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Abstract

Gradients in free energy are the driving forces of thermodynamic systems.
Knowledge thereof thus enables a �rst-principles understanding of condensed-phase
many-body systems such as macromolecular assemblies, colloids or imperfect crys-
tals, and allows quantitative descriptions of associated processes including, for in-
stance, molecular recognition or drug binding. To predict free energy di�erences
computationally with high accuracy, state-of-the-art methods based on atomistic
Hamiltonians use �alchemical transformations�. For these, sampling is not only
conducted in the two states of interest, but also in intermediate states that bridge
con�guration space. These intermediates are typically de�ned as a linear interpo-
lation of the end state Hamiltonians. The term `alchemical' refers to the fact that,
in some cases, di�ering atoms are thereby transformed from one type into another.

However, linear interpolations are still a very special case amongst all possible
functional forms, and it is likely that alternative ones yield more accurate pre-
dictions. Hence, in this thesis, all possible functional forms were considered. For
di�erent schemes to calculate free energy di�erences, and under the assumption
of independent sampling, intermediate states yielding predictions with optimal ac-
curacy � the Variationally derived Intermediates (VI) � were derived. These
di�er substantially from established linear intermediates. Furthermore, as the VI
derivation holds for any number of intermediate states and almost any number of
sample points, it enables the generalization of several past analytical results de-
rived under more restrictive assumptions. In the next step, the accuracy of VI was
assessed: For a Lennard-Jones gas transformation, almost ten times less sampling
was required for VI to achieve the same accuracy as for linear intermediates. For
converting charges of molecular systems in solution, the accuracy improved by ap-
proximately a factor of two, whereas the VI calculation of solvation free energy
di�erences yielded accuracies similar to the ones from established methods. In
the latter case, limiting factors and targets for future methodological improvement
were identi�ed.
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1
Introduction

Thermodynamic systems strive towards a state of minimal free energy. As such, the
free energy � as well as changes therein � is a central quantity for understand-
ing and predicting a wide variety of phenomena in solid state, soft matter and
biophysics [1�7], and, in extension, useful to a range of biomedical applications
[8�11] or material design [12�15]. For example, predicting the folded structure of
a protein requires �nding its free energy minimum. These predictions remain a
long-standing problem in biology and would help address, e.g., neurodegenerative
diseases caused by misfolding and subsequent protein aggregation [16�18].

Along similar lines, free energy di�erences determine how strongly and in which
likely conformation a (potential) ligand binds to a protein [19, 20], thereby enacting
signaling paths which comprise the communication between cells. In pathological
cases, knowledge thereof aids the design of ligand-based drugs, which, for example,
modulate the actions of a receptor [11, 21]. Furthermore, the rate at which, e.g.,
a ligand reversibly interchanges between a bound and an unbound state is directly
related to the energetic barriers separating the two states [22, 23]. In addition, the
di�erence in solvation free energy, which will also be addressed in this thesis, is
related to the partition coe�cient of a solute between organic and aqueous solu-
tions. These coe�cients provide a measure of hydrophobicity, thereby indicating
the ability of, e.g., a drug candidate to permeate through a cellular lipid membrane
[24, 25] and reach its target.

Di�erences in free energies can directly or indirectly be inferred from exper-
iments. For example, binding free energies are obtained via isothermal titration
calorimetry [26, 27] by measuring the heat exchange during the binding process.
Free energy di�erences between protein conformations are inferred from the relative
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Chapter 1

amount that they are encountered in, e.g., solution state nuclear magnetic reso-
nance (NMR) [28, 29]. Furthermore, optical tweezers [30, 31] and single-molecule
atomic force microscopy (AFM) [32�34] experiments deduce folding free energies
from the work required to pull a protein from a folded to an unfolded state. Parti-
tion coe�cients are determined, among other techniques, using high performance
liquid chromatography (HPLC) [35�37] or UV-Vis Spectroscopy [38].

However, obtaining such information for a large variety of molecules, as, e.g.,
routinely required in �hit to lead� and �lead optimization� stages of drug develop-
ment processes, is very costly due to the complexity of synthesizing a large number
of di�erent compounds. Hence, there is a large interest in accurate computational
predictions. In addition, some of the employed models and techniques give further
mechanistic insights at a molecular level that are inaccessible via experiments due
to temporal and spacial resolution limits.

Computational approaches to predict free energies can broadly be divided in
�data driven� and ��rst principles� approaches. The former category includes, e.g.,
statistical inference, machine learning (ML) and arti�cial intelligence (AI) meth-
ods. These approaches identify correlations in an underlying training data set and
extract the most relevant features for accurate predictions. Examples include es-
timating binding a�nities based on structural elements [39, 40] or using neural
networks for predicting partition coe�cients depending on the atomic or amino
acid composition of a protein [41, 42]. The main advantage of these approaches
is their relatively small computational e�ort once properly trained. Their main
disadvantage is their need for large training data sets, as well as their inability to
correctly predict free energies for molecules that lack resemblance to those in the
training set. On an interesting side note, one of the major models that describes
the perceptual processes of a neuronal net and the brain � that underly some of
the above data driven methods � also follows a �free energy principle� [43�46].
Whereas this principle does not refer to the minimization of an actual physical
energy, it is based on the same probabilistic framework and constructs from statis-
tical physics as the ones used in this thesis.

In contrast, �rst principles approaches are based on physically motivated mod-
els. For example, docking methods �t a compound to a target by minimizing
interaction energies using force �elds that have been developed using either ex-
perimental measurements [47, 48] or ab initio calculations [49, 50]. In the latter
case, conceptually, these models are derived solely from theory and do not require
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Introduction

any experimental data to make predictions for novel compounds. However, whereas
docking methods mainly rely on optimizing the enthalpic contributions, the free en-
ergy additionally depends on entropic e�ects. As such, sampling based approaches,
such as Monte Carlo (MC) or Molecular Dynamics (MD) simulations, can be used,
where the latter integrates the classical equations of motion while representing the
system on an atomistic basis. Generally, the methodology depends on the system
scale and required level of detail. For larger systems, coarse-grained simulations
[51, 52] that approximate several atoms or chemical groups as one particle can
be used to analyze the free energies of, e.g., RNA folding [53]. In contrast, on a
smaller scale where quantum mechanical (QM) e�ects cannot be solely approxi-
mated through force �elds anymore, sampling with ab initio methods [54�56] is
used to study, e.g., the free energy landscape associated with reactive sites of an
enzyme [57]. Naturally, it can also be advantageous to combine data driven with
�rst principles approaches. For example, ML can be used to determine force �eld
parameters [58, 59]. Conversely, MD simulations can be used to generate data that
ML approaches are trained on and physical constraints can be incorporated into
ML methods [60].

MD simulations, which are used in this work for sampling, have become increas-
ingly popular and the ground work was recognized by the nobel prize in chemistry to
Martin Karplus, Michael Levitt and Arieh Warshel in 2013 [61�63]. The widespread
use of MD has been further supported by the increased availability of structures
[64, 65], as well as progress in computing power, especially for graphical process-
ing units (GPU) that are well suitable for the calculation of interaction forces
[66�68]. For MD based free energy calculations, the accuracy of their predictions
is in�uenced by two main factors: Firstly, and similar to most MD applications,
the quality of the force �elds [69, 70]. Secondly, and most relevant for this work,
the sampling approach. For instance, in the recent SAMPL6 blind challenge [71],
the participants were asked to calculate a range of binding free energies based on
their sampling approach of choice, but using only MD with force �eld parameters
that had been provided by the organizers. The outcome demonstrated that the free
energy predictions substantially di�er between the individual sampling approaches.

In terms of sampling, the challenge in making accurate predictions lies in the
fundamental characteristic of the free energy

F = −β−1 ln

(
1

h3

∫ ∞
−∞

∫ ∞
−∞

e−βH(x,p)dxdp

)
(1.1)
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Chapter 1

itself, where the thermodynamic beta is denoted by β = (kBT )−1, kB the Boltz-
mann constant, T the temperature and h the Planck constant. The positions and
momenta of all particles are denoted by x and p, respectively. A thermodynamic
system does not rest in a single micro state {x,p} the entire time, but instead is
constantly changing, and the probability of encountering each micro state decreases
exponentially with the Hamiltonian H(x,p), which is for the cases in this thesis
(i.e., absence of external potentials, zero center-of-mass movement and including
correction terms for changes in volume) the enthalpy of the system associated with
x and p. For example, a speci�c con�guration of an unbound ligand may be much
less favorable in enthalpy than a bound one, and as such, less likely. However, the
amount of unbound con�gurations � or, in continuum, the con�guration space
volume � is far greater in the �rst case. Therefore, the unbound state, considered
as the combination of all micro states that belong to this category, has a much
higher entropy. The free energy, expressed in macroscopic variables

F = H − TS , (1.2)

combines the contributions of enthalpy H and (temperature weighted) entropy S
and indicates which state is the more likely one (note that in a constant pressure
regime it is referred to as the Gibbs free energy and will be denoted as G, for
further de�nitions see section 2.1).

Consequently, determining the exact free energy requires considering all the-
oretically possible micro states, a number that is astronomically high for many
of the applications mentioned above, and is, therefore, not feasible for sampling
based in silico approaches. However, in almost all of these applications, it su�ces
to know only the free energy di�erence between various states, e.g., between a
molecule either in an aqueous or an organic solution. In contrast, knowledge of the
absolute free energies, such as the one in aqueous solution alone, is not required.
Fortunately, as outlined below, estimates of these di�erences can often be obtained
much more e�ciently, and therefore more accurately, than of the absolute ones.

For sampling based approaches, some of the underlying principles can be illus-
trated by using the analogy of a dart board, as shown in Fig. 1.1. The task consists
of obtaining the di�erence in area between two forms, such as a pentagon and a
hexagon (blue and red, respectively), representing, for example, the con�guration
space volumes of two di�erent ligands. Sampling is conducted by a beginner player
randomly throwing darts onto a board (grey circle), leaving the green holes behind.
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Introduction

Figure 1.1: �Dart board sampling�. The (di�erence in) area between two forms
(blue, red) is determined by throwing darts at random onto a board (grey circle).
The green dots indicate the resulting holes. (a) Separate sampling. (b) Simultane-
ous sampling, assuming the forms can be taken o� the board to count the holes in
each one of them in the end. (c) Importance sampling, i.e., sampling only within
regions relevant to the di�erences. (d) Unequal sampling, which is undesired. The
dart player has lost the ability to sample the entire board, but instead only throws
at the upper right area.

The area is obtained as a fraction of the circle by counting the number of holes
inside the respective shape compared to the overall number of holes. The accuracy
of this approach can be evaluated by comparing how much an estimate based on,
e.g., one hundred holes deviates on average from the exact area.

Several approaches to obtain the di�erence in area can be distinguished. To
start with, the area of each shape can be determined separately (panel a), and
subtraction yields the di�erence. Assuming that it takes much more time to throw
the darts compared to counting the resulting holes inside the two sheets pinned
to the board, e�ciency can be gained by throwing the darts onto both forms at
once (panel b). For atomistic simulations, the same principle applies, as it is much
more di�cult to obtain statistically uncorrelated samples compared to evaluating
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the energies of these under di�erent conditions. Furthermore, e�ciency can be
gained through importance sampling: In this case, by directing the samples to re-
gions most relevant for the di�erence (panel c). The concept of intermediate states,
which will be introduced below, falls into this category. Lastly, complications arise
if samples are not distributed equally over the dart board (panel d), representing,
e.g., the complication of an MD simulation to exit a local energy minimum. Even if
the increased probability to obtain samples in the upper right corner of the shapes
is accounted for in post processing, the result would be more accurate if the sample
points were more evenly distributed. Naturally, the dart board analogy is simpli-
�ed in a number of ways. One of them is that samples can only have values of zero
(outside) and one (inside), whereas the (Boltzmann weighted) Hamiltonians can
reach a large range of values.

In analogy to the overlapping shapes in the dart board example, calculating the
di�erences in free energy becomes more accurate the more similar the con�gura-
tion space densities of the considered states are. As such, whereas, e.g., the binding
free energy is also only a di�erence between a bound and an unbound ligand, the
entirely di�erent con�gurations still make it a di�cult task. It became possible
in the recent decade to calculate binding free energies with an accuracy of below
1 kcal/mol [72�75], however, considerable computing power is still required. Their
advantage is that they represent a criterion similar to a scoring function, which can
be used for data base screening. However, it is often su�cient to know only which
out of two or several ligands binds more favorably, i.e., calculating only relative
binding energies (therefore, technically, the di�erence of a di�erence).

This case is an example in which thermodynamic cycles can be used, as are
illustrated in Fig. 1.2. Here, the horizontal arrows indicate the two absolute bind-
ing free energies, ∆GAbind and ∆GBbind of ligands A and B, respectively. These are,
however, not calculated directly. Instead, due to the higher similarity in con�gu-
ration space density, a higher accuracy is achieved by calculating the di�erences
along the vertical arrows [10, 76], i.e., between the two receptor bound ligands,
∆GABreceptor, as well as between the unbound states, where the latter is identical to
the di�erence in solvation free energy ∆GABsolv. Using the fact that the free energy
is a thermodynamic state function and that the di�erences along the entire cycle
sum up to zero, the relative binding free energy ∆∆Gbind is obtained.

Furthermore, when comparing two ligands in solution as required for ∆GABsolv,
the con�guration space densities may still not be similar enough. The accuracy can
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Figure 1.2: Thermodynamic cycle to calculate relative binding free energies. Two
ligands A and B are depicted by a red triangle and a blue square, respectively, that
bind to a receptor (grey). Instead of calculating the binding free energies of A and B
directly (horizontal green arrows), for reasons of accuracy the di�erences between
the two ligands in the bound state and in the unbound states are determined
(vertical arrows), where the latter corresponds to the di�erence in solvation free
energy. As the energies in the circle sum up to zero, the vertical calculations also
yield the relative binding free energy, and thereby the desired information as to
which ligand binds more favorably.

be further improved through bridge sampling [77, 78], a speci�c form of importance
sampling that is illustrated in Fig. 1.1(c). Rather than comparing the states of
interest directly, sampling is conducted in intermediate states that are de�ned as
a function of the Hamiltonians HA(x,p) and HB(x,p) that de�ne the ligands A
and B. Most commonly, these are interpolated linearly

Hλ(x,p) = (1− λ)HA(x,p) + λHB(x,p) , (1.3)

where λ denotes the path variable. For the example of di�ering geometric
shapes, Fig. 1.3(a) illustrates how the forms of the end states A and B are not
compared directly, but rather through a morphing sequence of stepwise changing
ones. From the pairwise di�erences between neighboring shapes, the overall dif-
ference is obtained. For two Hamiltonians consisting of harmonic potentials with

7
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Figure 1.3: Alchemical transformations. To calculate the, e.g., solvation free
energy di�erence between two ligands indicated by the dashed box in Fig. 1.2,
intermediate states are used. (a) Geometric illustration of how the shapes gradually
change between the red and blue ones that the di�erences is to be calculated of.
The green arrows indicate that the di�erences are calculated between neighboring
shapes. (b) Linear interpolation series of intermediate Hamiltonians (transparent
lines) between two harmonic potentials with di�erent rest length xA0 and xB0 , as
well as di�erent spring constants. (c) Chemical bonds between two atoms, where
the type of the right one di�ers between, e.g., the two ligands of interest. As a
consequence, the rest length changes (shown exaggeratedly). For an intermediate
state, the linearly interpolated Hamiltonian can be interpreted as simulating with
an atom type (grey) with a rest length between xA0 and xB0 .
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minima at xA0 and xB0 , shown in Fig. 1.3(b), the Hamiltonians determined through
the linear interpolation scheme (transparent colors), Eq. 1.3, govern the interme-
diate states.

The use of such a morphing sequence or path is referred to as alchemical trans-
formation. The term �alchemical� re�ects the fact that if a number of atoms di�er
between A and B, then these atoms are transformed into one another, thereby
realizing the proverbial alchemical dream of transforming matter. Hence, also the
thermodynamic cycle shown in Fig. 1.2 is sometimes referred to as an alchemical
cycle. As an example, the interpolated Hamiltonian shown in Fig. 1.3(b) also has
the form of a harmonic potential. Therefore, for a bond where one of the two
atoms changes its type, as illustrated by the red and blue colors in Fig. 1.3(c),
the intermediate state can be interpreted as an atom type (grey) with a bond
rest length between the one belonging to the end states. Even though such inter-
mediate atom types do not exist in physical reality, the information gained from
sampling in these intermediate states considerably improves the accuracy of the
free energy estimates. In case the ligands di�er by entire chemical groups with,
e.g., ligand A having a larger number of atoms than ligand B, then excess atoms
are transformed into �ghost� particles with an identical mass, but zero interaction
energies in B to ensure equal dimensionality of x between A and B. These will
be referred to as �vanishing particles�, and the process as �decoupling� in this thesis.

Two types of approaches can be distinguished to calculate free energy di�er-
ences along such an alchemical transformation: Firstly, for equilibrium sampling,
simulations are conducted at discrete steps of the path variable λ on time scales for
which, as the name implies, it can be assumed that samples are randomly drawn
from the con�guration space density corresponding to thermal equilibrium. Es-
timators have been developed in the context of Free Energy Perturbation (FEP)
theory, such as the Zwanzig formula [79] or the Bennett Acceptance Ratio (BAR)
method [80], to evaluate the di�erence between adjacent intermediates. Secondly,
for non-equilibrium approaches, λ is continuously changed in each integration step
within a simulation, that is, therefore, out of equilibrium. Initially, this approach
built the basis of the slow-growth method [81�83], where λ is increased so slowly
that the system is nonetheless assumed to be close enough to equilibrium, such
that the required work to transform the system between A and B equals the free
energy di�erence. Later, Jarzynski [84] laid the theoretical foundations that re-
late these work values with the free energy di�erence � even arbitrarily far from
equilibrium � therefore also allowing to increase λ much faster. As a consequence,
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non-equilibrium approaches became more popular and widely used to calculate free
energy di�erences in various contexts [85�89]. A special case between the two types
of approaches is Thermodynamic Integration (TI) [90], which has been derived as-
suming continuous sampling along λ. However, sampling is nonetheless conducted
at equilibrium in a number of states similar to the ones used for FEP. The free
energy di�erence between adjacent states is then determined through numerical
integration over λ.

A number of alterations to the linear interpolation scheme, Eq. 1.3, have been
developed, with soft-core methods [91�96] being the most prominent ones. For
simulations of systems with vanishing particle, these will generally overlap with
other ones in one of the end states. When calculating the energy of such con-
�gurations at states where the particle is still interacting, divergences occur for
Lennard-Jones (LJ) and Coulomb interactions. Therefore, various λ-dependences
of HA(x,p, λ) and HB(x,p, λ) were constructed such that these divergences are
avoided. Further alternatives to Eq. 1.3 are the One-Step Perturbation (OSP) [97�
99] and Enveloping Distribution Sampling (EDS) [100�103] methods. These meth-
ods calculate the di�erence between several end states by simulating in a reference
potential that �envelopes� their con�guration space densities, i.e., that combines all
regions in con�guration space relevant to at least one of the end states. Further-
more, for TI, the Minimum Variance Path (MVP) [78, 104, 105] has been derived
that interpolates the con�guration state densities rather than the Hamiltonians
along λ.

A di�erent class of methods also alters the free energy landscape, but aims
at alleviating the frequent complication that not all relevant regions in con�gura-
tion space are su�ciently sampled, as also illustrated for the dart board example
in Fig. 1.1(d). These complications arise because the free energy landscapes of
biomolecules are generally rugged [106�109], and therefore energetic barriers are
not crossed at su�ciently high rates.

