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1 Introduction

Proteins are crucial building blocks of life. They conduct many essential tasks in liv-
ing organisms, haemoglobin binds and transports oxygen, myosin and actin contract
muscles and ion channels enable neural signal processing [1|. Despite their importance
for many essential processes in life, we do not know the function of most proteins. The
majority of function annotations available in large protein databases are predictions and
experimentally detected annotations only make up < 1% in UniProt (protein sequence
database) [2] and 40% in the Protein Data Bank (PDB, contains 3D-Structures) [3].
Such predictions are error-prone, and wrong annotations possibly mislead researchers
to waste time and resources. Therefore, increasing the reliability of protein function
predictions is a crucial interest of current research (2, 4].

The first developed and most common function prediction algorithms are based on the
protein primary sequence [5]. This sequence is unique to the protein and is encoded in
the DNA. Comparing protein sequences, similarities and common motifs were discovered
that expanded our understanding of proteins [6]. These similarities (next to other fea-
tures) are exploited by homology modelling algorithms to predict a protein function
given its sequence |2, 4, 7]. The main idea behind these prediction algorithms is that
proteins with high sequence similarity are likely to also conduct the same function. They
therefore only work well if there is an experimentally studied protein with high sequence
similarity [4].

In solution, many proteins fold into globular structures. These 3D-structures can also
be predicted by homology modelling or determined experimentally by X-ray crystallo-
graphy, nuclear magnetic resonance spectroscopy or 3D-electron microscopy (8, 9, 10,
11], for example. Comparing 3D-structures, again similarities and common motifs were
found (secondary structure elements like a-helices and (-sheets) expanding our know-
ledge on proteins. These can be utilized for function prediction on the premise that sim-
ilar 3D-structure (e.g. binding pockets shaped alike) implies similar function. Including
experimentally determined 3D-structures as inputs enhanced function prediction, par-
ticularly for low primary sequence similarity cases [12].

However, protein sequence and structure based algorithms still do not provide sufficient
accuracy in function prediction, leaving room for improvement [3]. Protein function pre-
diction is a multi-label classification task with &~ 10000 labels in total (called Gene Onto-
logy molecular function terms [13, 14]), and multiple labels per protein [15]. In the most
recent benchmarking competition for primary sequence based protein function predic-
tion, CAFA3, the top performing method GOLabeler [15] reached an Fj-score of around
0,6 [4]. The F-score is a measure for accuracy in classification tasks, it is calculated as
the harmonic mean of precision (5 2ieROSINES ) ;i ( pecal] (5 UUePositives ) The
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structure based function annotation method FINDSITE reached a score of F; = 0,63 on




a different protein benchmark set [16]. These and other current methods mainly exploit
similarities to proteins with known functions and the detection of enzymatic binding
pockets [15, 12, 17]. Therefore, their coverage is limited and predicting non-enzymatic
functions of proteins without well-studied homologs remains challenging. To make more
accurate function predictions for a broader variety of proteins without relying on primary
sequence or 3D-structure similarity, we aim to include protein dynamics in the function
prediction process.

Intramolecular protein motions are driven by thermal noise (or, in some cases ATP/GTP
hydrolysis) and are determined by their specific free energy landscape. The most relev-
ant motions are conformational changes on timescales ranging from us to ms [18|. They
can be calculated using molecular dynamics (MD) simulations if a 3D-structure to start
the simulation from is available. In MD simulations, the Newtonian equations of motion
are integrated for a system of molecules and atoms, e.g. a protein and water surrounding
it, calculating interaction forces via empirical force fields. Thereby, information about
the dynamics of the protein is captured in a trajectory, describing how the positions of
all its atoms change with time.

We can produce MD trajectories at a rate of roughly 1 us per GPU per week due to
recent advances in hard- and software [19]. This rate makes generating sufficiently long
trajectories (> 1 us) for a large number of proteins feasible using large computer clusters.
The computational cost is still high though, which is why protein dynamics have not
been studied in a comparative way to the same extend as sequences or 3D-structures so
far. However, we expect the connection between protein dynamics and function to be
strong, as observations from experimental and computational setups imply that some
functions are conducted by protein motion and can not be conducted by rigid molecules
[20, 21]. This connection, as schematically illustrated in Fig. 1, is the background of this
work.

Figure 1: Sketch of connections between protein sequence, 3D-structure, dy-
namics and function. The connections linking structure with dynamics and dynamics
with function (illustrated by blue arrows) have not been studied thoroughly yet within
the framework of automated function prediction. We expect more accurate function pre-
diction by exploiting these connections, because many protein functions are conducted
by motion.



MD simulations output high-dimensional time series data that are hard to interpret
and hard to compare between different proteins. In order to exploit the connection
between dynamics and function, it is therefore necessary to map the trajectory onto a
low-dimensional representation of the dynamics. This mapping should capture the char-
acteristic kinetic behaviour of a protein and be automated and universally applicable to
all proteins. We call it a dynamics fingerprint for that reason. The idea of comparing
proteins by their dynamics fingerprints was first proposed by Hensen et al. in 2011 [22].
They named the space of all protein motions dynasome and also demonstrated how to
use it for function prediction, assuming that proteins with similar dynamics fingerprints
are likely to conduct the same function. In this thesis, we will follow up on their work,
and get novel insights into the dynasome.

The dynamics fingerprint Hensen et al. proposed was captured from 100ns long MD
trajectories of 112 proteins. These are too short to cover all relevant motions, but the
computational effort of simulating these trajectories was at the limit of feasibility in
2011. The fingerprint consists of 34 kinetic observables, which were extracted directly
from the MD trajectories. These include, for example, the mean and standard deviation
of root-mean square fluctuations and solvent-accessible surface areas (for the whole list
of observables, see Ch. 3.10). The choice of these observables is arbitrary, with an infinite
number of possible other inclusions, making it practically impossible to find the best set.
Another drawback of this method is that some of the observables contain information
about the secondary structure composition of the protein. This information is helpful
for function prediction, but comes at the price of mixing information on structure and
dynamics in the fingerprint. This mixing makes it difficult to attribute the fingerprint’s
informative value to either structure or dynamics, which is undesirable when we are
trying to understand the diversity, specificity and predictive power of protein dynamics
specifically. [22]

Another shortcoming of the previous work on the dynasome is that, for every protein,
only one trajectory was considered and therefore only one fingerprint generated. Now
for MD simulations, independently calculated trajectories of the same protein are not
identical. Instead, they are different realizations of the same underlying random process,
which is governed by the protein free energy landscape. Therefore, for any analysis of
MD trajectories, it is crucial to examine to what extend the results are reproducible with
other, independent trajectories. In the context of protein dynamics fingerprints this con-
sideration is particularly meaningful: fingerprints captured from MD simulations contain
protein-specific information, describing the random process, and trajectory-specific in-
formation, describing just one realization. Because a protein is labelled with the same
function terms at any time (although it might not perform all its functions within every
trajectory), we are interested in protein-specific information to make reliable function
predictions.



To improve on these deficiencies, in this work, we investigate dynamics fingerprints
regarding their protein specificity — i.e. reproducibility with respect to different tra-
jectories. We developed a novel approach to capture dynamics fingerprint using Markov
State Models (MSMs) and examine, whether it captures more protein-specific dynamics
information than the previous approach.

MSMs are discrete, kinetic models which assume a system is in one of several states at
any given time and can change to another state within a certain time frame. For pro-
teins, these states correspond to different structural arrangements (e.g. open or closed
binding pocket) called conformations. Most proteins only take a limited number of con-
formations, typically remaining in roughly the same conformation for at least several
nanoseconds before they change to another one. MSMs describe this metastable be-
haviour by assigning a particular state to every commonly visited conformation and a
transition probability to every possible transition between the states. The matrix formed
by these transition probabilities fully characterizes the MSM. MSMs have proven to be
a powerful tool to describe protein dynamics and are widely used for this purpose [18,
23, 24, 25, 26, 27|.

In a next step, we extracted observables from the MSM to form a dynamics fingerprint.
Observables suitable for that must be meaningful properties of the MSM and invariant to
permuting states, drastically limiting the number of possible choices to properties of the
eigendecomposition of the transition probability matriz. Hence the choice of observables
is less arbitrary compared to the preceding work [22]. We calculated implied timescales
and eigenvector entropies to form a fingerprint.

We generated 3 x 1 us MD trajectories each for a large set of 200 proteins. These are an
order of magnitude longer than those used in previous work and hence capture protein
dynamics on longer timescales. Also, there are multiple trajectories per protein, enabling
us to investigate the protein specificity of fingerprints. From every trajectory we cap-
tured dynamics fingerprints using our MSM-based approach and the previous approach
by Hensen et al. [22]. We also constructed a third set of fingerprints, which consists of all
the observables chosen by Hensen et al. but the ones which carry structural information.

To examine the protein specificity of a set of fingerprints, we calculated euclidean dis-
tances between all pairs of fingerprints. We then calculated the average logarithmic
distance between fingerprints captured from two trajectories of the same protein and
the average logarithmic distance between fingerprints captured from two trajectories of
different proteins. The quotient of these averages is a measure for the protein specificity
of a set of fingerprints.

We found that the MSM fingerprints captured a similar amount of protein-specific in-
formation as the previous approach. If the latter is deprived of structural information,



however, it captures significantly less protein-specific information. We therefore conclude
that indeed more dynamics-based protein-specific information is captured by our novel
MSM fingerprints in contrast to the previous approach. There is still room to further
improve the protein specificity of dynamics fingerprints though, for example through
more sampling or optimizing parameters for MSM construction. Utilizing dynamics
fingerprints for protein function prediction seems to be out of reach at the current stage.

