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ABSTRACT

A popular approach to analyze the dynamics of high-dimensional many-body systems, such as macromolecules, is to project the trajecto-
ries onto a space of slowly varying collective variables, where subsequent analyses are made, such as clustering or estimation of free energy
profiles or Markov state models. However, existing “dynamical” dimension reduction methods, such as the time-lagged independent compo-
nent analysis (TICA), are only valid if the dynamics obeys detailed balance (microscopic reversibility) and typically require long, equilibrated
simulation trajectories. Here, we develop a dimension reduction method for non-equilibrium dynamics based on the recently developed
Variational Approach for Markov Processes (VAMP) by Wu and Noé. VAMP is illustrated by obtaining a low-dimensional description
of a single file ion diffusion model and by identifying long-lived states from molecular dynamics simulations of the KcsA channel protein
in an external electrochemical potential. This analysis provides detailed insights into the coupling of conformational dynamics, the con-
figuration of the selectivity filter, and the conductance of the channel. We recommend VAMP as a replacement for the less general TICA

method.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5083627

I. INTRODUCTION

Much understanding about molecular kinetics has been gained
by modeling kinetics with Markov state models (MSMs),' " rate
equation models,” or diffusion map-based models.”® A key ele-
ment in all of these methods is that the dynamics are modeled in
a low-dimensional space of collective variables.”'' In MSMs and
rate equation models, there is a direct link between the kinetic
model, consisting of a set of states and transition probabilities, and
the underlying microscopic dynamical equations via the spectral
decomposition of Markov operators.”” As a result of this theory,
the natural collective variables to describe the long-time dynamics
are the eigenfunctions of the Markov operator.'' In practice, the
eigenfunctions and eigenvalues of the (Markov) transfer operator
can be approximately computed directly from molecular dynamics

(MD) simulation data by means of the Noé-Niiske variational
approach.”™* This has led to a wide application of spectral meth-
ods in the molecular dynamics community, in particular, the time-
lagged independent component analysis (TICA)."” "’

However, the application of TICA is only truly justified if
the dynamics fulfill the principle of detailed balance (microscopic
reversibility) and if the dynamical equations are stationary, i.e., do
not change as a function of time. Moreover, since TICA is a data-
driven method, the reversibility and stationarity must be approxi-
mately met in the (finite) simulation data. Ignoring this limitation
can result in systematic errors. For instance, if TICA is applied
to non-equilibrium data (such as data that consist of short trajec-
tories that were not initialized from the equilibrium distribution),
the computed eigenvalues and eigenfunctions incur large biases.'”
A valid alternative method that can be applied to non-equilibrium
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data is Koopman reweighting.'® This method removes estimation
bias but empirically induces a large variance, as seen in the results of
Ref. 18.

The restriction to equilibrium data impedes the analysis of
interesting and biologically relevant molecular systems whose func-
tion relies on nonreversible dynamics. Ion conduction in channel
proteins is an example for such a process since the ion current
is driven by external and perhaps time-dependent electric fields
and chemical potentials. Therefore, a dynamical dimension reduc-
tion method that is similar to TICA but is directly applicable to
non-equilibrium dynamics or even to non-equilibrium data would
be desirable.

Recently, a new approach for dimensionality reduction in
dynamic systems was proposed by Wu and Noé."” The variational
approach to Markov processes (VAMP) dispenses with the assump-
tions of stationarity and reversibility. This was made possible by
reformulating the problem of dimensionality reduction as a regres-
sion problem. Similarly to the reversible methods like TICA, VAMP
can be directly applied to MD simulation data; it is, hence, a data-
driven method. Wu and Noé'’ showed that there exists an opti-
mal low-rank approximation to the solution of the above regres-
sion problem. This gives rise to a low-dimensional space of order
parameters that are chosen such that the regression error is min-
imized. Mathematically this space can be found by performing a
restricted singular value decomposition (SVD)*"*! of a regression
matrix learned from the simulation data.

Mardt et al.”” showed that VAMP can be used to train a deep
neural network to find informative order parameters and derive a
coarse-grained MSM for the conformational dynamics of the ala-
nine dipeptide and the folding of the N-terminal domain of ribo-
somal protein L9 (NTL9). In their work, Mardt et al. focused on
demonstrating that VAMP can be successfully used to select highly
nonlinear transformations to approximate the singular functions.
However, the MD simulations that they used were reversible and
stationary.

In this work, we show that VAMP works as a dimension reduc-
tion method for non-equilibrium data that may or may not originate
from an equilibrium system. The goal is to establish an alternative to
TICA which can be applied to reduce the dimension of the data and
keep the slow processes, no matter whether the data are too short to
be equilibrated or if the underlying process is fundamentally out of
equilibrium. We also extend the Chapman-Kolmogorov test, which
is frequently used to validated MSMs," to validate the Markov prop-
erty of the dimensionality-reduced model obtained with VAMP. We
demonstrate VAMP by identifying the slow collective variables for
two non-equilibrium systems: (1) the asymmetric simple exclusion
process (ASEP) which is a simple model of single file diffusion and
(2) non-equilibrium MD simulation data” of the KcsA potassium
ion channel in which an ion current is driven through the chan-
nel pore. Furthermore, using a simple model of diffusion in a low-
dimensional energy landscape, we compare the biases of VAMP and
TICA when applied to an ensemble of short trajectories that were
initiated from a non-equilibrium distribution.

Il. THEORY

We first lay a theoretical framework with the most important
mathematical results. The more practically inclined reader is advised

ARTICLE scitation.org/journalljcp

to skip to the Sec. I1I. The theoretical framework is formulated in
the language of dynamical operators. The advantage of this formu-
lation is that theoretical properties can be obtained by using linear
methods—albeit in infinite many dimensions. The main theoreti-
cal result is a variational principle, which can then be used for the
formulation of linear or nonlinear solvers (such as VAMPnets’”).
In order to go into even more theoretical detail, please refer to
Ref. 19.

A. Exact dynamics in full configuration space

Let x be the coordinates in which the MD algorithm is Marko-
vian (atom positions, velocities, box coordinates, etc.) Let p(x, t) be
the probability density of finding the system in state x at time t. We
are interested in p(x, 1), the density at times 7 that are integer mul-
tiples of some lag time 7. At these times, the time evolution of p can
be described with the following integral equation:

Pt +7) = [ p(X | 0p(xt) dx = 2:[p]. (1)

Here, &; stands for the propagation operator (or propagator) which
can be thought of as the discrete-time analog of the Fokker-Planck
operator. p(x’|x) denotes the conditional probability density of vis-
iting an infinitesimal phase space volume around point x” at time
t + 7 given that the phase space point x was visited at the earlier
time £.

