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Generalized Correlation for Biomolecular Dynamics
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ABSTRACT Correlated motions in biomol-
ecules are often essential for their function, e.g.,
allosteric signal transduction or mechanical/thermo-
dynamic energy transport. Because correlated mo-
tions in biomolecules remain difficult to access ex-
perimentally, molecular dynamics (MD) simulations
are particular useful for their analysis. The estab-
lished method to quantify correlations from MD
simulations via calculation of the covariance ma-
trix, however, is restricted to linear correlations
and therefore misses part of the correlations in the
atomic fluctuations. Herein, we propose a general
statistical mechanics approach to detect and quan-
tify any correlated motion from MD trajectories.
This generalized correlation measure is contrasted
with correlations obtained from covariance matri-
ces for the B1 domain of protein G and T4 lysozyme.
The new method successfully quantifies correla-
tions and provides a valuable global overview over
the functionally relevant collective motions of ly-
sozyme. In particular, correlated motions of helix 1
together with the two main lobes of lysozyme are
detected, which are not seen by the conventional
covariance matrix. Overall, the established method
misses more than 50% of the correlation. This failure
is attributed to both, an interfering and unneces-
sary dependence on mutual orientations of the
atomic fluctuations and, to a lesser extent, attrib-
uted to nonlinear correlations. Our generalized cor-
relation measure overcomes these problems and,
moreover, allows for an improved understanding of
the conformational dynamics by separating linear
and nonlinear contributions of the correlation.
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INTRODUCTION

Correlated motions in biomolecules, in particular pro-
teins, are ubiquitous and often essential for biomolecular
function.! Examples are allosteric signal transduction, as
in G protein coupled receptors,? or mechanical/thermody-
namic energy transport, as in Fy/F;-adenosine triphos-
phatase.® Furthermore, the energetics of protein function
is often dominated by entropic contributions, which are
directly linked to correlated atomic motion.*~¢ Correct
assessment of correlated motions, both experimentally
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and from theory and simulations, is therefore crucial for a
quantitative understanding of biomolecular function. The
accurate characterization of correlated motions would also
improve the interpretation of nuclear magnetic resonance
(NMR) experiments’ and X-ray diffusive scattering data.®

Recently, NMR relaxation experiments were proposed to
directly probe correlated motions.® A subsequent computa-
tional study raised serious doubts about the validity of the
interpretation of the obtained experimental results as
correlated motion, however.!® This work inspired the
development of a generalized and nonlinear correlation
measure, which allows the correct and complete assess-
ment of correlated motion from molecular dynamics (MD)
simulations.

The established method to quantify correlations from MD
simulations, in analogy to the Pearson correlation coefficient
rests on calculation of the normalized covariance matrix of
atomic fluctuations, C; = (x; * x)/(x’}x}))"%, where x; and
x; are the positional fluctuation vectors of atoms i and j,
respectively, in the molecular fixed frame.''"'? As will be
shown in the theoretical part, this established approach,
however, misses a considerable fraction of the correlated
motions and, therefore, usually underestimates atomic corre-
lations. This limitation is mainly the result of two assump-
tions.

First, estimates of correlations from the Pearson coeffi-
cient are only strictly valid if x; and x; are colinear vectors,
as already pointed out by Ichiye and Karplus.'? Improved
results are obtained with the method of canonical correla-
tions'® by choosing so-called canonical variables which
furnish average colinearity, i.e., for every pair of atoms a
different coordinate transformation is applied. In contrast
to the Pearson correlation coefficient, canonical correla-
tions do not differentiate between correlated and anticorre-
lated, i.e., positively correlated, and negatively correlated
motion. Such a distinction becomes problematic in the
multidimensional case, and thus has to be dropped for any
meaningful correlation measure. Consider, e.g., two atoms
that oscillate perfectly correlated in parallel directions. If
the oscillation direction of one atom is rotated until both
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Fig. 1. Correlations of random variables are defined as deviation of
their probability distribution (gray) from the hypothetical probability distri-
bution of the independent random variables (black). In the sketch, the
correlation between variables X and Y (gray in the scatter plot) is to be
quantified. From the marginal distributions P(X) and P(Y) (black curves),
one computes the hypothetical joint distribution for independent variables
(black points) P(X)P(Y). The difference between the given joint distribu-
tion and the hypothetical uncorrelated joint distribution yields the correla-
tion measure C, as illustrated at the top of the graphic.

atoms oscillate antiparallel, the Pearson correlation coeffi-
cient changes from 1 to —1 and therefore has to cross zero,
usually after rotation by 90°, i.e., when the directions are
perpendicular. In this case, the vanishing correlation
coefficient is highly misleading, because the motion of the
two atoms is still perfectly correlated.