2 Theory

2.1 Dynamics Fingerprints

The dynamics fingerprint of a protein is a d-dimensional vector v.€ V C R? in the
vector space V we call fingerprint space. This fingerprint space is unique to the method
extracting the fingerprint, meaning two fingerprints extracted by different methods are
not comparable with each other. Within V| in contrast, different fingerprints can be
compared to identify similarities between the underlying dynamics, using for example
euclidean distances as a dissimilarity measure [22].

We assume that several contributions to the dynamics fingerprint

V = Hfunc + Hoprot + 6traj + 5meth (1)

play an important role. We divide them into informative terms, denoted by p, and noise
terms, denoted by 8. We assume these different terms to be independent and additive
here to establish a simple formalization of fingerprint contributions and promote an in-
tuitive understanding of their interplay. We do not claim this approach to be rigorous,
and a more sophisticated formalization dropping these assumptions might be developed
in future.

The function-specific term pg. is the same for all proteins sharing a certain func-
tion. We suggest this term to be a relevant contribution because it has been shown
that many protein functions are coupled to a specific motion in experiments and sim-
ulations [20, 21|. In preceding work, a function-specific contribution to the fingerprint
was suggested and confirmed, but it was not large enough to endow the fingerprint
space with a clustered structure [22]. If g was the dominating term in Eq. (1) (i.e.
| ftuncl] > | prot || + || Otrajl] + ||Ometn||), dynamics fingerprints of different proteins would
form clusters in fingerprint space. However, it is not necessarily the case that such
clusters even exist. Still, the term peg,e is critical for function prediction based on dy-
namics fingerprints, but it remains elusive so far.



The term pp0r is protein specific. Because the dynamics in MD simulations are governed
by the free-energy landscape of the simulated protein, we expect ppor to be a major
contribution.

The trajectory-specific contribution dy,,; arises from the stochastic nature of MD simu-
lations: Two independent, unbiased MD simulations of the same protein starting from
the same conformation can sample entirely different regions of the free-energy landscape
(apart from the initial conformation). For infinitely long and ergodic trajectories, every
part of the free-energy landscape is visited infinitely often, and di,,; vanishes. Because
Otraj is closely related to limited sampling, we expect it to decrease with increasing tra-
jectory length and to increase with system size (i.e. primary sequence length).

The term &pen describes method-specific noise. This noise is caused by the stochastic
nature of the methods used to extract a fingerprint from an MD simulation, e.g. ran-
dom initialization of cluster centers in k-means clustering (Ch. 3.4). If all extraction
methods used are deterministic, dyen vanishes. Its magnitude and behaviour with re-
spect to involved parameters like trajectory length strongly depend on the methods used.

When considering multiple trajectories of the same protein, their fingerprints are scattered
around a mean given by pane and ppor With a spread given by dy,j and dpmern. For the
most part of this work, we ignore whether noise is trajectory or method specific. Also,
because neither our fingerprints, nor the fingerprints in preceding work form distinct
function clusters, we assume || func|| < ||prot]]. Taking these approximations into ac-
count, equation (1) simplifies to

V & fhpror + 6. 2)

This equation suggests that fingerprints extracted from multiple trajectories of the same
protein scatter around ptpo with a spread §. The balance of these two contributions
can be understood as a signal-to-noise ratio «, where the protein-specific information,
manifested as fipot, is the signal we are interested in.

Because « and the magnitude of the fingerprint ||v|| might vastly differ between proteins,
the overall cluster structure in fingerprint space can be complex, as illustrated in Fig. 2.
Figure 2a shows a sketch of a fingerprints space where « is large. Fingerprints of the
same protein form distinct non-overlapping clusters, enabling us to uniquely associate
areas of fingerprint space with individual proteins. For small values of «, a more com-
plex structure is expected, similar to the one sketched in Fig. 2b. In such a case, it is
not obvious if any and how much protein-specific information was extracted with these
fingerprints.
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Figure 2: Sketches of dynamics fingerprint spaces. a) A well-clustered fingerprint
space with high signal-to-noise ratio a. Different colors indicate different proteins, each
occupying a unique part of fingerprint space with a mean value p. b) Similar fingerprints
with lower signal-to-noise ratio o and different fingerprint magnitude for each protein
form a less structured fingerprint space with large overlap between areas occupied by
different proteins.

To determine the amount of protein-specific information, pairwise distances between
fingerprints are calculated and divided into two groups: Distances between fingerprints
of the same protein and distances between fingerprints of different proteins. If distances
between fingerprints of the same protein are smaller than distances between fingerprints
of different proteins, on average, protein-specific information was captured with these
fingerprints. The factor by which they are smaller is a measure for the amount of protein-
specific information captured. This analysis is described in more detail in Ch. 3.12.

3 Methods

3.1 Molecular Dynamics Simulations

MD simulations were used in this work to generate trajectories capturing the internal
motion of molecules, to later compare them.

The motions of all atoms of a molecule can be explicitly calculated by solving the
Schroedinger-equation for all atom cores and electrons, but doing so for larger mo-
lecules like proteins is computationally not feasible. The small integration time step and
the large number of floating point operations required make the calculation too slow
to reach simulation times of microseconds that would cover large protein motions. To
overcome this hurdle, some approximations are made to reduce the problem to solving



the Newtonian equation of motion for the atom trunks within fast-computable potentials.

Foremost, the Born-Oppenheimer approximation is applied. It exploits that electrons
move much faster than atomic nuclei. From the electrons’ perspective, the nuclei move
so slow that their position can be assumed to be fixed, and for the nuclei, the electrons
move so fast that the forces they exert can be averaged [28]. In the context of MD
simulations, only the motion of the nuclei is of interest and hence electrons are treated
implicitly.

There are three relevant forces on the molecular scale to be considered:

e The Coulomb force acts between any two charged particles, like the atomic cores
considered in MD. The charge assigned to an atomic core is determined by the atom
type and its chemical environment. The force exerted by a charge ¢ on a charge ¢,
at a distance r is Fo(r) = ﬁ% [29] with €y being the vacuum permittivity. The
number of computer operations required for explicitly calculating coulomb forces
between N atomic cores scales as N2. To avoid this large number of computer

operations, the Particle Mesh Ewald (PME) method [30] is used.

e Van-der-Waals forces are exerted between every pair of atoms. They arise from
fluctuations in the electromagnetic fields of atoms [31]. These forces are calculated
from a Lennard-Jones-(12,6) potential Vi;(r) = £% — &, where Cy, and Cy are
constants specific to the involved particles [32]. The repulsive term also includes
forces exerted due to Pauli repulsion, which are — strictly speaking — not Van-
der-Waals forces, but also have to be considered in MD simulations. Again, the
required computer operations scale as N2, but because this interaction is short-

ranged, it is ignored for atom pairs more than 1 nm apart.

e Chemical bonds are the source of a variety of bond forces. These forces are func-
tions of the distance between a bonded pair of atoms, the bond angle between a
pair of bonds that share an atom, or dihedral bond angles. For bond distances,
bond angles or improper dihedral angles, these forces are approximated by har-
monic potentials V(z) = —k(z — x¢)? with a spring constant & depending on the
variable type (bond distance, bond angle or dihedral angle), the local topology
of the bond network and the involved atom types. For proper dihedral angles, a
cosine expansion potential v(¢) = SM_ k,, (1 4 cos(m¢ — ¢y)) is used [33].

m=1
The sum of all choices made on how to calculate these forces and which parameters to

use is called a force field F. Inserting the force field into the Newtonian equation of
motion yields

= ) (3)

dt? m;
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with x denoting a IV X 3-dimensional matrix containing the three cartesian coordinates
of all N atoms, x; denoting its i-th row vector — i.e. the three cartesian coordinates of
atom ¢ — and m,; denoting the atomic mass of atom ¢. This approximated equation of
motion for macromolecules is numerically integrated to generate a trajectory.

For this study, three 1pus MD trajectories for each of 200 solvated proteins were gen-
erated to capture their dynamics by Marco Dalla-Sega and Carsten Kutzner, (former)
members of our group. The proteins were selected by Marco Dalla-Sega and Tim Meyer
from two published protein lists containing suitable candidates |22, 34| based on two
criteria: First, the proteins must be globular and should be small, as for large and/or
disordered proteins, we do not expect to sufficiently cover their whole range of dynamics
with 1 pus trajectories. Second, different function classes should be covered by several
representatives each, so that function-specific contributions can be distinguished from
protein-specific contributions and examined separately. The chosen proteins are listed
in the appendix in A. (Helmut Grubmiiller, personal communication, 2020)

For the simulations used in this study the GROMACS 4.5 software package [35] with
Amber f199sB-1LDN force field [33] and TIP4P-Ew water model [36] was used. Starting
structures were taken from the PBD [37] entries listed in A (Appendix). Solvent and ions
(Nat and C17) were added, establishing a salt concentration of 0,15 mol 17! and neutral-
izing the overall system charge for charged proteins. Energy minimization was performed
using GROMACS steepest descent at a time step of 1fs until convergence to machine pre-
cision (single precision, < 5 - 104 steps). Then equilibration was performed for 0,5+ 1 ns
(NVT+NPT) at an integration time step of 2fs followed by the actual production run
with a length of 1 us (NPT) at an integration time step of 4 fs, all using periodic bound-
ary conditions. A velocity rescaling thermostat [38] was applied at 7" = 300 K with
temperature coupling constant 7 = 0,1 ps and isotropic pressure coupling was applied
at p = 1 bar with pressure coupling constant 7, = 1 ps using Berendsen pressure coupling
[39] during equilibration and Parrinello-Rahman pressure coupling [40] in the production
run. All bond lengths were constraint, using the SETTLE algorithm [41] for the solvent
and LINCS [42] for the solute, with a LINCS order of 4 during energy minimization and
equilibration and LINCS order of 6 in the production run. Van-der-Waals forces were
ignored for distances > 1nm and Coulomb forces were calculated using PME [30] with
a real-space cutoff of 1nm, PME order of 4 and Fourier-grid spacing of 1,2A. In the
production run coordinates were saved every 10 ps, resulting in a trajectory of 10° frames.

