the same compounds, but in inverted roles: state B molecule is in 
contact with an enzyme, while molecule A is solvated. In this way, 
molecules A and B are present in the simulation throughout a tran-
sition and no net charge change occurs.

It is important to position the solvated (free) and protein 
bound molecules at a sufficiently large distance from each other to 
prevent direct interaction, because the branches of the thermody-
namic cycle, that are now in a single box, are assumed to be 

Fig. 3 Double-system/single-box setup. (a) Two branches of a thermodynamic 
cycle are placed in one simulation box. The different boxes in the scheme are 
indicated by the broken and dotted lines. (b) An example of a simulation setup for 
the ligand binding free energy calculation. During a transition the enzyme bound 
ligand is being morphed from the state A to B, whereas the solvated molecule 
undergoes a reverse transition from B to A state. The net charge of the simulation 
box remains zero. The free energy estimate corresponds to a double free energy 
difference: ΔΔG  =  ΔG4 −ΔG3
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independent. In practice, placing the structures ∼ 3 nm apart is suf-
ficient to obtain accurate free energy estimates. To prevent an 
interaction between the solvated molecule and the protein due to 
motions during the simulation, a position restraint on a single 
atom of the molecule free in solution can be imposed. Once a sys-
tem is set up this way, the estimated free energy corresponds to the 
ΔΔG of binding.

Even if a charge changing mutation/modification is set up to 
remain in a neutral simulation box during an alchemical transi-
tion, some unwanted electrostatic artifacts may persist due to the 
finite size and periodicity effects [62].

5 Validation Using Closed Thermodynamic Cycles

To achieve accurate and valuable free energy estimates from simu-
lations, it is important to aim at the best possible setup within the 
approximations made. If and when available, known experimental 
results can be used to validate a particular setup but even then, there 
can be multiple reasons for a discrepancy between experiments and 
simulations. For instance, it is often difficult to completely match 
experimental conditions with simulation conditions, e.g. trace 
amounts of a certain ion in the buffer could have a large effect, but 
are often neglected in simulations. Also, it can never be excluded 
that there is an error in the experimental results.

From the simulation side the major factors affecting the accu-
racy of the results are conformational sampling and the Hamiltonian/
force field. One can validate the setup independent of external 
 factors such as the force field or known experimental results, by uti-
lizing closed thermodynamic cycles where all transition branches are 
accessible and are explicitly computed. The result of summing up all 
branches should then be zero. Any deviation from zero gives access 
to the accuracy of the approach used. The simplest type of a closed 
cycle is using the double-system/single-box setup (see Subheading 4), 
where in one box A2B and B2A are present. A2B can be the transi-
tion of one amino acid to another in the case of protein binding, or 
can be the change from one ligand to another in the case of ligand 
binding.

The double system in a single box approach is used in the follow-
ing example to obtain a closed cycle. A transition from leucine to 
alanine (L2A) is combined with the reverse transition from alanine 
to leucine (A2L) in a single system. Ten independent equilibrium 
simulations of 10 ns are launched and convergence is verified as a 
function of the number of independent trajectories involved in 
computing the free energy. Using more independent simulations 
reduces the error bar. Note that using only one 10 ns trajectory  
can produce a result that is close to zero, but the error bar is large. 
In this case, an additional 10 ns of simulation can increase the 
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 deviation from zero, but thereby indicates that 10 ns of sampling is 
not sufficient for the simulation to converge. Combining all ten 
simulations results in a small error bar (with zero within).

Thus, using short simulation times may often result in seem-
ingly good results for closed thermodynamic cycles, since in  
that case all simulations stay close to the starting structure and  
the  conformational space is insufficiently explored. Assuming that 
 sufficient exploration of the conformational space is required, 
using longer simulations would be preferred. However, using lon-
ger simulations also holds the risk that they will get trapped in 
artificial minima caused by force field artifacts. To avoid this we 
recommend using multiple short simulations as done in this exam-
ple. This approach ensures better sampling and reduces the risk of 
getting trapped in artificial minima. Furthermore, a more rigorous 
and straightforward error estimation could be performed using 
this approach, provided that a sufficient number of transitions is 
achieved for each independent simulation. In such a case the free 
energy can be calculated for each trajectory separately and the error 
can be evaluated for the deviation among the independent ΔG 
estimates.