To address this problem, two types of methods can be distinguished: Firstly, for
a given state, biasing methods gradually raise the energy levels for con�gurations
that have already been sampled, thereby forcing the system to evolve into other
previously less sampled regions. Variants that rely on these principles are, for ex-
ample, conformational �ooding [110, 111], metadynamics [112�115] or accelerated
MD [116�119].
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Secondly, Replica Exchange (RE) methods conduct several simulations in par-
allel and switch con�gurations between these using a Metropolis criterion [120]
to sample di�erent regions of con�guration space. For Hamiltonian RE [121�124]
methods, these simulations are conducted in states such as the ones de�ned by
the linear and soft-core interpolation schemes, Eq. 1.3, with di�erent λ-values. RE
with solute tempering [125�127] further deforms the Hamiltonian as such that the
acceptance probability for the exchange of replica con�gurations is increased, yield-
ing an improved e�ciency. For Parallel Tempering [128�132] (the name being often
used synonymously to RE) simulations are conducted at di�erent temperatures of
the state of interest and above, thereby increasing the variety of con�gurations that
are exchanged.

In addition to determining free energy di�erences between two states, variants
of the above techniques can also be used to calculate the free energy along an
actual physical path, thereby providing information on barriers along this path.
For example, the linear alchemical path for calculating the free energy di�erence
between an ion located on the inside and the outside of a cellular membrane would
mean that the ion interactions on the inside would be gradually decoupled, while
oppositely, a decoupled particle on the outside would be transformed into an ion.
Whereas the alchemical path is likely to predict the free energy di�erence more
accurately than a physical one, it neither reveals the permeation rate nor the me-
chanics of the corresponding ion channel. The most intuitive approach to this
aim is free sampling, where the free energy di�erence is obtained based on spon-
taneous transitions of the system between the end states. However, especially for
high energetic barriers along the path, this approach may yield only poor statistics.

In this case, as an example of an equilibrium approach, Umbrella Sampling (US)
[133�135] is the method of choice. In the �rst step, a �nite number of points along
the physical path is selected, in this case through the ion channel. In the next
step, harmonic potentials are applied to restrain the sampling region around this
point. These �umbrella windows� have to be chosen such that the resulting con�g-
urational distributions have su�cient overlap. The free energy along the path is
then obtained via the Weighted Histogram Analysis Method (WHAM) [136�138]
that counts occurrences of con�gurations in bins and accounts for the umbrella
bias. Without binning (i.e., in the limit of zero-bin width), WHAM reduces to the
Multistate Bennett Acceptance Ratio (MBAR) method, a generalization of BAR
that is also used between alchemical states. WHAM and BAR can also be derived
from a unifying Bayesian approach [139].
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An example for a similar non-equilibrium approach along a physical path is
Steered Molecular Dynamics (SMD) [140�142], where either a constant force is ap-
plied to one or several atoms, or these atoms are moved with a constant velocity
while keeping track of the required force or work to do so. In this sense, SMD
mimics AFM experiments. Among other purposes, SMD can, in combination with
Jarzynski's theory [84], be used to create free energy pro�les [143, 144].

Lastly, in cases where such a path (or multiple ones) between two states are of
interest but unknown, transition path �nding methods are used. These generally
use an initial trial path that is varied to determine the optimum. For example,
chain-of-state methods, such as the Nudged Elastic Band [145�147] or the String
method [148�151] aim at �nding the minimum energy path. Other methods, such
as action-derived MD [152�154] are based on the principle of least action. Ex-
tensions, such as the Action Conformational Space Annealing method [155, 156],
penalize searches too close to the initial trial path to avoid identifying only the
closest local minimum.

This thesis focuses on the theory of alchemical transformations to determine
free energy di�erences. For these transformations, the most commonly used path
is the linear interpolation scheme between the end state Hamiltonians, Eq. 1.3, and
soft-core variants thereof. This path is illustrated by the straight arrow in Fig. 1.4.
However, the linear interpolation is only a very special case among all possible ways
to change HA(x,p) into HB(x,p), as indicated by the curved arrows. Only few
have so far been considered in the literature and, with the exception of the MVP,
have mostly been empirically constructed based on a trial and error optimization.

The present thesis therefore addresses the question: From all possible transfor-
mations, which sequence of intermediate states yields free energy estimates with
optimal accuracy?

Chapter 2 will give an introduction about the fundamentals of the free energy
methods relevant for this work, as well as the underlying principles of MD simula-
tions.

In chapter 3, for FEP and BAR, the sequence of intermediate states that yields
estimates of free energy di�erences with minimal mean squared error (MSE) will
be derived using variational calculus. These resulting states will be referred to
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Figure 1.4: Question of this thesis. Di�erent paths connecting the two end
state Hamiltonians, HA(x,p) and HB(x,p), are possible. Most commonly, a linear
interpolation is employed (straight upper grey arrow); however, alternative ones
(curved arrows below) are also possible. The grey bars denote discrete states labeled
by s that simulations are conducted in for alchemical equilibrium techniques. This
thesis addresses the question of the functional form fs de�ning the optimal sequence
of intermediate states.

as Variationally Derived Intermediates (VI) and compared against existing meth-
ods for one-dimensional test systems. A parallelizable approximation to the VI
sequence will be suggested and assessed through test systems of increasing com-
plexity, which consist of a 1-D potential, a LJ gas and the electrostatic decoupling
of butanol in solution.

In chapter 4, the derivation of a more e�cient variant of VI, correlated Varia-
tionally Derived Intermediates (cVI), will be developed and assessed. It considers
the common practice to increase e�ciency by using the same sample points from
an intermediate state to evaluate the di�erence to both adjacent ones. For this
practice, however, correlations arise between the step-wise free energy estimates
that had not been considered up to this point. The cVI sequence yields the opti-
mal MSE under these conditions.

The implementation of the approximated VI sequence suggested in chapter 3
into the Groningen Machine for Chemical Simulations (GROMACS) MD software
package [157�159] will be described in detail in chapter 5. In addition, the method
will be extended by an approach to avoid numerical instabilities for vanishing par-
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ticles. An assessment of its accuracy will be provided, as well as example cases
that describe the usage of the new functionalities for potential users.

For vanishing molecules in solution, the VI method developed in chapter 5
yielded accuracies that were similar to the ones of established methods, suggesting
that it does not represent the optimum in this context, yet. The underlying reasons
will be investigated in chapter 6. Furthermore, the VI method will be applied to
non-equilibrium applications, and its accuracy assessed.
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2
Theory and Methods

This chapter will lay out the underlying theory and extend upon the concepts
and methods from the introduction that a) will either be used in this thesis, b)
the derivations in the following chapters are based on, or c) are alternatives to
the linear interpolation scheme, which the VI method derived in this work will be
compared to. Furthermore, MD simulations, which will be predominantly used to
conduct sampling for atomistic systems, will be described.

2.1 De�nitions

Extensive descriptions of the statistical physics background and context of free en-
ergies can be found in numerous textbooks, such as the ones by Landau et al. [160]
and Nolting [161]. The essential de�nitions will be repeated here.

A canonical ensemble describes a system in contact with a thermal reservoir of
constant temperature T , where energy can be freely exchanged. It is assumed that
the reservoir is much larger than the system of interest such that the temperature
change of the reservoir due to the energy exchange is negligible. This assumption
is ful�lled for the cases of interest for this thesis, as, e.g., a single protein is much
smaller than the surrounding cell or organism.

A classical Hamiltonian system with n particles is considered. Assuming ther-
mal equilibrium with the heat bath, the probability p of a microstate, characterized
by the 3n dimensional canonical positions x and conjugate momenta p, is given by

p(x,p) =
1

h3 Z
e−βH(x,p) , (2.1)
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where h is the Planck constant, β = 1
kBT

the reciprocal temperature, kB the
Boltzmann constant andH(x,p) the Hamiltonian. The exponential term is referred
to as the Boltzmann factor. For indistinguishable particles, the prefactor reads as

1
n!h3n Z

. The partition function

Z =
1

h3

∫ ∞
−∞

∫ ∞
−∞

e−βH(x,p)dx dp (2.2)

serves as a normalization constant in Eq. 2.1. The term 1/h3 cancels in all deriva-
tions in this thesis. For ease of notation, it is therefore omitted in the remaining
parts of this work.

The free energy is de�ned via the partition function as

F = −β−1 lnZ , (2.3)

which, upon inserting Z, Eq. 2.2, yields Eq. 1.1 from the introduction.

Using macroscopic variables,

F = H − TS , (2.4)

where H denotes the enthalpy and S the entropy. For an NVT ensemble (i.e., a
system with �xed particle number, volume and temperature), F is referred to as
the Helmholtz free energy. In this case, the enthalpy reduces to the internal energy
H = U .

The Gibbs free energy corresponds to an NPT ensemble, and is generally de-
noted by G. Here, H = U + PV , where the additional term PV accounts for the
energy corresponding to a change in volume. Equations 2.2 and 2.3 also hold for
the Gibbs free energy, provided that the Hamiltonian HG(x,p) = H(x,p) + PV

is de�ned such that it includes the correction term. As most biophysical processes
and experiments are conducted at constant pressure and temperature, all further
de�nitions will be based on the Gibbs free energy, but can be applied similarly to
the Helmholtz free energy, too.

16



Theory and Methods

2.2 Equilibrium Sampling Approaches

Free Energy Perturbation

Free energy perturbation (FEP) refers to the methodology that rests on the Zwanzig
formula [79]. As the derivations in chapter 3 are largely based on this formula, it's
derivation and context will shortly be outlined below in this subsection. Impor-
tantly, note that in contrast to what the name �perturbation� suggests, the Zwanzig
formula is exact, and as such its derivation does not contain any approximations.
Instead, the name was based on the fact that, when it was �rst developed, the
Zwanzig formula provided the starting point for a perturbation approach leading
to alternative approximated variants thereof [79, 90]. However, for computational
free energy calculations, in the large majority of cases the exact form is used, yet
the name �perturbation� remains. Extensive descriptions on the background and
applications of the following methodology can be found in the reviews by Chipot
and Pohorille [1], Christ et al. [7] and Gapsys et al. [162] or in the best practice
guides by Shirts et al. [163] and Mey et al. [164].

For two states A and B, with the corresponding partition functions ZA and
ZB, respectively, the di�erence in the Gibbs free energy is, using Eq. 2.3,

∆G = −β−1 ln
ZB
ZA

. (2.5)

With the de�nition of the partition function, Eq. 2.2,

∆G = −β−1 ln

∫ ∞
−∞

∫ ∞
−∞

e−βHB(x,p) dxdp∫ ∞
−∞

∫ ∞
−∞

e−βHA(x,p) dxdp

(2.6)

= −β−1 ln

∫ ∞
−∞

∫ ∞
−∞

e−β[HB(x,p)−HA(x,p)]e−βHA(x,p) dxdp∫ ∞
−∞

∫ ∞
−∞

e−βHA(x,p) dxdp

(2.7)

= −β−1 ln

∫ ∞
−∞

∫ ∞
−∞

e−β[HB(x,p)−HA(x,p)] pA(x,p) dxdp (2.8)

= −β−1 ln
〈
e−β[HB(x,p)−HA(x,p)]

〉
A

, (2.9)

where 〈...〉A denotes the ensemble average ofA. Equation 2.9 is the Zwanzig formula
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[79]. The ensemble average can either be calculated analytically, or by sampling
in state A using an MC or MD based approach. In this thesis, the state that the
ensemble average is calculated of (i.e. A in Eq. 2.9) is referred to as the reference
state, whereas B is the target state.

In the following chapters, the Zwanzig formula, Eqs. 2.9, will be expressed only
as a function of H(x). The reason is based on the decomposition of H(x,p) =

T (p) + V (x), where T (p) denotes the kinetic energy contribution. As the kinetic
term only depends on particle momenta, it can be integrated out analytically. As
the individual masses do not change between A and B in all applications of the
following chapters, these contributions cancel out, and will therefore be omitted in
the above formalism. In cases where masses do change, the average kinetic energy
is still the same in A and B, due to the equipartition theorem and coupling to
the heat bath. However, as the temperature of the system within the heat bath is
�uctuating, the kinetic energy contributions to A and B do not generally cancel
out and, given the non-linearity of Eq. 2.9, still have to be considered. Therefore,
this chapter uses the more general formulation.

Along similar lines, the expectation value of other observables O(x,p) of B can
be calculated as

〈O(x,p)〉B =

〈
O(x,p) e−β[HB(x,p)−HA(x,p)]

〉
A〈

e−β[HB(x,p)−HA(x,p)]
〉
A

, (2.10)

i.e., based on an ensemble average in A.

As outlined in the introduction, a sequence ofN states, i.e., N−2 intermediates,
will be used to improve sampling accuracy. In this case, the total di�erence is
calculated as,

∆G =
N−1∑
s=1

∆Gs,s+1 (2.11)

= −β−1
N−1∑
s=1

ln
〈
e−β[Hs+1(x,p)−Hs(x,p)]

〉
s
, (2.12)

where ∆Gs,s+1 denotes the free energy di�erence between states s and s+ 1 with
s = 1 denoting state A and s = N denoting state B. Similarly, the di�erence
between A and B of any other ensemble based observable can be calculated by
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using Eq. 2.10 in a step-wise approach. Whereas the terminology is sometimes
used ambivalently, in the context of this thesis FEP refers to using the Zwanzig
formula in multiple steps.

Paths and Sequences

This thesis distinguishes between alchemical paths and sequences. The �rst refers
to a (continuous) transformation of the Hamiltonians along a path variable λ, such
as the linear interpolation scheme, Hλ(x,p) = (1 − λ)HA(x,p) + λHB(x,p), de-
scribed in the introduction.

For FEP and other equilibrium techniques, sampling is conducted in a series
of N states governed by the Hamiltonians H1(x,p), ...,HN (x,p). Such a series of
states will be referred to as a sequence. In practice, these Hamiltonians are almost
exclusively characterized by a set of λ points {λ1, ..., λN} (with λ1 = 0 and λN = 1)
along a path, and usually along the linearly interpolated one. The choice of the
intermediate λ points has been the subject to a number of optimization approaches
[6, 165].

This thesis distinguishes between path and sequence, as for the latter one, any
de�nition of intermediate Hamiltonians can be used without assuming a path a

priori. In chapter 3, it will be shown that, in fact, the sequence yielding the
optimal MSE � the VI sequence � is such a case and, in its exact form, does not
require any choice of a path variable.

Bennett Acceptance Ratio Method

In the limit of an in�nite number of sample points, the Zwanzig formula, Eq. 2.9,
yields the exact result no matter if using A or B as the reference state that sam-
pling is conducted in. However, for �nite sampling, the convergence properties of
both variants generally di�er. Except for a number of special cases, the free energy
estimates improve if the information from samples in both states are used. The
main estimator for this purpose is the Bennett Acceptance Ratio (BAR) method.
It will be extensively used throughout this thesis and chapter 3 will provide an
alternative derivation and generalization thereof. BAR will therefore be brie�y
described below.

Bennett started by expanding the de�nition of the di�erence in free energy
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∆G = −β−1 ln
ZB
ZA

(2.13)

= −β−1 ln

ZB

∫ ∞
−∞

∫ ∞
−∞

w[HA(x,p), HB(x,p)] e−HA(x,p)−HB(x,p) dxdp

ZA

∫ ∞
−∞

∫ ∞
−∞

w[HA(x,p), HB(x,p)] e−HA(x,p)−HB(x,p) dxdp

(2.14)

= β−1 ln

〈
w[HA(x,p), HB(x,p)] e−HA(x,p)

〉
B〈

w[HA(x,p), HB(x,p)] e−HB(x,p)
〉
A

(2.15)

by an arbitrary weighting function w. Optimizing w such that the estimates in the
free energy di�erence yield the smallest variance leads to the BAR method

∆G = β−1 ln

〈
f [β(HA(x,p)−HB(x,p) + C)]

〉
B〈

f [β(HB(x,p)−HA(x,p)− C)]
〉
A

+ C , (2.16)

where f(x) = 1/(1 + exp(x)) is the Fermi function, and the variance of the free
energy estimate minimal if

C = −β−1 ln

(
ZB nA
ZA nB

)
(2.17)

= ∆G− β−1 ln

(
nA
nB

)
. (2.18)

The numbers nA and nB denote the number of independent sample points in states
A and B, respectively. Due to the dependence of C on ∆G, equation 2.16 is
an implicit problem. It is solved iteratively by using an initial guess for C, and
then updating C by using Eqs. 2.16 and 2.18 until convergence. Equivalently, the
equation

nA∑
i=1

f
(
β[HA(xi,pi)−HB(xi,pi) + C]

)
=

nB∑
j=1

f
(
β[HA(xj ,pj)−HB(xj ,pj)− C]

)
,

(2.19)

where i and j label the samples obtained from state A and B, respectively, can
be solved numerically for C. The di�erence ∆G is then subsequently calculated
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through Eq. 2.18.

When using N > 2 states as in Eq. 2.12, given a sample point xi,pi from state
s, it is not only possible to calculate the Hamiltonians Hs(xi,pi) and Hs+1(xi,pi)

of the states s and s + 1, but instead of all states s = 1, ..., N . The estimator �
the multistate Bennett Acceptance Ratio (MBAR) [166] method � uses this infor-
mation and was developed based on a related extended bridge sampling technique
[167]. The free energies {Gs} of all states s,

Gs = − ln

N∑
t=1

nt∑
i=1

e−βHs(x
t
i,p

t
i)

N∑
k=1

nk e
Gk−βHk(xti,p

t
i)

, (2.20)

are calculated with respect to an unkown constant, where s, t and k are labels
for states, and xti and pti denote the i

th positions and momenta, respectively, from
state t. The integer numbers nk and nt denote the total number of sample points
from the state indicated by the subscript. Once all {Gs} have been determined,
the di�erences are obtained by, e.g., subtracting G1 from all {Gs}, yielding the
desired free energy di�erence between the end states through GN −G1. Again, the
set of equations 2.20 is an implicit problem, and is solved iteratively.

Thermodynamic Integration

The most prominent equilibrium method next to FEP is Thermodynamic Integra-
tion (TI). It provides the basis of the minimum variance path (MVP) that will
be described in the next section and used as a comparison to the VI sequence in
chapter 3.
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If the path is di�erentiable with respect to λ between 0 and 1, then

∂G

∂λ
= −β−1 ∂

∂λ
ln

∫ ∞
−∞

∫ ∞
−∞

e−βH(x,p,λ)dxdp (2.21)

=

∫ ∞
−∞

∫ ∞
−∞

e−βH(x,p,λ)∂H(x,p, λ)

∂λ
dxdp∫ ∞

−∞

∫ ∞
−∞

e−βH(x,p,λ)dx dp

(2.22)

=

〈
∂H(x, λ)

∂λ

〉
λ

(2.23)

⇒ ∆G =

∫ 1

0

〈
∂H(x,p, λ)

∂λ

〉
λ

dλ , (2.24)

where Eq. 2.24 is referred to as Thermodynamic Integration (TI) [90]. Note
that TI is derived based on an equilibrium average for each λ, while integrating
continuously along λ. In practice, sampling is therefore also conducted at discrete
steps in equilibrium, while Eq. 2.24 is calculated via numerical integration using,
e.g., the Simpson or the trapezoid rule.

2.3 Soft-core Interactions and other Choices of Inter-

mediate States

All methods mentioned above contain evaluations of a sample that was generated
in a reference state s with a Hamiltonian of a di�erent target state, e.g., s+1. Fur-
thermore, for the common linear interpolation scheme, to determine Hs+1(x,p),
both HA(x,p) and HB(x,p) need to be calculated. In the following it is assumed
that the system contains vanishing particles, as illustrated in Fig. 2.1 on the ex-
ample of calculating solvation free energies. Therefore, particles coupled through
regular LJ interactions in B are represented as decoupled �ghost� particles in A

with zero interaction energies.

The linearly interpolated intermediates of such a vanishing LJ particle are
shown in Fig. 2.2(a). When sampling is conducted in A, represented by the �at
blue line, these �ghost� particles will overlap with other ones. In these cases, com-
plications will arise if such a con�guration from A would be evaluated at HB(x,p)

(red line), due to the divergence at r = 0 of the LJ term that accounts for the Pauli
repulsion. Furthermore, when decoupling a charged atom or particle, these com-
plications would be enhanced in intermediate states closer to A in the sequence, if
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Figure 2.1: End states for calculating the solvation free energy di�erence through
decoupling LJ interactions. (a) Decoupled state, representing the state where the
solute has been removed from water. The solute does not interact with its sur-
rounding, therefore it overlaps with some water molecules. (b) Coupled state: The
solute interacts regularly with water. Image courtesy Dr. Vytautas Gapsys.

a remaining attractive electrostatic interaction was strong enough to overcome the
weak Pauli repulsion down to small center-center separations that could otherwise
not occur.

