Mathematical bioPhysics

The group pursues a mathematical physics-approach to study phenomena in biophysics.

Our main research focus is the non-equilibrium statistical mechanics of single molecules/particles and the collective behavior of larger molecular and up to sub-cellular assemblies. In particular, we aim at a trajectory-based description of macromolecular conformation dynamics as well as of their spatial transport, binding, and reactions. From a fundamental perspective we are focusing on relaxation phenomena of Markovian and non-Markovian observables from far-from-equilibrium quenches as well as the generic physical origin and understanding of broken time-translation invariance. In the analysis of stochastic many-body systems we aim at an understanding of emerging collective effects from a trajectory perspective.  In our work we employ rigorous analysis corroborated by computer simulations. Please see Recent research activities below for more details.

Interested in joining us? Please see Open Positions for available positions.


Recent research activities

Manifestations of Projection-Induced Memory: Rigorous Results and the Tilted Single File

Kullback-Leibler divergence between the exact propagator and its Markovian (adiabatic) approximation, measuring the deviation from Markovian behavior.

Non-Markovian stochastic dynamics and anomalous diffusion evolved to mainstream theory, which transgressed the realms of physics to chemistry, biology and ecology. Numerous phenomenological approaches emerged, which can more or less successfully reproduce or account for experimental observations. However, as far as their predictions are concerned these approaches are not unique, often build on conceptually orthogonal ideas, and are typically employed on an ad-hoc basis. It is thus timely and necessary to establish a systematic, mathematically unifying and clean approach starting from more fine-grained principles. In our work we analyze projection-induced ergodic non-Markovian dynamics, both reversible as well as irreversible, using spectral theory. We investigate dynamical correlations between histories of projected and latent observables that give rise to memory in projected dynamics, and rigorously establish conditions under which projected dynamics is Markovian or renewal. A metric is proposed for quantifying the degree of non-Markovianity. As a simple example we study single file diffusion in a tilted box, which, for the first time, we solve exactly using the coordinate Bethe ansatz. Our results provide a rigorous foundation for a deeper and more systematic analysis of projection-induced non-Markovian dynamics and anomalous diffusion.

Lapolla, A.; Godec, A.: Manifestations of projection-induced memory: General theory and the tilted single file. Frontiers in Physics 7, 182 (2019)

 

Extreme value statistics of diffusion in free energy landscapes – served with a ‘sandwich-bound’ on top

Schematic representation of the maximum  (blue in panel a). minimum (blue in panel b) and first passage (red) functionals, respectively, for an Ornstein-Uhlenbeck trajectory (black line).

Extreme value functionals of stochastic processes are inverse functionals of the first passage time. In our work we establish a framework for analyzing extreme value statistics of ergodic reversible Markov processes in confining potentials on the hand of relaxation eigenspectra. We derived a chain of inequalities – which we coined a ‘sandwich bound’ -- bounding the long-time asymptotics of first passage densities, and thereby extrema, from above and from below. These bounds involve only a time integral of the return probability. As an illustration we analyzed extreme value statistics in the case of an Ornstein–Uhlenbeck process and a 3D Brownian motion confined to a sphere, also known as Bessel process. Our work provides a novel perspective on the statistics of extrema beyond the established limit theorems for sequences of independent random variables and for asymmetric diffusion processes beyond a constant drift.

Hartich, D.; Godec, A.: Extreme value statistics of ergodic Markov processes from first passage times in the large deviation limit. Journal of Physics A: Mathematical and Theoretical 52, 244001 (2019)

 

Duality between relaxation and first passage processes: a spectral theory of reaction kinetics in the few-encounter limit

Relaxation and first passage processes are the pillars of theoretical descriptions of kinetics in condensed matter, polymeric and single-molecule systems. Yet, an explicit connection between relaxation and first passage time-scales so far remained elusive. In contrast to first passage processes, relaxation processes are not terminated upon reaching a certain threshold, but instead approach an equilibrium Boltzmann distribution if the underlying dynamics is ergodic and microscopically reversible.

In our work we prove a duality between them in the form of an interlacing of the respective spectra. In the basic form the duality holds for reversible Markov processes to effectively one-dimensional targets as well as for all reversible discrete Markov jump processes with arbitrary state-space. Based on the spectral interlacing we derive the full first passage time distribution from the corresponding relaxation eigenspectrum in form of a Newton’s series of almost triangular matrices. The exploration of a triple-well potential and a rugged energy landscape is analyzed to demonstrate how the duality allows for an intuitive understanding of first passage trajectories in terms of relaxational eigenmodes.

Relaxation and first passage in a triple well potential U(x) and equilibrium probability density Peq(x)=ΨR0(x) and the lowest 4 relaxation eigenmodes ΨRk and eigenvalues λk of the corresponding Fokker-Planck operator. The first-passage eigenvalues μk and λk interlace. The first passage time density to a point ak is determined exactly form the relaxation eigenspectrum by means of the duality.