In the example above we used a convenient double-system/ 
single-box setup. However, in case of a closed cycle is constructed 
by considering the branches of a thermodynamic cycle separately, 
one additional caveat in terms of topology construction needs to 
be taken into account. Both single and dual topology procedures 
mostly involve dummy atoms, and those need to be considered  
in a closed cycle. A simple thermodynamic cycle, as represented in 
Fig. 4a, containing three vertices, might end up in a cycle with six  
vertices (Fig. 4b), and edges containing only dummy transitions 
that are not easily accessible [40, 41]. In a typical free energy simu-
lation one is often interested in the difference between two ΔG 
values, where the contribution of the dummy atoms cancels out, 
e.g. in protein thermostability calculations the effect of the dummy 
atoms is the same in the reference (unfolded) state as in the folded 
state, or for ligand binding affinities the effect is the same for the 
ligand in solvent as the ligand bound to a protein. Therefore, one 
possibility for the construction of a valid closed thermodynamic 

Fig. 4 (a) Closed thermodynamic cycle involving three states. (b) Including the 
effects of the dummy atoms a closed thermodynamic cycle with three states is 
transformed to one with six states
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cycle with three vertices, might be by having ΔΔG values at the 
edges instead of ΔG. As a simpler alternative, the double-system/
single-box setup as shown in the example above could be used 
(Fig. 5).

6 Non-equilibrium Free Energy Calculation Setup

In this section we will outline the main steps of the alchemical non- 
equilibrium free energy calculation setup. The described protocol 
is compatible with the ΔG estimation based on both the Jarzynski 
equality and CFT. In the first step of the procedure, equilibrium 
ensembles of the system in both end states need to be generated. 
Afterwards, short transition simulations are performed starting 
from the structures selected from the equilibrium ensembles. The 
work performed by the system is calculated by numerically inte-
grating the ¶ ¶H / l  curves for every transition. Finally, the free 
energy difference between the two end states is estimated from the 
accumulated work values.

To create equilibrium ensembles for both end states of a transi-
tion, simulations of the system with the hybrid topology 
(Subheading 3) can be performed by keeping the transition con-
trolling variable λ constant at one of the two end states. This has  
an advantage that structures from the equilibrium simulations can 
directly be used as starting structures for the transitions. On the 

Fig. 5 Results for a double system in a single box, having both L2A and A2L 
structures in one box. The number of equilibrium simulations of 10 ns used can 
be read from the x-axis. Each point on the graph consists of 100 non-equilibrium 
trajectories of 50 ps
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other hand, if equilibrium ensembles generated without a hybrid 
topology are already available, they can be re-used, e.g. when the 
same residue of a protein needs to be mutated to more than one 
target, or if an alternative method is used to generate the equilib-
rium ensemble which is not compatible with the use of hybrid 
topologies. In these cases, the hybrid topology can be introduced 
into structures after generating the equilibrium ensembles with a 
regular (non-hybrid) topology, but it is advisable to perform  
a short simulation with the hybrid topology prior to a transition, to 
allow the system to relax.

For the non-equilibrium transitions, a number of structures 
(from 100 as in published works [35, 48] up to 450 as in the ATP 
example described later in this chapter) are picked from both equi-
librium ensembles. For each of these structures, a short (usually on 
the order of 50–200 ps) simulation is performed, during which the 
topology is changed from one state to the other. For more details 
on the simulation parameters see Note 1.

The generalized force ¶ ¶H / l  associated with this transition is 
calculated and written out by the  simulation program.

The work value for each transition can be obtained by numeri-
cal integration of the ¶ ¶H / l  curves. Then, two histograms are 
created from all work values associated with transitions in a single 
direction (Fig. 6). The CGI, BAR, or another method (Subheading 
2.4) can be employed to extract the free energy difference from the 
work distributions.