To avoid the problem for electrostatic interactions, these can be decoupled
separately in a �rst step while using full LJ interactions, which are decoupled in
the second step [168, 169]. More importantly, soft-core potentials [91, 92] can be
used by replacing the divergence at r = 0 with a �nite maximum, high enough such
that it will never be visited for state B, but becoming low enough such that it will
be visited for intermediate states. To this aim, a λ dependence of the end states is
introduced, such that the intermediate Hamiltonians are calculated as

Hλ(x,p) = (1− λ)HA(x,p, λ) + λHB(x,p, λ) . (2.25)

In the LJ potential

V LJ(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

, (2.26)

where σij and εij denote the LJ parameter, the distance rij between two atoms i
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Figure 2.2: Intermediate interaction energies at distance r of a vanishing par-
ticle without and with soft-core (SC) treatment. In state B (red line), it is fully
interacting through a LJ potential. In contrast, in A (blue line), the interaction
energy is zero at all r. The lines in between indicate the intermediate Hamiltonians
obtained through (a) the linear interpolation scheme, Eq. 1.3, and (b) the soft-core
variant thereof, i.e., Eq. 2.25.

and j is replaced by two altered radii

rA(rij , λ) =
(
ασcAλ

b + rcij
) 1
c , (2.27)

rB(rij , λ) =
(
ασcB(1− λ)b + rcij

) 1
c , (2.28)

for each end state. Here, α, b and c are dimensionless soft-core parameters, and
σA and σB the LJ parameters in the end states A and B, respectively. As can be
seen, both rA and rB are �nite at rij = 0, for all intermediate λ points, thereby
avoiding divergences. The resulting Hamiltonians for a sequence of equally spaced
λ values are shown in Fig. 2.2(b). The correct end states without alteration are
reproduced at λ = 0 for A, and λ = 1 for B. The intermediate form without
soft-core is obtained for α = 0.

In the form by Steinbrecher et al. [93], Eq. 2.25 was further generalized by re-
placing the prefactors with (1−λ)a and λa, where a is another soft-core parameter.
However, to date a = 1, α = 0.5, b = 1 or 2, and c = 6 are considered optimal
[164, 170, 171] and also used in this thesis, such that the generalization by a did
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not reveal any signi�cant improvements, yet.

For σA = 0 and σB = σij , as well as εA = 0 and εB = εij , as in the example
above, the LJ interactions in the intermediate state are calculated as

V LJ
λ (rij) = (1− λ)V LJ(rA(rij)) + λV LJ(rB(rij)) (2.29)

= 4λ εij

([
α(1− λ)b +

(
rij
σij

)c ]− 12
c

−
[
α(1− λ)b +

(
rij
σij

)c ]− 6
c

)
.

(2.30)

This form is the one most commonly found in the literature, whereas Eqs. 2.27 and
2.28 present the more general one.

If the decoupling of LJ and Coulomb interactions should be conducted simul-
taneously, then the soft-core approach can be extended to Coulomb interactions
as well. In this case, these are also calculated based on the modi�ed distances
rA(rij , λ) and rB(rij , λ). Assuming again that A represents the decoupled state,
where the charges do not to interact with their surrounding, the interaction is
calculated along λ as

V coul
λ (rij) =

qi qj

4πε0εr

[
α(1− λ)b + rcij

] 1
c

, (2.31)

where qi and qj denote the charges in the coupled state, and ε0 and εr the vacuum
and relative permittivity, respectively.

Soft-core potentials will be used to calculate solvation free energies in chap-
ter 3 and 5. In addition, an approach similar in principle will be devised and
implemented in chapter 5.

Minimum Variance Path

The soft-core variant, Eq. 2.25 o�ers more �exibility in devising an alchemical path
through regulating the λ dependence of the end states than the regular linear inter-
polation path, Eq. 1.3. However, it still represents only a very special case among
all possible ones. The most relevant one for this work � the Minimum Variance
Path (MVP) � was derived by Blondel [104] and will emerge as a limiting case
of the VI sequence derived in chapter 3. States from the MVP will be used for a
comparison in accuracy. Its derivation is therefore shortly outlined below.
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Blondel aimed at minimizing the variance of the free energy estimates,∫ 1

0

〈(
∂Hλ(x,p)

∂λ

)2

−
〈
∂Hλ(x,p)

∂λ

〉2

λ

〉
λ

dλ (2.32)

=

∫ 1

0

〈(
∂Hλ(x,p)

∂λ

)2〉
λ

dλ−
∫ 1

0

〈
∂Hλ(x,p)

∂λ

〉2

λ

dλ (2.33)

for TI. In the next step, he used the translation invariance: At each λ point, a
bias function B(λ), which is constant across con�guration space, can be added to
the Hamiltonian

H ′λ(x,p) = Hλ(x,p) + B(λ) . (2.34)

The derivatives of the bias function will cancel out in Eq. 2.32 but can be designed
such that the second term for the altered Hamiltonian,〈

∂H ′λ(x,p)

∂λ

〉
λ

= 0 , (2.35)

thereby simplifying the derivation. Next, considering the �rst term in Eq. 2.33,∫ 1

0

〈(
∂H ′λ(x,p)

∂λ

)2〉
λ

dλ (2.36)

=

∫ 1

0

∫ ∞
−∞

∫ ∞
−∞

(
∂H ′λ(x,p)

∂λ

)2

e−βH
′
λ(x,p)dxdpdλ (2.37)

=

∫ ∞
−∞

∫ ∞
−∞

∫ 1

0

(
∂H ′λ(x,p)

∂λ
e−β

H′λ(x,p)

2

)2

dλ dx dp , (2.38)

where, in the last step, Blondel assumed that the integrals converge to a �nite value
and can therefore be exchanged. Furthermore, for any point,∫ 1

0

∂H ′λ(x,p)

∂λ
e−β

H′λ(x,p)

2 dλ = −2β−1
(
e−

β
2
HA(x,p) + e−

β
2
HB(x,p)

)
(2.39)

:= C . (2.40)

Hence, in the next step, the inner integral in Eq. 2.38 of the form∫ 1

0
f(λ)2dλ (2.41)
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can be minimized by setting

f(λ) = C ⇒
∫ 1

0
f(λ)dλ = C (2.42)

as for any other function∫ 1

0
g(λ)2dλ = C2 +

∫ 1

0
[g(λ)− C]2dλ > C2 . (2.43)

Blondel now obtained Hλ(x,p) by integrating Eq. 2.39 from 0 to λ,

−2β−1
(
e−

β
2
H′λ(x,p) − e−

β
2
HA(x,p)

)
= −λ2β−1

(
e−

β
2
HB(x,p) − e−

β
2
HA(x,p)

)
(2.44)

yielding the Hamiltonian

Hλ(x,p) = −2β−1 ln
(

(1− λ)e−
β
2
HA(x,p) + λe−

β
2
HB(x,p)

)
+ λ∆Ĝ2 , (2.45)

where the last term was added to transform from H ′λ(x,p) to H(x,p) again, which
was required for Eq. 2.35. Therefore, the minimum variance path (MVP) is optimal
if ∆Ĝ ≈ ∆G.

Later, Pham and Shirts [105] also derived this path by adapting a result from
Gelman and Meng [78]. Furthermore, they established that Eq. 2.45 yields the op-
timal variance for high con�guration space overlap between the end states, whereas
in the low overlap case, the prefactors cos(λπ2 ) and sin(λπ2 ) are preferred instead
of (1− λ) and λ.

Note that these paths di�er only for continuous and equal sampling along λ.
However, when using discrete states, as general practice for TI, any pair of prefac-
tors ζ1 and ζ2 can be rescaled by the factor r = 1/(ζ1 + ζ2) such that rζ1 + rζ2 = 1.
The term ln(r) will appear as an additive constant in Eq. 2.45, and therefore will
drop out for all intermediates when calculating the step-wise free energy di�erence
between the end states. Therefore, rede�ning λ := rζ2 ⇒ (1−λ) = rζ1 leads to the
original form of Eq. 2.45. As such, for discrete states, any set of λ steps along the
path designed for the low overlap case yields, on average, equivalent total estimates
as another set of steps in the high overlap variant.
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Enveloping Distribution Sampling

Other alternatives to Eq. 2.25 are the One-Step Perturbation (OSP) [97�99] and
the Enveloping Distribution Sampling (EDS) [100, 101] class of methods. These are
designed to calculate free energy di�erences from a single simulation by constructing
a reference potential that �envelopes�, i.e., combines all con�guration space regions
relevant to one or more end states. For example, in one application, OSP [99] was
applied to compare di�erent rigid ligands to an estrogen receptor. The reference
state was designed by using a �ghost� particle at the positions were the atoms di�er
between the ligands. For EDS, the con�guration space density of the reference state
is constructed by summing over the ones from the Ni end states

e−βsHref (x,p) =

Ni∑
i=1

e−βs(Hi(x,p)−Ei) , (2.46)

where s and Ei, for i = 1, ..., Ni, are adjustable parameters. The Zwanzig formula
[79], Eq. 2.9, is used to calculate the free energy di�erence between the reference
state and each end state.

If the con�guration space regions of all end states were disjunct, equal sampling
would, assuming uncorrelated sample points, be conducted in these regions if Ei =

Gi. However, in other cases, the optimal Ei may di�er for more than two end
states. Furthermore, the parameter s can be adjusted to avoid barriers and typically
ranges between 0.001 and 1 [101]. For small s, such that βsHi(x,p) << 1, a
series expansion of the exponentials and the logarithm in Eq. 2.46 yields the linear
interpolation

Href (x,p) =

Ni∑
i=1

Hi(x,p) + const . (2.47)

Therefore, s switches between the interpolation of the Hamiltonians (small s) and
the con�guration space densities (s = 1). A very recent variant, λ-EDS [103], which
was constructed also based on our work in chapter 3, now also calculates the free
energy di�erence between only two end states, but using several intermediate ones
instead.

The usage of the s factor will also be combined with the VI sequence and be
made accessible through the GROMACS implementation described in chapter 5.
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2.4 Non-Equilibrium Approaches

The second class of methods that employ the concept of alchemical paths, as de-
scribed in the introduction, are non-equilibrium techniques. Here, transitions from
A to B are simulated by increasing λ at every step; the system is therefore out of
equilibrium. In chapter 6, an approximated path deduced from the VI sequence
will be tested with non-equilibrium methods.

Small perturbations away from equilibrium, such as for very slow transitions,
can be described using linear response theory [172�176]. More generally, Jarzynski
[84] derived the identity

e−β∆G =
〈
e−βWA→B

〉
, (2.48)

where the brackets indicate an ensemble average over several transitions starting
from A and ending at B. The work values are obtained similarly to TI by integra-
tion along λ

W =

∫ 1

0

〈
∂H(x, λ)

∂λ

〉
λ

dλ . (2.49)

The starting con�gurations need to represent the equilibrium ensemble. Fascinat-
ingly, Eq. 2.48 holds arbitrarily far from equilibrium, which, in addition to the
theory, has been demonstrated by experiments through reversible and irreversible
pulling of an RNA molecule [177] for the �rst time.

To utilize the information from both forward and backward transitions, where
Pf (W ) and Pr(W ) denote corresponding work distributions, the Crooks Fluctua-
tion Theorem (CFT) [178, 179] (also valid for NPT ensembles [180])

Pf (W )

Pr(−W )
= eβ(W−∆G) (2.50)

provides the basis of several methods [181, 182]. For example, the Crooks Gaussian
Intersection (CGI) estimator approximates Pf (W ) and Pr(W ) by two Gaussian
functions and estimates the free energy di�erence through their intersection.

Furthermore, the BAR estimator was also adapted for non-equilibrium simula-
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tions [183], where the free energy is determined through numerical solution of

nf∑
i=1

1

1 + exp (β(Wi − C))
=

nr∑
j=1

1

1 + exp (−β(Wj − C))
, (2.51)

for C, which, similar to Eq. 2.18, relates to the free energy as

∆G = C + β−1 ln

(
nf
nr

)
. (2.52)

Here, nf and nr denote the numbers of transitions in forward and reverse di-
rections, respectively. Furthermore, it was shown that the BAR estimator yields
the free energy with the maximum likelihood, given the observed work values [183].

Both the BAR and CGI estimator will be used in chapter 6 to calculate free
energy di�erences based on non-equilibrium trajectories.

Overlap Sampling

In an extensive series of publications [184�189], the group of Kofke and coworkers
analyzed the scenario in which the relevant regions in con�guration space of, e.g.,
state B, represent only a small subset, and are completely embedded within the
ones of state A. Their example in this case consists of a vanishing particle, which in
the decoupled state A has a much higher entropy as in state B, where its position
is restricted by its neighboring particles.

Through a variety of theoretical considerations and simulations, they estab-
lished that for one-sided simulations, the systematic error, i.e., the bias of the free
energy estimates, is lower when starting from the state of higher, and targeting the
state with lower entropy. For a vanishing particle, the trajectories should therefore
be started from the decoupled state, in other words, insertion is preferable to dele-
tion. In this special case, conducting only one-sided simulations has even a smaller
bias than when trajectories from both sides are used with the approaches outlined
in the beginning of this section.

Next, they considered the case in which the con�guration space volumes of A
and B are more similar, and these two overlap in a region O. Then, by de�nition,
O is a subset region of both A and B. Therefore, when introducing O as an
intermediate state and calculating the free energy di�erence through A → O and
B → O, where the arrow indicates a set of non-equilibrium transitions starting
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from the �rst and ending at the second state, then in both cases, the transitions
start at the state of higher entropy and end at the one lower entropy. Using the
use of the Jarzynski identity [84], Eq. 2.48,

e−β∆G =

〈
e−βWA→O

〉
A〈

e−βWA→O
〉
B

. (2.53)

This approach is referred to as the Overlap Sampling (OS) method [186]. In anal-
ogy, the principle can be applied to FEP using the Zwanzig formula

e−β∆G =

〈
e−β[HO(x,p)−HA(x,p)]

〉
A〈

e−β[HO(x,p)−HB(x,p)]
〉
B

. (2.54)

Note that in this case, sampling is conducted only in A and B. Therefore, O rep-
resents a virtual intermediate, i.e., a state that no sampling is conducted in, but
which is used as a target state.

They suggested a simple form for O that uses the average of the end states
HO(x,p) = (HA(x,p) + HB(x,p))/2, which already considerably improved the
bias compared to calculating the estimate without the virtual intermediate. Similar
to BAR, they extended the de�nition of O through a weighting function w

HO(x,p) = −β−1 lnw[HB(x,p)−HB(x,p)] +
1

2
[HA(x,p) +HB(x,p)] ,

(2.55)

where the two approaches are equivalent if

w(∆H(x,p)) =
1

cosh

[
β

2
(∆H(x,p)− C)

] , (2.56)

which is the Gaussian hyperbolic secant function, and where C corresponds to the
de�nition of Bennett [80], Eq. 2.18.

Virtual intermediate states and their connections to estimators will be em-
ployed to construct the setup for free energy calculations underlying the VI and
cVI sequences in chapter 3 and 4, respectively.
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2.5 Molecular Dynamics Simulations

An important method for sampling used in this work are MD simulations. These
model at a high level of detail � describing both the biomolecules and the solvent
on an atomistic basis � while still being based on a classical many particle descrip-
tion of the system. It is important to distinguish that the underlying phenomena,
e.g., the stretching of a bond, are non-classical.

MD simulations can, with current computer technology and algorithms, simu-
late time scales on the order of 50 to 100 ns per day for a two million atom system
(on the example of the GROMACS 2018 software package with 8 standard CPUs
and a GPU [68]). While simulations going beyond these limits have been con-
ducted, these usually require substantial computational e�orts. For example, �rst
simulations above one millisecond were already conducted in 2011 [190] for several
protein folding processes (system size of the order of ten thousand atoms) on the
ANTON supercomputer [191], whose hardware was speci�cally optimized for the
properties of MD. As for scale; recently (2019), a proof of concept run above one
billion atoms of a gene locus was conducted [192]; however, progressing only at one
nanosecond per day on 130,000 processor cores.

A large number of MD software packages has been developed such as NAMD
[193, 194], AMBER [195], GROMOS [196], LAMMPS [197, 198] or OpenMM [199].
The one used and extended in this thesis is the GROMACS [157�159] software pack-
age. Its main advantage is its wide spread usage and its high speed compared to
other packages. In contrast, alternatives, such as OpenMM, o�er a higher degree of
developer and user friendliness instead, where, e.g., integrators can be easily mod-
i�ed through a python interface. Therefore, a disadvantage of GROMACS is that
such a change would, at least for the GROMACS 2019 and 2020 version, require
more substantial changes in the source code than for, e.g., OpenMM.

Foundations and Approximations

Extensive descriptions about the fundamentals of MD simulations can be found in
the recent book by Leimkuhler and Matthews [200], or the slightly older ones by
Rapaport [201] or Frenkel and Smit [202]. A brief summary of the underlying prin-
ciples and approximations of MD, and in extension, of the abilities and limitations
of MD based free energy calculations, will be provided below.
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As a �rst approximation, gravitational interactions are neglected, as these are,
for example, roughly an order of 40 magnitudes weaker than electrostatic ones.
Secondly, relativistic e�ects are considered negligible, due to the small masses and
small velocities compared to the speed of light.

With these two approximations, systems at atomic length scales are described
by the time-dependent Schrödinger equation [203]

i~
∂

∂t
ψ(re; rn) = Ĥψ(re; rn) , (2.57)

where ~ = h
2π denotes the reduced Planck constant and Ĥ the Hamiltonian opera-

tor. The wave-function ψ(re; rn) that describes the system depends on the positions
of both the nuclei and the electrons rn, and re, respectively.

Next, the fact that electrons are around 2000 times lighter than a nucleon and,
therefore, move much faster, is considered. For this reason, the Born-Oppenheimer
approximation [204] assumes that the electronic wave function instantaneously fol-
lows the motion of the nuclei, allowing to separate the wave function

ψ(re; rn) = ψn(rn)ψe(re; rn) (2.58)

into the nuclear wave-function ψn(rn) and the electronic wave-function ψe(re; rn),
where the latter only depends on rn parametrically. The decoupling of the time
scales allows us to determine ψe with the time-independent Schrödinger equation

Ĥeψe(re; rn) = Ee(rn)ψe(re; rn) , (2.59)

where Ee(rn) denotes the ground state energy. Based on the Born-Oppenheimer ap-
proximation, the position of the nuclei is described by the time-dependent Schrödinger
equation (

T̂n + Ee(rn)
)
ψn(rn) = i~

∂

∂t
ψ(rn) , (2.60)

where T̂n denotes the kinetic energy operator of the nuclear motion.

Note that the Born-Oppenheimer approximation rests on the assumption that
all electrons remain in the same state the entire time. This assumption is valid for
temperatures around 300 K, where most of the biological systems operate. Here,
given approximately 0.025 eV thermal energy per electron, the electrons are in the
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ground state, and as excitation energies generally exceed 1 eV (e.g., 10.2 eV for
hydrogen), spontaneous excitation of electrons is unlikely. However, for the same
reason, processes such as photon absorption cannot be addresses with standard MD.

Equation 2.60 describes the evolution of the entire nuclear wave-function. How-
ever, for applications targeted by MD simulations, it is su�cient to calculate the
expectation value of the atom positions, now represented by the position of their
nuclei under the above assumptions. These expectation values evolve according to
the Ehrenfest theorem [205]

d〈rn〉
dt

= 〈vn〉 (2.61)

and

d〈vn〉
dr

= −∇V (rn)

m
, (2.62)

where vn denotes the velocity and m the mass of the nuclei in a potential
V (rn). Given the similarity of Eqs. 2.61 and 2.62 to Newton's (classical) equations
of motion, the evolution of the expectation values of an atom position and velocity
can be considered as the ones of a point particle.