An equivalent description of the time evolution is given by the
following integral equation which defines the Koopman operator
iy

gxt+n) = [ p( [ 0f(x) &' = i) (2)

where f is an observable, i.e., in general, a function of positions and
momenta. The result g(x, t + 7) can be interpreted as the expectation
value of f at time ¢ + T computed from an ensemble that was propa-
gated for a time 7 after having been started at time ¢ from the single
point x

H[f1(x) = B (f [ p(x:£) = 8(x)). 3)
Here, ¢ is the (vectorial) Dirac delta function.
Both the propagator and the Koopman operator fulfill the
Chapman-Kolmogorov equation
y‘rﬁ-‘rz = gz‘rl y‘rz» (4)
e%/TlH'z = %1%2' (5)
For stationary dynamics, this implies that expectations of any

observable f can be computed for all times from the Koopman
operator

g nt) = Ene(f | p(x,0) = 8(x)) = H7f. (®)

Expectations for an ensemble that was started from an arbitrary
probability density po can be computed from the following scalar
product:

Ene(f [ p(x,0) = po(x)) = /Po(x)g(x,nr) dx. (7)

For the computation of instantaneous and time-lagged variances and
covariances,”* similar equations that use the Koopman operator can
be derived.
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B. Formulation of ensemble propagation
as a regression problem

Can a dynamic model be built using only expectation values
that were computed from simulation data? This question has been
addressed in a series of papers preceding our VAMP theory that
have developed the so-called Koopman analysis.”” We seek a small
matrix K, € R¥* called the Koopman matrix, that fulfills the

equation
Heg~ Ko f ®)

in a sense that we explain below. Here, f and g are vectors of
observables that can be arbitrary functions of the conformation. f(x)
= (i(x),£2(x),...)" and similarly for g. We use the shorthand nota-
tion (J#g), := g which means that the Koopman operator is
applied element-wise to g.

More formally, for fixed f and g, the optimal data-dependent
matrix K; can be computed by minimizing the following error:

e - B[l g - K1) ©

where py is the empirical distribution of the simulation data, exclud-
ing time steps t; > T — 7, where T is the length of the (single) time
series. By inserting the definitions of py and %7 into (9), one finds

that
2

e= X |lg(x(t+1)) - KT f(x(t)) (10)

0<t<T-71
which shows that the error is purely data-dependent.
Equations (9) and (10) have the form of a regression problem:
a future window from the time series is regressed against the current
window of the time series. This formulation avoids any assumption
of microscopic reversibility.

C. Optimal low-dimensional observables

Unlike the Koopman matrix, the observable functions fand g
cannot be chosen by only minimizing the regression error defined
by (9) because the minimal &€ = 0 can be trivially obtained by an
uninformative model with f(x) = g(x) = 1.

In Ref. 19, the error of the approximate Koopman operator pro-
vided by model (8) was analyzed. It was shown that the model with
the smallest approximation error in Hilbert-Schmidt norm is given
byf=v=(yi,....v),g=¢ = (¢1,....¢.) ", and K; = diag(o) =
diag(o1, .. ., ox) for a given k, and the corresponding approximation
of the Koopman operator is

-

g~ ) 0l di)p Vi (11)

i=1

where o is the ith largest singular value of J#; and y; and ¢; are the
corresponding left and right singular functions, respectively. (The
singular value decomposition is to be understood of being applied
after a whitening transformation of f and g. See Subsection I1I A for
details.) p; is the empirical distribution of simulation data excluding
time steps ¢; < 7, and (f, g)p, = [ f(x)g(x)p1 (x) dx.

It can be shown that the largest singular value o1 is always 1 and
that the corresponding left and right singular functions are constant
and identical to 1 for all x.'* Only the singular components o;, y;,
and ¢; with i > 1 contain kinetic information.
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If y and ¢ are approximated with a finite linear combination of
ansatz functions, a corresponding finite-dimensional singular value
decomposition of the whitened Koopman matrix can be used to
compute the optimal superposition coefficients (see Subsection IIT A
for details).

D. The kinetic map induced by the singular functions

For a Markov process, we can measure the difference between
two points x and y by the kinetic distance™ D-(x, y), where

(e ~p(ey))* (12)

Di(x’Y) = Pl(z)

D (x, y) = 0 means x and y are equivalent for predicting the future
evolution of the process. By using the singular components of %7,
the square of the kinetic distance can be written as

Dr(xy) = 207 (vi(x) = yi(y))® (13)

(see Appendix A for proof). If all but the k leading singular values
are close 0, we have

D;(xy) ~ | diag(0)y(x) - diag(a)y(y)[’, (14)

where diag(o) denotes the k x k diagonal matrix with the singu-
lar values on its diagonal. This means that all the points x can be
embedded into a k-dimensional Euclidean space by the kinetic map
x — diag(o)y(x) with the structure of the kinetic distance preserved.
Note that the extension of Ref. 27 to the commute distance” is not
directly applicable to VAMP because the commute distance relies on
the computation of relaxation time scales, which relies on the eigen-
value decomposition of the Markov operator and cannot be directly
done with the singular value decomposition.

Also note that the kinetic distance defined in Eq. (12) depends
on the empirical distribution of the data p,. Therefore, D2(x,y), in
general, depends on how the system dynamics were sampled. For
systems that possess a unique stationary distribution (see, for exam-
ple, the ASEP model in Subsection IV A), p1 can be set to the station-
ary distribution to define a kinetic distance that is independent from
the sampling.

Furthermore, it is worth noting that the coherent sets of non-
reversible Markov processes can also be identified from the k dom-
inant singular components, and more details can be seen in Ref. 29.
Also, note that the right singular functions ¢ induce a kinetic map
with respect to time-reversed propagation of the dynamics (unlike
the kinetic map induced by y that uses conventional forward-time
propagation).

lll. METHODS

In this work, we use VAMP as a method for computing opti-
mal kinetic order parameters for non-equilibrium dynamics using a
linear combination of input features. However, in general, the scope
of VAMP is larger: order parameters are not restricted to be linear
combinations but can also be formed from a nonlinear combina-
tion of features as was demonstrated by Mardt et al.”* by training
a deep neural network (VAMPnet) to capture the conformational
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dynamics of the alanine dipeptide and the N-terminal domain of
ribosomal protein L9 (NTL9). Another application of VAMP is
the scoring of input features (see publication “Variational Selec-
tion of Features for Molecular Kinetics” by Scherer et al. in this
issue).

Using VAMP to find kinetic order parameters from a lin-
ear combination of molecular features is also called time-lagged
canonical covariance analysis (TCCA)** and works as follows.

A. Dimension reduction using the variational
approach for Markov processes (VAMPs)

Let x(t) be a multivariate time series where every element y;(t)
is the time series of one molecular feature. Features can be Cartesian
or internal coordinates (such as distances or dihedral angles) of the
molecular system or functions thereof (such as the sine and cosine
of dihedral angles or a step function that converts a distance into a
contact). From the input features x(¢), first the means gy and y; are
computed from all data excluding the last and first 7 steps of every
trajectory, respectively,

1 T-1
Mo = T Z{;x(t), (15)
=
1 T
=T ZX(t)- (16)

Next, the instantaneous covariance matrices Coo and Ci; and the
time-lagged covariance matrix Co; are computed as follows:

~

T

1

Coo 1= 7— . ;[X(t) = o] [x(t) — 1] (17)
T

R O ORI (1)

Cop := TI_TTiT[X(t)_Fo][X(tJrT)_P‘JT' (19)

o

After that, a Koopman matrix K is computed in the basis of
whitened'””” input features

K= C;f CoiC, - (20)

Then, the singular value decomposition (SVD) of K is performed,
giving orthonormal matrices U’ and V' as well as S = diag(s) such
that

K=U'sv". (1)
Finally, the input conformations are mapped to the left singular
functions y and right singular functions ¢ as follows:

y(1) = U Coit [x(1) ~ ), 22)

#(t) = V'C k(1) — ], (23)

where y(t) and ¢(t) are the sought-after kinetic order parameters.
Since the left singular functions y(t) induce a kinetic map for the
(conventional) forward-time propagator, they are the natural choice
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of order parameters if one wants to perform a clustering of space
to obtain state definitions. For simplicity, we will call them VAMP
components.