The computational time necessary to calculate free energy 
 differences using non-equilibrium approach depends on several 
 factors, including first of all the size of the system and the signifi-
cance of the change, but also the desired precision. It might be 
preferable to get fast approximate results in a screening process, 
while more computational effort would be spent to obtain a  precise 
value for a specific mutation. The quality of the simulation protocol 
can be validated using closed thermodynamic cycles (Subheading 5), 
but a closer look at the transition work distributions may also indi-
cate how the results can be improved.

As the CFT is based on the assumption that the transition runs 
start from an equilibrium ensemble, improving the sampling of 
these ensembles usually yields the greatest improvement to the 
quality of the result. This is best achieved by running several paral-
lel simulations than a single long one as molecular dynamics simu-
lations tend to “get stuck” in local energy minima.

The difference in work values between the forward and back-
ward transitions is caused by the fact that the simulations are 
 performed in non-equilibrium conditions. The work distributions 
for forward and backward transitions will be closer to each other 
the slower the transitions are. Hence, increasing the length of these 
simulations would improve the result if the work distributions are 
not properly overlapping.
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7 Trypsin Inhibitors

Binding affinity estimation for small organic compounds is of high 
importance in the search for potential drug candidates. Hence, we 
will analyze in more detail a study of alchemical ΔΔG calculations 
for a set of trypsin inhibitors. Talhout et al. [63] performed isother-
mal calorimetry (ITC) measurements of the binding free energies 
for a number of p-n-alkylbenzamidinium molecules. We will use this 
set of ligands to illustrate the workflow of the alchemical ligand 
binding free energy calculations, and the ITC measurements will 
serve us as a reference to assess the quality of our estimates. More 
information on the computational studies on this set of trypsin 
inhibitors can be found in the publications [45, 63].

Fig. 6 Non-equilibrium free energy calculation setup. Two equilibrium ensembles 
are generated (e.g. by MD simulations) for the system in state A and B. From 
these ensembles, snapshots are selected and used to set up short non- equilibrium 
transition simulations, in which the state A is turned into B and vice versa
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Before starting the ligand topology generation, the molecules were 
superimposed on the atoms comprising a common scaffold. In the 
current example, carbons of a rigid benzene ring were well suited 
for the superposition. Subsequently, the order for the alchemical 
morphs was established: one of the possibilities is shown in Fig. 7a. 
Growing an alkyl chain on a benzamidinium several carbons at a 
time ensured a sufficient phase space overlap between the end state 
ligands. The ligand topologies were generated using the GAFF 
methodology [56]. A single topology approach was used to estab-
lish a mapping between the molecules. Atoms that ought to be 
transformed into one another were identified using a distance cri-
terion after structural superpositioning.

The starting structure for the simulations (Fig. 7b) was obtained 
from a crystal structure in the Protein Data Bank (id 3PTB [64]). 
Since the crystal structure contained a co-crystallized benzamidine 
molecule, all the ligands of interest were superimposed onto the 
experimentally determined structure. Such a construction of a start-
ing structure rests on an assumption that the analyzed compounds 
share a similar binding pose with the benzamidine moiety. In case a 
co-crystallized ligand is not available or the binding pose is not well 

7.1 Topology 
and Starting Structure

Fig. 7 Trypsin inhibitor analysis. (a) A set of alkylbenzamidinium molecules. Molecule ordering corresponds  
to the pairs of ligands for which the free energy differences were calculated. (b) Structure 3PTB with a co-
crystallized benzamidine served as a starting structure for the MD simulations. (c) ΔΔG values from the ITC 
measurements [63] and calculated estimates
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defined, additional analysis is needed. For example, a molecular 
docking combined with a long time scale molecular dynamics simu-
lation can be used to establish a starting structure with a reliable 
ligand pose for the alchemical free energy calculations.

The thermodynamic cycle for the binding ΔΔG estimation was 
constructed by considering the transitions between the two ligand 
states separately: in water and in contact with trypsin. Such a sim-
ple cycle construction was possible, since no charge change was 
involved in any of the transitions.