The starting structure of the production run might be very improbable in the proteins
equilibrium distribution, even after energy minimization and the equilibration runs,

hence the first 20ns of every trajectory were discarded as an additional equilibration
phase [22].
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Next to internal (i.e. intramolecular) protein motions, the trajectories contain external
motions, namely center of mass motion and rotation of the whole molecule. These mo-
tions are diffusion processes which are determined by the protein shape and size [43],
which is information we prefer not to have in our dynamics fingerprints for the reasons
mentioned in Ch. 1. To remove external motions from the trajectories, for every frame,
the proteins were centered in the simulation box and fitted to the respective starting
structures using the GROMACS tool trjconv [35].

3.2 Principal Component Analysis

Principal Component Analysis (PCA) [44] is a common analysis method for multidi-
mensional data. It was used in this work as a dimension reduction method for sets of
dynamics fingerprints. To obtain principal components (PCs) of a set of fingerprints X,
its covariance matrix [45]

C=(X-X)(X-X)7, (4)

where X denotes the mean of X, was computed and diagonalized. The right eigen-
vectors of C are the PCs, and its eigenvalues A\ 4 are the variances of the corresponding
PCs. The fingerprints were subsequently projected onto the two highest variance PCs
by computing the dot product of the fingerprints with those PCs. The combined space
spanned by the two highest variance PCs is assumed to be a relevant 2D-projection of
fingerprint space and therefore enables us to visualize it.

PCA was also used to compute several of the fingerprint observables in previous work
(Ch. 3.10) by Hensen et al. from the MD trajectories [22].

3.3 Time-lagged Independent Component Analysis

Time-lagged Independent Component Analysis (tICA) is an analysis method for time
series data that identifies slow collective motions. It finds uncorrelated collective co-
ordinates and maximizes their respective autocorrelations at a lag time 7 [46, 47]. TICA
was used in this work to reduce the dimensionality of MD trajectories. The slow collect-
ive motions found by tICA are likely to capture metastable behaviour, which is a key
assumption of MSMs, as mentioned in Ch. 1. Hence tICA is a particularly well-suited
method to find collective coordinates in MD trajectories to later build MSMs with [48,
47].

To perform tICA on a trajectory X; r, two overlapping subsets of that trajectory
were considered: a time-lagged subset X" = Xy, 7, and a not-time-lagged subset

12



X% =Xy ro,. Using these subsets, the covariance and time-lagged covariance matrices
[48]

Coo = (X° — XO)(X* — X7, (5)
Cor = (X* = XO)(X™ = X"), (6)
Cro= (X" —X)(X° - X7 and (7)
C., = (X" -X")(X"-X")" (8)

were computed. Here, X° denotes the time average of X, Using these matrices, the
generalized eigenvalue problem [48]

(Coo + Crr)r; = (Cor + Cro) Nir; 9)

was formulated. The corresponding eigenvectors r; — called time-lagged independent
components (tICs) — and eigenvalues \; were obtained by solving it.

For subsequent analysis, the eigenvectors were scaled with the corresponding eigenvalues
[49] and sorted by them. Starting with the highest eigenvalue tIC, a number of tICs
sufficient to contain 95 % of the trajectory variance was kept and the rest was discarded.

The lag time 7 is typically chosen specifically for the analysed trajectory [49, 50, 51].
However, in this work, our goal was not to find the perfect MSM construction pipeline
for every trajectory, but to find a pipeline that yields comparable MSMs and that is
reasonable for every trajectory. By reasonable we mean that the pipeline should be able
to identify metastable protein conformations and assign MSM states to them, if such
conformations are contained in the trajectory. To make the pipeline yield comparable
results, we strived to fix all parameters within it. Hence we fixed the tICA lag time
7 for all trajectories to the same value, and chose that value equal to the MSM lag
time ¢;. Our literature research showed that MSM lag times in the range of 1-10ns are
appropriate to analyse MD trajectories of small proteins |23, 52, 53, 54| and accordingly
t; = T = 3ns was chosen.

We used the software package PyEMMA [55] to perform tICAs for this study.

3.4 K-means Clustering

K-means clustering was used to decompose MD trajectories into discrete states to build
MSMs on, because it is shown to be among the best choices for that purpose [56] and
commonly used in MSM construction pipelines [23, 25, 53, 52, 57|.
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Initially, the k-means algorithm randomly places k cluster centers. Their position is
then iteratively optimized by minimizing the squared distance of every data point to its
nearest cluster center. [58]

The number of cluster centers k is an input parameter usually chosen based on the com-
plexity of the configration space of the investigated system and the amount of sampling
at hand [23]. For our MSM construction pipeline we fixed it at & = 200, consistent
with choices made in several recently published studies of protein kinetics [52, 53, 57|.
Our choice is also consistent with a criterion for sufficient sampling described by Pande
et al.: The number of observed transitions, estimated by 7'/t;, with T' denoting tra-
jectory length and t; denoting MSM lag time, should match the order of magnitude of
the number of possible transitions in the MSM, which scales as kIlnk [23]. In our case,
T/t; = 1us/3ns = 333,3 and kInk ~ 1000, so the number of transitions observed in
a trajectory is smaller by a factor of 3 compared to the number of possible transitions,
matching the order of magnitude. Note that 7'/, is actually a lower limit to the number
of uncorrelated transitions in a trajectory and determining this number for trajectories
is an unresolved current problem [59].

3.5 Markov State Models

As mentioned in Ch. 1, Markov State Models (MSMs) were used to approximate protein
kinetics in this study. An example of an MSM is shown in Fig. 3. To understand the
observables we extracted from an MSM to form a dynamics fingerprint and why we chose
them, we first need to elaborate a little on MSMs and transition probability matrices
(Fig. 3b).

The state of an MSM at any point in time ¢ is defined by a probability distribution p(t),
a vector that, for every state, contains a probability to be in that state (e.g. if a 4-state
system is in state 1 at time ¢, p(t) = (1,0,0,0)). The transition probability matrix P is
a propagator, forwarding p(¢) in time by a lag time t;, so

p(t+t) =P p(t). (10)

The parameter t; was chosen to be ¢; = 3ns for the reasons mentioned in Ch. 3.3. Be-
cause the transition probability matrix entries k,;, are probabilities for the system’s state
to change from a to b within a time frame ¢;, P has to be row stochastic and its diagonal
elements are given by ke, =1 -, 2q Kap. Therefore, the model is fully determined by
the transition probabilities k., with a # b.

Some of the most meaningful properties of an MSM are obtained by spectral decom-
position of P. The largest eigenvalue of a row stochastic matrix is always \; = 1

14
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Figure 3: Illustrative Markov State Model. a) Circles and arrows represent states
(protein conformations) and possible transitions between them, respectively. Their sizes
encode the states” equilibrium population and the transition probability. b) The cor-
responding transition probability matrix P describing the example MSM. The entries
are probabilities for given transitions within a time frame t;.

[18]. Therefore, the corresponding eigenvector v; remains unchanged when applying the
transition probability matrix P, i.e.

PV1:)\1V1:1'V1 =V =T. (11)

vy is called the MSM stationary vector or equilibrium distribution and is denoted by
7. If P describes a system in equilibrium, there should be no probability fluxes in the
equilibrium state, i.e. [60]

'/Takab = kaba Va 7& b7 (12)

a property called detailed balance, should be fulfilled. Because we assume proteins and
solvents to be in equilibrium in our simulations, we enforce detailed balance when estim-

ating MSMs.

All other eigenvalues \; are smaller than 1 and their corresponding eigenvectors represent
equilibration processes. Using these eigenvalues we computed implied timescales

b In )\i7

(13)

which describe how fast the respective processes reach equilibrium. These timescales give
insight into the rate at which a protein changes its conformation along several pathways
in configuration space and therefore capture relevant information on the protein kinetics.
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They are also invariant to permutation of states, hence we chose them as observables
for our MSM dynamics fingerprint.

We also included observables describing how different states contribute to the equi-
libration processes and to the equilibrium distribution in the fingerprint, because we
considered that to be relevant information as well. To this end, eigenvector entropies

Si = Z Vij In Vij (14)
J

were computed. Note that the sum is over the entries of v;, so one entropy contains
information on one eigenvector. These are also invariant to permutation of states.

These two types of observables, implied timescales and eigenvector entropies made up
the entire MSM fingerprint. Note that there are other observables that can be calculated
from an MSM and meet our two criteria of being kinetically relevant and invariant to
permutation of states we did not include, e.g. the entries of the equilibrium distribution
7 sorted by size.

3.6 Scaled Sliding Window Counting

Scaled sliding window counting was used to extract transition counts from discrete tra-
jectories. Such counts are needed to estimate transition probabilities for the observed
transitions.

To obtain transition counts ¢y, from a discrete trajectory X;i r, overlapping windows
of size t; were considered, namely X 4, Xo 441, X3.4,+2 and so on. For every one of
these windows, one transition a — b was counted, where a and b are the states visited
in the first and last frame of the window, respectively. However, these counts are not
uncorrelated [59] and to account for that the obtained counts are divided by ¢;, so [61]

1
Cah = t_l Z 5a,Xt5b,Xt+tla (15)
te[1,T—1]
1 ifi=7y, . .
using the Kronecker-delta 9, ; = ]‘ The transition counts are arranged in
0 otherwise.

a count matrix C.

Due to the reweighting factor 1/¢;, the total number of transition counts extracted from
a trajectory is >, ¢ = T'/t;. As mentioned in Ch. 3.4, this estimate is just a lower
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limit for the actual number of uncorrelated transitions [59]. However, the transition
probabilities estimated from the counts are unaffected by the reweighting factor for the
estimation scheme used in this work [62].