Second, use of the covariance matrix implies a Gaussian
approximation of the underlying configurational space
density. Therefore, this approach treats correlations in a
quasi-harmonic, i.e., linear, approximation. Thus, the Pear-
son correlation coefficient, as well as the canonical correla-
tion method, miss nonlinear correlations. Higher moment
corrections are conceivable, but notoriously suffer from
dramatic combinatorial increase of computational effort,
and slow convergence, which renders the treatment of
large systems such as proteins impossible.

As an efficient alternative, we propose here a general
approach to quantify any correlated motion.

The proposed generalized correlation measure rests on
the fundamental definition of independence of random
variables. Accordingly, two random variables are indepen-
dent, if and only if their joint distribution is a product of
their marginal distributions, P(X,Y) = P(X)P(Y). The basic
idea is to quantify the correlation between variables X,Y as
the deviation between both sides of the above equation,
i.e., by the deviation from the case of two independent
random variables (Fig. 1). As will be shown in Materials
and Methods, this definition is equivalent to defining a
correlation C as the well-known (Shannon) mutual informa-
tion (MI),** C[X,Y] = H[X] + H[Y] — H[X,Y], where H
denotes the entropy of the random variables. This defini-
tion rests on the well-known inequality H[X,Y] = H[X] +
H[Y], which becomes an equality if and only if both
variables are independent. This formulation is equivalent
to an infinite moment expansion. Truncation at second
moments yields a linearized MI which will be defined in
Materials and Methods.

In this section, we also will review the definition of the
Pearson correlation coefficient and its canonical interpreta-
tion. After this we recall basic properties of MI and propose
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to define the generalized correlation coefficient which maps
the MI with values in the range O,...,.c onto the more
convenient interval [0,1] to allow a direct comparison with
the Pearson correlation coefficient.

The impact of the known'? problems of the Pearson
correlation coefficient seems largely underrated, and the
canonical correlation approach®® is generally not applied.
Herein, we quantify the inconsistencies and shortcomings
of the Pearson correlation coefficient when applied to
protein dynamics. To this end, two examples are studied,
the B1 domain of protein G and T4 lysozyme (T4L). Using
these examples, we will also show that our generalized
correlation measure does not suffer from these shortcom-
ings and, therefore, provides an accurate and complete
quantification of correlations in protein dynamics.

MATERIALS AND METHODS

At first we introduce some notation. In this article, we
focus on correlations of atomic fluctuations, i.e., of vectors
in three-dimensional space. However, at some points, it is
necessary to discuss correlations between one-dimensional
variables. Therefore, we use the following notation. All
positions of atoms (or other variables) are denoted by a
vector r = (r,,r,,...,r5) with N components r; € R?, with
d = 3 for atoms. We refer to positional fluctuations, i.e., the
deviation from the mean, x = r — (r), with

(1)

— — (2) (d) (1) (d)
X = (XI,XZ" . '9XN) - (xl X1 e o X1 e o XN 5. '5xN)

and (.) denoting the ensemble average. With p(x), we
denote the corresponding probability density, which in the
context of biomolecular dynamics is the canonical en-
semble density p(x) = Z—'exp[—BV(x + (r))], where Z is
the partition function, B the inverse temperature, and V'
the potential energy. Furthermore, we denote the mar-
ginal probability density by p,(x,) = [ p(x)dx; ;.

Pearson Correlation Coefficient

The established and intuitive method**'? to quantify
the correlation between pairs of components (i,j) of the
fluctuation vector x is

r[x,x;] = (x;" xj>/(<xi2><xj2>)1/2 1)

where the square brackets indicate the dependence on the
whole ensemble of x;,x;.

In the one-dimensional case, r is called the Pearson
coefficient, and it has a very straightforward and fairly
general interpretation: Under the assumption that at least
one variable is normally distributed, it yields the coeffi-
cient of nondetermination,

s (= fw)

(f)

of the best linear fit flx,) to x;. For the multidimensional
case, an analogous interpretation of the Pearson coeffi-
cient is possible provided that the atoms (i,/) have unit
variance (xPx")) = §, and the fluctuations are colinear
xPx") = rdy, ie., the part of their covariance matrix
containing cross-correlations is diagonal. Then

1-r (2)
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which simplifies in the case of identical correlation coeffi-
cients r, = r (k = 1,...,d) to the coefficient of nondetermina-
tion for single variate variables, Eq. (2).