Firstly, 10 ns equilibrium molecular dynamics simulations were 
performed at the end states for the ligands in water and in the 
bound form. While this time scale does not cover large conforma-
tional motions or significant changes in the binding pose, it pro-
vides an equilibrium sampling in a free energy minimum close to 
the starting structure. For the cases, where in a simulation time the 
system travels far from its initial point, longer sampling times may 
be required to cover the relevant phase space volume. The non- 
equilibrium transitions were spawned from the snapshots extracted 
from the equilibrium trajectories. Here, 100 simulations (50 ps 
each) were performed going in both directions: A to B and B to A. 
See also Notes 2 and 3 for more technical details on the equilib-
rium sampling and non-equilibrium transitions, respectively.

Integration over the ¶ ¶H / l curves to obtain the work values and 
subsequent application of the CGI method enabled calculation  
of the ΔG values for the parts of the thermodynamic cycle: DG A B

water
®  

and DG A B
trypsin

®  (see Note 4). The final ΔΔG estimates are shown in 
Fig. 7c. A positive value in the graph indicates that the ligand in state 
B is a weaker binder in comparison with the state A molecule.

For all the ligand pairs the difference between the calculated 
and experimentally measured free energy values was smaller than 
1 kcal/mol. In most cases the ΔΔG values were estimated very 
accurately, and only the transition from benzamidine to methyl- 
benzamidine showed a discrepancy of ∼ 1 kT. Larger errors for the 
estimated free energy differences can be observed for the longer 
alkyl chains. This effect is a nice illustration of the increased uncer-
tainty in the calculated results due to the larger dissipated work 
values. Alchemically grown longer chains face stronger hindrance 
and steric clashes, leading to an increase in the amount of work 
dissipated along the path. The errors could be reduced by per-
forming the transitions slower (e.g., 100 ps for a transition).

In the current example the results were presented as the double 
differences in free energy. In practice, however, an estimate of the ΔG 
values may be of interest. Conversion from the ΔΔG to the single 
free energy differences can be attained by setting one of the ΔG 
 estimates to an experimental value (e.g., benzamidinium ITC 

7.2 Simulation Setup

7.3 Estimation 
of the Free Energy 
Differences
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 measurement) and propagating the differences together with the 
associated errors along the chain of compounds (Fig. 8). It is clear 
that the estimates appear far more inaccurate due to the accumula-
tion of errors. This result illustrates the importance of an appropriate 
simulation setup addressing a question of interest. For the case where 
ΔG estimates are to be compared to the experimental measurements, 
a single reference structure could be used to create the pairs for tran-
sitions. Although the perturbations in such a scenario would be larger 
than when considering a chain of ligands, the problem of error accu-
mulation could be avoided. In addition, such a setup would allow for 
internal consistency checks via closed thermodynamic cycles.

8 Protein–Protein Binding: Binding of α-Chymotrypsin with Its Inhibitor  
Turkey Ovomucoid Third Domain

In this example the change in binding free energy upon mutation 
in the complex of the Kazal-type Ovomucoid from Turkey 
(OMTKY3) and α-chymotrypsin (CHT) is computed. Leucine 18 
of OMTKY3 is mutated to A,I,W,F,Y,V,M,S, and T residues. The 
results are compared to both experimental data [65] and other 
theoretical predictions [66]. Note that this example is well suited 
as a practical hands-on test for the principles learned in this chap-
ter. The structure is available in the Protein Data Bank (id 1CHO 

Fig. 8 ΔG values calculated by propagating the double free energy differences 
(ΔΔG) along a chain of ligands (see Fig. 7a) The results are less accurate than 
the ΔΔG values due to the error accumulation
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[67]), and calculations can be set up using freely available software 
(pmx [48] and Gromacs [47]).

The CHT:OMTKY3 complex is shown in Fig. 9, the position 
(L18) that is mutated is at the interface of the two binding partners. 
The thermodynamic cycle in Fig. 10 was used to compute  
the binding free energy. In this cycle the reference is OMTKY3. 
The shift in binding free energy upon mutation (ΔΔG) is computed 
from the difference between ΔG1 and ΔG2, since computing the 
difference between ΔG3 and ΔG4 directly would be computation-
ally too expensive.