Integration of Equations of Motion

Newtons second equation of motion,

mi
∂2ri
∂t2

= Fi , (2.63)

where i = 1, ..., n, is solved numerically for all n atoms with mass mi and force
Fi = ∇ri acting on atom i. The most widely used integrator for MD simulations
is the leap-frog algorithm, a second-order integrator and equivalent to the velocity
Verlet method. The positions of the atoms are propagated as

ri(t+ ∆t) = r(t) + vi

(
t+

∆t

2

)
∆t (2.64)

and the velocities as

vi

(
t+

∆t

2

)
=

(
t− ∆t

2

)
+

Fi(t)

mi
∆t . (2.65)
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In this work, a time step of 2 fs is used in MD simulations. This value is
typically used to keep the integration error substantially below errors caused by
other approximations of MD simulations, such as the ones from force �elds.

Force Fields

The interaction potential and the gradient thereof to calculate the force in Eq. 2.65
are determined by quantum mechanical e�ects. Calculating these is completely im-
practical for molecules consisting of more than a few hundred atoms, and therefore
also for most of the applications of free energy calculations listed in the introduc-
tion. Therefore, force �elds have been designed, that are an approximation to the
ground state energy of the electrons. Their parameters are determined either from
ab initio calculations [49, 50] for the interaction between individual atoms or small
chemical groups, or through adjusting the parameters such that experimental ob-
servables [47, 48] of small model systems are reproduced (or, of course, a mixture
of both approaches).

Conventional force �elds divide the interaction potentials into bonded and non-
bonded interactions. The former depend on bond lengths, Eq. (2.67), bond angles
(2.68), dihedral angles (2.69) and improper dihedrals (2.70) that restrict out-of-
plane motions to, e.g., keep aromatic rings planar. The non-bonded interactions
consist of electrostatic (2.71), van-der-Waals interactions and Pauli repulsion, with
the latter two described by a Lennard-Jones potential (2.72), which has already
been described in section 2.2 for soft-core potentials. In total,

35



Chapter 2

V (r) = Vbonded(r) + Vnonbonded(r) (2.66)

=
∑

bonds i

ki
2

(bi − bi,0)2 (2.67)

+
∑

angles i

fi
2

(θi − θi,0)2 (2.68)

+
∑

dihedrals i

V d
i

2
[1 + cos(nφ)] (2.69)

+
∑

impropers i

κi(ζi − ζi,0)2 (2.70)

+
∑

pairs i,j

qiqj
4πε0εrrij

(2.71)

+
∑

pairs i,j

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
, (2.72)

where ki, fi and κi/2 denote the spring constants of the harmonic potentials for
the bond length bi, angle θi and improper dihedral angle ζi, around their respec-
tive rest lengths, indicated by the subscript 0. Dihedral potentials depend on the
barrier height V d

i between di�erent conformers and the periodicity n. Coulomb in-
teractions at a distance rij between two atoms are calculated based on the charges
qi, the vacuum permittivity ε0 and permittivity εr, whereas σij and εij denote the
Lennard-Jones parameters. Note that the partial charges aim at reproducing the
electrostatic potential not only for localized charges such as ions, but also for, e.g.,
delocalized electron systems, and, therefore, are generally non-integer values.

Developing force �elds that give accurate results for a large variety of systems
is a challenging task. Therefore, a number of di�erent prominent force �elds have
been developed, such as the amber [206, 207], charmm [208, 209], opls [210], and
gromos [211] force �elds. These are often more accurate in predicting a number
of experimental observables correctly, such as conformational energies [212, 213],
and less accurate in predicting others. Similarly, many force �elds are reasonable
accurate for, e.g., globular proteins with a conserved structure, but give largely
di�ering results for, e.g., intrinsically disordered proteins [214]. As such, to check
the robustness of a prediction, it has become common practice to repeat the same
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simulations using di�erent force �elds [215] as well as to constantly validate these
predictions through comparison with experiments.

Generally, force �elds and MD simulations do not allow chemical reactions
or bond breaking. Similarly, polarization e�ects are usually not accounted for.
However, approaches into both directions have been developed [216�220] and may
become more widely used in the future.

The force �eld mainly used in chapters 3 and 5 of this thesis is the Generalized
Amber Force Field (GAFF) [221]. The reason is simply that simulation setups,
which were already equilibrated with GAFF, are conveniently available from the
SolvationToolkit package [222]. In these chapters, to separate force �eld errors
from sampling errors, the accuracies of di�erent approaches are always obtained
by comparison of a large number of short simulations with respect to a converged
reference result, based on the same force �eld. As such, the particular choice of a
force �eld is, in this context, unimportant. Naturally, for the success of the �eld of
computational free energy calculations as a whole, force �elds are a crucial factor.

Temperature and Pressure Coupling

A canonical system is coupled to the temperature, and in most cases, also the pres-
sure of a much larger external system. Thermostats and barostats are algorithms
that model these coupling e�ects.

To start with one of the simplest thermostats, it is considered that the instan-
taneous temperature T of the system and the velocities {vi} of np particles are
related via

3

2
kBT =

〈miv
2
i

2

〉
(2.73)

=
1

np

np∑
i=1

miv
2
i

2
. (2.74)

If the target (= external) temperature T ′ di�ers from the current one, then the
simplest approach is to rescale all velocities according to

v′i =

√
T ′

T
vi (2.75)

such that T ′ is reached. This method is referred to as velocity rescaling. However,
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as the temperature is not able to �uctuate in this approach, the properties of
a canonical system, which free energy energy simulations are conducted in, are
not reproduced. One option to circumvent this problem is to randomly draw the
components of all velocities v′′i from a Gaussian distribution around the ones of v′i,
i.e.,

p(v′′i,x) =
1√

2πσi
exp

(
−
v′2i,x
2σ2

i

)
, (2.76)

with variance σ2
i = kBT/mi , where, as an example, v′′i,x denotes the �nal velocity

of particle i in x-direction. Conducting this procedure only after certain time in-
tervals gives the system further room for �uctuations.

The main advantage of velocity scaling is its simplicity with respect to imple-
mentation. Whereas the resulting ensemble does not correspond exactly to the
canonical one, the deviations are in practice often rather small [223]. It was there-
fore used, e.g., for the simple test system of a LJ gas with a self-written simulation
program in chapter 3. A more re�ned method yielding more continuous velocities as
well as better ensemble properties is the Nose-Hoover thermostat [224, 225]. Here,
an additional degree of freedom γ is introduced that determines an (anti)friction
term in the equations of motion

d

dt
mivi = Fi − 2γvi (2.77)

dγ

dt
=

1

τ

(∑
i

1

2
miv

2
i −

3

2
npkBT

)
, (2.78)

where τ controls the timescale of the temperature regulation, and Fi denotes the
total force acting on particle i. The Nose-Hoover thermostat is used in all simula-
tions based on the GROMACS software package in this thesis.

Similar principles apply to barostats that regulate the pressure for NPT en-
sembles. Similar to velocity rescaling, the Berendsen barostat [223] rescales the
positions, and thereby the volume of the system. The rescaling is, however, not
conducted in one step; instead it depends on a parameter τp that regulates how fast
the target pressure should be reached. The advantage of the Berendsen barostat
is that it is well behaved, and therefore often used to stabilize a system prior to
further equilibration and production runs. However, similarly to velocity-rescaling
it does not produce the correct (isobaric-isoenthalpic) canonical ensembles.
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The Anderson barostat [226] uses the volume as an additional degree of free-
dom, which is coupled to the system through equations of motion, similar to a
piston. The volume is therefore assigned a kinetic and potential energy, where
the latter is determined through the di�erence of the instantaneous to the target
(= external) pressure. A conceptual �mass� is assigned to the volume, which is a
user-chosen parameter that regulates the extent of the system �uctuations. The
Parrinello-Rahman [227, 228] barostat is an extension that allows the shape of the
volume to deviate from the one it was initially assigned to. Both barostats correctly
reproduce the canonical ensemble.

In this thesis, if not speci�ed otherwise, all GROMACS based simulations follow
the same procedure: First, an energy minimization is conducted of the system,
using the steepest-descent algorithm [229]. Secondly, the system is equilibrated in
an NVT ensemble, followed by equilibration in an NPT ensemble. The latter is
divided in two parts: Firstly, using the Berendsen barostat, secondly, using the
Parrinello-Rahman barostat. All subsequent production runs (i.e., the parts of the
simulations that are used to calculate the free energy di�erences) are conducted
with the Parrinello-Rahman barostat.
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3
Variationally Derived Intermediates

3.1 Determining Free-Energy Di�erences Through Vari-

ationally Derived Intermediates

The following section consists of the article

M. Reinhardt, H. Grubmüller, Determining Free-Energy Di�er-
ences Through Variationally Derived Intermediates, Journal of
Chemical Theory and Computation vol. 16, issue 6, pp. 3504-
3512 (2020). [230]

published under the CC BY creative commons open access license and the con-
tent reprinted based on the 2020 Copyright Agreement by the American Chemical
Society with consent of the authors.

The format, including the numbering of equations, �gures and tables, has been
altered to match the format of this thesis. Furthermore, all references are listed in
the bibliography at the end of this thesis rather than at the end of this article.

Both authors contributed to conceiving the study and writing the manuscript.
I implemented, conducted and analyzed all test systems and simulations.
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Figure 3.1: Table of Contents image

3.2 Abstract

Free energy calculations based on atomistic Hamiltonians and sampling are key
to a �rst principles understanding of biomolecular processes, material properties,
and macromolecular chemistry. Here, we generalize the Free Energy Perturbation
method and derive non-linear Hamiltonian transformation sequences yielding free
energy estimates with minimal mean squared error with respect to the exact values.
Our variational approach applies to �nite sampling and holds for any �nite number
of intermediate states. We show that our sequences are also optimal for the Bennett
Acceptance Ratio (BAR) method, thereby generalizing BAR to small sampling sizes
and non-Gaussian error distributions.

3.3 Introduction

Free energy calculations provide essential insights into numerous physical and bio-
chemical systems. Examples range from predicting binding processes of biomolecules
for drug design [8, 10, 11] to determining thermodynamic properties of crystalline
materials [13, 14]. For large and complex systems with slow relaxation rates and
typically 105 to 107 particles, only limited accuracy is achieved [231], despite sub-
stantial methodological progress [84, 183, 232, 233] and immense computational
e�ort. Besides force �eld inaccuracies, insu�cient sampling is the main bottle-
neck [74]. Within a generalized framework connecting two of the most established
methods, Free Energy Perturbation (FEP) [79] and the Bennett Acceptance Ra-
tio method (BAR) [80], with the latter generally considered the more accurate
one [171], we here will develop and evaluate a variational approach for optimal
sampling that minimizes the error due to limited sampling.

Given the Hamiltonians H1(x) and HN (x) of two states 1 and N , where x ∈
IR3M denotes the position of all M particles of the simulation system, the free
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energy di�erence ∆G1,N between these states is given by the Zwanzig formula [79],

∆G1,N = − ln〈e−[HN (x)−H1(x)]〉1 , (3.1)

where 〈〉1 denotes an ensemble average de�ned by H1(x), which is approximated
by averaging over a �nite sample of size n obtained from atomistic simulations or
Monte Carlo sampling. For ease of notation, all energies are expressed in units of
kBT .

Alchemical transformations substantially reduce errors in the free energy es-
timates [184, 185] by introducing N − 2 intermediate states s and accumulating
small free energy di�erences between all adjacent states s and s+ 1,

∆G1,N =
N−1∑
s=1

∆Gs,s+1 . (3.2)

Using the Zwanzig formula between s and s+1, this technique is referred to as FEP.
The same approach is also employed in other �elds, for example in the context of
Bayesian statistics, where the plausibility of two di�erent models is compared by
calculating their marginal likelihood ratio [78, 139].

The most common interpolation scheme for the intermediate states is along a
path variable λ

Hs(x) = (1− λs)H1(x, λs) + λsHN (x, λs), λs ∈ [0, 1] . (3.3)

Figure 3.2(a) shows as a simple example a linear interpolation between two
one-dimensional Hamiltonians H1(x) and HN=9(x). In the case of soft-core
potentials [91�93], a non-linear dependence of the end states H1(x, λ) and
HN (x, λ) on λ is introduced under the requirement that H1(x, λ = 0) = H1(x)

and HN (x, λ = 1) = HN (x). In this context, it has been attempted to �nd better
sequences of Hamiltonians by optimizing the distribution of λ points for a given
form of a sequence or pathway[165].

Even though there is some freedom in the construction of these transformation
sequences, Eq. (3.3) describes only a very small subset of all possible sequences
of intermediate states, and in this sense, is not the most general. Speci�cally,
the terms containing the information and parameters of the two di�erent end
states are always combined in an additive manner, and, e.g., any de�nition of
intermediate Hamiltonians Hs(x) that would involve cross terms of the form

43



Chapter 3

Figure 3.2: Sequences of intermediates between a harmonic potential H1(x) =
1
2x

2 + b and a quartic potential H9(x) = (x − x0)4 + c (thick lines), where b and
c have been determined such that Z1 = Z9 = 1, i.e., ∆G1,9 = 0. Sampling states
are described by odd-numbered Hamiltonians (solid lines), virtual target states
by even-numbered ones (dashed lines). (a) A linear interpolation between H1(x)
and H9(x). For better visualization, the intermediates are vertically o�set to align
the minima. (b) Intermediate Hamiltonians and (c) resulting con�guration space
densities of VI. The yellow area highlights the con�guration space density overlap
K between states 1 and 9.
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f(H1(x, λ) ·HN (x, λ)) would not be possible with the de�nition of Eq. (3.3).

Therefore, a number of alternative approaches, modifying Eq. (3.3), have
been developed. For example, an empirical potential has been proposed in the
Enveloping Distribution Sampling (EDS) method [100, 101] that interpolates
between the con�guration space densities (rather than the Hamiltonians) of two or
several end states and is, as we will �nd, remarkably close to the optimal solution
for a single intermediate state.

Further, a continuous path between two such end states, the 'minimum variance
path' (MVP), which optimizes the variance for Thermodynamic Integration [90]
(TI) was derived by Blondel [104] and later, through a di�erent formalism, by
Pham and Shirts [105] based on the results from the statistical sciences by Gelman
and Meng [78].

Here, we will generalize this interpolation scheme for FEP and BAR. Speci�-
cally, we ask which sequence H2(x) . . . HN−1(x) � amongst all possible sequences
of higher order functions {Hs[H1(x), HN (x)]} that map two functions onto func-
tions Hs (with s = 2, ..., N − 1) � yields, on average, the smallest mean squared
error (MSE),

MSE
(

∆G(n)
)

= E
[(

∆G−∆G(n)
)2
]
, (3.4)

of the free energy estimate ∆G(n) obtained through �nite sampling with n sample
points with respect to the exact free energy di�erence ∆G. Figures 3.2(b) and (c)
show such a general interpolation sequence, which we refer to as Variationally-

derived Intermediates (VI) method.

Our approach di�ers from previous approaches in that here we optimize
the full MSE. Because the MSE can be decomposed into the sum of variance,
E
[(
E
[
∆G(n)

]
−∆G(n)

)2]
and squared bias,

(
E
[
∆G−∆G(n)

])2
, it has been at-

tempted to analyze and optimize these two terms separately [105, 171, 234, 235].
For the MVP in the context of TI, continuous sampling along the path variable
λ is assumed; for practical applications, however, discrete integration is preferred,
which implies an additional bias that is di�cult to assess and, therefore, not in-
cluded within the optimization. As we will �nd, optimizing the sum of both,
variance and bias, yields a conceptionally improved result.
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3.4 Theory

Optimal Mean Squared Error Sequence of Intermediates for Free

Energy Perturbation

To solve the above variational problem and to �nd the optimal sequence of Hs,
we consider the FEP scheme displayed in Fig. 3.3(a) as oneof several possible
implementation of Eq. (3.2) using Eq. (3.1). In this particular variant, which is
symmetric with respect to exchange of the two end states to avoid hysteresis e�ects,
sample points are solely drawn from the odd-numbered 'sampling states', indicated
by the solid lines in Figs. 3.2 and 3.3. The even-numbered states serve as virtual
'target states' (dashed lines), similar to e.g. the Overlap Sampling method [236].
From the sum of the individual perturbation steps, the average MSE of this scheme
is

MSE
(

∆G
(n)
1,N

)
= E


∆G1,N −

N−2∑
s=1
s odd

(
∆G

(n)
s→s+1 −∆G

(n)
s+2→s+1

)
2  . (3.5)

As in Fig. 3.3, the arrows point from sampling to target states.

Assuming for each sample state s a set of n independent sample points {xi},
drawn from ps(x) = e−Hs(x)/Zs, with partition function Zs, the terms arising from
expanding Eq. (3.5),

MSE
(

∆G
(n)
1,N

)
= (∆G1,N )2 +

N−2∑
s=1
s odd

E
[(

∆G
(n)
s→s+1

)2
+
(

∆G
(n)
s+2→s+1

)2
]

− 2∆G1,N

N−2∑
s=1
s odd

(
E
[
∆G

(n)
s→s+1

]
− E

[
∆G

(n)
s+2→s+1

])
−

N−2∑
s=1
s odd

N−2∑
t=1
t odd

E
[
2 ∆G

(n)
s→s+1 ∆G

(n)
t+2→t+1

]
(3.6)

will be considered one by one. As the exact free energy di�erence is a constant,

E [∆G1,N ] = ∆G1,N . (3.7)
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Figure 3.3: Two schemes of free energy calculation. Yellow dots represent sample
sets in the respective potential; arrows indicate the evaluation of di�erences ∆H(x)
between adjacent Hamiltonians. Free energy di�erences are either determined by
(a) FEP, or by (b) BAR with multiple steps. Both schemes give identical results
at the stated conditions.

For the linear term, the average over all sample realizations reads

E
[
∆G

(n)
s→s+1

]
=−

∫
ps(x1)dx1...

∫
ps(xn)dxn

ln

[
1

n

n∑
i=1

e−(Hs+1(xi)−Hs(xi))

]
,

(3.8)

and for the quadratic term

E
[(

∆G
(n)
s→s+1

)2
]

=

∫
ps(x1)dx1...

∫
ps(xn)dxn(

ln

[
1

n

n∑
i=1

e−(Hs+1(xi)−Hs(xi))

])2

.

(3.9)

Similar expressions are obtained for ∆G
(n)
s+2→s+1. The exact free energy di�er-

ences are
∆Gs,s+1 = − ln

∫
e−(Hs+1(x)−Hs(x))ps(x)dx . (3.10)

For shifted HamiltoniansH ′s(x) = Hs(x)− Cs andH ′s+1(x) = Hs+1(x)− Cs+1 ,
Eq. (3.1) yields

∆G
(n)
s′→(s+1)′ = ∆G

(n)
s→s+1 − Cs+1 + Cs, (3.11)

which also holds for the exact value ∆G1′,N ′ . The o�sets on the right hand side
of Eq. (3.11) cancel out when calculating the MSE of Eq. (3.5). Choosing Cs and
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Cs+1 such that the term in the logarithm of Eqs. (3.8) and (3.9) is close to one,
and thus all ∆G

(n)
s′→(s+1)′ are small with respect to kBT = 1, �rst order expansion

of the logarithm allows to factorize the integrals, therefore,

E
[
∆G

(n)
s′→(s+1)′

]
= −

∫
e−(H′s+1(x)−H′s(x))ps(x)dx + 1 . (3.12)

For the shifted Hamiltonians, the same expansion can be applied to the exact free
energy di�erence of Eq. (3.10). Therefore, Eq. (3.12) reduces to

E
[
∆G

(n)
s′→(s+1)′

]
= ∆Gs′,s′+1 . (3.13)

The con�guration space densities of the shifted and the initial Hamiltonians
are identical, i.e.

p′s(x) =
e−Hs(x)−Cs∫
e−Hs(x)−Csdx

= p(x). (3.14)

Note the underlying assumption that the same o�sets Cs and Cs+1 can be
used to enable the series expansion of the exact and the estimated free energy
di�erence. This assumption, as we will later �nd, holds for the vast majority
of cases, but may break down in case of very few sample points and very low
con�guration space density overlap between two neighboring states.