Going beyond single-molecule kinetics we use the duality to investigate many-particle first passage problems in the few-encounter limit, where a response is triggered by a few reactive events, e.g. in nucleation-limited phenomena and the misfolding-triggered pathological protein aggregation.

We show that even in the presence of a time-scale separation few-encounter kinetics require the entire first passage time distribution of individual particles. Moreover, we demonstrate that a robust increase of both speed and precision is in fact inherent to kinetics in few-encounter limit.

Hartich, D.; Godec, A.: Duality between relaxation and first passage in reversible Markov dynamics: Rugged energy landscapes disentangled. New Journal of Physics 20 (11), 112002 (2018)
Hartich, D.; Godec, A.: Interlacing relaxation and first-passage phenomena in reversible discrete and continuous space Markovian dynamics. Journal of Statistical Mechanics: Theory and Experiment 2019, 024002 (2019)

Projection-induced memory and anomalous diffusion from a trajectory perspective

We recently obtained rigorous results for fluctuations and two-tag correlations of general bounded additive functionals of ergodic Markov processes with a diagonalizable propagator. They relate the statistics of functionals on arbitrary time-scales to the relaxation eigenspectrum. As a first example we studied tagged particle local times – the time a tracer particle spends at some predefined location along a single trajectory up to a time t. Exact results were derived for one- and two-tag local times, which revealed how the individual particles’ histories become correlated at higher densities because each consecutive displacement along a trajectory requires collective rearrangements. Our results unveil the intricate meaning of projection-induced memory on a trajectory level, invisible to ensemble-average observables, and allow for a detailed analysis of single-file experiments probing tagged particle exploration statistics.

Lapolla, A.; Godec, A.: Unfolding tagged particle histories in single-file diffusion: Exact single- and two-tag local times beyond large deviation theory. New Journal of Physics 20, 113021 (2018)

First passage time theory: trajectory-to-trajectory fluctuations in biochemical reactions at low-copy numbers

The first passage time, the time needed for some stochastic observable to  reach a given preset value for the first time along a given trajectory, is central to our understanding kinetics across many disciplines, such as diffusion-controlled chemical reactions, biological signaling cascades, transport in disordered media, bacteria and animals foraging for food, up to the global spreading of diseases and stock market dynamics. Modern single-molecule tracking and imaging methods nowadays allow us to probe single binding and reaction events in living cells. These experiments reveal striking sample-to-sample fluctuations in binding/encounter times. It is therefore timely and important to extend the traditional mean-rate paradigm in (bio)chemical reaction kinetics to the full distribution of first passage time. In this spirit we recently obtained rigorous results on the first passage time universality class for dynamics in finite systems, and explained a universal proximity effect in the context of so-called kinetics in the few-encounter limit, which provides a simple explanation for the observed robustness of both the speed and precision of transcription regulation in biological cells [Godec 2016a]. In our work we also explained the importance of a broken translational symmetry of the medium [Godec 2016b], of the presence of disorder [Godec 2015] and of the existence of multiple transport channels [Godec 2017] on the statistics of first passage time.

Godec, A.; Metzler, R.: Universal proximity effect in target search kinetics in the few-encounter limit. Physical Review X 6 (4), 041037 (2016)
Godec, A.; Metzler, R.: First passage time distribution in heterogeneity controlled kinetics: Going beyond the mean first passage time. Scientific Reports 6, 20349 (2016)
Godec, A.; Metzler, R.: Optimization and universality of Brownian search in a basic model of quenched heterogeneous media. Physical Review E 91 (5), 052134 (2015)
Krüsemann, H.; Godec, A.; Metzler, R.: Ageing first passage time density in continuous time random walks and quenched energy landscapes. Journal of Physics A: Mathematical and Theoretical 48 (28), 285001 (2015)
Krüsemann, H.; Godec, A.; Metzler, R.: First-passage statistics for aging diffusion in systems with annealed and quenched disorder. Physical Review E 89 (4), 040101(R) (2014)
Godec, A.; Metzler, R.: First passage time statistics for two-channel diffusion. Journal of Physics A: Mathematical and Theoretical 50 (8), 084001 (2017)



Physical limits to biochemical signaling coupled to active molecular motor-mediated transport

We developed a linear response theory quantifying the fundamental mean field precision limit for receptor signaling coupled to active molecular motor-mediated intracellular transport. In the model we couple the so-called intermittent search model with reversible Markovian binding to the receptor. Our results demonstrate the existence of active signal focusing enabling a faster and more precise delivery of the molecular cue to the corresponding receptor site [Godec 2015]. In addition, we explain the unconditional improvement of the signaling precision in effectively one-dimensional structures such as neuronal cells in terms of breaking of the recurrence in the motion of the signaling molecule [Godec 2016].

Godec, A.; Metzler, R.: Signal focusing through active transport. Physical Review E 92 (1), 010701(R) (2015)
Godec, A.; Metzler, R.: Active transport improves the precision of linear long distance molecular signalling. Journal of Physics A: Mathematical and Theoretical 49 (36), 364001 (2016)
Go to Editor View