Fig. 9 The complex of Kazal-type Ovomucoid from Turkey (OMTKY3) and 
α-chymotrypsin (CHT). Leucine at position 18 is mutated. The structure is taken 
from the pdb-database (PDB id 1CHO)

Fig. 10 Thermodynamic cycle used for protein–protein binding
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Setting up these simulations consists of four phases. First the 
topology is prepared, next the equilibrium simulations are performed, 
followed by non-equilibrium simulations and finally the results are 
analyzed to extract the free energy. This procedure is performed 
for both the complex and for free OMTKY3 in solvent. The topol-
ogy is initially prepared using the Gromacs [47] pdb2gmx  
tool and the Amber99sb [68] force field. Equilibrium simulations 
of 20 ns are performed for the native protein and all mutants.  
From those equilibrium simulations, 100 snapshots are selected 
and hybrid structures and topologies are created using pmx [48] 
(see Note 5). Those are followed by non-equilibrium transitions  
of 100 ps each. The free energies are extracted using the BAR 
method [14] (see Note 4). BAR was used in this case, since the 
CGI method requires a Gaussian distribution of the work values, 
which is not always the case for all mutations in this complex. The 
results of the calculations are shown in Fig. 11. The correlation 
coefficient with the experiment is 0.83 and the average unsigned 
error is 7.9 kJ/mol. Particularly, the mutants with the largest desta-
bilization are  predicted poorly. The same mutations were predicted 
by Benedix et al. [66], where a slightly better result was obtained, 
with a correlation coefficient of 0.9 and an average unsigned error of 
7.9 kJ/mol.
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Fig. 11 Results of mutations in OMTKY3:CHT complex. The average unsigned 
error is 7.9 kJ/mol and correlation coefficient is 0.83
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When comparing to experimental results, their origin has to  
be taken into account. The experimental results [65] used here are 
obtained by enzyme assays, where the binding affinity is not mea-
sured directly, but instead the inhibition of proteolysis is measured. 
The inhibition of proteolysis might be related to the binding 
 affinity of OMTKY3, but other factors might play a role, e.g., a 
certain mutation could trigger a conformational change in CHT 
which inhibits proteolysis, without having a stronger binding affin-
ity than another mutant.

9 ATP and Magnesium Complex in Solution

In the example given here, we show how seemingly simple free 
energy calculations involving a highly charged ligand (ATP and a 
bound magnesium) can result in substantial inaccuracies if not 
treated correctly. Many biological functions require the presence of 
an ATP molecule which is often only active with a bound magne-
sium ion. The binding free energy of an ATP ⋅ Mg complex can be 
calculated via a thermodynamic cycle where the complex is annihi-
lated once from the binding pocket of the protein and once in an 
unbound (free) state which is represented by an annihilation of the 
ATP ⋅ Mg in water. The second transformation is in fact the solva-
tion free energy. Here, we present some of the pitfalls that might 
occur merely in the calculation of the solvation free energy of 
ATP ⋅ Mg, as it presents a challenging system by itself and may be 
found in much more complex systems as well (e.g., in protein 
complexes).

The annihilation of an ATP−4 molecule, even when attached to a 
Mg+2 ion, incorporates a change in the overall system charge which 
would influence the resulting free energy. One possibility to neu-
tralize the system is to add 2 counter Na+ ions that would turn into 
dummies during the transition as well. However, this effectively 
turns the free energy of ATP ⋅ Mg solvation, into a combined solva-
tion free energy of [ATP ⋅ Mg] + 2Na. Moreover, an issue encoun-
tered in equilibrium free energy calculations of this system is that 
the interaction of the disappearing Na+ ions with the disappearing 
ATP ⋅ Mg+2 is not sufficiently sampled in the simulated time scales.