For the cross terms in Eq. (3.6), note that the estimated free energy di�erences
of the individual steps are based on uncorrelated sample sets, and therefore

E
[
∆G

(n)
s′→t′ ·∆G

(n)
u′→v′

]
=E

[
∆G

(n)
s′→t′

]
E
[
∆G

(n)
u′→v′

]
= ∆Gs′,t′ ∆Gu′,v′ ,

(3.15)

for (s′ → t′) 6= (u′ → v′). Expanding Eq. (3.9) yields

E
[(

∆G
(n)
s′→(s+1)′

)2
]

=
1

n2

n∑
i=1

∫
ps(x1)dx1...

∫
ps(xn)dxn(

e−(H′s+1(xi)−H′s(xi)) − 1
)2

+
1

n2

n∑
i=1

n∑
j=1
j 6=i

∫
ps(x1)dx1...

∫
ps(xn)dxn

(
e−(H′s+1(xi)−H′s(xi)) − 1

)(
e−(H′s+1(xj)−H′s(xj)) − 1

)
.

(3.16)

Using Eq. (3.15), all expressions from the cross terms only depend on exact free
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energy di�erences. Summarizing these terms by fs′ , Eq. (3.16) can be written as

E
[(

∆G
(n)
s′→(s+1)′

)2
]

=
1

n

∫
e−2(H′s+1(x)−H′s(x))ps(x)dx

+ fs′(∆Gs′,(s+1)′) .

(3.17)

Inserting Eqs. (3.13) and (3.17) into Eq. (3.5),

MSE
(

∆G
(n)
1,N

)
=

N−2∑
s=1
s odd

1

n

(∫
ps(x) dx e−2(H′s+1(x)−H′s(x))

+

∫
ps+2(x) dx e−2(H′s+1(x)−H′s+2(x))

+ gs′(∆Gs′,(s+1)′ ,∆G(s+2)′,(s+1)′ ,∆G1′,N ′)
)
,

(3.18)

where gs′ again denotes an expression that only depends on exact free energy
di�erences and thus is dropped for the optimization below.

3.5 Results and Discussion

Optimal Sequence

With these expressions, the variational problem can be solved analytically. For the
odd-numbered states s, variation of MSE

(
∆G

(n)
1,N

)
, Eq. (3.18),

∂

∂Hs(x)

(
MSE

(
∆G

(n)
1,N

)
+ ν

∫
(e−Hs(x) − Zs)dx

)
!

= 0 (3.19)

yields

Hs(x) = −1

2
ln
(
e−2(Hs−1(x)−Cs−1) + e−2(Hs+1(x)−Cs+1)

)
, (3.20)

where Zs =
∫
e−Hs(x)dx is the (�nite) partition sum and ν is a Lagrange multiplier.

Similarly, for the even-numbered states,

Hs(x) = ln
(
eHs−1(x)−Cs−1 + eHs+1(x)−Cs+1

)
. (3.21)

An additive term Cs in Eqs. (3.20) and (3.21) was omitted, as it cancels in
∆G

(n)
s−1→s −∆G

(n)
s+1→s. The result is a set of equations for all states s for which

each Hamiltonian Hs(x) depends only on the two adjacent states. The initial
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requirement for small ∆G
(n)
s′→(s+1)′ is ful�lled by setting Cs = − lnZs , as in this

case, all Z ′s are one. Rearranging terms for odd s,

e−2Hs(x) = e−2Hs−1(x) · r−2
s−1,s + e−2Hs+1(x) · r−2

s+1,s (3.22)

and for the virtual target states, i.e. even s,

eHs(x) = eHs−1(x) · rs−1,s + eHs+1(x) · rs+1,s (3.23)

with rs,t = Zs/Zt.

Eqs. (3.22) and (3.23) are the �rst main result of this article, they de�ne the
sequence of Hamiltonians yielding the best MSE for FEP free energy calculations.

Generalization of BAR

The second main result is that Eq. (3.21) serves to generalize the BAR formula.
To see this, consider Eq. (3.21) for N = 3, i.e., with one intermediate target state.
Applied to the two involved free energy di�erences, the Zwanzig formula yields

∆G
(n)
1,3 =∆G

(n)
1→2 −∆G

(n)
3→2 (3.24)

=− ln〈e−[H2(x)−H1(x)])〉1 + ln〈e−[H2(x)−H3(x)])〉3. (3.25)

Inserting Eq. (3.21) as the target state Hamiltonian H2(x) yields the BAR formula

e−(∆G1,3−C) =

〈
1

1 + eH3(x)−H1(x)−C

〉
1

/〈 1

1 + eH1(x)−H3(x)+C

〉
3

, (3.26)

with C = C3 − C1.

Notably, the above derivation yields the more general result that Eq. (3.26)
provides the best MSE free energy estimate also for �nite and small n, even down
to n = 1 given su�cient con�guration space density overlap between adjacent
states, which is ful�lled, for instance, in the limit of many intermediates. In
contrast, because the derivation by Bennett [80] strictly holds only for in�nite
sampling, so far n was required to be large, and proper convergence had to be
assumed. Further, in the original derivation [80] the error distribution of the free
energy estimates had to be assumed to be Gaussian, which in our above result is
also not required. While it has been known that BAR yields the lowest variance
out of the asymptotically unbiased estimators[166], the above derivation shows
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that this also holds for the MSE at �nite n, and that BAR is the best out of all
estimators, including, in addition, also the asymptotically biased ones. In the
context of the Overlap Sampling method [184, 185, 187, 189, 236], it has been
shown that a virtual FEP intermediate can be de�ned that yields the weighting
function from Bennett's derivation; the above results prove that this intermediate
is indeed optimal for the FEP scheme. Note that, in the extreme case of small
con�guration space density overlap and very few sample points, the average
deviation between the series expansions of the exact and the estimated expressions
of Eq. (3.12) can become too large, in which case our approach may miss the
absolute optimum and, therefore, a better solution may exist. However, as we will
see later in the context of Fig. 3.7, the VI result yields a better MSE than all
other approaches that we assessed, even for small n at small con�guration space
density overlaps between the end states.

The third main result is that the optimal intermediates for FEP are also optimal
for BAR. To see this, consider again the Eqs. (3.22) and (3.23) yielding optimal
FEP intermediates for any (odd) number N − 2 of intermediate states. As was
shown in the derivation of Eq. (3.26), using the intermediate of Eq. (3.23) with
FEP between two sampling states is equivalent to using BAR between these two.
Applied recursively to many states, and as illustrated in Fig. 3.3, the Ñ = (N+1)/

2 sampling states from any sequence of N FEP-optimal Hamiltonians {Hs(x)} are
also optimal for BAR with multiple states, where so far, too, mostly states have
been used of the form as in Eq. (3.3). The governing system of equations for BAR
with multiple states is obtained by replacing Hs−1(x) and Hs+1(x) in Eq. (3.22)
with the expression of Eq. (3.23), yielding for odd s

e−2Hs(x) =
(
eHs−2(x)rs−2,s + eHs(x)

)−2

+
(
eHs+2(x)rs+2,s + eHs(x)

)−2
.

(3.27)

Here, the sampling states are now coupled directly, and only knowledge of the
partition sum ratios between these is required. Solving the system of equations of
Eq. (3.27) for all sampling states yields the intermediates with optimal MSE for
BAR. Conversely, for the setup of one sampling state between two given target
end states 1 and 3, Eq. (3.20) recovers the EDS potential when using a factor of 2
in the exponent of Ref. [101]. In summary, both BAR and EDS are special cases
of, or approximations to, our more general variational VI result that also requires
fewer assumptions.
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To solve Eqs. (3.22) and (3.23) for the optimal FEP intermediate Hamiltonians
Hs(x), or, alternatively, Eq. (3.27) to directly obtain the optimal BAR intermedi-
ates, respectively, note that the unknown free energy di�erences ∆Gs,t = − ln rs,t

are part of the equations which, therefore, have to be solved iteratively. With
an initial guess for all rs,t, the set of equations is solved in a point-wise fashion
for any given x. After sampling all odd-numbered states, the rs,t values are
updated iteratively, such that the sequence of intermediate states converges
towards the optimum. This iteration converges to the optimal result, because
both, the estimates as well as the linear approximation of the series expansion in
Eq. (3.12) converge simultaneously. For a typical biomolecular many-body system,
the additional computational e�ort is small compared to computing H1(x) and
HN (x).

For the above illustrative example, Fig. 3.2(b) and (c) show the optimized
Hamiltonians and the con�guration space densities, respectively, of the converged
sequence of intermediate states. To this end, initial values rs,t = 1 were used and
Eqs. (3.22) and (3.23) were iterated until convergence, using numerical integration
over x and updating the rs,t during the process. Unlike the linear interpolations
shown in Fig. 3.2(a), the VI sequence leads to a probability density, which gradually
decreases in the region of A and increases in the region of B, while remaining almost
constant at the point of maximum con�guration space overlap.

One-dimensional Test Case

Figure 3.4(a) shows the results of numerical simulations using the one-dimensional
test case shown in Fig. 3.2. Di�erent equilibrium constants x0 (42 di�erent values)
are used for HN (x), thereby varying con�guration space overlaps

K =

∫ ∞
−∞

min(p1(x), pN(x))dx (3.28)

between the end states, indicated by the yellow area in Fig. 3.2(b). Sets of n = 100

uncorrelated sample points are drawn from ps(x) through rejection sampling in
each of the Ñ = 3 sampling states. Based on these sets, BAR (solid lines) is
used to calculate the free energy di�erence between the individual states, and
subsequently, between the start and end state. As a comparison, the dashed lines
in Fig. 3.2(a) show the results using MBAR[166], where the di�erences in the
Hamiltonians for all states are considered for each sample point. The free energy
estimate is compared to the exact free energy di�erence. For each K, the MSE,
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Figure 3.4: Accuracies of free energy calculations for di�erent overlaps between
the end states, determined numerically for the model Hamiltonians from Fig. 3.2.
For the solid lines, BAR is used between adjacent sampling states, for the dashed
lines, MBAR is used. (a) Comparison between VI and two variants of linear inter-
mediates: a linearly spaced λ2 and an empirically optimized λ2 yielding the lowest
MSE. (b) Accuracies for di�erent numbers of VI sampling states for a given total
sampling size.

Eq. (3.5), is calculated by averaging over 600,000 of such realizations.

VI (blue curve) yields the smallest MSD for all K, compared to both the �rst
linear interpolation variant (light green) using a linearly spaced λ2 = 1

2 , like in a
typical free energy calculation, and even compared to the second variant (dark
green) using the empirically determined λ2 value that yields the best MSE that
can be achieved by linear interpolation. To obtain the latter, we loop over the
allowed range between zero and one in steps of 0.01. To reliably calculate the
MSD with respect to the exact value, for each λ2, 150,000 free energy estimates
are calculated. Once the lowest MSE λ2 is determined, the corresponding MSD
is calculated once again using 600,000 realizations. The procedure is repeated for
each value of K. We note that the λ2 yielding the best MSE varies for di�erent K,
and is inaccessible in practice for high-dimensional systems.
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The largest improvements of VI are seen for small con�guration space density
overlaps that notoriously cause the largest uncertainties. Also for MBAR[166],
shown by the dashed lines in Fig. 3.4(a), VI gives the better MSE than the linear
intermediates. Figure 3.4(b) shows how the MSE of VI improves with increasing
number of states Ñ , keeping the total number of sample points, and hence the total
computational e�ort, constant. For this example, the MSE increases up to Ñ = 5,
beyond which no further improvement appears.

Approximated Sequence and Comparisons

In the above VI scheme, Eqs. (3.22) and (3.23) connect all intermediates and,
therefore, cannot be solved e�ciently in a straightforward way for many-particle
systems. To overcome this limitation, we propose and assess two approximations
which will yield analytical expressions for Hs that can be used even in large scale
simulations. The �rst approximation is to switch to a hierarchical solution for
the VI scheme. In a �rst step, the sampling state in the middle of the sequence,
Ĥ
Ñ/2

, is determined as the optimal state between H1 and H
Ñ
using Eq. (3.22). In

the next step, Ĥ
Ñ/4

is determined as the optimal state between H1 and Ĥ
Ñ/2

, as

well as Ĥ
3Ñ/4

between Ĥ
Ñ/2

and H
Ñ
, and so on. The hat above the Hamiltonian

indicates the approximated form.

The second approximation is that only the sampling states are coupled using
Eq. (3.22), and no virtual states are used. Therefore, while still using BAR
between two adjacent sampling states, the states are optimized as if the Zwanzig
formula, i.e., Eq. (3.1) was used to calculate the free energy di�erence between
them.

Using these two approximations, an analytical result for the sequence of inter-
mediate states is obtained,

Ĥs(x) = −1

2
ln
[
(1− ζs)e−2H1(x) + ζse

−2(H
Ñ

(x)−C)
]
, (3.29)

where all Ĥs(x) are a function of only H1 and H
Ñ

and ζ ∈ [0, 1], and only
C = CN − C1 ≈ ∆G has to be determined iteratively. Consequently, no other
prior knowledge of the di�erences between the individual states is required, and
therefore, the sampling simulations for each state can be run in parallel without
communication. Note that these two approximations introduce a parameter ζs,
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Figure 3.5: Comparison between con�guration space densities of the approxi-
mated VI sequence, i.e., Eq. (3.29) (dashed lines) with that of the optimal VI
sequence (solid lines) for the one-dimensional example shown in Fig. 3.2(c). For
better visualization, the three intermediate sampling states s = 3, 5, 7 are shown
separately.

which is not part of the exact result, Eqs. (3.22) and (3.23), and here plays a
similar role as the λs in Eq. (3.3) for the linear intermediates.

For the one-dimensional example in Fig. 3.2(c), Figure 3.5 compares the
con�guration space densities p(x) of the approximate intermediate Hamiltonians
Ĥs(x) (dashed lines) with those of the optimal Hs(x) (solid lines). As can be seen,
the overall shape is similar.

The approximated VI in Eq. (3.29) is similar but not identical to the form of the
MVP. The obvious di�erence to the approximated VI is the prefactor in the expo-
nentials (2 and 1/2, respectively). The deeper conceptual di�erence is, as outlined
in the introduction, that the approximated VI is an approximation to the sequence
that optimizes the MSE, and thereby also accounts for the biases. It is, further,
optimized for FEP and BAR, explicitly considering discrete states with �nite
sampling. In contrast, the MVP optimizes the variance for TI in the large sample
limit assuming independent samples, continuously drawn along the path variable λ.

Next, we compare both the optimal VI and the approximated VI to the
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Figure 3.6: Comparison between optimal VI, approximated VI, and the MVP
(Minimum Variance Path)[104, 105] at di�erent numbers of sampling states Ñ .
(a) One intermediate sampling state, FEP is used to determine the free energy
di�erence to the end states. In this case, optimal VI equals the mid-point of the
approximated VI. (b) 5 sampling states, BAR is used to calculate the free energy
di�erence between these. The overall number of sample points is kept constant,
i.e., the number of samples per state is lower for a higher number of states. (c)
Using 20 sampling states, otherwise as (b).
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MVP. Figure 3.6 shows the results for di�erent numbers of intermediates states.
The same model system and procedure as the one used to obtain the results for
the comparison to the linear intermediates, shown in Fig. 3.4 and described in
section 3.5, is used. Again, for a fair comparison, the overall number of sample
points was kept constant, i.e., the number of points per state is smaller for a larger
number of intermediates.

As can be seen, for all values of K the optimal VI yields the smallest MSEs
at all numbers of intermediates. The approximated VI, that is equivalent to the
optimal VI at ζ = 0.5 when sampling in only one intermediate state, Fig. 3.6(a),
therefore also yields a smaller MSE than both the midpoint MVP (λ = 0.5, purple)
and the MVP with the best lambda (light red). The latter was again determined
empirically by iterating over all possible lambda values in steps of 0.01.

Conversely, for 20 states, shown in Fig. 3.6(c), the approximated VI yields a
higher MSE, indicating that for increasing numbers of steps the approximations
have a larger e�ect. Except for low values of K, similar MSEs are obtained for
both the optimal VI and MVP, because for large numbers of sampling states, FEP
and TI become equivalent.

Interestingly, these MSEs are larger than for optimal VI with 5 states, shown
in Fig. 3.6(b), suggesting that there is an optimal number of states. Here, the
MVP performs better than the approximated VI at equidistant spacing, whereas
for the best spacing, the respective MSEs are similar. For �ve states, the best
spacing was obtained by adjusting the λ and ζ values, such that the best �t
of the con�guration space densities with optimal VI was obtained, as shown in
Fig. 3.5. Through further variation, we tested if an even better combination of
path variables could be found, which was not the case.

The fact that the approximated VI and the MVP converge to the optimal
solution in opposite cases indicates that they are limiting cases to the general
optimal VI result.

Figure 3.7 shows how the MSE depends on the number of sample points. The
same procedure as for Fig. 3.6(b) with �ve sampling states was used, but now with
only one equilibrium distance between the minima of the harmonic and quartic
potential of x0 = 3 (i.e., K ≈ 0.02, see Fig. 3.2). To avoid the problem of the
optimization of a path variable, we compare only the optimal VI and the MVP
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Figure 3.7: Comparison of the achieved accuracy by the minimum variance path
method (MVP) and VI for di�erent numbers of sample points per state using 5
states. (a) Obtained MSE for both methods and (b) their respective ratios.

with equidistant spacing, that, in the case of Fig. 3.6(b), yielded similar MSEs as
the MVP with the best spacing.

As can be seen in panel (a), a smaller MSE is achieved by VI across a broad
range of numbers of sample points. The ratio of the MSEs of both methods,
Fig. 3.7(b), is essentially constant, indicating an overall improvement of about
20-25%, independent of the sample size.

As discussed, both the variance and the bias contribute to the MSE. Surpris-
ingly, we found that � for this setup � the bias is almost negligible, with the
squared bias contributing less than 1 % to the overall MSE at all n. Therefore,
VI also yields a better variance than � despite what the name suggests � the
minimum variance path by Blondel [104] and Pham and Shirts [105]. The reason is
again that the latter was optimized under di�erent assumptions and for a di�erent
estimator. However, note that while we have derived the sequence with the optimal
MSE, the magnitude of the improvement compared to, e.g., linearly interpolated
intermediates is system dependent, and, as we will see, actually can be much larger
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for many-particle systems than for one-dimensional ones.

3.6 Atomistic Test Cases

To compare the MSE of VI with that of established intermediates, we have per-
formed test simulations for two atomistic many particle simulation systems, a
Lennard-Jones gas and a solvated butanol molecule.

Lennard-Jones Gas

The free energy di�erence between an Argon and a Helium Lennard-Jones (LJ)
gas with M = 20 atoms was calculated. A reference free energy di�erence was
determined by conducting a long simulation with each method using 12 states
with linearly spaced λs of both the linear intermediates and the approximated
VI sequence and computation runs of 10 µs in each state. At this length, the
relative di�erence of the estimates between the two methods is below 10−5

(∆G = 0.23252kBT). Using this reference value, the MSE of a distribution of 800
free energy di�erences determined with only �ve intermediates depending on the
simulation time in each state was calculated.

In each state, the atoms were placed at random positions without overlap in-
side a cubic box. The atoms were assigned velocities drawn from the Boltzmann
distribution corresponding to the temperature of T = 298 K. The simulations were
conducted in the NVT ensemble at T = 298 K in a cubic box using periodic
boundary conditions. The volume of the box was set to (43.5 Å)3, corresponding
to a pressure of about 10 bar. The atomic interaction at a distance r between the
centers of two atoms was described through a Lennard-Jones potential

H(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]

(3.30)

with parameters σ = 3.405 Å, ε = 1.0446 kJ/mol and m = 39.95 u for Argon, and
σ = 2.64 Å, ε = 0.0906 kJ/mol and m = 4 u for Helium [237].