In the following discussion, and in accordance with
common practice, we will use Eq. (1) also in the multivari-
ate cases to define a Pearson coefficient, because of its
similarity with the usual single-variate definition. How-
ever, in these cases several problems arise, which seem-
ingly have not yet impeded widespread use.®'*:'? First,
the conditions colinearity and unit variance are generally
not satisfied, thus invalidating the interpretation as a
coefficient of nondetermination. This raises serious doubts
regarding any conclusions drawn from this measure, par-
ticularly because any value for it can be obtained for a
given ensemble by scaling single coordinates. Second, the
Pearson coefficient is limited to detect linear correlations,
i.e., it yields the coefficient of nondetermination regarding
the best linear fit. Nonlinear fits, which can yield much
lower coefficients of nondeterminations, are therefore not
considered. This latter problem applies also to the one-
dimensional case. Consider, e.g., two atoms oscillating in
parallel direction, but with a 90° phase shift. They will give
rise to a vanishing correlation matrix element (sin(wt)
sin(ot + w/2)) = 0, and, thus, this fully correlated motion
would also not be detected. In configurational space, this
motion generates an ensemble distributed along the perim-
eter of a circle, which cannot be captured by the Gaussian
approximation implied in any formulation of correlated
motion based on second moments.

Mutual Information

Among the measures of correlation between random
variables, MI is singled out by its information theoretical
background.'* Accordingly, the joint probability distribu-
tion p(x) is the product of the marginal distributions p,(x,),

N

p(x) = Hpi(xi) (3)

i=1

if and only if the components x; are independent, i.e.,
uncorrelated. Because Eq. 3 can be rewritten as

px)
l__[?il pi(x;)

the ensemble-averaged deviation from the uncorrelated
distribution is given by the MI,**15

In 0,

= oI X

ﬁ\ilpi(xi)dx' “

I[Xl,XQ,. .

Only for fully uncorrelated motions, MI vanishes.

Evaluation of the right hand side of Eq. (4) relates MI to
the more widely known measure of information content
(entropy) H[x] = — [ p(%X)In p(x)dx,
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N
I[x,,X,. . . Xy] = EH[XL'] — H[x]. (5)

i=1

In contrast to the Pearson coefficient, this measure is
scale-invariant. Even individual linear coordinate transfor-
mations in the d-dimensional subspaces, i.e. (X{,Xo,...,Xx)
— (T%x, T®x,,.. T™x,)), as given by d X d-matrices T,
leave the MI invariant, as little algebra shows. Here, we
focus on the correlation between pairs of atoms,

I[Xiyxj] = H[x;] + H[Xj] - H[xiyxj]' (6)

For higher order correlations we refer to Matsuda.'®

Having established that the MI provides us with a
well-defined and complete measure of correlation, we note
that it yields values in the range [0...), which is unfamil-
iar and has no obvious interpretation. Therefore, we will
develop below an interpretation in terms of a coefficient of
nondetermination, ry;;, which quantifies how well the best
nonlinear model can describe the data. To this aim, we
generalize the above one-dimensional linear case, for
which the Pearson coefficient r directly allows this interpre-
tation [Eq. (2)]. In particular, we suggest to relate I[x,,x]
to a more intuitive Pearson-like coefficient ry;[x;,x;] such
that also in multidimensional and for nonlinear fit-
functions f, the connection to the coefficient of nondetermi-
nation holds, i.e.,

<(Xj —fl (Xi))2>

(x7)

For fully correlated motions, this generalized correlation
coefficient ryy equals 1 and vanishes for fully uncorrelated
motion.

To this end, we exploit that in the special case of
Gaussian distributions (d = 1) or colinear Gaussian distri-
butions of unit variance (d = 3) the Pearson correlation
coefficient (r = ( x; * x; ) = (x| | x}|)) captures all
correlations. For this special case, one derives a one-to-one
relationship between MI and the value of the Pearson
correlation,

(7

1- rMI[Xiaxj]Z =

d
IGauss[Xi’Xj] = = Eln (1 - r2)' (8)