A second and more computationally expensive possibility that 
avoids the coupling of the counter ions to the transition is the 
double-system/single-box setup (Subheading 4). For this example, 
one ATP ⋅ Mg complex is annihilated and another is solvated in the 
same box, while the structures are positioned ∼ 4 nm apart in order 
to avoid any interaction between them. The Mg+2 ion itself cannot 
migrate between the ATP molecules when its interactions are 
turned off, because it is kept close to its respective ATP via a dis-
tance restraint. Topology generation is relatively simple, where A 

9.1 System Setup: 
Charged Systems
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and B states are constructed such that one molecule is present at 
λ = 0 while the second is annihilated (turned to dummies), and vice 
versa for λ = 1. This type of setup allows either for directly comput-
ing the binding free energy in one simulation box (if the ligand is 
annihilated while bound to a protein on one side of a box, and 
solvated on the other side), or to compute a closed cycle as a con-
sistency check. In this example we performed the latter.

Having constructed the system as described above, 50 ns equi-
librium ensembles were obtained for λ = 0, λ = 1 and, afterwards, 
fast non-equilibrium transitions were performed 200 ps each.  
The results are shown in Fig. 12a, indicating that the distributions 
of the resulting work values do not overlap nor fit into a gaussian 
function, whereas the estimated ΔG is far from zero.

How is it possible that a transition and its opposite do not 
result in a zero free energy change? Sampling and symmetry are 
key issues here. The two ATP ⋅ Mg complexes were found not to be 
entirely symmetric in the conformations covered by their equilib-
rium ensembles. Specifically, it is the Mg+2 ion that adopts different 
orientations relative to the phosphates of the ATP. In Fig. 12b one 
can differentiate between two states, which are mutually exclusive 
for the two ATP molecules in the box: state X, where the Mg+2 is 
triply coordinated by all three phosphates that adopt a similar dis-
tance of 0.3 nm to it, and state Y, where Mg+2 is doubly coordi-
nated and found slightly further away from the Pα ( ∼ 0.45 to 
0.55 nm). The lower cluster in state Y, where the distance to Pγ 

9.2 Calculating 
a Closed Cycle

Fig. 12 (a) Non-equilibrium free energy calculation of ATP solvation and desolvation which should serve as a 
closed cycle. The left section of the plot shows the work values as a function of the transition number. Since 
the transitions are started from consecutive frames it could indicate whether the equilibrium trajectory is drift-
ing. The right region of the plot combines the work values into histograms. (b) Distribution of ATP and Mg 
 orientations measured according to distance from Pα and Pγ. Pβ is not shown since its distance does not vary 
and fluctuates around 0.3 nm
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shortens, arises from the initial structure, but it gradually equili-
brates into the top cluster of state Y within 1–20 ns and never 
 re- visits the former cluster. Since these conformations do not inter-
change, they can be seen as two distinct chemical species. Thus, 
turning one chemical species on, and another off does not  represent 
two opposite reactions and will not converge to ΔG = 0.

Spontaneous transitions between these conformations do not 
occur in MD simulations with a length of 100 ns, and they are kept 
separated by a steep barrier. However, the barrier is solely maintained 
by the highly attractive Coulomb interactions between the phosphates 
and the magnesium. Since the free energy is a state function, the  
path from the fully solvated to annihilated (uninteracting dummies) 
state could be chosen to pass through a reduced charge state, where 
the charge on the magnesium ion is scaled to +1, while the charge 
on the phosphate groups is scaled in reverse to maintain the neutrality 
of the system. This effectively creates two transitions that need to be 
calculated: one from a fully appeared and fully charged state to a 
reduced charge state, and then another one into dummies.

To enable the convergence of the closed cycle of annihilating 
and solvating an ATP ⋅ Mg complex in solution, the calculation is 
decomposed further into the two ATP orientations, such that tran-
sitions (annihilation or solvation) will be performed for each orien-
tation (X and Y ) of the ATP1 as depicted by the horizontal arrows 
in Fig. 13. There is no need to compute the vertical transitions, but 
we would like to note that both vertical transitions maintain a 
ΔG ∼ 0. In the reduced charge state, conformations X and Y inter-
change multiple times, while they are equally populated. As for the 
dummy state, the difference between X and Y is merely a difference 
of orientation in space, which is imposed by a distance restraint.