3.7 Transition Probabilities Estimation

Transition probabilities k., between different states a # b of a discrete trajectory were
estimated from its transition counts C. The probability density p(k.|C), that a trans-
ition probability k € [k, ka + Ak] gave rise to the observed counts C, was calculated
using a bayesian approach [18|

P(kab|C) o< p(Clkap)p(Kab) (16)

from the likelihood [18]

P(Clkap) x k8% exp (—kapCaali) (17)
and the prior p(kgp).

The prior was assumed to be uniform or p(kg) o 1/ks in most, recent studies [27, 57,
62, 63, 64, 65, 66]. Both appeared to be reasonable and there is, to our knowledge, no
systematic study regarding the choice of prior for transition probabilities. We assume
that the choice of the prior does not affect the results of this study much though, because
either prior affects all MSMs in a similar way and our later analyses are based on dif-
ferences between MSMs and not on the actual numerical values of MSM properties. We
used a uniform prior, resulting in transition probabilities being estimated by maximizing
the likelihood (Eq. (17)), because this estimate is easier to calculate compared to the
posterior distribution p(k.,|C) when using p(kqp) o 1/kqp.

During the maximum likelihood estimation detailed balance was enforced, as mentioned
in Ch. 3.5. We used our own implementation of the iterative estimation algorithm de-
scribed by Trendelkamp-Schroer et al. in 2015 [62].

3.8 Robust Perron Cluster Analysis

Robust Perron Cluster Analysis (PCCA+) is a fuzzy spectral clustering algorithm we
used for coarse-graining MSMs, going from k£ = 200 states to n = 10 states. The
algorithm is specifically tailored to coarse-grain MSM states using their transition prob-
ability matrix Py to maximize metastability of the state clusters [67].
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In order to find the most metastable clusters, the eigenvectors v; of P corresponding to
the n largest eigenvalues \; were computed from the eigenvalue equation

These eigenvectors were arranged in an eigenvector matrix Vi, = [v1, ..., v,;] and nor-
malized so that [67]

VT . diag(m)? -V =1, (19)

with diag(7) denoting the diagonal matrix with the MSM equilibrium distribution 7
on its diagonal and 1 denoting the identity matrix. A positive and row stochastic
membership matrix Xy, was computed from V using a linear, invertible transformation

A, by [67]

X = VA. (20)

There are many possible choices for A respecting the mentioned constraints, so an initial
guess for A was drawn randomly and subsequently iteratively adjusted to maximize the
objective function [67]

n n 2
J

fi =33 ZT (21)

i=1 j=1

with a;; denoting entries of A. It is shown that using this objective function, metasta-
bility of the coarse-grained MSM is maximized [67].

After convergence, the entries z;; of the membership matrix Xy, were interpreted as
probabilities that state ¢ belongs to cluster j [67]. Every state was assigned to the cluster
it most likely belongs to. In some cases, all states were assigned to less than n = 10
clusters and some clusters were empty. In all those cases at least 7 clusters were popu-
lated though.

We used the PCCA+ implementation provided by the python package msmtools.

3.9 MSM Estimation and Fingerprint Extraction

A set of 200 proteins (listed in A) was selected for this work, and for every protein, three
unbiased MD simulations were performed, as described in Ch. 3.1.
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The trajectories were further processed applying tICA (Ch. 3.3) to reduce their di-
mensionality. Then, k-means clustering was performed as described in Ch. 3.4. The
trajectory was discretized by assigning every frame to the nearest cluster center. Trans-
itions were counted in the discretized trajectory using a scaled sliding window approach
(Ch. 3.6). Using these counts, transition probabilities were estimated according to
Ch. 3.7, fitting a 200-state MSM (Ch. 3.5) to the trajectory.

PCCA+ (Ch. 3.8) was applied to the MSM, merging the 200 states into 10 clusters. In
some cases, PCCA+ assigned states to less than 10, but at least 7 clusters. The as-
signment were used to coarse-grain the discrete trajectory. Again, scaled sliding window
counting (Ch. 3.6) was used to obtain transition counts for the coarse-grained trajectory,
and using these, a coarse-grained MSM with n = 7-10 states was estimated according

to Ch. 3.7.

To serve as fingerprint variables, we extracted the 6 largest timescales and the cor-
responding eigenvector entropies as well as the eigenvector entropy of the equilibrium
distribution from the coarse-grained MSMs, as described in Ch. 3.5.

Because the obtained timescales were distributed among multiple orders of magnitude,
we used their logarithm (base e) as fingerprint variables. The 13 fingerprint variables
were then standardized to have mean p = 0 and variance o = 1 within our data set
applying a linear transformation.

3.10 Preceding Approach

Preceding work on the dynasome (Dynasome 1) considered dynamics fingerprints Y
composed of 34 handpicked observables (see Tab. 1), calculated from 100ns MD tra-
jectories [22]. These observables are strongly correlated with primary sequence length
L. In order to limit their analysis to information on dynamics, the authors removed
this sequence length information from their data. To this aim, the observables were de-
correlated by subtracting an appropriate fit function. For all observables, except Ne 34,
y(L) = a+ b- L° with fixed exponents ¢ was used. Observable Ne34 (Srumsr) was decor-
related using y(L) = a + log(L). The distribution of decorrelated observables was then
standardized to have mean p = 0 and variance o2 = 1. [22]

For this study, a set of dynamics fingerprints (Dynasome 1 fingerprints) was calculated
in the same way from our 1pus MD trajectories. A slight adaptation was made in the
decorrelation step: to better capture correlations within our data set, ¢ was considered
a free parameter for our fits.
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Calculation of observables related with ruggedness of the energy landscape, Ne 21-23, re-
lied on obtaining a ruggedness profile with a characteristic minimum [22]. However, the
ruggedness profiles we calculated for our trajectories did not all have one characteristic
minimum, but some had multiple. For such cases, it was unclear how the ruggedness
profiles should be processed, and hence we excluded them from the Dynasome 1 finger-
prints, which therefore consisted of 31 observables in this study.

Table 1: Observables forming the dynamics fingerprint in preceding work
(Dynasome 1) [22]
Index Symbol

Description

1..5 A1 A5 PCA eigenvalues 1-5

6 m) Slope of the middle third of the PCA eigenvalue spec-
trum

7 X3 R? value of the fit to the PCA eigenvalue spectrum

8..12  cos; .. coss Cosine contents of the PCs 1-5

1315 Xir1s Xa2s X Goodness of fit of a Gaussian to PCs 1-3

16..20  fact. fact Friction constant derived from a fit to the autocorrela-
tion function of PCs 1-5

21 w1y Average ruggedness of the energy landscape

22 skew” Skewness of the distribution of ruggedness values of each
degree of freedom

23 kurt” Kurtosis of the distribution of these ruggedness values

24 pRMSD Average root-mean square deviation from the X-ray
structure

25 cRMSD Standard deviation (% of mean) of the root-mean square
deviation from the X-ray structure

26 pRMSFE Average residual fluctuations with respect to the average
ensemble structure

27 e’ Standard deviation (% of mean) of the radius of gyration

28..31 ¢struct o B ctumn Gtandard deviation (% of mean) of secondary structure
content: total, a-helix, S-sheet, turn

32 pSAS Average solvent accessible surface area

33 COAS Standard deviation (% of mean) of the solvent accessible
surface area

34 SRMSF RMSF entropy
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3.11 Variational Autoencoder

Variational Autoencoders (VAEs) are artificial neural networks used to find meaning-
ful, low-dimensional embeddings for a data sets or generating new instances resembling
the original data [68, 69]. VAEs have an encoder-decoder type architecture with the
additional twist of adding noise to the encodings during training time, which enforces
encoding to be a continuous function. They were used in this work to perform dimen-
sion reduction of fingerprint spaces to visualize them in 2D. The two sub-networks were
composed as follows:

e The variational encoder consisted of an input layer, several hidden layers, an encod-
ing layer and a sampling layer. When training the encoder or using it for prediction,
a fingerprint v € R? from the data set was copied into the input layer. Therefore,
the input layer had d nodes, where d is the number of fingerprint variables. This
activation was then passed through the hidden layers on to the encoding layer
with four nodes, which was twice the number of dimensions in the embedding.
The sampling layer interpreted two of the embedding layer nodes as mean values
and the other two as variances. These means and variances described a 2D normal
distribution from which an encoding vector was randomly drawn. This encoding
vector was used as output for the variational encoder during training.

After training, for fingerprint space visualization, only the mean values from the
encoding layer were used.

e The decoder received the 2D encoding vector from the variational encoder as in-
put activation and passed it through several hidden layers on to a reconstruction
layer with d nodes. The structure of hidden layers in the decoder was a mirrored
version of that used in the variational encoder. The reconstruction layer activation
was then compared with the input fingerprint v to determine the reconstruction
accuracy and calculate a loss from that.

In VAEs in this study, dense layers were used exclusively (except the sampling layer
described above), meaning that the activation a; in layer ¢ was computed from the
activation a;_; in the preceding layer as

a, = f(W;a;_1 +b;), (22)

using the learnable weight matrix W; and bias vector b; and the Scaled Exponential
Linear Unit (SELU) activation function f [70]. During training, learnable parameters
were adjusted using Adaptive Moment Estimation (Adam) [71] to minimize the loss
function [68]

L= ['KL + Erecm (23)
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which was composed of the reconstruction loss L,e., and the Kullback-Leibler (KL) loss
Lxr. Lreco Was computed as the mean squared error between the reconstruction layer
activation and the input fingerprint. Lxj, was calculated as the KL divergence between
the normal distribution described by the encoding layer and a normal distribution with
mean 4 = 0 and variance o2 = 1. These two terms regulated each other and the encoder
had to find an optimal balance between them: The sharper it located the encoding vec-
tor in the k-dimensional embedding space, the larger the KL loss Lk, got, but the easier
it got for the decoder to reconstruct the input fingerprint from the encoding, reducing
the reconstruction loss L,eco. The KL loss Lk1, also enforced the encoding vectors of the
data set to be normally distributed (with mean y = 0 and variance o = 1) overall. [69]

As mentioned in Ch. 2.1, different fingerprint spaces had to be treated separately and
therefore required their own VAE each. The respective VAE layouts are listed in Tab. 2.
Choices for layout and parameters that were shared between all used VAEs are listed in
Tab. 3.