Note that the algorithm above performs a Canonical Correla-
tion Analysis (CCA)’" in time and is, hence, also called Time-lagged
CCA (TCCA)."” The singular value decomposition in the whitened
basis (20) and (21) is also called the generalizedl1 or restricted”’ SVD
of Co; under constraints imposed by Cyo and Ci;.

B. The variational score

In Subsection I1I A, VAMP was used to linearly combine
molecular features to compute kinetic order parameters. A question
that remained unanswered is how to select the best molecular fea-
tures to use as input. This question can be answered by computing
the variational score of the dimensionality-reduced kinetic model.
The VAMP-r score is defined as the sum of the leading m largest
singular values that have been taken to the power of r (see Ref. 19
and the publication “Variational Selection of Features for Molecular
Kinetics” by Scherer et al. in this issue)

m
VAMPr,train = Z G;~ (24)

i=1

In a situation with infinite sampling, where the singular values
are known without statistical error, the best selection of molecular
features is the one that maximizes the VAMP-r score. In a practical
setting, however, where the time series data is finite, direct maxi-
mization of the VAMP-r score is not possible due to model over-
fitting.”” That is why the VAMP- score needs to be computed in a
cross-validated manner.

Cross-validation works by splitting the trajectory data into two
sets: the training set, from which a dimensionality-reduced model is
estimated, and the test set, against which the model is tested. From

1 1
the training set, the matrices U™" = C,7 U’ and V™" = C,’V’
are computed, where Cgp, Ci1, U’, and V' are computed from the
training data according to Eqgs. (17), (18), and (21). Next, the test
score is computed from the equation

m
VAMP, (et = Y X}, (25)
i=1

where x; is the ith singular value of the matrix product ABC”
with

A= (UtrainT C:)e;tUtrain ) - % , (26)
B= UtrainT CaelstVtrain, (27)
C- (VtrainTCtlelstVtrain)—% i (28)

and where Cfy', i, and C{$" have been computed from the test

data via Egs. (17), (19), and (18) (with the caveat that the means gy
and p; of the training data have to be subtracted). Finally, the k-
fold cross-validated test score is computed by repeating the splitting
of the data into test and training data k times, computing one test
score for each partition of the data and then taking the average of
the individual test scores.
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C. The non-equilibrium Chapman-Kolmogorov test

For stationary (but possibly nonreversible) dynamics, the full-
state-space Koopman operator fulfills the Markov property (5). It
shares this property with the propagator and with the transition
matrix of MSMs.

In the context of molecular dynamics simulation, the Markov
property is often exploited to calculate long-time-scale properties
(Jr) from short-lag-time estimates (#7). One of the most impor-
tant long-time-scale properties is the stationary distribution that can
be computed from a MSM by applying the transition matrix an
infinite number of times to an initial probability distribution.

To extrapolate to higher multiples of the lag-time, the Markov
property needs to hold. While this property is guaranteed for the
full-state-space dynamical operators, it is not necessarily fulfilled for
dimensionality-reduced dynamical models like the transition matrix
of a MSM or an approximated Koopman operator. Therefore, the
Markov property is typically tested by comparing % to ;" for the
multiples of the lag time nr.

The standard way to perform this test is to compare the direct
estimate of a time-lagged covariance

covest(f, g5 n7) = (f, Hnig)p (29)

from the simulation data to the model-prediction of the same
covariance

coVpred (f> 85 17) = (f> H7' 8)p> (30)

where f and g are some functions of the configuration-space coor-
dinates. When f and g are indicator functions this test is known
under the name Chapman-Kolmogorov test.”’ Here, we propose to
perform the same comparison for the data-driven estimate of the
dimensionality-reduced Koopman operator. See Appendix C 1 for
details.

To make the test independent on the subjective choice of the
functions f and g, the left and right singular functions of the Koop-
man operator estimated at the lowest multiple of the lag time 1 x
7 can be used as f and g, respectively. This choice is in the spirit of
the Chapman-Kolmogorov test as it is typically applied to Markov
models of metastable molecular kinetics. There, the test is typi-
cally applied to the probability of staying in one of the metastable
states, which constitutes a particular hard test that requires data
that thoroughly samples exit and entry events into the metastable
states.””" Characteristic (indicator) functions of the metastable states
are related by a linear transform to the eigenfunctions of the transfer
operator.'” By analogy, we assume here that using the singular func-
tions in the Chapman-Kolmogorov test also constitutes a particular
hard test.

D. Interpretation of the VAMP components
and spectral clustering

For reversible dynamics, the theory of conformational dynam-
ics describes how the leading eigenfunctions can be used to under-
stand which structural changes are associated with the slowest
processes and to find the metastable states via spectral clustering.'”

For non-equilibrium dynamics, we can replace the eigenfunc-
tions by the left singular functions found by VAMP. As for TICA,'°
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we can interpret the ith kinetic order parameter in terms of struc-
tural changes by computing its correlation with all features y ;

7 Socrer—s Vi () - 1)
V7 Socrer—(0(0) - 1))

corr(yi, xj) = , (31)

=0 A (32)

V(Co)j

and by visualizing the most-correlated features. In the last equation,
X denotes the empirical mean of feature y; computed from the data
in time steps 0 < t; < T — 7.

Furthermore, we can compute the long-lived states of non-
equilibrium dynamics by performing spectral clustering in the
VAMP components in a similar way as it is done with the domi-
nant eigenspace for equilibrium dynamics in Ref. 36. Let y be the
vector that contains #gpec leading singular functions (with singu-
lar values close to one, including the constant singular function).
Let A € R™=*"r< Then, the vector of macrostate memberships
m € R™ is given by

m(t) = Ay(t). (33)

See Appendix C 2 or Ref. 36 for the algorithm to compute A. The ele-
ment m;(t) encodes the degree of membership of the conformation
sampled at time ¢ in the macrostate i. The memberships at every time
step always sum to one (which expresses the necessity of belonging
to some macrostate with certainty) and, depending on the specific
algorithm that was used to compute A, are confined between 0 and
17 or not.”® The memberships define the macrostates in a fuzzy
manner; that is, every conformation belongs to macrostate i with a
degree of membership given by m;(t). Fuzzy states can be converted
into crisp states by imposing a cutoff on the memberships and treat-
ing conformations with memberships larger than the cutoff as being
part of the crisp state. Structural differences between states can be
found using significant distance analysis.””

IV. RESULTS

A. Model of single file diffusion: The asymmetric
simple exclusion process

The asymmetric simple exclusion process (ASEP) is a generic
model for single file diffusion. It was originally formulated by Mac-
Donald et al.”* as a model for the kinetics of protein synthesis and
was independently introduced by Spitzer’ in the mathematical lit-
erature. Since then, it has been extensively analyzed and applied to
model phenomena such as macromolecular transport, conductivity,
traffic flow, sequence alignment, and molecular motors (see Refs. 40
and 41 and references therein).

The ASEP consists of a linear chain of Ni;es sites each of which
can either be empty or occupied by exactly one particle, resulting
in a large state space with 2N elements [Fig. 1(a)]. If the first site
is empty, a particle is inserted with a rate a. Particles can move
to adjacent unoccupied sites with rate p in the forward and rate q
in the backward direction. In the last site, particles are annihilated
with rate 8. Hence, the ASEP is a driven (nonreversible) Marko-
vian multiparticle system. Here, we show that VAMP can be used
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FIG. 1. (a) The asymmetric simple exclusion process is a model for single file
diffusion. It consists of a linear chain of Ns sites along which particles can move.
Particles are inserted at position 1 with rate « and annihilated at site Nsies With rate
B. (b) the first 120 time steps of an exemplary realization of a occupancy time trace
for the ASEP with parameters Nies =8, = 8 = p =1, and g = 1/3. (c) Singular
values of the 17 x 17 Koopman model trained on the time series (blue, upper
spectrum) and singular values of the full ASEP model (orange, lower spectrum).

to train a low-dimensional model that allows us to reproduce the
time-lagged covariances and autocovariances for a large range of
lag-times.