Starting from this relationship, we define the generalized
correlation coefficient, ryy, as the Pearson coefficient of
such a multidimensional Gaussian distribution, whose MI
equals the one we wish to interpret. From Eq. (8),

raulX,x;] = {1 — exp( — 2I[x,x;Jd)} ~*?, 9)

which, as it is derived from the MI, contains all correla-
tions. Therefore, for vectors of unit variance, ryy[x;,x;] is
always larger than r[x;x;]. For multivariant cases, this
rule may be violated because of the inconsistent scaling
properties of r, which is repaired by ry;. Note that the
Gaussian distribution used to define ry;; will generally
have a larger covariance than the original distribution,
because Gaussians have the highest covariance compared
with all possible distributions with the same MI.*”
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We now turn to numerically estimating the MI from a
given ensemble or MD trajectory. For high-dimensional
variables, crude approximations, such as cumulant expan-
sions, are available.!” For the correlation analysis of
macromolecular dynamics, however, and in particular for
the assessment of the correlated motion of atom pairs,
density estimates for six-dimensional subspaces suffice.
Approaches resting on k-nearest neighbor distances'® or
kernel density estimators'® have proven to provide suffi-
ciently accurate results for this purpose. The required
accuracy is indeed very high, particularly for small correla-
tions, for which the entropies involved nearly cancel out,
hence small errors of the relatively large entropy terms
lead to large errors in the estimated MI. This problem is
aggravated because of the large slope of the transforma-
tion Eq. (9), in the low-correlation regime, which further
amplifies errors. These strict accuracy requirements hold
also for many other applications of the concept of MI,
which recently instigated many developments.®8—24

Linear Mutual Information (LMI)

The quite general and rigorous framework of MI also
serves to single out nonlinear contributions to correla-
tions. To this aim, recall that the Pearson coefficient
suffers from two flaws: its inability to detect nonlinear
correlations and its unwanted dependency on the relative
orientation of the fluctuations. Thus, to separate the
former from the latter, a reference quantity is required
that suffers only from one of the two flaws. The LMI
defined below serves this purpose. It has the additional
advantage that its calculation does not require highly
accurate and computationally demanding density esti-
mates. Rather, it rests on a Gaussian approximation
implied by the computationally much more efficient calcu-
lation of the covariance matrix, namely

1 1
= ___ - (x.x)C:Mx.x)T
g(xiyxj) - (2,”)01 det (C(m)exp ( 2(X1’XJ)C(U)(XL7XJ) )7

with the pair-covariance matrix Cg;, = <(xi,xj)T(xi,xj)>.
This Gaussian is the quasi-harmonic approximation to the
canonical density of atomic motion. Thus, the MI, which
can be computed analytically from this approximation,
contains only linear correlations. The marginal probabili-
ties are computed accordingly, using marginal-covariances
C,, = (x'x,). In contrast to the (general) MI, here, the
required entropies are obtained analytically from the
Gaussian density approximations, i.e., from the covariance
matrices,

1
Thus, from Eq. (5), the LMI,
1
L, (x,x)) = 5 [In detCy, + In detC;, — In detC;], (10)

is obtained.
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Similarly to the interpretation of (general) MI, the
coefficient of nondetermination for the best multivariate
linear fit is defined by Eqs. (7) and (9). LMI is a strict lower
bound to MI, because the Gaussian distribution maximizes
entropy under the constraints of a given mean and vari-
ance.'* This is consistent with the definition of the general-
ized correlation coefficient and its interpretation, because
the inclusion of nonlinear models will generally yield a
higher coefficient of determination than restriction to
linear models.

MD Simulations

Two MD trajectories were used. The first, termed GB1
and 200-ns long, was started from the crystal structure of
the B1 domain of streptococcal protein G** [Protein Data
Bank (PDB) entry 1PGB]. The protein was solvated in
4651 TIP4P water molecules using a cubic box. Four
sodium ions were added to the simulation system to
compensate for the net negative charge of the protein. The
second trajectory, T4L, and 117-ns long, was started from
the crystal structure of coliphage T4L M6I (PDB entry
150L chain D). The protein was solvated in 8898 TIP4P
water molecules and 8 Cl™ counter ions using a rectangu-
lar box.

All MD simulations were conducted using the GRO-
MACS simulation suite®® and the OPLS all atom force
field.?” LINCS and SETTLE?®?° were applied to constrain
covalent bond lengths, allowing an integration step of 2 fs.
Electrostatic interactions were calculated using the Par-
ticle-Mesh-Ewald method.?%3! The temperature was kept
constant by separately coupling (r = 0.1 ps) the peptide
and solvent to an external temperature bath.>2 The pres-
sure was kept constant by weak isotropic coupling (1 =
0.1ps) to a pressure bath.??