Table 2: VAE layouts for reducing dimensionality of different fingerprint spaces
are displayed as sequences of numbers, each representing one layer with the
given number of neurons. SSI denotes secondary structure information.

Fingerprint name Fingerprint variables Encoder layout Decoder layout
MSM 13 13-8-4-2 2-4-8-13
Dynasome 1 31 31-16-8-4-2 2-4-8-16-31
Dynasome 1 without SSI 27 27-16-8-4-2 2-4-8-16-27

Table 3: Network layout and training parameters of the VAEs used in this work.

Parameter Value

Type of layer Dense

Activation function Scaled Exponential Linear Unit (SELU) [70]

Embedding dimensions 2

Loss function KL loss Lxp, + reconstruction loss Lyec, [68]

Optimizer Adaptive Moment Estimation (Adam) [71]

Initial learning rate 107°

Number of epochs trained Determined by minimizing validation loss
407 (MSM), 463 (Dyn 1), 403 (Dyn 1 w/o SSI)

Batch size 16

Training / Validation data split 80 % / 20 %

Input preprocessing Standardization (u =0, 02 = 1)

VAEs were trained on 80 % of the respective fingerprints (training data), whereas the
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other 20 % were held back for validation. Weights were adjusted after a batch of 16
fingerprints was processed, and gradients were averaged over the batches. Training was
furthermore organizied in epochs: Within every epoch the VAEs processed every finger-
print from the training data once. After every epoch their performance was evaluated
by calculating the loss function £ for the validation data. When this validation loss
did not reach a new minimum for 50 consecutive epochs, training was stopped and the
weights from the epoch with minimal validation loss were recovered.

3.12 Fingerprint Analysis

In this study, a set of fingerprints consists of 600 fingerprints, three for each of 200 pro-
teins. These data were labelled in a sense that for every fingerprint it is known which
protein it belongs to, and a label (i.e. number in [1..200]) can be assigned to it.

Three different analyses were conducted for every set of fingerprints in this study. The
first one is based on comparison of distances between fingerprints of the same protein and
distances between fingerprints of different proteins. It was used to proof protein-specific
information in fingerprints and quantify it. The second and third are based on measuring
how well the fingerprints match the cluctering implied by the labels, using conventional
clustering measures and a nearest neighbor clustering measure, respectively. We used
these to validate results from the distance-based analysis.

3.12.1 Distance-based Analysis

All pairwise euclidean distances between any two fingerprints were calculated and divided
into two subsets: One contained all distances between trajectories of identical proteins
(intra-protein), and the other one contained all distances between trajectories of different
proteins (inter-protein). Because the distances covered multiple orders of magnitude, the
distributions of logarithmic (base 10) intra- and inter-protein distances were considered.
Their respective means piing and piinger were calculated. The difference of these means

B = Minter — Mintra (24)

was used as an estimator for the amount of protein-specific information captured by
the fingerprint: The larger 5, the more protein specific the fingerprints. Because
is a difference of logarithmic distances, it corresponds to a factor of actual distances.
This factor, 1077, by which intra-protein distances are smaller compared to inter-protein
distances, on average, was computed as well.
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3.12.2 Conventional Clustering Measures

To quantify how well a particular clustering describes a set of data points, several well
established measures are available. Usually these are calculated to determine the quality
of cluster assignments, taking positions of data points as ground truth. In this work, it
was attempted to use them the other way around — measuring the quality of fingerprints
(data point positions) given their labels (cluster assignments) as ground truth. For all
sets of fingerprints, the following three clustering measures were calculated:

1. The Davies-Bouldin index [72]

1 <& . .
DB ==Y max (u> (25)
n o j#i d(ci, cj)

was computed from the number of clusters n, the cluster centers c, the average dis-
tance o from a cluster center c to its elements using the euclidean distance measure
d(-,-). A low Davies-Bouldin index corresponds to low intra-cluster spread (o) and
high inter-cluster distances (d(c;, c;)) and therefore indicates good clustering.

2. The Dunn index [73|

minlSKan d(Ci, Cj)

D =
maxj<i<n d/(l)

(26)

was calculated, where d'(l) represents the maximal distance between any two ele-
ments in cluster [. It compares the minimal inter-cluster distance to the maximal
intra-cluster distance. A high Dunn index indicates good clustering.

3. The silhouette coefficient 5 was computed as the mean silhouette value [74]

b(i) — a(i)
max{a(i), b(i) }

over all data points i. Here, a(i) denotes the mean distance from point ¢ to all other
points in the same cluster and b(i) denotes the mean distance from point ¢ to all
points of the nearest other cluster. The nearest other cluster to point ¢z is the one
minimizing b(7). Silhouette values range from —1 to 1. Negative silhouette values
s(7) indicate that the corresponding point ¢ would better fit in another cluster [74].
The larger the silhouette coefficient s, the better the clustering fits the data.

s(i) =

(27)
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3.12.3 Nearest Neighbor Based Analysis

As mentioned earlier, the three conventional clustering measures listed in the previous
chapter were originally designed to tackle a different problem than the one at hand.
When applied to our problem, they might be biased by the different dimensionalities
of fingerprints and/or by outliers. Hence they are complemented by a nearest-neighbor
graph based clustering measure, which is assumed to work better for the comparison
made here.

To calculate it, for every data point, the k nearest neighbors (NN) were scanned for
points with the same cluster label. The number of such points found was then divided
by the total number of other points sharing the label to obtain the fraction of these
points within the A-NN realm. The mean of this fraction over all points of the data
set was calculated and used as the k-NN score. The closer points sharing a label are to
each other compared to others, the higher this score and the better the clustering. The
parameter k was varied in the range 1-600.

3.13 Bootstrapping

Bootstrapping is a resampling method used in this work to estimate the error of mean
for sets of logarithmic pairwise distances between fingerprints.

From each set of logarithmic distances d = (dy,ds, ..., d,) of size n, 10° bootstrap res-
amples (&1, do, ..., &105) were drawn by picking n random elements from d with replace-
ment 10° times. For each of these resamples, the mean was computed to obtain a
sample distribution of 10° mean values. Confidence intervals were then computed from
this sample distribution by fitting a normal distribution to it. |75]

4 Results and Discussion

To capture and compare the dynamics of different proteins, 3 x 1 us MD trajectories were
generated for 200 proteins each. For every trajectory, an MSM was constructed and an
MSM fingerprint was extracted (Ch. 3.9). A Dynasome 1 fingerprint was captured for
every trajectory as well, using the approach from previous work (Ch. 3.10). Results of
our analyses of the MSM fingerprints and of the Dynasome 1 fingerprints are presented
and discussed in Chs. 4.2 and 4.3, respectively. Results of a comparison of the two sets
of fingerprints regarding their protein specificity are presented and discussed in Ch. 4.4.
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During MSM construction tICA (Ch. 3.3) was used to reduce the dimensionality of the
MD trajectories by identifying slow collective motions. We first present and discuss our
investigation of those tICAs, so that the reader can better comprehend the main results
of this study afterwards.

4.1 tICA Projections

TICA was applied to each of the 200 x 3 MD trajectories generated for this study
(Ch. 3.3). Many of the projections show similarities to cosines in the slowest tICs. As
shown for an exemplary protein (E. coli asparagine synthetase, PDB code: 11AS [76]) in
Fig. 4a, the projection onto the slowest component resembles half a period of a cosine
and the projection onto the second slowest component resembles a full period. In the 2D
space spanned by the two slowest components, the trajectories form a U-shape for that
reason (Fig. 4b). The protein changes its conformation from one end of the "U’ to the
other steadily, as illustrated by the color code which indicates time, ranging from purple
at the beginning of the trajectory to yellow at its end. For other proteins, in contrast,
the tICA projections reveal metastable behaviour, as shown exemplary in Figs. 4c and

4d for the human Pinl WW domain (PDB code: 2F21 [77]).

The U-shaped projections indicate that the proteins undergo a very slow conformational
change during the simulation, but we did not identify such a motion investigating an-
imated trajectories using the molecular visualization software PyMOL [78].

The extent to which the tICA projection resembles cosines can be determined using
cosine contents [79]. Cosine contents are calculated for each tIC as the inner product of
the trajectory projected onto that tIC and a cosine with fitting period. To determine
how strongly a projection resembles a U-shape, we calculated the mean of the cosine
contents of the two leading tICs for every trajectory. They are plotted against the re-
spective protein primary sequence length in Fig. 5. A positive correlation between cosine
content and protein size is observed with a Pearson Correlation Coefficient (CC) of 0,43.
The two example proteins above, asparagine synthetase and Pinl WW domain, have
primary sequence lengths of 330 and 35, respectively.

Larger proteins have higher-dimensional trajectories and conformational spaces. As a
consequence, in general, longer simulations are needed to sample all their native con-
formations. The correlation of cosine content with protein size therefore indicates that
insufficient sampling can be a reason for these U-shaped projection. We follow up on
that point in the next paragraphs.