The leap-frog algorithm with a time step of 5 fs was used and velocity rescaling
at every 20th time step. For both sequences, the 800 free energy simulations were
carried out with 1 ns equilibration time and 5 ns production runs in each state.
Five intermediate, i.e., seven states in total were used. In absence of further
knowledge, equal spacing of λs and ζs, i.e, {0, 0.17, 0.33, 0.5, 0.67, 0.83, 1} was used.
For the approximated VI sequence (Eq.(3.29)), C = 0 was used throughout the
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Figure 3.8: An Argon LJ gas is morphed into a Helium LJ gas. The MSE with
respect to a converged reference value is shown as a function of the simulation
time in each intermediate. It was obtained using linear intermediates (red) and the
approximated VI intermediates (green). For both, an equal spacing of λ values,
and ζ values, respectively, has been used.

whole simulation. The di�erence of the Hamiltonians between adjacent states was
recorded at every 200th step. Free energy di�erences were subsequently calculated
using BAR.

Figure 3.8 shows the resulting MSEs. For short simulation lengths, the MSE
improves rapidly. For longer simulation times, the improvement of VI becomes most
pronounced. At 5 ns, VI (green) has a four times lower MSE than conventional
linear intermediates (red). Conversely, the MSE achieved by linear intermediates
at 5 ns is already obtained at 0.56 ns by VI, which, at this level, thus requires
almost 10 times less sampling.

Charge Decoupling of Butanol

For a last system closer to biomolecular applications, the approximated VI inter-
mediates were implemented into GROMACS 2019. We calculated the solvation
free energy di�erence between charged and uncharged butanol (15 atoms) solvated
in water (1800 atoms in total). The topology from the SolvationToolkit package
from Bannan et al. [222] was used. As for the Lennard-Jones gas, a reference
value was obtained through extensive simulations, which then was compared
to the estimates of a number of shorter simulations with fewer states. For the
reference value we used 51 linear intermediates with equidistant λ states (i.e.,
∆λ = 0.02) and production runs of 100 ns simulation time in each state, totalling
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Figure 3.9: Accuracies of the estimates for the solvation free energy di�erence
between charged and uncharged butanol in dependence of simulation time. Linear
intermediates (red) are compared to VI using di�erent initial guesses.

5.1 µs total simulation time. Energy values were recorded at every 200th step.
Equilibration of 100 ps at constant volume and 200 ps at constant pressure with
the Parrinello-Rahman barostat [228] was conducted prior to the production runs.

A reference value between the coupled and decoupled charges of
8.708 ± 0.001 kBT was obtained. Next, simulations in �ve di�erent states
were carried out with both conventional linear intermediates and VI using λs, and
ζs values, respectively, of 0, 0.25, 0.5, 0.75 and 1. In each state, �ve production runs
were conducted of 100 ns simulation time each, and smaller portions of the trajec-
tories of di�erent lengths were used to asses the MSEs as a function of trajectory
length. For each trajectory length, a free energy di�erence estimate was calculated.

Figure 3.9 shows the obtained MSE for linear intermediates as well as for three
di�erent VI variants (see Supporting Information for a table of the MSEs), which
di�er in the choice of the initial guess: The MSE of the VI sequence with the
exact estimate (blue) for C in Eq. (3.29) is about a factor of two better than the
linear intermediates (red) at all simulation lengths, or equivalently, only half the
amount of simulation time is necessary to obtain the same level of MSE. For an
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unrealistically large error in the initial guess C the MSE of the VI sequence is lower
(green). However, with a more realistic initial estimate deviating by 1 kBT from the
reference value (yellow) the MSE also improved about a factor of two with respect
to the linear intermediates, except for very long simulation lengths. Such estimates
can, e.g., easily be obtained by linear intermediates with a simulation time of less
than 40 ps � and therefore only a small fraction of the total simulation time �
after which VI becomes the signi�cantly better option than linear intermediates.
In addition, the estimate can be further re�ned during the simulation process.

3.7 Conclusions

Using a variational principle, we have derived a minimum MSE sequence of
intermediate Hamiltonians for free energy calculations using FEP and BAR. Our
approach di�ers from previous ones in that it, �rstly, optimizes the full MSE with
respect to the exact free energy di�erence rather than the variance only (i.e., the
precision). Secondly, it directly optimizes the sequence of discrete states, instead
of a two step approach, where �rst a continuous TI path is optimized [78, 104, 105]
and, subsequently, a discrete subset of states is chosen from this path. Thirdly, it
holds for �nite sampling and for any number of intermediate states, thus proving
analytically that BAR is the optimal MSE estimator also for �nite sampling.

We assessed the performance of our method using three test systems. First a
simple one-dimensional model was considered. Compared to linear interpolations,
a marked improvement in the MSEs was observed. Two limiting cases of our
general VI result are notable. In the limit of many steps, the MSEs of the
optimal VI and the MVP [78, 104, 105] are similar. In the limit of few steps,
an approximated sequence was derived, the form of which appears similar to
MVP, but di�ers in the exponent by factors of 2 and 1/2, respectively. However,
for this model the smallest overall MSE was achieved for given computational
e�ort at a medium number of intermediates (�ve in our case). Interestingly, the
improvement in the MSE of the optimal VI compared to the MVP was mainly
due to improvements of the variance; thus, the discretization of the path not only
a�ects the bias, but also the variance.

Next, we considered an argon and a helium LJ gas and, somewhat closer
to real applications for complex biomolecular systems, the solvation free energy
di�erence between charged and uncharged butanol. For both many-particle test
systems systems, marked improvements compared to conventional intermediates
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were seen.

This work focused on the theory and derivation of our variational approach.
We have so far not tested our method on larger, more complex biomolecular
systems involving conformational transitions. Therefore, further work is required
towards the practical applicability, along several lines.

First, VI was derived assuming statistically independent sample points xi.
For atomistic simulation based sampling, as well as, to a lesser extent, for MC
sampling, subsequent sample points are typically correlated, however, partic-
ularly when the relevant con�guration space densities are separated by large
barriers. In these cases, VI is not necessarily the optimal sequence, but can
be combined with enhanced sampling techniques, such as Hamiltonian replica
exchange [125, 128, 238], appropriate biasing potentials [110, 112, 239], or a com-
bination thereof. Another possible route, indicated by the EDS method[100, 101],
is to change the Hamiltonians such as to reduce energy barriers and, thereby, to
reduce time-correlations. We are, however, unaware of any variational approach
to optimize this trade-o� and, therefore, further research will be required towards
this aim.

Second, VI requires an initial estimate of the free energy di�erences. For all
of our test cases, this requirement involved only little additional computational
cost. Whether this remains true for more complex biomolecular systems, remains
unclear at present.

Third, vanishing particles are a particular challenge due to possible singulari-
ties. Interestingly, preliminary simulations (data not shown) on systems with such
vanishing LJ particles suggest that VI automatically generates intermediate Hamil-
tonians that resemble soft-core potentials. However, the singularities still caused
instabilities in our test simulations. Smoothening the potential of the VI inter-
mediates in these regions avoided this problem, suggesting that VI can also be
used in this context. Clearly, additional work will be required to provide a widely
applicable sequence for the disappearance of particles in solution.
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3.8 Supporting Information

sim. time [ps] linear VI, C exact
20 (6.46 ± 0.04)·10−1 (3.89 ± 0.04)·10−1

40 (3.50 ± 0.03)·10−1 (2.22 ± 0.04)·10−1

100 (1.49 ± 0.02·10−1 (7.3 ± 0.2)·10−2

200 (7.7 ± 0.2)·10−2 (3.40 ± 0.08)·10−2

400 (3.8 ± 0.1)·10−2 (1.57 ± 0.04)·10−2

1000 (1.5 ± 0.1)·10−2 (6.6 ± 0.3)·10−3

2000 (7.5 ± 0.5)·10−3 (3.4 ± 0.2)·10−3

4000 (3.7 ± 0.3)·10−3 (1.8 ± 0.2)·10−3

10000 (1.4 ± 0.1)·10−3 (8 ± 1)·10−4

Table 3.1: Mean squared errors (MSE) as a function of total simulation time for
the electrostatic decoupling of solvated butanol. All MSEs are given in units of
[(kBT)2]. The linear intermediates are compared to three variants of VI. Firstly,
with an exact initial estimate of the free energy di�erence, secondly, with an esti-
mate that is 1 kBT smaller than the exact reference value, and, thirdly, with an
estimate of 0 kBT, i.e., 8.708 kBT smaller than the reference value. For the latter
two variants see continuation in Table 2.

sim. time [ps] VI, ∆C = 1kBT VI, C = 0

20 (4.2 ± 0.1)·10−1 14.61 ± 0.06
40 (2.6 ± 0.1)·10−1 8.36 ± 0.06
100 (8.2 ± 0.4)·10−2 4.05 ± 0.05
200 (4.1 ± 0.2)·10−2 2.82 ± 0.05
400 (2.0 ± 0.1)·10−2 2.43 ± 0.06
1000 (1.0 ± 0.1)·10−2 2.50 ± 0.09
2000 (5.9 ± 0.9)·10−3 2.75 ± 0.14
4000 (3.5 ± 0.7)·10−3 2.82 ± 0.08
10000 (1.9 ± 0.6)·10−3 3.21 ± 0.21

Table 3.2: Continuation of Table 1

End of publication
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3.9 Full MSE Result

All terms relevant to derive the optimal sequence of intermediate states have been
calculated in section 3.4, whereas all terms irrelevant to the optimization have
been dropped. However, to, e.g., predict MSEs for a given model system, the
complete expression of the MSE is required. It is calculated in the following.

The quadratic terms have been extended in Eq. 3.16. Continuing by factorizing
all integral terms yields

E
[(

∆G
(n)
s′→(s+1)′

)2
]

=
1

n2

n∑
i=1

∫
ps(x1) dx 1...

∫
ps(xn) dx n

(
e−(H′s+1(xi)−H′s(xi)) − 1

)2

+
1

n2

n∑
i=1

n∑
j=1
j 6=i

∫
ps(x1) dx 1...

∫
ps(xn) dx n

(
e−(H′s+1(xi)−H′s(xi)) − 1

)(
e−(H′s+1(xj)−H′s(xj)) − 1

)

(3.31)

=
1

n

∫
ps(x) dx

(
e−2(H′s+1(xi)−H′s(xi)) − 2e−(H′s+1(xi)−H′s(xi)) + 1

)
+
n2 − n
n2

∫
ps(x) dx

(
e−(H′s+1(xi)−H′s(xi)) − 1

)2
(3.32)

=
1

n

(∫
ps(x) dx e−2(H′s+1(xi)−H′s(xi)) + 2∆Gs′→(s+1)′ − 1

)

+

(
1− 1

n

)(
∆Gs′→(s+1)′

)2 (3.33)

=
1

n

(∫
ps(x) dx e−2(H′s+1(xi)−H′s(xi)) + ∆Gs′→(s+1)′ − 1

)
+
(
∆Gs′→(s+1)′

)2
.

(3.34)

Similar expressions are obtained for E
[(

∆G
(n)
s′→(s+1)′

)2
]
.
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Next, addressing the second line in Eq. 3.6, using Eq. 3.13, yields

−2∆G1,N

N−2∑
s=1
s odd

(
E
[
∆G

(n)
s→s+1

]
− E

[
∆G

(n)
s+2→s+1

]) = −2(∆G1,N )2 (3.35)

Similarly, the third line of Eq. 3.6 is treated as in Eq. 3.15. All terms without a
prefactor of 1/n, can, under the condition of Eq. 3.7, be summarized as a binomial
and cancel with (∆G1,N )2. As such, the remaining terms yield,

MSE
(

∆G
(n)
1,N

)
=

1

n

N−2∑
s=1
s odd

(∫
ps(x) dx e−2(H′s+1(xi)−H′s(xi))

+

∫
ps+2(x) dx e−2(H′s+1(xi)−H′s+2(xi))

+ ∆Gs′→(s+1)′ + ∆G(s+2)′→(s+1)′ − 2

)
(3.36)

where the last line corresponds to the constant expression g′s in Eq. 3.18. Therefore,
the MSE converges to zero with increasing n. However, as can be seen, the MSE
is increased for non-zero free energy di�erences between the shifted Hamiltonians.

3.10 Solving the Systems of Equations

The system of Eqs. 3.22 and 3.23 de�ning the sequence of optimal Hamiltonians
{Hs(x)} also depends on the partition functions {Zs} of all states s, and vice versa.
Whereas numerous numerical algorithms exist for solving systems of equations,
this interdependence complicates the application to Eqs 3.22 and 3.23. For all
one-dimensional model systems presented in this thesis, �xed point iteration (FPI)
was used. The details of its application to VI are provided below. On the one hand
side, FPI was stable in all cases and converged to a unique solution independent of
the initial guess. On the other hand side, it is slow compared to most alternative
algorithms and therefore the application of a faster stable algorithm would be
desirable for the future.
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Figure 3.10: Di�erent variants of a virtual intermediate state (dashed lines)
between the end states (solid lines). The black dashed line depicts the optimal
intermediate. The red and blue dashed lines show the intermediates, where one
of the underlying shifting constants, C1 and C3, is too large. Top: Hamiltonian,
Bottom: Con�guration space density.

In�uence of the Estimated Partition Functions

The form of an intermediate state s depends on the form of the adjacent states
s− 1 and s+ 1. For one virtual intermediate state between the two end states, the
optimal intermediate, using 3.21, is de�ned via

eH2(x) = eH1(x)−C1 + eH3(x)−C3 (3.37)

where the accuracy is optimal if the shifting constant Ci = − lnZi (i = 1, 3).
In this case,

p2(x)−1 α p1(x)−1 + p3(x)−1 . (3.38)

To illustrate how C1 and C3 in�uence the form of the intermediate, Figure 3.10
shows the Hamiltonian and con�guration space density of di�erent variants of a
virtual intermediate (dashed lines) between the end states (solid lines). In the
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optimal case (black), p2(x) is largest in the regions where the con�guration space
densities of the end states overlap. If, however, either C1 or C3 (red and blue
dashed line, respectively) are too large, then the form of the virtual intermediate
becomes closer to either state 1 or 3. It has been tested that in this case the MSEs
are suboptimal. Hence, the shifting constant involved in the following FPI largely
in�uence the form of the intermediate states.

Fixed Point Iteration and VI

Denoting the set of all intermediate Hamiltonians asH(x) = {H2(x), ...,HN−1(x)},
and the corresponding shifting constants as C = {C2, ..., CN−1}, then the system
of equations is solved through the iteration

Hk(x) = f
(
Hk−1(x), Ck−1

)
(3.39)

Ck = − ln

∫ ∞
−∞

e−H
k(x)dx , (3.40)

where k denotes the iteration step and

f
(
Hk(x), Ck

)
=



ln
[
eH1(x)−C1 + eH

k
3 (x)−Ck3

]
−1

2 ln
[
e−2(Hk

2 (x)−Ck2 ) + e−2(Hk
4 (x)−Ck4 )

]
ln
[
eH

k
3 (x)−Ck3 + eH

k
5 (x)−Ck5

]
−1

2 ln
[
e−2(Hk

4 (x)−Ck4 ) + e−2(Hk
6 (x)−Ck6 )

]
...

ln
[
eH

k
N−1(x)−CkN−1 + eHN (x)−CN

]


. (3.41)

The integral notation in Eq. 3.40 denotes that at each step k and for each state s
the integration

Cks = − ln

∫ ∞
−∞

e−H
k
s (x)dx (3.42)

is conducted. As the end state Hamiltonians H1(x) and HN (x) are �xed, C1 and
CN only need to be calculated once at the start of the FPI.

The integration, Eq. 3.40, is required at every step k due to the fact that
Hk
s (x) is calculated as the optimum between the adjacent intermediates s− 1 and
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s + 1 from the previous step k − 1. Once Ck has been determined up to a step κ
for k = 0, ..., κ, the optimal set of Hamiltonians Hκ(x) of a con�guration x that
had previously not been considered, is determined through iteration of Eq. 3.39
only. Note that, to be able to do so, it is necessary to store Ck in memory for all
steps, such that the iteration of Eq. 3.39 can be conducted.

The FPI is completed once a convergence criterion is ful�lled. For the cases in
this chapter, the criterion ∣∣∣∣Cks − Ck−1

s

Cks

∣∣∣∣ ≤ 10−6 ∀ s (3.43)

was used.

As for the initial guess H0(x): Whereas it was tested that the FPI reliably
converges to a unique solution independent of the initial guess, convergence is
achieved in fewer steps if H0(x) is closer to the optimal form. Therefore, the
approximated VI form derived in section 3.5, which is relatively close to the exact
VI form, was used, i.e.,

H0(x) =



−1
2 ln

[
(1− λ2)e−2(HA(x)−CA) + λ2e

−2(HB(x)−CB)
]

−1
2 ln

[
(1− λ3)e−2(HA(x)−CA) + λ3e

−2(HB(x)−CB)
]

...

−1
2 ln

[
(1− λN−1)e−2(HA(x)−CA) + λN−1e

−2(HB(x)−CB)
]


. (3.44)

For all test systems, the {λs} were chosen as λs = (s − 1)/(N − 1), i.e., in
equidistant steps.

For high-dimensional many-body systems, performing multiple integrations
over the entire con�guration space is, by nature of the problem, infeasible. However,
it is possible to perform the �rst few steps of the FPI: Firstly, a set of simulations
is conducted with the approximated VI sequence, i.e., the initial guess. Based on
estimates of the free energy di�erences between adjacent states, the relative shift
constants C0

s −C1 are calculated for all states s. In the next step, simulations are
conducted in states governed by H1

s determined by Eq. 3.39, and so on. Thereby,
the resulting form of the intermediate states will become closer to the optimal one
than the form of the approximated VI sequence.
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3.11 Exponential Error Metrics

The VI derivation is based on two assumptions:

1. Sample points are independent.

2. A set of shifting constants {Cs} exists such that both ∆Gs→t << 1 kBT and
∆G

(n)
s→t << 1 kBT for t = s − 1 and t = s + 1. Therefore, as indicated in

section 3.5, even the exact VI form may not be optimal in the rare case of
very few samples point and very small overlap in con�guration space density
between adjacent states.

This sections outlines how, in theory, the violation of these two assumptions can
be distinguished for cases with suboptimal MSEs.

The following error metric, referred to as the Exponential Mean Squared Error
(EMSE), is de�ned as

EMSE
(

∆G
(n)
1,N

)

= E


N−2∑

s=1
s odd

−e−∆Gs→s+1 + e−∆Gs+2→s+1 + e−∆G
(n)
s→s+1 − e−∆G

(n)
s+2→s+1


2  .
(3.45)

Upon insertion of all ∆Gs→t and ∆G
(n)
s→t (t = s− 1 and t = s+ 1) into Eq. (3.45),

the exponentials cancel with the logarithms in the de�nitions of the free energy
di�erences. The subsequent expression is identical to Eq. 3.18, which was
minimized in section 3.5 and yielded the VI.

Importantly, the VI are therefore obtained by variation of the EMSE without
any analytical approximation. As a consequence, for independent sampling,
the EMSE of the VI sequence is always optimal, also in cases where the MSE
is not. Furthermore, if ∆G

(n)
s→t and ∆Gs→t are small compared to kBT, then

EMSE
(

∆G
(n)
1,N

)
≈ MSE

(
∆G

(n)
1,N

)
. Therefore, in case assumption 2 is violated,

the MSE and EMSE di�er. Alternatively, if the samples are not independent (i.e.,
violation of assumption 1), then both the MSE and EMSE would be a�ected, and
the EMSE of VI would therefore also be suboptimal.