Computation of Correlation Coefficients From MD
Simulations

After 5-ns equilibration phase, coordinates were re-
corded every 10 ps. Thus, 19,500 and 11,200 coordinate
sets were obtained and used for GB1 and T4L, respec-
tively. Translational and rotational motions were removed
by least squares fitting to the C_-atoms of the respective
crystal structures. The average structure (r) was sub-
tracted from the coordinates r to obtain centered atomic
fluctuations x. Correlations between fluctuations of the
C_-atoms were quantified by Pearson coefficients, Eq. (1),
by linearized MI, Eq. (10), and by MI. For the latter, the
density estimator by Kraskov et al.!® was used with
nearest neighbor parameter 2 = 6.

RESULTS AND DISCUSSION
Correlated Motion in Protein G

We first compare both correlation measures, the Pear-
son coefficient, Eq. (1), and the generalized correlation
coefficient, g, Eq. (9), for the B1 domain of protein G [Fig.
2(a)]. As expected, all correlations detected by the Pearson
coefficient are also seen with the generalized correlation
coefficient. Many additional correlations are revealed by
ruvr, however, that are not revealed by the Pearson coeffi-
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a,b: Generalized correlation coefficient r, (upper left triangle) and Pearson coefficient |r| (lower

right triangle) correlation matrices for (a) the B1 domain of protein G (GB1) and for (b) T4 lysozyme (T4L). The
strength of the computed correlation between two respective residues is color-coded (see color bars); note that
different color mappings are used to enhance contrast. Secondary structure elements are indicated by bars in
magenta (B-sheets) and cyan (a-helices). ¢,d: Structure and superimposed three frames from the GB1 and
lysozyme (T4L) trajectory, respectively, indicating the amplitude of the observed motion. d: For every residue,
the mean correlation with residues of the two domains D1 (15-46) and D2 (100—160) was computed and

color-coded.

cient. Furthermore, as will be analyzed in detail below, the
purely geometrical (orientational) perturbation of the Pear-
son coefficient creates patterns in the Pearson matrix that
actually are unrelated to any correlation and in this sense
artificial.

Correlations detected by both methods are found along
the diagonal and in two bands perpendicular to the main
diagonal. The latter are attributed to the hydrogen bonded
contacts between different strands of the four-stranded
B-sheet. The correlations between strands B;-v, and B5-B,4
are pronounced, whereas the correlations between hydro-
gen bonding partners of the central neighbors B;-B,,
showing up as band parallel to the diagonal, are weaker.

The broad region of high correlation along the main
diagonal between residues 22 and 38 is caused by the close
packing of residues in the a-helix. The correlation between
hydrogen bonded residues in the helix is slightly weaker
than correlation between opposing C -atoms in B-sheets.
The reason for this is that in B-sheets, both neighbors of
the C_-atom are tightly hydrogen-bond coupled to one
residue of the parallel strand, whereas in the helix the two
neighbors couple to two different residues in opposite
direction.

New, so far undetected correlations, are seen in the
generalized correlation matrix. These include—less pro-
nounced, but significant—correlations between the a-he-
lix and the first double strand of the B-sheet (B, B,), which
are absent for the second double strand (B, B,). This
finding can also be explained in terms of geometrical
proximity. The helix of GB1 traverses diagonally one half
of the B-sheet; starting above residues 50 and 1 of strand
B4 and B, respectively, it extends outward ending near
residue 13 of B, [cf. Fig. 2(c)]. Therefore, the larger part of
the helix is located far from strands (B, B,) and closely to
strands (B4, By), yielding correlations with the latter only,
whereas the residues in the preceding loop and the adja-
cent part of the helix are close enough to (B3, B,) to also
cause correlations with these strands.

In summary, the largest correlated motions observed in
GB1 are rather caused by geometrical proximity than by
collective conformational motion, and are, in this sense,
trivial. These large correlations are, not surprisingly,
captured by both measures, Pearson coefficient and MI.
However, whereas the Pearson coefficient focuses on the
correlation inside secondary structure elements, MI re-
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veals many new and nontrivial medium strong correla-
tions between different secondary structure elements.

Correlated Motion in T4 Lysozyme

The single protein domain GB1 characterized above is
intrinsically rigid. Now we turn to T4L, which exhibits two
well-separated domains and significant conformational
interdomain motions.?*** Experimental and theoretical
studies have shown that these domain motions are essen-
tial for the function of this enzyme, allowing the substrate
to enter and the products to leave the active site.?"33
Atomic correlations have been analyzed extensively for
lysozyme using the Pearson coefficient matrix [Fig. 4(b),
lower right).!* Here, we have calculated the MI-based
generalized correlation coefficient matrix and focus on the
new features this analysis has revealed.