The cosine-like motion is known to appear in PCA projections (Ch. 3.2) of high-dimensional
random walks |79, 80]. Their emergence in PCs of random walks was also proven ana-
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Figure 4: tICA projections of exemplary proteins asparagine synthetase
(11AS) and Pinl WW domain (2F21). a) Time series of 1D projections onto
the first three tICs of a trajectory of asparagine synthetase. The motion along tICs one
and two resemble half a period and a full period of a cosine, respectively. b) The projec-
tion onto the two slowest tICs of the asparagine synthetase trajectory show a U-shape.
Color encodes time, revealing that the protein slowly changes its conformation from the
purple side of the "U’ to the yellow side during the simulation. c), d) Projections onto
the leading tICs of a trajectory of Pinl WW domain reveal metastable behaviour in 1D
time series (c) and 2D projection (d).
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Figure 5: Dependence of cosine content of tICA projections on primary se-
quence length. The blue dots show the mean cosine content of the two leading tICs for
the 600 MD trajectories used in this work. The Pearson Correlation Coefficient between
cosine content and primary sequence length is 0,43. A linear least-squares regression is
shown in red.

lytically [79]. To investigate the emergence of such motions in tICA projections, we
conducted tICAs and PCAs of high-dimensional random walks. Figure 6 shows a com-
parison of the two different projections of a 300D random walk. It illustrates that
cosine-like motions in the tICs are even more clearly visible and less noisy than in the
PCs for random walks. We found that this statement also holds true for protein MD
trajectories by comparing their tICA and PCA projections.

We interpret the high similarity between tICA projection of proteins and random walks
as another indicator for insufficient sampling, meaning our simulation time of 1 us per
trajectory is likely too short to cover all relevant protein motions. Our interpretation
is consistent with previous findings that some protein motions occur on a milliseconds
timescale [18].

Because the tICA projections were used to construct MSMs for our MSM fingerprint,
we will briefly discuss some implications of U-shaped tICA projections on the MSM in
that context. First, proteins, whose tICA projections strongly resemble U-shapes, do
not repeatedly visit metastable conformations — a key assumption to derive MSMs from
the trajectories that accurately describe the protein kinetics.
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Figure 6: 2D projections of a 300D random walk. Color represents simulation
time. a) The PCA projection shows a U-shape, as predicted by previous theoretical
studies [79]. b) The tICA projection shows a U-shape too, and deviations from it are
even smaller than for the PCA. The lag time used is 7 = =& with the simulation time

333
T', analogous to the MD simulations.

Second, the transition pattern for all U-shaped trajectories is very similar, regardless of
where states are placed. Nearly all transitions are in forward direction, going from state
1 to state 2, from state 2 to state 3 and so forth. Backward transitions or transitions
between non-neighbouring states rarely occur. This strong similarity in transition pat-
terns is a piece of information shared among all those trajectories, and therefore also
among many proteins, making them more difficult to distinguish.

The third implication is on the coarse-graining of MSMs: A 200-state MSM was con-
structed from the tICA projection and subsequently coarse-grained to a 10-state MSM
using PCCA+ (Ch. 3.8). This method relies on identifying groups of states that share
more transitions with each other than with states outside the group. The transition
pattern described above, however, connects every state to its neighbouring states in the
same way. It therefore likely causes high uncertainty in the coarse-graining, and this un-
certainty propagates into the MSM timescales and thereby into the fingerprints. Hence
we expect that an MSM fingerprint is unable to precisely pinpoint the dynamics of a
trajectory if its tICA projections show high similarity to cosines.

To sum up, we observed that for many proteins their tICA projections resemble cosines,
most likely because our trajectories were too short to sample all their conformations
and dynamics. This resemblance likely makes MSM fingerprints extracted from these
trajectories less precise and less protein specific. Despite that, we did not exclude any
proteins from further analyses to allow a fair comparison between different fingerprints.
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4.2 MSM Fingerprints

MSM fingerprints were extracted from every trajectory by constructing an MSM (Ch. 3.9),
using the tICA projections discussed in the previous chapter. An MSM fingerprint con-
sists of six implied timescales and seven eigenvector entropies, captured from a single
MSM. Hence every fingerprint is one point in the 13D MSM fingerprint space. Three
trajectories were generated for each of the 200 proteins, resulting in three fingerprints
per protein. Capturing multiple fingerprints per protein enables us to investigate the
fingerprints’ protein specificity.

To visualize the distribution of the MSM fingerprints, they were projected onto two
dimensions using PCA (Ch. 3.2) and a VAE (Ch. 3.11). The projections are shown
in Figs. 7a and 7b, respectively. The figures only include proteins with low fingerprint
spread. To select these, the variance of the three fingerprints was calculated for every
protein as a measure of spread. Then, the mean of those variances over all proteins was
calculated and chosen as threshold, to exclude proteins with above average fingerprint
spread.

In both projections, there are some outlier proteins covering their small, unique part
of fingerprint space, but for the most part, the regions occupied by different proteins
overlap. Large overlaps indicate low protein specificity, because these regions in finger-
print space can not be uniquely associated with one protein. Note however, that these
are just 2D projections of a 13D fingerprint space and therefore most likely look more
disordered than the original space, because proteins overlapping in the projections might
be separated in another dimension.

To investigate the amount of protein-specific information extracted by the MSM fin-
gerprints, all pairwise distances between fingerprints were computed and split into a
set of intra-protein distances (between fingerprints of the same protein) and a set of
inter-protein distances (between fingerprints of different proteins). For our data set of
200 proteins and three fingerprints each, this split yields 600 intra-protein distances and
179100 inter-protein distances. The distributions of distances within these two sets is
shown in Fig. 8. Because they span multiple orders of magnitude, logarithmic distances
(base 10) are shown. The logarithmic intra-protein distance distribution is shifted to-
wards shorter distances compared to the inter-protein one. This shift implies that our
MSM fingerprints contain protein-specific information.

To quantify the amount of protein-specific information captured by the fingerprints, we
calculated the mean values of the two sets of logarithmic pairwise distances. The as-
sociated errors were obtained by bootstrapping (Ch. 3.13). The distributions of mean
values of the bootstrap samples are shown in Fig. 9. The two distributions of means
do not overlap. The difference of mean logarithmic intra- and inter-protein distances
(Eq. (24)) is fusm = 0,049 4+ 0,006. This difference means intra-protein distances are
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Figure 7: 2D projections of MISM fingerprint space by a) PCA and b) VAE.
In both projections, fingerprints of a protein share the same color and are connected
forming a triangular shade. In some cases, on the edge of the distribution, proteins
cover their unique part of projection space. In the central regime, in contrast, many
triangles overlap. Proteins with above average fingerprint spread are not shown.
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Figure 8: Distributions of distances between MSM fingerprints. The blue curve
and histogram represent the distribution of intra-protein distances, the orange show the
distribution of inter-protein distances.
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shorter by a factor of 107#vsM = (0,893 4 0,012. The errors were computed from the
standard deviations of the bootstrap samples by Gaussian error propagation [81] and
represent 68 % confidence intervals.

MSM - mean distance, bootstrapped

1200 1 intra-protein

1000 - inter-protein

800 -

600 -

frequency

400 -

<8 = 0.049 £ 0.006}——

200

0.60 0.62 0.64 0.66
log10( distance )

Figure 9: Means of bootstrap samples of logarithmic distances for MSM fin-
gerprints. The blue and orange curve show the sample distributions of means of log-
arithmic intra- and inter-protein distances, respectively. The latter is narrower be-
cause more distances contribute to each mean. The means are separated by a gap of
Busm = 0,049 £ 0,006.

From these observations we conclude that a significant amount of protein-specific in-
formation is captured in our MSM-based dynamics fingerprints. This result proves, that
a conventional MSM construction pipeline with fixed parameters, as used here, can ex-
tract protein-specific dynamics information from 1us MD trajectories. However, the
2D-projections (Fig. 7) and the factor 10~#vsM = (0,893 4 0,012 imply that, except for
some outliers, MSM fingerprints can not be uniquely associated with the protein they
were captured from. In Ch. 4.4, the protein specificity of the MSM fingerprints is com-
pared with the preceding fingerprint extraction approach as a benchmark.

4.3 Dynasome 1 Fingerprints

A Dynasome 1 fingerprint was calculated for every trajectory, extracting 31 observables
from it, as described in Ch. 3.10. Here, they are examined regarding their protein spe-
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cificity and how secondary structure based observables contribute to it. The results are
used in Ch. 4.4 as a benchmark for the MSM fingerprints.

For the analysis of the Dynasome 1 fingerprints, the same procedure was used as for the
MSM fingerprints in Ch. 4.2. Again, the mean logarithmic intra-protein distance is sig-
nificantly shorter than the inter-protein one. Their difference is Spyn1 = 0,056 % 0,005,
meaning intra-protein distances are shorter by a factor of 1071 = 0,88 4+ 0,01.

The Dynasome 1 fingerprint space is visualized using 2D projections by PCA and a VAE
in Figs. 10a and 10b, respectively. Again, we find regions uniquely covered by a single
protein in these projections just for some outliers, but for the main part regions occupied
by different proteins overlap.

a) Dynasome 1 - PCA Dynasome 1 - VAE
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2nd compaonent
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Figure 10: 2D projections of Dynasome 1 fingerprint space by a) PCA and
b) VAE. In both projections, fingerprints of a protein share the same color and are
connected forming a triangular shade. In some cases, on the edge of the distribution,
proteins cover their unique part of projection space. In the central regime, in contrast,
many triangles overlap. Proteins with above average fingerprint spread are not shown.

Further investigation of the VAE projection reveals that the Dynasome 1 fingerprints
contain information on the proteins’ secondary structure (SSI). To visualize that, the
projection is shown in Figs. 11a and 11b with color code indicating a-helix and S-sheet
content, respectively, of the protein a fingerprint was captured from. Both are correlated
with the components of the projection. This correlation reveals that the VAE identifies
secondary structure content as an important feature of the Dynasome 1 fingerprints.
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Figure 11: 2D projections of Dynasome 1 fingerprint space by a VAE. Color
code indicates a-helix content and [-sheet content in a) and b), respectively.