For test simulations, one further change is required: The EMSE is, unlike
the MSE, not invariant against constant shifts in the Hamiltonians, such as
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H ′s(x) = Hs(x) − Cs. Therefore, the EMSE can simply be minimized by choos-
ing a constant such that e−∆Gs→s+1 is small, which would, however, not enable
any conclusions about the underlying form with respect to the MSE. Therefore,
one option to identify optimal forms in test simulations is to compare the EMSE
between states with equal partition functions only (i.e., similar to the analytical
derivation, where the partition sums of the intermediates are restrained to a con-
stant through Lagrange multipliers). Alternatively, the Relative Exponential Mean
Squared Error (REMSE) metric,

REMSE
(

∆G
(n)
1,N

)

= E


N−2∑

s=1
s odd

−e−∆Gs→s+1 + e−∆G
(n)
s→s+1

e−∆Gs→s+1
+
e−∆Gs+2→s+1 − e−∆G

(n)
s+2→s+1

e−∆Gs+2→s+1


2  ,

(3.46)

may be used. Here, the di�erence in each individual step is normalized by the expo-
nentially weighted di�erence itself. As can be easily validated, REMSE

(
∆G

(n)
1,N

)
is invariant to any constant shifts in the intermediate Hamiltonians. For small free
energy di�erences ∆G

(n)
s→t and ∆Gs→t, the REMSE reduces to the MSE, as desired.
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4.1 Variationally derived intermediates for correlated

free-energy estimates between intermediate states

The following section consists of the article

M. Reinhardt, H. Grubmüller, �Variationally derived intermedi-
ates for correlated free-energy estimates between intermediate
states�, Physical Review E, vol. 102, issue 4, p. 043312 (2020)
[240]

published under the Creative Commons Attribution 4.0 International license
and the content reprinted based on the 2020 Copyright Agreement by the American
Physical Society with consent of the authors.

The format, including the numbering of equations and �gures, has been altered
to match the format of this thesis. Furthermore, all references are listed in the
bibliography at the end of this thesis rather than at the end of this article.

Both authors contributed to conceiving the study and writing the manuscript.
I implemented, conducted and analyzed all test simulations.
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4.2 Abstract

Free energy di�erence calculations based on atomistic simulations generally improve
in accuracy when sampling from a sequence of intermediate equilibrium thermody-
namic states that bridge the con�guration space between two states of interest. For
reasons of e�ciency, usually the same samples are used to calculate the step-wise
di�erence of such an intermediate to both adjacent intermediates. However, this
procedure violates the assumption of uncorrelated estimates that is necessary to
derive both the optimal sequence of intermediate states and the widely used Ben-
nett acceptance ratio (BAR) estimator. In this work, via a variational approach,
we derive the sequence of intermediate states and the corresponding estimator with
minimal mean squared error that account for these correlations and assess its ac-
curacy.

4.3 Introduction

Free energy calculations are widely used to investigate physical and chemical
processes [1�7]. Their accuracy is essential to biomedical applications such as
computational drug development [8�11] or material design [12�15]. Amongst the
most widely used methods based on simulations with atomistic Hamiltonians
are alchemical equilibrium techniques, including the Free Energy Perturbation
(FEP) [79] and Thermodynamic Integration (TI) [90] methods. These techniques
determine the free energy di�erence between two states, representing, for example,
two di�erent ligands bound to a target, by sampling from intermediate states
whose Hamiltonians are constructed from those of the end states. The free energy
di�erence between the end states is then determined via a step-wise summation of
the di�erences between the intermediate states.

The choice of these intermediates critically a�ects the accuracy of the free
energy estimates [165, 231, 241] by determining which parts of the con�guration
space are sampled to which extent [169], thereby performing a function similar
to importance sampling [78]. In addition, di�erent estimators that determine
the free energy di�erences between these intermediates and the end states
have been developed, most prominently the Zwanzig formula [79] for FEP, the
Bennett Acceptance Ratio method (BAR) [80], and multistate BAR (MBAR) [166].

We have recently derived [230] the sequence of discrete intermediate states �
the variationally derived intermediates (VI) � that yield, for �nite sampling, the
lowest mean squared error (MSE) of the free energy estimates with respect to
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the exact value. Their form di�ers from the most common scheme, which, for N
states, linearly interpolates between the end states HamiltoniansH1(x) andHN (x),
respectively, along a path variable λs,

Hs(x) = (1− λs)H1(x, λs) + λsHN (x, λs), λs ∈ [0, 1] (4.1)

where x ∈ IR3M denotes the coordinate vector of all M particles in the system.
All states are labeled by an integer s with 1 ≤ s ≤ N , and λs corresponding to
state s. The additional λs argument of the end states Hamiltonians indicates the
commmon use of soft-core potentials [91�93] to avoid divergences for vanishing
particles. Other approaches involve the interpolation of exponentially weighted
Hamiltonians of the end states, such as Enveloping Distribution Sampling [100]
(and variants thereof [102, 103]) or the Minimum Variance path [104, 105] for TI.

In contrast, the VI are not directly de�ned via the end states; instead, the
optimal form of each intermediate s is determined by the form of the adjacent ones
s− 1 and s+ 1. For the setup shown in Fig. 4.1(a), which consists of two types of
intermediates, sampling is conducted in the �rst type labeled with even numbered
s and indicated by the solid lines with yellow points. These are governed by the
optimal Hamiltonian

Hs(x) = −1

2
ln[e−2Hs−1(x) · r−2

s−1,s + e−2Hs+1(x) · r−2
s+1,s] , (4.2)

where rs,t = Zs/Zt denotes the ratio of the con�gurational partition sums of states
s and t. Virtual intermediates are the second type, and labeled with odd numbers
s with 2 < s < N − 1 and indicated by the dashed lines in Fig. 4.1(a). For these,

Hs(x) = ln[eHs−1(x) · rs−1,s + eHs+1(x) · rs+1,s] . (4.3)

Virtual intermediates are used as target states to evaluate the di�erence in free
energy to, and no sampling is conducted in those. Due to the coupling of the VI,
the optimal MSE sequence of Hamiltonians H2(x)...HN−1(x) is determined by
solving the system of N − 2 equations of Eqs. (4.2) and (4.3).

The variational MSE minimization has been conducted based on the Zwanzig
formula [79]

∆Gs,s+1 = − ln〈e−[Hs+1(x)−Hs(x)]〉s (4.4)

being used to calculate the di�erence between two adjacent states, as indicated
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Figure 4.1: Two schemes of free energy calculation. The arrows indicate the
Zwanzig formula is used to evaluate the free energy di�erence to the adjacent state
based on sample sets represented through yellow dots. The dashed lines represent
virtual intermediate states that no sampling is conducted in. (a) Separate and
uncorrelated sample set are used to calculate the free energy di�erence of the
respective intermediate to the state above and below (b). The same sample set is
used for this purpose.

by the arrows in Fig. 4.1. However, using the virtual target states described
by Eq. (4.3) is equivalent to using BAR directly between two sampling states
[186, 230], and, therefore, Eq. (4.3) also describes the optimal intermediates for
BAR.

Note that the Hamiltonians of the optimal intermediates, Eqs. (4.2) and (4.3),
depend on the ratios of the partition sums, i.e., the desired quantity. Therefore,
the system of equations has to be solved iteratively. The principle is the same as
for BAR, where the estimator depends on an estimate of the free energy di�erence,
and the optimal estimator is, therefore, determined iteratively. However, BAR
is, in practice, mostly used with sampling states that are governed by Eq. (4.1)
and a user chosen λ value. The VI method generalizes the BAR principle and
determines not only the estimator, but the form of all intermediates through such
an iterative optimization by using the information of the free energy estimates
between these states. The resulting form di�ers from Eq. (4.1) and does not
require any additional user choice of a λ variable.
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However, for both BAR and VI to be optimal for multiple states, the free energy
estimates to the states above and below an intermediate in the sequence have to be
based on separate, uncorrelated sample points. This is illustrated by the separate
yellow points in Fig. 4.1(a) that we refer to as the regular FEP setup, which was the
topic of our previous work [230]. Yet, it would be twice as e�cient to use the same
sample points in both directions, as illustrated by Fig. 4.1(b), and as generally done
in practice. However, this introduces correlations between the estimates to both
adjacent intermediates, thereby violating the assumptions underlying the deriva-
tion of Eqs. (4.2) and (4.3). Therefore, in this case, BAR and the above variational
intermediates are not optimal anymore. Due to these correlations, we refer to
the Fig. 4.1(b) as the correlated FEP (cFEP) setup, which is the topic of this work.

Here, we derive the minimal MSE sequence of intermediate states and the
corresponding estimators for cFEP, as used in practice, that take these correlations
properly into account. This is in contrast to the derivation of VI [230] for FEP,
where these correlations do not occur. As will be shown below, what might seem as
a minor technical twist, markedly changes the shape of the optimal intermediates
and considerably improves the accuracy of the obtained free energy estimates.

4.4 Theory

For the cFEP scheme shown in Fig. 4.1(b), we aim to derive the sequence of inter-
mediate Hamiltonians H2(x) . . . HN−1(x) that optimizes the MSE

MSE
(

∆G(n)
)

= E
[(

∆G−∆G(n)
)2
]

(4.5)

along similar lines as for the regular FEP scheme [230], shown in Fig. 4.1(a). Here,
∆G

(n)
1,N denotes the free energy estimate based on a �nite number of sample points

n, and ∆G1,N the exact di�erence between the end states 1 and N .

For the optimization metrics, di�erent choices are possible, such as the
Kullback-Leibler divergence [242] or the Fisher information metric [165, 243] that
measure the (dis)similarity between con�guration space densities. Instead, here
we chose to directly optimize the MSE, as it quanti�es the average accuracy with
respect to the exact free energy di�erence, which is the relevant measure for most
practical applications. Furthermore, as the MSE can be decomposed into variance
plus bias squared, we account for both of these contributions that are oftentimes
optimized separately in the literature [171, 234].
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The cFEP variant in Fig. 4.1(b) only uses sampling in the intermediate states.
Setups that, in addition, involve sampling in the end states, can also be treated
with the formalism below. However, �rstly, as we have tested, the accuracy for
a given computational e�ort does not increase in this case. Secondly, mixing
two di�erent types of sample points (the ones used to evaluate ∆H to only one
adjacent state vs. to both adjacent states) further complicates the analysis.

For cFEP, the estimated di�erence is

∆G(n) =

N−2∑
s=2
s even

(
∆G

(n)
s→s+1 −∆G

(n)
s→s−1

)
. (4.6)

As in Fig. 4.1(b), the arrows point from sampling to target states, i.e., either the
end states or the virtual intermediates. Assuming for each sample state s a set of
n independent sample points {xi}, drawn from ps(x) = e−Hs(x)/Zs, with partition
function Zs, expanding Eq. (4.5) with the use of Eq. (4.6) reads

MSE
(

∆G
(n)
1,N

)
=

(∆G1,N )2 +
N−2∑
s=2
s even

E
[(

∆G
(n)
s→s+1

)2
+
(

∆G
(n)
s→s−1

)2
]

− 2∆G1,N

 N−2∑
s=2
s even

(
E
[
∆G

(n)
s→s+1

]
− E

[
∆G

(n)
s→s−1

])
−

N−2∑
s=2
s even

N−2∑
t=2
t even

E
[
2 ∆G

(n)
s→s+1 ∆G

(n)
t→t−1

]
.

(4.7)

The �rst two lines of Eq. (4.7) have already been processed in Ref. 230, but the
last term di�ers. Previously, as in the regular FEP scheme in Fig. 4.1(a), these last
expectation values were originally derived from independent sample sets and were,
therefore, uncorrelated. In the present context of cFEP, however, these estimates
are correlated. Therefore, the term needs to be split in two sums, distinguishing
between the pairs with samples from the same state and the ones from di�erent

78



Correlated Free Energy Estimates

states,

N−2∑
s=2
s even

N−2∑
t=2
t even

E
[
2 ∆G

(n)
s→s+1 ∆G

(n)
t→t−1

]

= 2

N−2∑
s=2
s even

E
[
∆G

(n)
s→s+1 ∆G

(n)
s→s−1

]

+ 2
N−2∑
s=2
s even

N−2∑
t=2
t even
t6=s

E
[
∆G

(n)
s→s+1

]
E
[
∆G

(n)
t→t−1

]
,

(4.8)

where the expectation value of the product between the two estimates based on
di�erent sample sets has been separated, as these are uncorrelated.

As we are only interested in the intermediates that optimize the MSE, and not
in the absolute value of the MSE, we focus on the terms that will not drop out in
the optimization below.

Continuing with the expression inside the sum of the �rst term on the right
hand side of Eq. (4.8),

E
[
∆G

(n)
s→s+1 ∆G

(n)
s→s−1

]
(4.9)

=−
∫
ps(x1)dx1...

∫
ps(xn)dxn

ln

[
1

n

n∑
i=1

e−(Hs+1(xi)−Hs(xi))

]

ln

[
1

n

n∑
i=1

e−(Hs−1(xi)−Hs(xi))

]
.

(4.10)

As in the derivation of Ref. 230, the Hamiltonians are now shifted by a constant
o�set Cs, i.e., H ′s(x) = Hs(x)− Cs. This o�set will cancel out for a given shape
of an intermediate when calculating the accumulated free energy di�erence in
Eq. (4.6). However, as the intermediate states will turn out to be coupled, these
o�sets do in�uence the shape of these intermediates. The o�sets can now be
chosen such that the terms inside the logarithms of Eq. (4.10) are close to one. In
this case, E

[
∆G

(n)
s′→(s+1)′

]
= ∆Gs′,(s+1)′ [230], and, therefore, the two linear terms

arising from Eq. (4.10) can be expressed in terms of the exact free energy di�erences.
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Next, the product of the two sums in Eq. (4.10) is split into terms based on the
same and di�erent sample points, respectively,

E
[
∆G

(n)
s′→(s+1)′ ∆G

(n)
s′→(s−1)′

]
(4.11)

=− 1

n2

∫
ps(x1)dx1...

∫
ps(xn)dxn

(
n∑
i=1

e−(H′s+1(xi)−H′s(xi))

) n∑
j=1
j 6=i

e−(H′s−1(xj)−H′s(xj))


+

n∑
i=1

e−H
′
s+1(xi)−H′s−1(xi)+2H′s(xi)

]
+ fs′(∆Gs′→(s−1)′ ,∆Gs′→(s+1)′) ,

(4.12)

where the terms that can be expressed solely based on (constant) free energy
di�erences are summarized by the term fs. Again, the �rst two terms of Eq. (4.12)
can be expressed in terms of the free energy di�erences between s and s + 1 as
well as between s and s− 1, respectively.

Collecting all terms arising from Eq. (4.7)

MSE
(

∆G
(n)
1,N

)
=

N−2∑
s=2
s odd

1

n

(∫
ps(x) dx e−2(H′s+1(x)−H′s(x))

+

∫
ps+2(x) dx e−2(H′s+1(x)−H′s+2(x))

+

∫
ps+1(x) dx e−H

′
s+2(x)−H′s(x)+2Hs+1(x)

+ gs′(∆Gs′,(s+1)′ ,∆G(s+2)′,(s+1)′ ,∆G1′,N ′)
)
,

(4.13)

where the function g′s serves the same purpose as f ′s and can be dropped in the
optimization below.

The condition of small ∆G
(n)
s′→(s+1)′ is ful�lled by setting Cs = − lnZs. By

variation of the MSE from Eq. (4.13),

∂

∂Hs(x)

(
MSE

(
∆G

(n)
1,N

)
+ ν

∫
(e−Hs(x) − Zs)dx

)
!

= 0 , (4.14)
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where ν is a Lagrange multiplier, the optimal sequence of Hamiltonians is obtained.
For s even, we obtain

Hs(x) = −1

2
ln
(
e−2Hs−1(x)r−2

s−1,s + e−2Hs+1(x)r−2
s+1,s

−2e−Hs−1(x)−Hs+1(x)r−1
s−1,sr

−1
s+1,s

) (4.15)

For s odd and 2 < s < N − 1:

Hs(x) = ln
(
eHs−1(x)rs−1,s + eHs+1(x)rs+1,s

)
− ln

(
e−Hs−2(x)+Hs−1(x)rs−1,s−2

+ e−Hs+2(x)+Hs+1(x)rs+1,s+2

) (4.16)

where, as in Eqs. (4.2) and (4.3), the ratios rs,t of the partition sums between
states s and t have to be determined iteratively. The above sequence, Eqs. (4.15)
and (4.16), that we refer to as the correlated Variational Intermediates (cVI), yield
the minimal MSE estimates for cFEP.

Figure 4.2 shows the resulting con�guration space densities of the above
intermediates for the example of a start state with a harmonic Hamiltonian,
H1(x) = 1

2x
2, and an end state with a quartic one, HN (x) = (x− x0)4. Panel (a)

shows the VI that are optimal for the regular FEP scheme in Fig. 4.1(a). Panel (b)
shows the cVI, optimal for cFEP.

The yellow (light) areas in Fig. 4.2, Eq. (4.17), provide a simple measure of the
con�guration space density overlap K between the end states 1 and N ,

K =

∫ +∞

−∞
dx min(pA(x), pB(x)) , (4.17)

Here, K = 0 indicates two separate distributions without any overlap, and K = 1

full overlap, i.e., identical con�guration space densities.

The two rows in Fig. 4.2(a) and (b) depict the result for two di�erent values
of x0, and correspondingly, varying K.

As can be inferred from Eq. (4.15), for N = 3, H2(x) diverges at the points
where p1(x) = p3(x), and therefore, p2(x) = 0 at these points, as can also be seen
for the intermediate sampling state shown in Fig. 4.2(a). More generally, H2(x)

of cVI �directs� sampling away from the overlap regions and towards the ones
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Figure 4.2: Con�guration space densities of VI (left column), and cVI (right
column) for (a) N = 3 and (b) N = 7 states. The individual rows show di�erent
shifts in x-direction between the minima of the harmonic, H1(x) (red, towards the
left in each panel), and the quartic, HN (x) (blue, towards the right), potentials of
the end states, thereby showing setups with di�erent con�guration space density
overlap K between the end states, indicated by the yellow (light) area. Sampling is
conducted in the even numbered intermediates. The dashed lines in (b) indicate the
(odd numbered) virtual intermediate target states that no sampling is conducted
in.

that are only relevant for one, but not both end states. For instance, the tails
of the start state in the upper row of (a) are sampled more for cVI than for VI.
For larger horizontal shifts of x0, i.e., low values of K, the two variants become
increasingly similar, as the additional term in Eq. (4.15) with respect to Eq. (4.2)
becomes smaller compared to the �rst term.

For N = 7 states, Fig. 4.2(b) shows the converged resulting con�guration space
densities. The case of x0 = 0, as shown in (a), was omitted in (b) as the visualiza-
tion is more di�cult in this case due to the higher number of states. In (b), the
additional changes from VI to cVI become more complex. As in (a), the sampling
states have smaller densities p(x) in the overlap regions of the end states, but, in
contrast to (a), still di�er between VI and cVI for smaller values of overlap K. The
reason is that while the overlap between the end states vanishes with decreasing K,
an overlap between adjacent intermediate states remains that a�ects the shape of
the intermediates. Note that the divergences mentioned above introduce instabili-

82



Correlated Free Energy Estimates

ties in solving the system of Eqs. (4.15) and (4.16). Hence, for N > 3 the factor 2
of the additional term in the logarithm Eq. (4.15) has been replaced by a factor κ
that was set to slightly below 2 (κ = 1.95) in case of Fig. 4.2(b). See Appendix A
for details.

cBAR Estimator

As mentioned above, using the Zwanzig formula [79] to evaluate the free energy
di�erence between two sampling states with respect to the virtual intermediate,
Eq. (4.3), of VI is equivalent to BAR [186, 230]. Correspondingly, the virtual
intermediate de�ned by Eq. (4.16) of cVI also corresponds to an estimator, that
is optimal for the sampling states of cFEP and that we will refer to as correlated
BAR (cBAR).