The distribution of work values for each of the four horizontal 
transitions shown in Fig. 13 is plotted in Fig. 14. These transitions 
are as before, performed in both directions to close a thermody-
namic cycle. Four hundred and fifty transitions were performed in 

1
 Distance restraints on the Pα, Pγ and the Mg+2 will keep the atoms in their 

respective orientation in one of the two top clusters shown in Fig. 12b.

Fig. 13 An extended closed cycle of an ATP ⋅ Mg complex annihilated and solvated in solution. The horizontal 
arrows are performed in both directions simultaneously for a closed cycle consistency check
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each direction, their length was increased to 2 ns. Indeed, this time 
the resulting ΔG values are mostly within 1.5 kJ/mol away from 
zero2, except for the last transition (reduced charge state into dum-
mies in state Y ). This state is much more flexible than its fully 
charged version, and might need more time to converge, i.e. via 
longer equilibrium simulations, however, electrostatic artifacts 
could remain due to the nature of the mutation (turning off a 
charge) and the finite size of the system. In principle, determining 
whether the generated equilibrium ensemble is indeed at equilib-
rium is difficult. However, sometimes examining the series of work 
values taken from consecutive initial snapshots from the equilib-
rium ensemble may indicate whether there is a drift and whether 
more equilibration time is needed. For example, if we would only 
have a quarter of the equilibrium trajectory of state X + +2 1to  and 
the  corresponding transitions (first 120 transitions in Fig. 14), the 
drift in work values might have hinted at a trajectory drift, but 
further equilibration and transitions from later snapshots show that 
those work values are reproduced again and again.

2
 A shorter transition time of 200 ps also gave a result that was fairly close to 

zero, but longer times were used to reduce the error.

Fig. 14 Results from non-equilibrium transitions as depicted by the horizontal arrows in Fig. 13. The snapshot 
number represents the transitions
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Having arrived at a consistent zero free energy change for a 
closed cycle of ATP in solution, one can be more confident in the 
accuracy of ATP ⋅ Mg annihilation in protein complexes. For practi-
cal purposes, a similar conformation decomposition can be done 
when computing the binding free energy of an ATP ⋅ Mg complex 
in a protein. As indicated earlier, in such a case, the box will contain 
ATP ⋅ Mg and a protein with ATP ⋅ Mg in its binding pocket which 
will be simultaneously turned on and off. This time, rather than 
receiving a zero from each transition (and an overall zero from 
ATP ⋅ Mg annihilation and resolvation in both orientations), the 
combined transition from a fully charged state to a dummy state 
would yield the binding free energy of ATP ⋅ MgX and ATP ⋅ MgY . 
It can then be combined using the following formula [69]: 

 D D DG G GX Y= - - + --b b b1 ln[exp( ) exp( )]  (24)

10 Notes

 1. In the Gromacs simulation package the free energy code is 
activated by setting the flag free-energy=yes in a molecu-
lar dynamics parameter (mdp) file. Triggering this option auto-
matically enables the ¶ ¶H / l  output to an external file. The 
initial state of a system is set by defining init-lambda to  
be equal to 0 or 1 for the states A and B, respectively. Setting 
the two aforementioned parameters is sufficient to perform an 
equilibrium sampling simulation at one of the end states. For 
the transition runs, an increment in λ needs to be specified by 
setting the parameter delta-lambda to a non-zero value. 
delta-lambda has to be estimated such that an end state is 

Table 1 
Parameters and suggested values for the non-equilibrium free 
energy calculations

Parameter Value

init-lambda 0 or 1

delta-lambda (equilibration) 0

delta-lambda (transition) ±1/nsteps

nstdhdl 1

sc-coul yes

sc-alpha 0.3

sc-sigma 0.25

sc-power 1
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reached within the defined number of integration steps. For 
example, for a transition from init-lambda=1 to the end 
state λ = 0 in 50 ps with an integration time step of 2 fs, 25,000 
integration steps are required. Hence, delta-lambda has to 
be set to −4e−5. For the non-equilibrium free energy calcula-
tion it is important to collect all the available ∂H  ∕ ∂ λ values, 
therefore, the frequency of output should not be reduced, i.e. 
nstdhdl=1. We recommend using the soft-core potential 
energy function for both the van der Waals and electrostatic 
interactions. Table 1 summarizes the essential parameters  
for the non-equilibrium free energy calculations as defined in 
Gromacs. The suggested values should be adjusted to a par-
ticular problem at hand.