This SSI is very protein specific and therefore contributes to the overall protein spe-
cificity of the fingerprints. It is information on protein structure though and not on
protein dynamics. To allow for a fair comparison with the MSM fingerprints, which
do not contain structure information, we attempt to isolate information on dynamics
within the Dynasome 1 fingerprints. To this aim, we discarded all observables that were
calculated based on secondary structure knowledge. This criterion fitted observables
Ne28-31 (see Tab. 1). After discarding these, a set of 27 observables was left, Ne 1-20,
25-27 and 32-34, which we call 'Dynasome 1 without SSI’ fingerprint.

Conducting the same analysis as before for these Dynasome 1 without SSI fingerprints
reveals that, again, the mean logarithmic intra-protein distance is significantly shorter
than the inter-protein one. Their difference here is Bpyni1—gst = 0,034 £ 0,005, meaning
intra-protein distances are shorter by a factor of 10~#pyai-sst = (.92 4 0,01.

A VAE was trained on this fingerprint, too, projecting it onto two dimensions. Fig-
ures 12a and 12b show this projection with color code indicating a-helix and [-sheet
content, respectively. There is no correlation between secondary structure content and
the VAE projection here.

Because there is no SSI obvious from the VAE projection anymore, we conclude our at-
tempt to remove SSI from the Dynasome 1 fingerprints succeeded. We will not perform
any more sophisticated analysis of secondary structure correlations here. In principle,
we consider it possible to capture a fingerprint of a protein purely based on its dynamics,
that still contains information on the protein structure (including SSI). We should there-
fore not conclude that a fingerprint utilizes knowledge of secondary structure just based
on the fact that it shows some correlation to secondary structure contents. However, for
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Figure 12: 2D projections of Dynasome 1 without SSI fingerprint space by a
VAE. Color code indicates a-helix content and [-sheet content in a) and b), respect-
ively.

the Dynasome 1 fingerprints, we know that explicit knowledge of secondary structure
entered the calculation of observables Ne 28-31 (see Tab. 1). For these reasons, we think
that excluding these observables is the most valid way to transform the Dynasome 1
fingerprint into a purely dynamics based fingerprint and remove the strong dependency
on secondary structure content.

To sum up, we found that the Dynasome 1 fingerprints also contain a significant amount
of protein-specific information, partially on protein secondary structure. By discarding
observables Ne 28-31 from the fingerprint, this SSI was removed, creating the 27D Dyna-
some 1 without SSI fingerprint. It solely contains information on dynamics, but still
carries a significant amount of protein-specific information. Both these fingerprints are
used as a benchmark for the MSM fingerprints in the next chapter.

4.4 Comparison of Fingerprints

Here, the protein specificity of the MSM, Dynasome 1 and Dynasome 1 without SSI
fingerprints are compared, using the different measures introduced in Ch. 3.12.

4.4.1 Distance-based Analysis

The obtained [-values for the three fingerprint sets are listed in Tab. 4. The higher this
number, the more protein-specific information is captured by the respective fingerprints.
The associated errors represent 68 % confidence intervals (1). The factor 1077, by
which the mean intra-protein distance is smaller than the mean inter-protein distance,
was computed from the [-values and is shown in the third column of Tab. 4.
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Table 4: Distance-based analyses of the three fingerprint sets are summarized by assign-
ing a [B-value (Eq. (24)) to every set. The higher this number, the better the method
performed. Third column shows the factor, by which the intra-protein distances are
smaller than the inter-protein distances, on average.

Fingerprint B 1077
Markov State Model 0,049 + 0,006 0,893 + 0,012
Dynasome 1 0,056 0,005 0,88 + 0,01

Dynasome 1 without SSI 0,034 + 0,005 0,92 4+ 0,01

The [-values of MSM and Dynasome 1 fingerprints are separated by a difference of
0,007 =~ 0,148msm ~ 1,170\sn, whereas their 1o intervals overlap. The two fingerprint
sets therefore contain a similar amount of protein-specific information, with the Dyna-
some 1 fingerprints likely containing slightly more.

Comparing the MSM and Dynasome 1 without SSI fingerprints, their S-values are sep-
arated by a difference of 0,015 &~ 0,30usm = 2,50msm- Their 1o intervals do not overlap,
but their 20 intervals do. Therefore, with high confidence > 95 %, the MSM fingerprints
contain more protein-specific information than the Dynasome 1 without SSI fingerprints.

To examine the amount of protein-specific information lost from the Dynasome 1 finger-
prints by removing SSI, the Dynasome 1 fingerprints with and without SSI are compared.
Their B-values are separated by a difference of 0,022 ~ 0,48pyn1 ~ 4,40pyn1, Meaning
SSI made up for 40 % of the separation of mean intra- and inter-protein distance of the
Dynasome 1.

The amount of protein-specific information captured by the three fingerprints is stat-
istically significant, but rather low. Intra-protein distances are shorter by factors of
0,893 £ 0,012, 0,88 + 0,01 and 0,92 + 0,01 compared to the inter-protein distances for
the MSM, Dynasome 1 and Dynasome 1 without SSI fingerprints, respectively. These
numbers indicate, that intra-protein distances and inter-protein distances are of similar
size and on the same order of magnitude for all three fingerprint spaces. Proteins are
therefore insufficiently separated in the fingerprint spaces to tell them apart given their
fingerprints.

To sum up, we found that about 40 % of the Dynasome 1 fingerprint protein specificity
originates from secondary structure information. The MSM fingerprints contain more
dynamics-based protein-specific information than the Dynasome 1 fingerprints and a
similar amount of overall protein-specific information (including SSI in Dynasome 1).
The amount of protein-specific information captured by the three fingerprints is statist-
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ically significant, but it is insufficient for telling proteins apart given their fingerprints.
This insufficiency probably needs to be overcome to perform reliable function predic-
tion with dynamics fingerprints, so there is room for further improvement in protein
specificity.

4.4.2 Clustering Measures

In this chapter we present and discuss results of using conventional and nearest-neighbour-
based clustering measures to examine protein specificity of the different fingerprint sets
to validate our findings from the previous chapter.

The task of measuring protein specificity of fingerprints can also be described using the
terminology of a closely related clustering problem: Given a set of 600 labeled data
points v € R? (fingerprints), assigned to 200 clusters (proteins) of three elements each,
determine how well this clustering fits the data. Three established measures for cluster-
ing quality, namely the Davies-Bouldin index, Dunn index and the silhouette coefficient,
were calculated for the three sets of fingerprints (Ch. 3.12.2).

The index values obtained for the different fingerprints are shown in Tab. 5. All these
values indicate poor clustering. They consistently rank the Dynasome 1 fingerprints as
best fitting the given cluster labels and the MSM fingerprints as worst. However, we
should interpret these results with caution, because the applied measures were engin-
eered to describe data sets with a small number of clusters compared to the number
of elements within a cluster, and whose clusters are well manifested in the topological
structure. The investigated fingerprints do not fulfil these two assumptions.

Table 5: Established conventional clustering measures describe how well the different
fingerprints fit the clustering implied by protein names as labels. Note that these meas-
ures were developed for data sets with evident cluster structure and hence all these
values imply poor clustering.

Fingerprint Davies-Bouldin index ~ Dunn index  silhouette coefficient
lower is better higher is better lower is better
Markov State Model 4,337 0,073 —0,316
Dynasome 1 2,679 0,128 —0,160
Dynasome 1 without SSI 2,903 0,124 —0,197

To examine how sensitive the conventional clustering measures are to violating these
assumptions, they were applied to synthetic random data for comparison. For every set
of fingerprints, 600 data points were drawn randomly from a normal distribution with
a dimension equal to the fingerprint dimension, mean ;= 0 and variance o = 1 for all
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dimensions. These synthetic data were randomly assigned to 200 groups of three points
each. Then the three conventional clustering measures were calculated for the artificial
data sets. This process was repeated multiple times to get sufficient statistics. We found
that, for all three conventional clustering measures, the dynamics fingerprints scored all
significantly worse than random data of the respective dimension.

Within the random data, there is no information shared by points within the assigned
groups that is not shared by all points, i.e. the equivalent to protein-specific information
is 0. The dynamics fingerprints, in contrast, do contain such shared or protein-specific
information, as shown in the previous chapters. In a measurement of protein-specific
information, they should therefore score better compared with random data. They score
worse in the conventional clustering measures though, so we deduce that those measures
fail to capture protein-specific information from the fingerprints.

Furthermore, we calculated k-nearest-neighbor scores (Ch. 3.12.3) for the different sets
of fingerprints. This score is calculated for every fingerprint by scanning its k£ nearest
neighbours for fingerprints of the same protein. The number of such fingerprints found
was averaged across the whole set and normalized. The k-NN score was calculated for
k € [10,20,..,590]. The obtained scores are shown in Fig. 13. Comparing the Dyna-
some 1 fingerprints with and without SSI, the Dynasome 1 fingerprints with SSI score
higher for all values of k. MSM fingerprints score lowest of the three for k£ < 330 and
highest for k£ > 400. For k € [330,400], the ranking implied by the protein-specificity
measure  in Ch. 4.4.1 is reproduced. The ranking implied by the conventional cluster-
ing measures is consistent with the k-NN scores with k < 330.

For data sets showing distinct clusters in their topological structure, we expect the k-NN
score to be high even for very small £k, because neighboring data points very likely belong
to the same cluster in that case. For a comparison of such data sets, the k-NN score can
only be a good measure of clustering if k£ is chosen small. For large £, all data points of
the cluster are likely already included in the k-NN realm and therefore the £-NN score
is less meaningful. In contrast, for data sets whose topological structure does not show
distinct clusters, we expect a low score for small k, only slowly increasing with increasing
k. For this kind of data, the k-NN score is less meaningful for small &k, but for large k,
it is a good measure of clustering.