We use the master equation formulation of the ASEP as our
true reference (Appendix B 1). The model parameters are chosen as
Nisites = 8, « = f = p =1, and q = 1/3. Since VAMP works with a
finite lag-time, we convert the master equation model to a transi-
tion matrix by taking the matrix-exponential of the master equation
coefficient matrix. From the transition matrix, we generate a long
trajectory with Nseps = 10° steps. The trajectory is encoded as a
matrix of shape Nyteps X Niites Where every row represents the occu-
pancy pattern at a given time point [see Fig. 1(b) for an example of a
transposed trajectory matrix].

We estimate an empirical Koopman matrix using VAMP at a
lag time of 7 = 1 steps and using a basis consisting of two groups of
features. The first group consists of the site occupancy vectors [the
columns of the matrix shown in Fig. 1(b)]. The second set of features
is a 9 dimensional vector that contains the “one-hot” encoded num-
ber of occupied sites. That is, element i in the second feature set is 1 if
and only if there are i occupied sites. Our selection of features already
constitutes a dimensionality-reduction since we estimate the Koop-
man model in the 8 + 9-dimensional space of feature vectors and
not in the 2°-dimensional state space. As a consequence, the spec-
trum of the empirical Koopman model consists of only 17 singular
values. Not all singular values of the true model can be reproduced
[see Fig. 1(c)], still large singular values approximately agree. The
singular values of the empirical model decay quickly with increas-
ing rank [see top part of Fig. 1(c)]. Therefore, we discard the very
small singular components and further reduce the rank of the model
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to 11 dimensions (not counting the first singular function which is
the constant function). Despite these two dimension reductions, we
will show later that physically interesting observables are correctly
captured by the 11-dimensional model.

To gain some physical understanding of the true singular func-
tions of the ASEP model, we cluster the space of the leading 9 VAMP
components of the true transition matrix with the PCCA+ algo-
rithm without using any further approximation (see KcsA applica-
tion below for more details on PCCA+ clustering). This allows us
to group all the possible site occupancy patterns (microstates) into 9
macrostates. We select 9 states because in the true spectrum, a rela-
tively large gap follows a denser cluster of singular values at position
9 [see lower part of Fig. 1(c)]. Macrostates are shown in Fig. 2, with
the microstates ordered from low macrostate membership to high
macrostate membership (from left to right). The top-membership
microstates are characterized by long uninterrupted segments with
the same occupancy (long occupied/long empty segments) and show
only one alternation from occupied to unoccupied (shock) along the
queue. Macrostates differ in the position of the shock. Microstates
with lower memberships resemble the top membership states but
show a noisier shock profile with more alternations between occu-
pied and unoccupied. Macrostates also differ in the average number
of occupied sites.

Next, we test whether our choice of the 17-dimensional basis
that consists of the occupancy vector and the one-hot encoded
occupancy affects the capability of PCCA+ to find the correct
macrostates. Therefore, we repeat the PCCA+ clustering using
the singular functions that were approximated with the Koopman
model. Since the simple basis does not allow us to capture all lead-
ing 9 singular components correctly, we perform the comparison in
the space of the leading 3 components (counting the constant com-
ponent). Results are shown in the supplementary material, Fig. 5,
and show good agreement between macrostates computed from the
true and the approximate model. With an increased number of
macrostates, the results deviate.

To test the predictive power of the reduced model, we com-
pare observed time-lagged covariances to the model prediction

"l “’1] Eﬂ‘” NN
)

increasing PCCA membership >

FIG. 2. The nine dominant long-lived macrostates of the ASEP with parameters
Nsies =8, « = =p =1, and q = 1/3. In each inset (a)-(i), one macrostate is
shown. Occupancy vectors of all microstates in a macrostate are ordered along
the microstate axis (x-axis) with increasing memberships. Dark blue squares mark
occupied sites, and white squares mark empty sites. The microstates with the
highest macrostate memberships (right-most patterns) are characterized by long
uninterrupted segments with the same occupancy and a single jump from occupied
to unoccupied (shock) for states (c)-(i). Macrostates differ in the location of the
shock.
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of the same covariance using the Chapman-Kolmogorov test. We
pick one of the observables f = Ngone to be the number of par-
ticles in the first half of the queue and the second observable
g = Npack the number particles in the second half. Estimates for
the observed and the predicted time-lagged covariance of Nyone and
Npack computed from Egs. (29) and (30) for multiple lag times are
shown in Figs. 3(b)-3(e). For comparison, we also show the true
covariances computed from the full ASEP model without using the
VAMP approximation (shown in gray in Fig. 3). The Chapman-
Kolmogorov test shows that predictions from the dimensionality-
reduced VAMP model agree with the observed covariances com-
puted from the time series data as well as with the results from the
full model.

To make the Chapman-Kolmogorov test less dependent on
the subjective choice of observables f and g, we repeat the test but
this time selecting the observables to be identical to the singular
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FIG. 3. Chapman-Kolmogorov test results for the low-dimensional Koopman matrix
estimated from the ASEP model with parameters N=8, « =3 =p=1,and g =1/3.
(a) coV(Niot, Niot; 7). (b) COV(Nironts Niront; 7), (C) COV(Nback, Nback: 7). (d) COV(Nback,
Niont; 7), @and (e) coV(Nfont, Nback; 7). Niot is the total particle count in the queue.
Nront is the total particle count in the first half of the queue [blue shaded area
in Fig. 1(a)]. Npack is the particle count in the second half [green shaded area
in Fig. 1(a)]. The true reference is computed from the full ASEP model by using
Eq. (30) with the true Koopman operator.
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functions u/i(l) and q,')i(l), respectively, that were estimated from the
dimensionality-reduced model estimated at lag time 7 = 1 steps. That
is, we compare covest(v/i(l),@(l); nt) to covpred(wfl),d)fl); nt).
Results are shown in Fig. 4. The figure shows that the Chapman-
Kolmogorov test succeeds for the all pairs of singular functions,
that is, model predictions of covariances are consistent with the re-
estimated covariances for all lag times. Predictions from the VAMP
model are in good agreement with the true covariances that were
computed from the full ASEP model. The dimensionality-reduced
model does not correctly reproduce the second and third true singu-
lar function but reproduces the fourth true singular function (see the
supplementary material, Fig. 1). To obtain this approximate agree-
ment of the leading singular functions, it was necessary to include
the one-hot-encoded count of occupied sites into the set of input
features to VAMP. The mismatch between the remaining singular
functions and singular values of the true and reduced model [see
Fig. 1(c) and the supplementary material, Fig. 1] is a consequence
of the very simple set of input features that was used to estimate
K:. Had the reduced model not been trained on the 17-dimensional
occupancy vectors but on the 2°-dimensional full state space, the
agreement would have been exact. Also using a more expressive
set of basis functions”***’ could have produced a richer reduced
model that captures more singular components of the full model.
Despite the simple approach, some observables can be modeled
correctly.