 2. The equilibration simulations at the end states (λ = 0 and λ = 1) 
are performed following the standard unbiased molecular 
dynamics simulation setup. If the hybrid topology for a system 
is generated, the free energy code must be switched on and the  
λ state has to be defined (see Note 1). It is also important to 
consider which ensemble, canonical or NPT, is sampled, since 
on this choice depends which free energy will be calculated—
Helmholtz or Gibbs. Dispersion correction for the energy and 
pressure has a significant effect on the accuracy of estimated 
free energies [70, 71] (simulation parameter in Gromacs 
DispCorr=EnerPres).

 3. When setting up non-equilibrium free energy simulations, 
three parameters concerning the simulation length need to be 
decided upon. Firstly, the length of an equilibrium sampling 
simulation has to be defined. The time dedicated for this step 
very much depends on a particular system at hand, and on the 
time scale of conformational changes: an equilibration may 
vary from a nanosecond to microsecond range. Secondly, the 
number of spawned non-equilibrium transitions needs to be 
chosen. The starting structures, with the associated velocities, 
need to cover the sampled equilibrium ensemble. In practice, 
100 transitions in each direction are often sufficient to reach a 
converged free energy estimate. The third parameter, the time 
spent for a single transition, depends on the scale of perturba-
tion between the states A and B. Extending the time from 
50 ps up to several nanoseconds per simulation will improve 
convergence, as for the slower transitions less work will be dis-
sipated. A convenient method to assess the convergence is by 
monitoring the extent of an overlap between the work distri-
butions for the forward and backward transitions: for the larger 
overlap free energy estimate is more accurate. While the sec-
ond and third parameters are responsible for the convergence 
and statistical error of the free energy estimate, it is the equili-
bration time which mostly contributes to the accuracy of the  
ΔΔG estimate.

Calculation of Binding Free Energies



206

 4. The work required for a transition is obtained by numerically 
integrating the ¶ ¶H / l curves. It is important to bear in mind 
that the integration ranges for the forward transition are defined 
to be 0 and 1, not to confuse them with the actual simulation 
time (which is, e.g., reported in the Gromacs ¶ ¶H / l  output). 
For the reverse transition integration from 1 to 0 has to be per-
formed and afterwards the sign of the work value needs  
to be inverted (see Eq. 17 in Subheading 2.4). This effectively 
allows integration from 0 to 1 without the subsequent sign inver-
sion for the reverse transition. The pmx [48] package contains the 
script (analyze_crooks.py) performing the integration using 
Gromacs ¶ ¶H / l  output directly for an arbitrary number of for-
ward and reverse trajectories. Estimate of the free difference using 
the CGI approach (Eq. 19) or BAR (Eq. 20) can also be obtained 
with analyze_crooks.py in the pmx package.

 5. The hybrid topology for an amino acid mutation can be  created 
employing the pre-generated mutation database available in 
the pmx package. Firstly, the hybrid structural file containing 
atoms of both states needs to be generated (script mutate.
py). In the second step, the standard topology generation is 
performed using the newly created structure file (pdb2gmx in 
Gromacs). As the hybrid structure (e.g., A2L amino acid 
denoting alanine in state A and leucine in state B) is not pres-
ent in the standard biomolecular force fields, one needs to  
use the specifically modified force field files provided in the 
pmx. Finally, the parameters for the B state of the system need 
to be added to the topology file. This can be accomplished 
with the make_bstate.py script from the pmx package.
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