Figure 2(b) (upper triangle) shows that the MI success-
fully quantifies the highly correlated motion within and
between the two domains, D1, residues 13-50, and D2,
residues 100-162, of T4L (cf. Fig. 2). The second domain
(D2) moves as two rigid blocks, formed by H4-H6 and
H8-H9, respectively, which are weakly linked by residues
118-121. Interestingly, the less correlated linker residues
are part of H7 and not, as one might expect, part of the loop
region between helices.

Furthermore, the generalized correlation matrix shows
that the interdomain motion is not just a simple hinge
motion®%3739 with H3 and H4 (residues 62-90) forming
the hinge region, as one might expect. In fact, a typical
hinge motion would imply smaller correlations for the
hinge, as indeed found for residues 85-98 (part of H4 and
H5) and residues 62—-74 (part of H3). Instead, part of the
hinge regions, namely adjacent parts of H3 and H4 (resi-
dues 75—-84) correlate strongly with the overall domain
motion, which would not be the case for a simple hinge
motion.

The N-terminal helix H1, which contains active site
residues, moves correlated with both domains D1 and D2.
However, in contrast to these domains, it shows only weak
correlation to the aforementioned linker region around H4.
These results are consistent with a previously conducted
principal component analysis (PCA),*° where the conforma-
tional motion of T4L could be described by a rigid body
closure and twist motion of domains D1 and D2. That
study showed rigid co-motion of H1 and D2 for the closure
motion, and, for the twist motion, H1 moves with D1. This
splitting up of the H1 correlation can now be understood by
considering the nonlinear contributions to the overall
correlation obtained as difference between MI and LMI
(Fig. 3). As can be seen, the correlations between domains
D1 and D2 are mostly linear in nature, whereas the
correlation of H1 with both domains has significant nonlin-
ear contributions. This explains why the rather nonlinear
correlation of H1 with the domains was found to be
distributed over two linear principal modes.*°

In contrast to the complete quantification of correlated
motions by the generalized correlation coefficient, the
Pearson coefficient picks up only parts of these correla-
tions, and many remain undetected. This can give rise to a
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Fig. 3. Matrix of purely nonlinear contributions r,—r_,, to the correla-
tions between atom pairs in T4L; see text.

rather inconsistent picture, i.e., patterns in the results not
reflecting patterns of correlation, which is particular pro-
nounced for T4L [cf. Fig. 2(b), lower triangle]. Although the
two domains move as relatively rigid units, the Pearson
coefficient quantifies the correlations within the domains
rather incompletely. Whereas the Pearson coefficient does
show correlations within the first part of D1, the correla-
tions between the first part of D1 and its last 10 residues
(40-50) seen by the generalized correlation coefficient are
missing. Moreover, most correlations within domain D2
are undetected. A particularly striking and obvious incon-
sistency would be the violation of transitivity, i.e., two
regions between which no correlated motions are detected,
but which are both correlated to a third one. Such a
situation is indeed purported by the Pearson correlation
coefficient, which indicates a high correlation of D1 with
the two regions, residues 100—118 and residues 130-150
of D2, but misleadingly low correlation between these two
regions. Finally, the Pearson coefficient does not detect H1
to be correlated with D1, and detects only a small fraction
of the correlations between H1 and residues of D2. In some
instances, the Pearson correlation measure yields higher
values than the generalized correlation, which should, in
principle, not happen. The two possible reasons, the scal-
ing dependency of the Pearson measure or numerical
inaccuracies in the estimation of MI, are discussed further
below.

Thus, the proposed generalized correlation coefficient
based on MI yields a much more complete picture of the
correlated motions which is consistent with—and extends—
previously applied PCA.*® In particular, whereas the
Pearson correlation coefficient captures most of the corre-
lated motions within the B1 domain of protein G, it misses
many pronounced correlated motions of lysozyme, which
involve all active site residues and are likely to be function-
ally important. The nature of this failure and the question
under which conditions it is to be expected, deserves closer
inspection.