Besides the estimation of a Koopman model, the typical
use of VAMP will be to compute kinetic order parameters for
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FIG. 4. Same as Fig. 3 but with singular functions chosen as observables. (a)
cov(wfl),tﬁfl);r), (b) COV(I//gl), ;1);1), and (c) cov(wgl), gl);‘r). 1//,(1)

i

and q,':,,(l) are left and right singular functions, respectively, of the Koopman matrix

estimated at the smallest lag time = = 1. In (c), cov(y{", @{";7) of the true
ASEP transition matrix serves as the reference since the third singular function
of the dimensionality-reduced VAMP model predominantly matches the fourth true

singular function (see the supplementary material, Fig 1).
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nonreversible kinetics. To assess the improvement of these order
parameters over the independent components obtained from TICA,
we compare the kinetic distance obtained from TICA and VAMP
to the true reference. We compute the true reference of the kinetic
distance by applying Eq. (12) to the true ASEP transition matrix in
a complete basis. We set p; in Eq. (12) to the true stationary distri-
bution. We compare this reference to the VAMP estimate computed
from Eq. (14) using the same full basis as well as to the TICA esti-
mate. The TICA estimate of the kinetic distance is computed from
a modified Eq. (14) with the singular values replaced by the TICA
eigenvalues and the right singular functions replaced by the TICA
eigenfunctions. This version is the default in the PYEMMA soft-
ware."’ Results are shown in Fig. 5. As implied by VAMP theory, the
VAMP estimate converges to the true reference as the number of sin-
gular components is increased. In contrast to this, the TICA estimate
does not converge to the true reference. This is expected since for
non-equilibrium dynamics, the kinetic distance cannot be expressed
using only the right eigenfunctions alone that TICA provides.” Full
kinetic distances between all states are given in the supplementary
material, Fig. 4.

In summary, the application of VAMP to the ASEP model
shows that VAMP can accurately capture the dominant singular
functions and can be used to accurately compute time-lagged auto-
covariances and cross-covariances of physical quantities like the
occupancy of the first and second half of the queue. The ASEP is a
genuinely nonreversible model. Therefore, its dimension-reduction
can only be accomplished with methods like VAMP that are capable
of modeling nonreversible processes and do not rely on detailed bal-
ance. A decomposition of the state space into 9 macrostates shows
that the location of the shock (jump from occupied to unoccupied
segments) allows us to approximately distinguish the macrostates for
the ASEP parameter settings that we chose.

B. Application of VAMP to a reversible system
in the limit of non-equilibrium sampling

While the ASEP system is intrinsically non-equilibrium as its
dynamical equations violate detailed balance, we now investigate the
performance of VAMP when the underlying dynamics obey detailed
balance, but the data does not reflect the equilibrium distribution. In
cases where the metastable states are reversibly connected, reweight-
ing methods'**” and reversible maximum-likelihood MSMs"*" have
been shown to provide unbiased estimates and to recover the
equilibrium kinetics from non-equilibrium data. When transitions

§ 06 ¢ 4 vawp
B8 H e TICA
58 0.4 0:.-__

Qe i ¢
€ 2. 0.2 ¢ "
¢
= 0.0 , ““““f“N"NO”NNNM”MNMN'
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number of dominant spectral components

FIG. 5. Comparison of the median difference between the exact kinetic distance
computed with Eq. (12) to its low-rank VAMP approximation and to its low-rank
TICA approximation as a function on the retained number of spectral components.
p1in Eq. (12) was set to the stationary distribution of the ASEP model.
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between states have only been sampled in one direction, the cur-
rent MSM practice is simply to discard the not reversibly connected
states.”*® In VAMP, this is not necessary because VAMP does not
require a stationary distribution to be computed.

Here, we study the performance of VAMP on non-equilibrium
data generated from a 1-D double-well energy landscape [Fig. 6(a)].
Trajectories were generated from the transition matrix which is pro-
vided in the PYEMMA example datasets/models package** using a
lag time of 7 = 6 steps. To produce non-equilibrium sampling, we
start all trajectories from the left well. The trajectory lengths are 500
7 to 4000 7, which is on the order of the mean-first-passage time to
the right well. For each trajectory length, the aggregate data over all
trajectories is 90 000 7. Each run is repeated 100 times to compute
means and uncertainties.

We compare VAMP with TICA in terms of the kinetic dis-
tance between the two energy wells. The kinetic distance is one
of the few quantities that can be computed from both VAMP and
TICA, whereas eigenvalues and singular values cannot directly be
compared.

All estimates converge to the true reference value as the tra-
jectory length is increased, when the sampling becomes increasingly
representative of the equilibrium kinetics (Fig. 6). The true reference
is computed with Eq. (12) and with p; set to the true stationary dis-
tribution of the model transition matrix. For non-equilibrium data
(short trajectories), neither TICA nor VAMP reproduce the equi-
librium kinetic distance. In VAMP, this is due to the weighting of
points with respect to the empirical distributions p; which is, in gen-
eral, different from the stationary distribution. Strikingly, the results
from VAMP and TICA are almost identical, both in terms of the
medians and of their statistical errors. This example indicates no
particular advantage of using VAMP over using TICA but also no
disadvantage.

Both VAMP and TICA can handle completely disconnected
datasets (if transitions in both directions between a pair of states
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kv
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FIG. 6. (a) Double-well energy landscape (parameters from PyEMMA**) used to
test VAMP in the limit of non-equilibrium sampling. Trajectories were all started
from the minimum of the left well (star). (b) Kinetic distance between the two local
minima of the energy landscape depending on the trajectory length used for its
estimation with VAMP or TICA. Plot markers mark the median. Tips of the error
bars mark the 10th and the 90th percentile.
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are missing). Every disconnected set leads to an additional singular
value/eigenvalue of value 1 (or close to one due to projection errors).
However, the strength of VAMP lies elsewhere—in the analysis of
inherently non-equilibrium systems such as driven ion motion as
exemplified by the ASEP model.

C. Conformational changes of the KcsA
potassium ion channel

Ion channels are pore-forming transmembrane proteins that
enable ions to cross biomembranes. Ion channels are found both in
the outer cell membrane and in the membranes of the cell organelles.
They are important for functions such as cellular signaling, the reg-
ulation of osmotic activity, and the propagation of action potentials
in nerves and muscle cells.”’

The first potassium channel protein to be crystallized is the bac-
terial channel KcsA." The structure can be subdivided into three
consecutive parts: following the pore from the extracellular to the
intracellular side, one finds (1) the selectivity filter, (2) a hydropho-
bic cavity, and (3) the intracellular gate. The selectivity filter [see
Figs. 11(a) and 11(b)] is formed by a conserved Thr-Val-Gly-Tyr-
Gly motif. The backbone carbonyls of this motif and the O,-atoms
of the Thr side chains form five cubic cages each of which is able to
coordinate one potassium ion. The structure of the selectivity filter
found in KcsA is conserved even in eukaryotic channels. That is why
KcsA acts as a general model system that is used to study potassium
channel function.

Many channels can open and close their pore via a conforma-
tional change. This so-called gating takes place in a controlled way
and can be provoked by the interaction of the pore-forming protein
domain with other domains, other molecules, or in response to elec-
tric forces.””"” In the KcsA channel and its homologs, gating can take
place via the intracellular gate or via conformational changes in the
selectivity filter.”” Here, we investigate the motions of the filter and
their influence on conductance. The intracellular gate remains in the
open state.