For all three fingerprint sets, the scores are below 0.5 for £ < 100, meaning that on aver-
age, within the 100 nearest neighbors of a fingerprint, there is less than one fingerprint
of the same protein. Because the k-NN scores are low overall and only slowly increase
with increasing k, we consider them meaningful only for large k.

To sum up, we aimed to validate the statements about protein-specific information of
the different fingerprints obtained in Ch. 4.4.1, using conventional clustering measures
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Figure 13: k-nearest neighbor score measured for different fingerprints. The
Dynasome 1 fingerprints (orange) score highest for small k, the MSM fingerprints (blue)
for large k.

and a nearest-neighbor based score. We found that the conventional clustering measures
did not recognize any protein-specific information in the fingerprints and therefore are
not meaningful for this validation. The £-NN score with £ > 330 ranks the MSM fin-
gerprints as more protein specific than the Dynasome 1 without SSI fingerprints, which
is consistent with the results in Ch. 4.4.1. We consider k£ > 330 a relevant regime of k
for the reasons stated above. For k& > 400, the k-NN score ranks the MSM fingerprints
even more protein specific than the Dynasome 1 fingerprints with SSI.

This agreement of the distance-based and the nearest-neighbor based analyses reinforces
us to conclude that our MSM fingerprints capture a similar amount of protein-specific
information compared to the preceding approach (Dynasome 1) containing SSI, and
capture more dynamics-based protein-specific information.

5 Outlook

In this chapter, we briefly discuss some implication of this work for future research on
the dynasome and on protein dynamics based function prediction. We also present some
preliminary results of recent follow-up work.
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5.1 Sampling

In Ch. 4.1, we identified that one 1 us MD trajectory does not cover all relevant protein
motions, especially for larger proteins. Based on our results, we suspect that insuffi-
cient sampling is a bottleneck for the protein specificity of MSM fingerprints. Hence
we discuss the implications of sampling on MSM fingerprints and how to address this
bottleneck here.

In the limit of infinitely long trajectories, the trajectory-specific noise dy,; vanishes.
Thereby, any set of fingerprints from different trajectories of the same protein converge
to the same point in fingerprint space, given that the fingerprint extraction method does
not introduce any additional noise d,e,. It is unclear how the noise decays to zero
here (monotonously, fast/slowly, ...), but in general, we expect that more data (i.e. more
simulation time) leads to less noise.

This convergence depends not only on how much simulation time is used but also on
how it is used (sampling strategy). One straightforward sampling strategy is to invest
all effort into computing one trajectory and make it as long as possible. This strategy
has the advantage of exploring many different regions of phase space, but the drawback
that sampling within these regions might be poor (if ergodicity is not reached). A com-
peting approach is to compute many short trajectories starting from the same structure.
This strategy enhances sampling in the starting region, but has the drawback of not
exploring distant phase space regions. These two strategies can be combined into a two
step simulation procedure: First, a semi-long trajectory is computed to explore different
regions of phase space. Second, starting from different regions in phase space, multiple
short trajectories are computed to enhance sampling within all regions previously ex-
plored. It is so far unclear which strategy serves best to construct MSM fingerprints that
capture much protein-specific information and little noise. Note that a poor sampling
strategy might limit the amount of information that can be gathered from a trajectory.
For example, if an enzyme can open and close its binding pocket and only very short
trajectories of the closed state are considered, no information about the open state and
the opening/closing motion is available. Fingerprints extracted from such trajectories
might very precisely describe dynamics within the closed state, but can not capture the
general dynamics of the protein.
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To increase the amount of sampling, the most straightforward way is to dedicate more
computation time to the MD simulations. Computation time is limited through being
costly though. Hence we aim to increase the amount of sampling generated without
increasing computation time, by employing an efficient enhanced sampling strategy.
Many different, sophisticated enhanced sampling strategies like replica exchange [82],
metadynamics [83] or generalized simulated annealing [84] are available, but there is no
comparative analysis on which works best to construct MSMs. Therefore, it is so far
unclear which would yield the best improvement in sampling for MSM fingerprints.

5.2 MSM Construction

In Ch. 2.1, we discussed different contributions to dynamics fingerprints (Eq. 1) and from
there on, neglected the difference between trajectory-specific noise dy,; and method-
specific noise dpein. In recent follow-up work to this study, we differentiated them and
found that both are important to consider. Here we discuss how the MSM construction
pipeline can be altered to reduce method-specific noise dein-

When our MSM fingerprint construction pipeline was applied to the same trajectory
multiple times, the resulting fingerprints still had a surprisingly large spread, although
not as large as for different trajectories (0uaj > Ometn > 0). We identified the random
initializations during k-means clustering as the source of that noise by using the same
initialization multiple times and observing the noise vanished.

These observations imply that an alternative MSM construction method, that is less
reliant on k-means, could yield dynamics fingerprints with an improved signal-to-noise
ratio. We consider several promising methods to improve MSM construction: Using a
Minimally-Coupled Subspaces Approach [85], the high-dimensional coordinate space is
decomposed into lower-dimensional subspaces (d < 15), minimizing correlations between
subspaces. K-means is then performed on these subspaces. We expect k-means to in-
troduce less noise this way.

Recently, deep learning methods were developed for MD data which can be used to con-
struct MSMs [86, 87|. A Variational Dynamics Encoder (VDE) utilizes a neural network
architecture based on VAEs (Ch. 3.11) to map an input trajectory onto a meaningful
reaction coordinate [87]. This mapping allows to perform k-means on a 1D representa-
tion. Again, we expect it to introduce less noise here.
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VAMPnets [86] are deep neural networks performing a dynamics-based clustering of MD
data. They utilize the variational approach for Markov processes (VAMP) [88, 89] and
map MD trajectory frames onto discrete states. Therefore, no other clustering algorithm
is needed within a VAMPnet MSM construction pipeline. Hence VAMPnets are a prom-
ising tool to obtain fingerprints with reduced noise.

Furthermore, k-means can be exchanged for another clustering algorithm (like Gaussian
Mixture Models or density-based methods) within the MSM construction pipeline used
here. However, results of a study by Husic and Pande [56] imply that a pipeline using
k-means (or Ward clustering) produces more reproducible MSMs compared with other
clustering methods.

5.3 Function-Specific Information

To investigate whether our dynamics fingerprints contain any function-specific inform-
ation, we split them into two groups — enzymes and non-enzymes — each containing
fingerprints of 100 proteins. Then, an analysis similar to the distance-based analysis for
protein specificity (Ch. 3.12.1) was conducted: We examined, whether distances between
fingerprints of enzyme-enzyme and non-enzyme-non-enzyme pairs are shorter than dis-
tances between enzyme-non-enzyme pairs, on average. For the MSM fingerprints, this
was not the case. For the Dynasome 1 with and without SSI it was, intra-group distances
were shorter by factors of 0,996 + 0,002 and 0,9973 4+ 0,0011, respectively. These factors
reveal that differences between function groups are small compared to those between
proteins (Tab. 4), as well as in absolute value (< 1%). We aim to further develop
dynamics fingerprints in future work to increase the amount of protein- and function-
specific information gathered.
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6 Appendix

List A: PDB [37] codes of the proteins selected for this work.

11AS
1BFD
1CQY
1EO9
1GC7
1139
1IUR
1JW3
IMIL
INYN
IPBY
1QAU
IRLH
1S3A
1TLB
1UDG
V70
1WB7
IWHK
1WQ4
1X08
1YWU
9PTH

1A3H
1BGW
1DDG
1EPO
1GHY
116A
1IZM
1K0S
IMW?7
100W
1PNO
1QAZ
1RLK
184K
1TLQ
1UG2
1VIK
1WES
IWHR
IWWR
1XQO
1758
AMAT

1ATO
1BHD
1DJO
1EVL
1GHH
1TLW
1J22
1K3C
1IMZG
1099
1POZ
1QPM
1RWC
1S7E
1TM9
1UJ8
VOV
IWEK
1WHZ
1X7F
1XVI
2AHC

1304
1BS2
IDTW
1F17
1GSO
1IMF
1JBI
1K6K
1N2J
10AG
1PU1
1QQH
1RYK
1SGV
1TSF
1UK3
1VAJ
IWET
1WIX
1X9B
1XWM
9BES

1B5U
1BSG
1DVG
1FAS
1H3L
1IMT
1JHF
1KSK
IN6Z
10U0
1PV5
1QW2
IRYU
1SNO
1U24
1UNE
1VCL
IWFW
1WIZ
1XD3
1YB3
2F21

1B75
1C3G
1E6Z
1FM7
1H8H
1IMU
1JI8
1KPT
INIJ
1P74
1PVE
1ROD
1RZW
1SRV
1U56
1USG
1VDH
1WFY
1WJ5
1XDN
1YEL
2FFM

1B79
1C3P
1EHE
1FQN
1HDS
1IRX
1JPU
1LB6
INKG
1P7A
1PVS
1R6U
152J
1SU6
1U5U
1UWO
1VK5
IWGF
1IWJW
1XHS
1YEZ
2HBB

1B7Y
1CD5
1ENH
1G2R
1HZG
1TV
1JR2
1LBV
INO5
1P99
1PVT
1RKI
1520
1T3B
1U61
1VOF
1VMG
1WHB
1WN9
1XJH
1YGY
2MOB

1BA3
1CEQ
1EO0
1G6L
1127
1TUH
1JRM
ILFP
INPR
1PB6
1Q60
1RL6
1835
1TIN
1U84
V7L
1VQZ
IWHC
IWOT
1XN8
1YS9
2PGI
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