Analysis of the Failures of the Pearson Coefficient

Figure 4 compares as scatter plots all elements of the
generalized correlation coefficient matrices with the respec-
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Fig. 4. Comparison of MI-based correlation measures with Pearson
correlation coefficients. For pairs of C —atoms of (a) GB1 and (b) T4L,
both generalized correlation coefficients r,, (black circles) and r,, (gray
crosses) are plotted against the Pearson correlation coefficient. c:
Comparison between linear and nonlinear MI. For GB1 (black) and T4L
(gray), the generalized correlation coefficients computed from LMI are
plotted against nonlinear generalized correlation. For T4L, the inset
shows a histogram of the differences between both coefficients, with
maximum of the distribution at 0.04 and a mean of 0.09.

tive elements of the Pearson correlation matrices, both
shown in Figure 2(a, b). Results are shown for both GB1
and T4L [Fig. 4(a, b)]. For large correlations (ry; = 0.8),
the Pearson coefficient » and the generalized correlation
coefficient ry; give comparable results. For less correlated
motions (ry; = 0.8), the Pearson coefficient rarely captures
the full correlation, and often underestimates ry; consider-
ably, yielding any value between zero and ry;. In fact, as
quantified by the average underestimation [3;|r;; | /r{ul/N
=0.48, only less than half of the correlations are revealed
by the Pearson coefficient. Below, we analyze the causes
for the erratic occurrences of their drastic underestima-
tion.

As discussed in Materials and Methods, possible causes
are a) the dependence on the relative orientation of the
fluctuations, b) the presence of nonlinear correlations, and
¢) lack of scaling invariance. We will demonstrate below
that the dependence on direction is in fact the main cause
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of the underestimation enhanced by the presence of nonlin-
ear correlations.

We start the analysis by separating the effect of nonlin-
ear correlations from the purely linear contributions. To
this end, Figure 4 compares the generalized correlation
coefficient discussed above with the corresponding coeffi-
cient based on linear MI (see Materials and Methods). As
can be seen, both agree well for GB1 except for numerical
inaccuracies within the low-correlation regime. In con-
trast, clear deviations for lysozyme point toward signifi-
cant nonlinear correlations. Indeed, as qualified by the
histogram of deviation (inset) or quantified by
S ry—Toa)/rinl/N- = 0.09, the nonlinear part of the
correlation contributes up to 10% to the overall correlation
and, therefore, accounts for a significant part of the
correlation not described by the Pearson coefficient (cf.
crosses in Fig. 4). Because both r;,;; and r rely on the
linear quasi-harmonic approximation, the remaining ca.
40% of the undetected correlations—in fact the largest
part—cannot be explained by nonlinear effects.

To quantify the (geometrical) effect of relative orienta-
tion of the atomic fluctuations on the Pearson coefficient,
the latter was separated into correlations of distances,

rabs[xiyxj] = <|Xi| |Xj | >/(<Xi><xj>2)1/27 (11)
and average colinearity
X, X
rdir[xiyxj] = |X| : IXI . (12)
i vl

Figure 5 compares the correlations of distances, r,,
with both the linear generalized correlation coefficient
rivr (black) as well as the Pearson coefficient r (red). As
can be seen, r,, is more closely linked to r y; than to the
Pearson coefficient, as is also quantified by correlation
coefficients of 0.88 versus 0.64, respectively. In contrast,
the average colinearity is more linked to the Pearson
coefficient (correlation coefficients 0.47 versus 0.87, respec-
tively; data not shown), thus confirming that the relative
orientation of the atomic fluctuations perturbs the Pearson
coefficient considerably. Indeed, as shown in Figure 6, the
average orientation is closely linked to the divergence of
the Pearson coefficient from the generalized correlation,
quantified by a correlation coefficient of —0.78. Knowledge
of the relative orientations of the fluctuations alone,
therefore, allows prediction of when the Pearson coeffi-
cient will fail to detect correlations. For high colinearity,
the Pearson coefficient quantifies the correlation relatively
well, whereas it systematically underestimates the correla-
tion in cases where the fluctuations are nearly perpendicu-
lar to each other.

Interestingly, additional consideration of the general-
ized correlation coefficient in Figure 6 (color-coded) shows
that the very high correlation in lysozyme coincides exclu-
sively with colinear motions—in which case the Pearson
coefficient performs quite well. This is explained by the
fact that, for the case of protein dynamics, these high
correlations can only arise from atoms confined within
secondary structure elements. That only medium strong
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Fig. 5. Distance correlations r,,, compared with the two linear
correlation measures r,, (black) and Pearson coefficient (red).

correlations are missed by the Pearson coefficient is,
therefore, rather attributable to the specific properties of
protein dynamics and not to a merit of the Pearson
coefficient. Similarly, the high performance of the Pearson
coefficient at high correlations may hold only for dynamics
and is not a general property of the Pearson coefficient.