We reanalyze the non-equilibrium molecular dynamics simu-
lation data of the KcsA channel protein that were previously pub-
lished by Képfer et al.”’ and consists of a total amount of 15.1 ys
of MD simulation in 20 short trajectories with individual lengths
ranging between 541.4 ns and 793.5 ns. In their simulations, a
steady potassium ion current is maintained by the computational
electrophysiology approach of Kutzner et al.”" The simulations are
therefore intrinsically nonreversible and the applications of meth-
ods that were developed for reversible dynamics, like TICA, are not
justified.

In the following, we compute the VAMP components, define
long-lived states in this space using PCCA+, and characterize the
thus-obtained states.

1. Dynamic modes of the selectivity
filter and surrounding residues

We compute the leading singular functions of the Koopman
operator that describe the KcsA dynamics at a lag time of 40 ns using
VAMP. The input features (ansatz functions) x(¢) for VAMP con-
sist of two groups: (a) all inverse pairwise distances between heavy
atoms of the selectivity filter (residues 75-79 in the first subunit
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using the numbering scheme of PDB file 1K4C’* and their corre-
sponding residues in the other three subunits) and (b) the inverse
distance to the closest potassium cation for every heavy atom in the
selectivity filter. This results in a total number of 7750 features. In the
computation of distances, atoms that are symmetric under a rotation
of the side chain dihedral by 7 are treated as one atom. In this analy-
sis, this applies to the atom pairs (Cs1, Cs2) and (Ce1, Ce2) in tyrosine
residues, (Cy1, C,2) in valine residues, the pair (Os1, Os2) in aspartic
acid residues, and the pair (O¢1, O2) in glutamic acid residues.

We discarded the first 18 ns of every trajectory. That is because
in the first 18 ns, we observed conformational changes at the N-
terminal end of the intracellular gate. We see these conformational
changes at the beginning of every trajectory. We suspect that this
might be due the pulling procedure that was used to prepare the
open-gate conformation in Ref. 23.

The spectrum of singular values [Fig. 7(a)] shows jumps at
positions 1, 2, 6, 7, 8, and 14 (not counting the constant singular
value 09 = 1; see the supplementary material, Fig. 12) and become
quasicontinuous afterward. We therefore restrict the analysis to the
dynamics within the space of the leading 14 singular functions.
To validate this decomposition, we perform the non-equilibrium
Chapman-Kolmogorov test. Results show (see the supplemen-
tary material, Fig. 13) good agreement between estimates and

a)1.0q+=
bo.s_ '0....00.,.'........
0 5
b)
1=
4_
s 241
o1 {Hl
_2_
0 5 10 0 5
Y1 Y2
d) e)

-5 0 5 10 -20 -10 0
Y3 Ya

FIG. 7. (a) Leading 40 singular values obtained with VAMP. (b)—(e) Projection of
the simulation data on pairs of singular functions (VAMP components). Data points
were colored according to the macrostate to which they have the highest member-
ship. Data points that do not clearly belong to any of the macrostates (maximum
membership to any state <0.6) are shown as small gray points.
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FIG. 8. Connectivity network for the 15 long-lived states that were identified with
VAMP and PCCA+. Long-lived states are shown as disks with areas proportional
to the frequency of the state in the MD simulation data. Macrostates that are kinet-
ically connected by transitions in the data are connected by an arrow in this figure.
Numbers on the arrows denote the number of transition events observed in the
MD data. Numbers inside the disks are state labels.

predictions for the fast processes (with smaller singular values) and
deviations between predictions and estimates for the slower pro-
cesses (with large singular values). As elaborated in the next para-
graphs, the KcsA trajectories contain many unique transition events,
which explain the failure of the dynamic model to provide accurate
predictions of the long time scale kinetics.

2. Detection of long-lived states with PCCA+

Projections of the MD data points x (conformations) onto pairs
of left singular functions (yi(x), v;(x)) show that the data points
form clearly separated clusters [see Figs. 7(b)-7(e)]. Such clustering
has been observed for many other molecular systems and indicates
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FIG. 9. Histogram of ion occupancy along the channel pore for each macrostate.
Black vertical lines mark the positions of the carbonyl oxygen atoms that demar-
cate the ion binding sites Scay, S4, S3, S, S1, and Sp. In state 8 (light gray), the
ion binding site S; is occupied by a water molecule. In states 1 (red), 9 (pink), and
10 (cyan), the ion binding site S is occupied by water.

the presence of long-lived states.”” This motivates us to group the
conformations into a small number of macrostates.

We assign the data points to 15 macrostates using the PCCA+
algorithm. We apply the PCCA+ variant of Ref. 53 to the data
points in the space of the leading 14 singular functions (see meth-
ods Subsection ITT D and Appendixes C 2 and C 3). We observe that
the macrostates defined with PCCA+ match well with the “density
blobs” that one would assign intuitively by looking at the projections
[see Figs. 7(b)-7(e)]. This indicates that the space of the singular
functions is a suitable space for clustering with PCCA+.

3. Transitions between long-lived states
and their populations

We compute the number of transitions between the macrostates
using the mile-stoning method [also called transition-based
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FIG. 10. Exemplary time series of potassium ion positions and assignment to macrostates. A pair of plots is shown, which share the time axis. The top plot shows the z
positions of all ions in the selectivity filter. The bottom plot shows the macrostate visited at time t. Macrostates are color-coded, and the index of every state is shown in a
circle on the first core entry. Two variants (core-based assignment and transition-based assignment, TBA) of macrostate assignments are shown. The trajectory of cores only
shows frames where the conformation can be assigned with a high probability (membership) to a macrostate. Frames that were left unassigned in the core trajectory are
assigned to the most recent or most proximate core in the TBA trajectories by splitting transitions at the midpoint.”
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assignment (TBA) or core set approach; see Appendix C 4 and Refs.
5, 54, and 55]. The network of transitions between the macrostates
(Fig. 8) shows that most transitions occur only once. States 0, 6, 7,
11, and 14 are in the reversibly connected set (ergodically visited
macrostates). Most of the simulation data are assigned to macrostate
number 0 (see Fig. 8).

The present MD simulation data do not allow us to make any
statements about asymptotic state occupancies in the steady state
equilibrium that might possibly be reached at 100s of microseconds
and above. Most conformational changes observed in the MD data
occur only in one direction. This might indicate a lack of sampling
of state transitions in the short MD data, and longer MD simulation
might reveal that the transitions are in fact reversible.

Inspection of the trajectories shows that transitions between the
cores can take relatively long (e.g., see the transition from macrostate
0 to macrostate 14 in Fig. 10). For some of the states, the transi-
tion in/out of the state can take roughly the same amount of time
that the system spends in the state. This may indicate either that the
description of the dynamics requires more macrostates or that the
approximation of the singular functions with VAMP is not accurate
enough. (That is, there exists a better approximation that would lead
to more metastable kinetics of the reduced model.)

Ion permeation (except for the blocked states) is faster than the
life-times of the macrostates. The time between ion transition events
is typically on the order of 10 ns, while dwell times of the macrostates
are typically on the order of 100 ns (see the supplementary mate-
rial, Table 2 and, for example, permeation in macrostate 5 and 14 in
Fig. 10). Therefore, transitions between macrostates do not seem to
describe the individual ion movement steps in the permeation mech-
anism. Rather the macrostates appear more related to the protein
conformation (see Secs. [V C 4 and IV C 6).

4. Long-lived macrostates differ in the occupancy
of the selectivity filter

We compute histograms of the ion occupancy of the selectivity
filter (Fig. 9). One histogram is computed for each macrostate sepa-
rately. The most frequent state (0, blue) and states 2, 7, and 13 have
an evacuated ion binding site S; that is occupied neither by a potas-
sium ion nor by a water molecule (see the supplementary material,
Fig. 6). This means that ions do a long jump from S, to So during
conduction in these macrostates and S; is only visited transiently
with a dwell time that is much shorter than the dwell time in S,
and Sy (see, for instance, the part of the trajectory that is assigned
to core 0 in Fig. 10 and the supplementary material, Figs. 7-10). In
other macrostates, e.g., state 11 (violet), S; is more frequently occu-
pied. States 1 (red) and 9 (pink) show an ion binding site S; that is
occupied with water. Furthermore, these states a characterized by a
flipped Tyr78 conformation and a drastically distorted selectivity fil-
ter [see Fig. 11(1) and Sec. IV C 5]. No ion permeation events are
observed in these states (see below). In state 10 (cyan), S; is par-
tially occupied by water. Still, this state is conductive. In state 8 (light
gray), the ion binding site S3 is occupied by a water molecule. No ion
conduction takes place in this state (see below).

5. Long-lived macrostates differ in ion conduction

We compute the potassium ion current through the pore by
counting the net number of forward ion transitions from the S;
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FIG. 11. (a) KcsA seen from the extracellular side, atoms of the selectivity filter
are shown as sticks. (b) Cross section through the filter (side view). Filter atoms
are shown as sticks, surrounding atoms are shown with lines. lon binding sites are
labeled Scay through Sy. (1) View of the selectivity filter from the extracellular side.
Structures (conformations) in blue are drawn from macrostate 0. Superimposed
on that are structures from macrostate 1. A remarkable deviation from state 0
in the Tyr78 conformation is marked with a black circle. (4), (6), (8): Side view
of the selectivity filter and surrounding amino acids. Structures (conformations)
in blue are drawn from macrostate 0. Superimposed on that are structures from
different macrostates (4, 6, 8). 20 structures are shown per macrostate where
every conformation is an average over 50 conformations drawn randomly from the
macrostate. Residues forming the pore of the selectivity filter are shown as sticks,
residues surrounding the filter (including Glu71 and Asp80) with thin lines. Water
density is shown as semitransparent isosurfaces. The tiny blue sphere marks the
oxygen atom in Gly79 of the first subunit of the channel. Significant deviations
(compared to state 0) in the Glu71-Asp80 contact and buried water presence are
indicated with black circles. All states except 0 show disruption of the Glu71-Asp80
interaction in one or two subunits. This disruption can be accompanied by the
absence of a buried water molecule like in state 4 (yellow), state 6 (light gray), and
state 5 (tan, not shown).

to the S binding site (see Appendix C 5 for details). The ion current
for each macrostate is shown in Fig. 12. Computing the ion current
from the transitions from S4 to Sz gave identical results. Ion cur-
rent differs significantly between macrostates. However, it should
be noted that there is only little simulation data for the different
macrostates. For many states, less than 20 permeation events are
observed (see also the supplementary material, Table 2). In states
1 (red), 8 (light gray), and 9 (pink), no permeation is observed. In
states 1 and 9, the filter is in the Tyr78-flipped conformation. In
state 8, a water molecule was threaded into the ion file. The most
frequently visited state in the MD simulation (state number 0) con-
ducts little compared to most other states. Since the free energies of
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FIG. 12. Potassium ion current for each macrostate. Error bars show standard
deviations and were computed by assuming that the number of permeation evens
is Poisson-distributed (see Appendix C 5). In states 1, 8, and 9, no permeation
events took place. (States 1 and 9 are in the Tyr78-flipped conformation. In state
8, a water molecule is located in S3.) In the most frequent state 0, the ion current
is relatively low.

the states cannot be computed from the present simulation data, no
statement can be made about the contribution of the different states
to the overall conduction.

6. Differences in Tyr78 conformation, Glu71-Asp80
interaction, and presence of buried water

To characterize the structural features of the macrostates,
we sampled randomly with replacement 1000 conformations from
every state. Average conformations for a subset of macrostates are
shown in Fig. 11.

In states 1 (red) and 9 (pink), Tyr78 is in a flipped conformation
(compared to state 0). The Tyr78 flip coincides with a disruption of
the selectivity filter structure and zero conduction.

The Glu71-Asp80 contact™ can either be formed or be broken
in one or in two subunits of the channel. It is formed in all subunits
in state 0. It is open in one subunit in states 2, 3, 4, 7, 8, 10, 12, and
14. The contact is open in two subunits in states 1, 5, 6, 9, 11, and
13 (see the supplementary material, Table 1). Opening and closing
of the Glu71-Asp80 contact is a reversible process (since there are
reversible transitions between states 0 and 6, 7, 11, 14). We observe
opening of two Glu71-Asp80 contacts only in adjacent subunits of
the channel which may hint to cooperativity.

In contrast to what is known about the KcsA channel,” open-
ing of the Glu71-Asp80 contact in these MD simulations does not
inactivate the channel. Instead ion current in the open-contact states
is slightly increased (exceptions: 1, 8, 9; see explanations above) over
the ion current in the closed-contact state 0.

The water molecule that is involved in the Glu71-Asp80 inter-
action can either be present or absent. We observe at most one
absent water molecule. Breaking of the Glu71-Asp80 interaction
does not strictly coincide with the absence of water.

In state 2, we observe a highly tilted Glu71 side chain confor-
mation where the side chain points toward the filter pore. The tilt
is larger than in the crystal structures and NMR structures of the
KcsA protein that are available in the Protein Data Bank. This con-
formation might be stabilized by electrostatic attraction between the
carboxyl groups of Glu71 and the potassium ions.

In summary, our analysis of the MD data of Kopfer et al.”’
reveals 15 long-lived states. While the most frequent state shows a
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crystal-like conformation of the selectivity filter, other states show
flipping of the Tyr86 side chain or opening of the Glu71-Asp80
contact in one or more subunits. The different identified states dis-
play distinct ion conductances, establishing a direct link between
channel function and the conformations identified with VAMP and
PCCA+.

V. CONCLUSION

We have used the Variational Approach to Markov Processes
(VAMP) to formulate a dynamical dimension reduction method for
identifying the collective variables of the “slow” or “rare” processes
in many-body systems. In this formulation, VAMP can replace the
TICA method that is only defined for statistically reversible and sta-
tionary dynamics and, in practice, often only usable when the prob-
ability distribution sampled by the simulation trajectories is close to
equilibrium.

We have applied VAMP-based dimension reduction to the
asymmetric simple exclusion process toy model for single file ion dif-
fusion and to non-equilibrium molecular dynamics data of the KcsA
potassium channel protein. Both systems have high-dimensional
state spaces and follow non-equilibrium dynamics that do not com-
ply with the principle of detailed balance (microscopic reversibility).
For both systems, we could construct a low-dimensional model that
captures physically interesting processes.

We have demonstrated that VAMP is superior to TICA in cor-
rectly estimating kinetic distances for the intrinsically nonreversible
ASEP model. Based on theoretical insights, we expect this to be true
for any nonreversible system. For the analysis of non-equilibrium
data that originates from simulating a reversible system with a
non-equilibrium initial condition, we empirically showed that TICA
and VAMP give similar results.