The only defect in the definition of the Pearson coeffi-
cient not discussed so far is its lack of scaling invariance.
Closer inspection of Figure 4 reveals atom pairs for which
the Pearson coefficient is slightly higher than the ry ;.
Because both measures are based on the same linear, i.e.,
harmonic approximation, this cannot be explained with
numerical estimation inaccuracies. We suggest as the
likely cause the improper scaling behavior of the Pearson
coefficient, which overestimates the correlation. However,
because the effect is small, we were not able to separate it
from the other effects discussed above, so that this hypoth-
esis could not be proven.

We finally discuss the numerical inaccuracies men-
tioned above and described in Materials and Methods. For
certain atom pairs, the nonlinear correlation is actually
lower than the linear correlation (Fig. 4), which should not
occur because LMI is a strict lower bound to nonlinear MI
(see Materials and Methods). However, here the MI is
estimated from a finite number of frames, which implies
statistical inaccuracies. Because MI is a difference of
relatively large entropies, the relative error increases for
small correlations, which explains the deviations seen in
Figure 4 for low MI r;;; < 0.3. At higher correlations (ry;
= 0.7), a small systematic underestimation of MI is
observed, as discussed in Kraskov et al.'® Taken together,
accuracy can be enhanced by using the larger value of both
the (analytical) linear and the (numerical) nonlinear MI.

CONCLUSIONS

We have derived a generalized correlation measure
based on MI, which allows for complete characterization
and quantification of atomic correlations in proteins and
other macromolecular motion. It provides a consistent
framework for analyzing correlations between coordi-
nates, atoms, and groups of atoms, and thereby overcomes
the problems of the usually employed Pearson correlation
coefficient.

First, both linear and nonlinear contributions to correla-
tion are accounted for. Moreover, a linearized generalized
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Fig. 6. Relative (linear) divergence of the Pearson coefficient A|r| =
1 — |r|/rw as a function of the average colinearity r;.. The colors quantify
full (nonlinear) correlation r,.

correlation coefficient was derived within the framework
of MI which allowed separation of linear and nonlinear
contributions to correlation. For T4L, the latter account for
approximately 10% of all correlations. Second, our general-
ized correlation coefficient does not suffer from the arti-
facts of the established method that originate from the
relative orientation of the atomic fluctuations. This purely
geometrical artifact of the Pearson coefficient typically
leads to underestimation of the correlations by more than
40%. Taken together, more than 50% of the correlations
remain undetected by the established method, but are
fully accounted for by the generalized correlations coeffi-
cient.

Application to two proteins, the B1 domain of protein G
and coliphage T4L, revealed new information on their
functionally relevant collective dynamics. In particular for
lysozyme, the established characterization of the domain
motion in terms of a hinge motion has been extended
toward a more complex pattern of collective motions. This
pattern is not revealed by the conventional Pearson coeffi-
cient matrix, which, in addition, conveyed misleading
information.

The enhanced characterization of the collective motion
provided by the generalized correlation matrix also comple-
ments the analysis of collective motions with PCA. For
example, the assessment of nonlinear correlations pre-
sented here can explain the previous finding by PCA that
for T4L the helix H1 moves either rigidly together with
domain D1, as shown by the first principal component, or,
for the second principle component, H1 moves together
with domain D2.4°

Overall, particularly many interdomain motions were
revealed by the generalized correlation coefficient. In
contrast, the Pearson correlation coefficient turned out to
focus at the local correlations, which often are attributable
to spatial proximity within secondary structure elements
and in this sense virtually trivial. Particularly the interdo-
main motions, however, tend to exhibit nonlinear correla-
tions, which can now be captured by the generalized
correlation.

We note that the presented definition of MI can be
generalized to higher dimensions. Accordingly, correla-
tions between groups of atoms can also be quantified, e.g.,
between a ligand and selected residues of its binding
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pocket. To this aim, the application of linearized MI is
straightforward. For the nonlinear MI, the numerical
estimation used here may become inaccurate for larger
numbers of atoms per group. In this case, parametric
entropy estimators will be superior.'*

The generalized correlation coefficient developed in this
work is widely applicable to the exponentially growing
amount of configurational ensembles provided by MD
simulations and from other sources such as NMR or
CONCOORD.*! This method will thus allow for the detec-
tion and characterization of a large number of new function-
ally important protein motions. Moreover, it facilitates
direct comparison with experimental data, e.g., from X-ray
diffusive scattering, NMR, or, via entropy, from calorim-
etry. The method has been implemented within the
GROMACS simulation suite®® and can be downloaded
from http:/www.mpibpc.mpg.de/groups/grubmueller/
olange/gencorr.html.
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