We have shown that the space of the leading singular func-
tions is a suitable space for identification of long-lived macrostates
even for the case of nonreversible dynamics. This was confirmed
twice for the KcsA protein data: (1) the PCCA+ macrostates appear
as well-separated density-clusters when projected to the space of
the singular functions and (2) counting exit end entry events with
the core-set (or transition-based) approach confirms that transitions
between macrostates are rare events.

We proposed to extend the scope of the Chapman-Kolmogorov
test from an application to probabilities” to general observables. We
further proposed to use the singular functions as observables for the
Chapman-Kolmogorov test. In fact it has been shown that the singu-
lar functions span the space of indicator functions for coherent sets.”’
Coherent sets are particular stable sets in time-space.”” Examples
for coherent sets are oceanic’””* or atmospheric” eddies. Reliably
simulating their formation and dissolution should be equally chal-
lenging as sampling the exit from metastable states in systems with
reversible dynamics. Testing whether a reduced dynamical model
captures these rare events seems worthwhile.

SUPPLEMENTARY MATERIAL

See supplementary material for comparisons of VAMP to TICA
and for comparisons of VAMP results obtained using a complete
basis to VAMP results obtained using a reduced basis for the ASEP
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model. Also see the supplementary material for more detailed prop-
erties of the long-lived KcsA states, of the MD trajectories, and of the
Koopman model of KcsA filter motion.
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APPENDIX A: PROOF OF (13)
The SVD of % is

%/Tg Zo-l g>¢1 lel’ (Al)

and then the transition density can be expressed as

p(zfx) = H:04(x), (A2)
=2 oi(x),(2)pi (2). (A3)

Considering the orthonormality of singular functions, we have

ey~ [ B0~y B @)
pieen) = | pe)

= 200 (yi(x) = v W) - v (b ),
b

= 2o (yi(x) —yi(y))™ (Ad)

APPENDIX B: MODELS
1. Koopman matrix for the ASEP model

N N
Let A denote the bitwise aNp operator. Let L € R? % For all 0

<i<2V,0<j<2N, %] let
Li=a ifinl=0andjAl=1, (B1)

Li=p ifin2¥ " =1andjr2V" =0, (B2)
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Li=p if310<k<N-1:in2"=1and
in2 =0andja2"=0andjn 2" =1, (B3)

Lij=q if30<k<N-1:in2"=0and
in2 =1andja2"=1andjn 2" =0, (B4)

Li = 0 otherwise, (B5)

and Lii = —Yj+iLyj. ,

The model transition matrix T; € RZN x2" is computed by tak-
ing the matrix exponential of 7L, where 7 is the lag time. The full
Koopman operator .%#; is finite-dimensional for this model and is
identical to T

APPENDIX C: METHODS

1. Implementation of the non-equilibrium
Chapman-Kolmogorov test

In the Chapman-Kolmogorov test, the estimate of the time-
lagged cross correlation coves(f, g5 n7) and its model prediction
COVpred(fs g3 nT) are compared.

Using Eq. (11), it is possible to express the covariance at the unit
lag time 1 x T as

COVpred (f> 85 T) =covest (> & T)> (C1)
=(f>H:8)p> (C2)
‘Z 8 Pi)p 0V f ) (C3)
=q'r, (C4)

where we have defined g; := (g, ¢;),, and ri := 0i(yi, f) -
By combining Egs. (11) and (5), the prediction for higher
multiples n > 1 of the lag time of can be computed as

OVpred (f> g5 17) = (s H7')py =q P" 7', (C5)

where Pjj := 0;(1//;,(]5 )i~ The quantities P, q, and r can all be com-
puted from the data and from the spectral quantities that VAMP
provides an approximation for.

2. Computing the metastable memberships

We use the “inner simplex” algorithm of the PCCA+ method ™
to compute the linear map A from the space of singular functions
to the space of macrostate memberships. The “inner simplex” algo-
rithm was motivated by the observation that reversible metastable
systems show a clustering of data points close to the N most distant
points in the space of the dominant N eigenfunctions (counting the
constant eigenfunction). This so-called “simplex structure” forms
the basis for many spectral clustering algorithms.*

The algorithm in the version of Ref. 36 consist of two stages: (1)
localizing the N most distant points (the vertices) {y'®,. ..,y
in the N — 1-dimensional space of the dominant elgenfunctions
(excluding the constant eigenfunction) and (2) computing barycen-
tric coordinates for every point y(t) with respect to the vertices by
solving the following equations for m;(t)
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N

y(t) = > mi()y, (C6)
i=1
N

1= m(t). (C7)
i=1

The solution of this linear problem implicitly defines the linear map
A from y to m.

If the data points {y/(t)}; indeed form clusters close to the ver-
tices, the coefficient m;(t) can be understood as the membership of
point y(t) in the macrostate number i. Here, we apply the “inner
simplex” algorithm not in the space of the eigenfunctions of the
MSM transition matrix as initially suggested in Ref. 36 but in the
space of the singular functions.

Note that in its conventional use, PCCA+ is applied to clus-
ter the space of MSM eigenvectors. For MSMs, only one represen-
tative value of the eigenfunctions is needed for every microstate
because the approximations to the eigenfunctions are constant on
every microstate by definition. This is different in our application of
PCCA+ to the continuous order parameters computed with VAMP.
Hence, all data points have to be used here.

3. Defining macrostates and core sets

In order to interpret the macrostates that originate from VAMP
and PCCA+, we investigate representative molecular conformations
from every macrostate. To this, we first define the core set C; of the
macrostate number i as

Ci:={x(t)|i= argmaxjmj(t) and m;(t) > f}, (C8)

where 0.5 < f < 1 is some arbitrary cutoff on the memberships.
We chose f = 0.6. From each core set, we draw 1000 random sam-
ples of molecular conformations with replacement. A subset of these
conformations is shown Fig. 11.

4. Counting transitions and finding the largest
connected set of macrostates

We count transitions at a lag time of 7 = 40 ps according to the
transition-based assignment (TBA) algorithm or the mile-stoning
algorithm.””* In the TBA algorithm, every conformation x(£) is first
assigned to the either the last core set that was hit by the trajectory
or the next core set that will hit by the trajectory, whichever is closer
in time. We thus obtain a sequence of core labels {s(t)}i=o, ..., 1,
s(t) € N for every MD trajectory. For every trajectory, we compute a
count matrix ¢ from {s(t)}; using the standard approach” as follows:

T-1
Cij = D Ois(t)Ojs(trr)> (C9)
t=0

where §j; is the Kronecker delta. The count matrix for all trajectories
C is computed by summing the individual count matrices of each
trajectory.

The largest connected set of macrostates” is computed from C
and consists of the five states 0, 6, 7, 11, and 14.

5. Computing the ion current

We estimate the potassium ion current by computing the num-
ber of times some ion transitions from binding site S; to binding
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site So of the selectivity filter. We estimate the number of transitions
using a core-set approach.” The core region of the S; site is defined as
5.7 nm < Zjon < 5.85 nm, and the core region of the Sy size is defined
as 6.0 nm < Zzjon < 6.14 nm (in the coordinate system of the MD
data from Ref. 23). For all trajectory segments that are assigned to
macrostate i, we compute #; the number of transitions from the core
of S to the core of Sy minus the number of reverse transitions (sum-
ming up the number of transitions of all the ions). The error An; of n;
is computed as \/n; by assuming that n; is Poisson distributed. The
14

ion current is computed as [; = A—';‘, where e is the elementary charge
i

and At; is the length of the trajectory pieces assigned to macrostate i.

The error is estimated as Al; = eﬁf".
;
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