To derive cBAR, we use the relation between the two approaches. Determining
the free energy di�erence between two sampling states labeled s− 1 and s + 1 by
using the virtual intermediate s to evaluate the di�erence between the adjacent
states yields

∆G
(n)
s−1,s+1 = − ln

〈e−(Hs(x)−Hs+1(x))〉s+1

〈e−(Hs(x)−Hs−1(x))〉s−1
. (4.18)

Using the approach of Bennett [80] instead,

∆G
(n)
s−1,s+1

= ln
〈w(Hs−1(x), Hs+1(x))e−Hs−1(x)〉s+1

〈w(Hs−1(x), Hs+1(x))e−Hs+1(x)〉s−1
. (4.19)

where w(Hs−1(x), Hs+1(x)) is a weighting function. From Eqs. (4.21) and (4.19)
follows that the two approaches are equivalent if the weighting function relates to
the Hamiltonian of the virtual intermediate state through

w(Hs−1(x), Hs+1(x)) = e−Hs(x)+Hs−1(x)+Hs+1(x) . (4.20)

Therefore, any Hamiltonian of a virtual intermediate state corresponds to a weight-
ing function. Bennett optimized the weighting function with respect to the variance
yielding the famous BAR result

∆G
(n)
s−1,s+1 − C = ln

〈f(Hs−1(x)−Hs+1(x)− C)〉s+1

〈f(Hs+1(x)−Hs−1(x) + C)〉s−1
, (4.21)

where C ≈ ∆Gs−1,s+1 has to be determined iteratively and f(x) is the Fermi
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function. This result is equivalent to using the virtual intermediate of Eq. (4.3)
with Eq. (4.18). Note that the relation of a virtual intermediate to BAR result
had already been obtained by Lu et al. [186], albeit through a di�erent formalism,
and that using the hyperbolic secant function (Eq. 10, p. 2980), in their Overlap
Sampling approach [186, 187] is equivalent to Eq. (4.20).

Next, for cFEP, using the Hamiltonian of the virtual intermediate from
Eq. (4.16) in Eq. (4.20) yields the weighting function of cBAR,

w
(
Hs−2(x), Hs−1(x), Hs+1(x), Hs+2(x),

Cs−2,s−1, Cs−1,s+1, Cs+1,s+2

)
=
(
e−Hs−2(x)+Hs−1(x)+Cs−2,s−1

e−Hs+2(x)+Hs+1(x)+Cs+2,s+1

)/
(
eHs−1(x)−Hs+1(x)−Cs+1,s−1 + 1

)
,

(4.22)

where the MSE of the resulting estimates is minimal if all Cs,t ≈ ∆Gs,t. A
numerator of 1 in Eq. (4.22) would yield the original BAR result.

Note that Hs−2(x), and Hs+2(x), are also virtual intermediates determined by
Eq. (4.16). As such, the result is a system of weighting functions, i.e., one for
every pair of adjacent sampling states. The optimal estimate can, therefore, only
be found by iteratively solving for the free energy estimates between all sampling
states at once. In this regard, the procedure is similar to MBAR [166].

4.5 Test Simulations

To assess to what extent our new variational scheme improves accuracy, we
consider the one-dimensional system with a harmonic and a quartic end state
shown in Fig. 4.2. Rejection sampling is used to obtain uncorrelated sample points.
The free energy estimate, obtained from these �nite sample sets, is compared
to the exact free energy di�erence. The MSE, Eq. (4.5), is then calculated by
averaging over one million of such realizations. With this procedure, di�erent
combinations of overlapK, numbers of statesN and sample points n are considered.

We compare three variants. Firstly, using VI, Eqs. (4.2) and (4.3), with FEP,
i.e., the scheme in Fig. 4.1(a). Here, the estimates to both adjacent states are based
on separate sample sets and, therefore, not correlated. Secondly, also using VI,
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but now with cFEP, shown in Fig. 4.1(b). In contrast to variant 1, these estimates
are based on the same sample sets and, therefore, correlated. In order to keep the
total computational e�ort constant, the number of sample points per set (i.e., per
yellow point in Fig. 4.1) is two times larger for cFEP than for FEP. Thirdly, us-
ing cVI, Eqs. (4.15) and (4.16), that accounts for these correlations, also with cFEP.

4.6 Results

For N = 3 states, Fig. 4.3(a) shows the MSEs of the three variants for di�erent
numbers of sample points. Here, for the quartic end state, x0 = 0, corresponding
to K = 0.85, was used. The corresponding con�guration space densities of VI and
cVI are shown in the upper row of Fig. 4.2(a).

As can be seen, cVI with cFEP, shown by the dark blue (lower) line, yields
the best MSE for all numbers of sample points except very few ones. The other
two variants, i.e., VI with FEP (dashed green line) and cFEP (red, upper line)
yield very similar MSEs. As such, the gain in information from evaluating the
Hamiltonians to both adjacent states for all sample points yields only a very small
improvement compared to using separate sample sets for this purpose.

In order to quantify the improvement of cVI compared to VI for cFEP,
Fig. 4.3(b) shows the ratio of the MSEs of the two variants, again in relation to
the number of sample points per set. The dark orange (upper) curve (K = 0.85),
corresponds to the MSEs shown in (a) (i.e., the values of the red curve divided
by the blue curve). The improvement in the MSE plateaus slightly above two for
more than two hundred sample points per state. In addition, the improvements
for setups with di�erent overlap K between the end states are shown (orange
to yellow). This improvement becomes smaller for smaller values of K, but the
qualitative dependence on the number of sample points remains the same.

For a constant number of sample points n = 200 (and n = 100 per set
for VI with FEP, shown by the dashed green line), Fig. 4.3(c) shows how
the MSEs of the three variants improve with increasing K. The MSEs con-
verge at low K, which is in agreement with the observation from Fig. 4.2(a) that
the phase space densities of the intermediate state become more similar in this case.

Figure 4.3(d) shows the MSEs for N = 7 states. The corresponding con�g-
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Figure 4.3: Comparison of the accuracy of VI and cVI using the schemes of
Fig. 4.1. The accuracies were obtained from test simulations based on the setups
shown in Fig. 4.2. (a) Using N = 3 states and comparing three variants of free
energy calculations: Using cVI with cFEP (blue, lower solid line), VI with cFEP
(red, upper solid line) and VI with FEP (green, dashed line). The MSEs of free
energy calculations are shown for di�erent number of sample points. (b) The ratio
of the MSEs, and therefore, the improvement, of using cVI compared to VI for
cFEP. The dark orange (upper) line (K = 0.85) corresponds to the ratio between
the red and the blue (solid) lines in (a). In addition, the results for di�erent
con�guration space density overlaps K between the end states are shown (orange
to yellow). (c) Using n = 200 sample points, the MSEs of the three variants from
(a) are shown over the full range of K. (d) As in (c), but with N = 7 states. The
computational e�ort was kept constant by reducing the number of sample points
per state.
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uration space densities for two di�erent values of K are shown in Fig. 4.2(b).
Here, VI with FEP and cFEP still yield similar MSEs, whereas cVI with cFEP,
in contrast to N = 3, now yields the best MSE for all K. The improvement to
VI ranges from around 20 % for low K, to around 50 % for large K. This is in
line with the observation from Fig. 4.2(b) that the con�guration space densities
between VI and cVI become more similar but do not fully converge for a larger
number of states in the limit of small K.

Lastly, the cBAR estimator can be used with any choice of intermediate states
for cFEP. To assess how much the cBAR estimator improves the accuracy of
free energy estimates compared to BAR for cFEP, we conducted test simulations
where the sampling states were chosen as in Eq. (4.1), i.e., by linear interpolation
between the Hamiltonians of the end states. Test simulations were conducted at
varying values of K and at N = 5 and N = 7. Evaluating the MSE, we found a
statistically signi�cant improvement, however, only in the range of 1− 2 % (data
therefore not shown here). The improvement was independent of K and similar
for both numbers of N .

Considering that the MSEs of cVI and VI can improve up to an order of mag-
nitude compared to the linear intermediates de�ned in Eq. (4.1) (for a detailed
comparison between VI and linear intermediates, see Ref. 230), the large majority
of improvements is not due to an improved estimator, but due to the way samples
are generated.

4.7 Discussion and Conclusion

In summary, we have derived a new variant of variational intermediates (cVI) that
yield the optimal free energy estimate with minimal MSE when using the same
sample points to evaluate the di�erences between the adjacent states above and
below in the sequence (cFEP). This procedure is commonly used in free energy
simulations, as it is computationally much cheaper to evaluate sample points at
di�erent Hamiltonians than to generate these. However, the resulting correlations
between these estimates have not been considered yet.

Our test simulations for a one-dimensional Hamiltonian show that cVI with
cFEP yields an improved MSE compared to the optimal sequence (VI) with FEP,
i.e., using di�erent sample points for estimates to states above and below in the
sequence. For N = 3 states, the �rst variant improved the MSE by more than
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a factor of two for end states with high con�guration space density overlap K,
whereas at low K the MSEs were similar. For N = 7 states, the MSE improved
between 20 % (low K) and 50 % (large K).

Interestingly, due to the correlations mentioned above, using VI with FEP
yields only slightly worse MSEs for all K as using VI with cFEP, even though the
latter involves twice as many evaluations of Hamiltonians from adjacent states.
Only for cVI, thereby accounting for these correlations, the additional gain in
information translates into a marked improvement of the MSE.

Similar to most other theoretical analyses and derivations of free energy
calculation methods, we also needed to assume that all sample points within each
intermediate state are uncorrelated. If atomistic simulations are used for sampling,
the resulting time-correlations reduce the number of essentially independent
sample points. Unfortunately, for our one-dimensional systems, cVI increases
barrier heights, thereby increasing correlation times. We have so far not tested our
method on any complex biomolecular systems, so it is unclear if these barriers can
be circumvented or what the expected increase in correlation times is. However,
to avoid such correlations between sample points in atomistic simulations, usually
only a small subset of all sample points is used to calculate free energy di�erences.
Based on our �ndings and in contrast to common practice, we therefore recommend
to use di�erent subsets to evaluate the free energy di�erences to di�erent adjacent
states.

The above derivation provides an example on how optimal intermediates and
estimators with minimal MSE can be derived for di�erent types of setups based on
�nite sampling that may help to incorporate a variety of assumptions and models
into future theoretical approaches.

4.8 Appendix A: Avoiding numerical instabilities

The divergence in Eq. (4.15) at all x for which

e−2Hs−1(x)r−2
s−1,s + e−2Hs+1(x)r−2

s+1,s

= 2e−Hs−1(x)−Hs+1(x)r−1
s−1,sr

−1
s+1,s

(4.23)
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causes numerical instabilities in solving the system of Eqs. (4.15) and (4.16). Re-
placing the factor 2 in Eq. (4.15) in the logarithm with a factor κ, i.e., for s even,

Hs(x) = −1

2
ln
(
e−2Hs−1(x)r−2

s−1,s + e−2Hs+1(x)r−2
s+1,s

−κe−Hs−1(x)−Hs+1(x)r−1
s−1,sr

−1
s+1,s

)
,

(4.24)

and setting, e.g., κ = 1.95, avoids these complications. As can be easily validated,
the inside of the logarithm in Eq. (4.24) is larger than zero for 0 < κ < 2 for all
Hs−1(x) and Hs+1(x). As shown for cVI in Fig. 4.2(b), κ < 2 prevents ps(x) to
go to zero at the crossing points of ps−1(x) and ps+1(x) of the neighboring states,
but is still lowered at these points.

End of publication
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4.9 Further Interpretation

The optimal form of a cVI intermediate sampling state, Eq. 4.15, is determined
through

e−2Hs(x) = e−2Hs−1(x)r−2
s−1,s + e−2Hs+1(x)r−2

s+1,s

− 2e−Hs−1(x)−Hs+1(x)r−1
s−1,sr

−1
s+1,s

(4.25)

α

(
e−Hs−1(x)

Zs−1
− e−Hs+1(x)

Zs+1

)2

. (4.26)

Expressing Eq. 4.26 through con�guration space densities,

ps(x) α | ps−1(x)− ps+1(x) | , (4.27)

where the equality holds once the cVI sequence has converged through an iterative
procedure such as the FPI described in section 3.10.

When considering only one intermediate sampling state I between the end states
A and B, then Eq. 4.27 reads

pI(x) α | pA(x)− pB(x) | . (4.28)

This form shows explicitly what has been observed in the context of Fig. 4.2:
It is optimal to sample the regions where the con�guration space densities of the
end states di�er. If there is no overlap, then the resulting form equals the one from
VI. If the densities pA(x) and pB(x) are identical for all x, then Hs(x) diverges
everywhere. Essentially, no sampling is required in this case.

This �nding agrees with the analogy of dart board sampling, developed in the
introduction in the context of Fig. 1.1(c). Here importance sampling improves
the e�ciency of determining the di�erence in area by conducting sampling only
in the regions where the shapes di�er. However, this result contradicts previous
assumptions that most of the sampling should be conducted in the overlap region.
In practice, by sampling in states from the linear interpolation scheme that shift
the intermediate con�guration space density from A to B, most of the sampling
is conducted either in the overlap region or in regions that are relevant to neither
A nor B. Whereas this practice avoids barriers in the free energy landscape, it is
suboptimal for independent sampling with cFEP.
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GROMACS Implementation

The following chapter consists of the manuscript

M. Reinhardt, H. Grubmüller, �GROMACS Implementation
for Free Energy Calculations with Non-Pairwise Variationally
Derived Intermediates�.

that is currently under review in Computer Physics Communications and is
available as a preprint at https://arxiv.org/abs/2010.14193.

Both authors contributed to conceiving the study and writing the manuscript.
I conducted the described implementation and simulations.
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5.1 Abstract

Gradients in free energies are the driving forces of physical and biochemical sys-
tems. To predict free energy di�erences with high accuracy, Molecular Dynamics
(MD) and other methods based on atomistic Hamiltonians conduct sampling sim-
ulations in intermediate thermodynamic states that bridge the con�guration space
densities between two states of interest ('alchemical transformations'). For un-
correlated sampling, the recent Variationally derived Intermediates (VI) method
yields optimal accuracy. The form of the VI intermediates di�ers fundamentally
from conventional ones in that they are non-pairwise, i.e., the total force on a par-
ticle in an intermediate states cannot be split into additive contributions from the
surrounding particles. In this work, we describe the implementation of VI into the
widely used GROMACS MD software package (2020, version 1). Furthermore, a
variant of VI is developed that avoids numerical instabilities for vanishing particles.
The implementation allows the use of previous non-pairwise potential forms in the
literature, which have so far not been available in GROMACS. Example cases on
the calculation of solvation free energies, and accuracy assessments thereof, are
provided.

5.2 Program Version Summary

Program Title: GROMACS-VI

CPC Library link to program �les: (to be added by Technical Editor)

Developer's respository link: https://www.mpibpc.mpg.de/gromacs-vi-extension
and https://gitlab.gwdg.de/martin.reinhardt/gromacs-vi-extension

Licensing provisions: LGPL

Programming language: C++14, CUDA

Supplementary material: All topologies and input parameter �les required to repro-
duce the example cases in this work, as well as user and developer documentation
will be provided online together with the source code.

Journal reference of previous version:* M.J. Abraham, T. Murtola, R. Schulz, S.
Pall, J.C. Smith, B. Hess, E. Lindahl, GROMACS: High performance molecular
simulations through multi-level parallelism from laptops to supercomputers, Soft-
wareX, 1-2 (2015)

Does the new version supersede the previous version?: No
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Reasons for the new version:* Implementation of variationally derived intermedi-
ates for free energy calculations

Nature of problem: The free energy di�erence between two states of a thermo-
dynamic system is calculated using samples generated by simulations based on
atomistic Hamiltonians. Due to the high dimensionality of many applications as
in, e.g., biophysics, only a small part of the con�guration space can be sampled.
The choice of the sampling scheme critically a�ects the accuracy of the �nal free
energy estimate. The challenge is, therefore, to �nd the optimal sampling scheme
that provides best accuracy for given computational e�ort.

Solution method(approx. 50-250 words): Sampling is commonly conducted in inter-
mediate states, whose Hamiltonians are de�ned based on the Hamiltonians of the
two states of interest. Here, sampling is conducted in the variationally derived in-
termediates states that, under the assumption of uncorrelated sample points, yield
optimal accuracy. These intermediates di�er fundamentally from the common in-
termediates in that they are non-pairwise, i.e., the forces on a particle are only
additive in the end state, whereas the total force in the intermediate states cannot
be split into additive contributions from the surrounding particles.

5.3 Introduction

Thermodynamic systems are driven by free energy gradients. Hence, knowledge
thereof is key to the molecular understanding of a wide range of biophysical and
chemical processes, as well as to applications in the pharmaceutical [8, 244, 245]
and material sciences [12, 13, 246]. Consequently, in silico calculations of free
energies are popular in providing complementary insights to experiments or
assisting the selection of chemical compounds in the early stages of drug discovery
projects.

The microscopic calculation of the free energy,

∆G = −β−1 lnZ (5.1)

= −β−1 ln

∫ ∞
−∞

e−βH(x)dx , (5.2)

requires integration over all positions x of all particles in the system, where Z
denotes the partition sum, β = 1/(kBT ) the thermodynamic β, kB the Boltzmann
constant, T the temperature and H(x) the Hamiltonian. As an exact integration
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is not feasible for high-dimensional x in case of many particles, sampling based
approaches such as Monte-Carlo (MC) or Molecular Dynamics (MD) simulations
are commonly used. Furthermore, in practice, it oftentimes su�ces to know only
the free energy di�erence between two states, which can be calculated much more
accurately. The most basic approach,

∆GA,B = −β−1 ln
〈
e−β[HB(x)−HA(x)]

〉
A

(5.3)

rests on the Zwanzig formula [79]. The brackets 〈〉A indicate an ensemble
average over A is calculated. More recent methods with close relations to Eq. (5.3)
that use samples from both A and B are the Bennett Acceptance Ratio (BAR)
and multistate BAR (MBAR) method [80, 166] methods.

For sampling based approaches, the accuracy of a free energy di�erence esti-
mate between two states A and B generally improves when sampling is not only
conducted in A and B, but also in intermediate states. Commonly, a mostly linear
interpolation between the end state Hamiltonians HA(x) and HB(x) is used,

Hlin(x, λ) = (1− λ)HA(x, λ) + λHB(x, λ) , (5.4)

where λ ∈ [0, 1] denotes the path variable. The λ dependence of the end state
Hamiltonians enables the use of soft-core potentials [91�93] that avoid divergences
in case of vanishing particle for, e.g., the calculation of solvation free energies (where
the molecules �vanishes� from solution). A step-wise summation,

∆GAB =

N−1∑
i=1

∆Gi,i+1 (5.5)

yields the total free energy di�erence, where N denotes the total number of
states. In the sum of Eq. (5.5), i = 1 corresponds to state A and i = N to state
B, respectively. Alternatively, for many steps the di�erence can be calculated with
Thermodynamic Integration (TI) [90],

∆GAB =

∫ 1

0

〈
∂H(x, λ)

∂λ

〉
λ

dλ . (5.6)

Importantly, advantageous de�nitions of intermediate states exist that go be-
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yond the de�nition of Eq. (5.4). For example, variationally derived intermediates
(VI) [230, 240] minimize the mean squared error (MSE) of free energy estimates
using FEP and BAR. An easily parallelizable approximation for a small number of
states is

HV I(x, λ) = − 1
2β ln

{
(1− λ) exp

[
− 2βHA(x)

]
+ λ exp

[
− 2β

(
HB(x)− C

)]}
,

(5.7)

where, similar to BAR, the free energy di�erence estimate is optimal if C ≈ ∆G.
It is similar in shape to the minimum variance path (MVP) [78, 104, 105] for TI (2
vs 1/2 in the exponents). Enveloping Distribution Sampling (EDS) [100, 101], and
extensions such as Accelerated EDS [102, 247] use a reference potential similar in
shape to Eq. (5.7) to calculate the free energy di�erence between two or more end
states.

Note a particular characteristic of the VI sequence and related methods, which
is illustrated in Fig. 5.1: Its Hamiltonians cannot be formulated as the pair-wise
sum of interaction potentials for all particles. To see this, consider the force on
particle j (blue), obtained through the derivative of Eq. (5.7). It still depends
on the full Hamiltonians of the end states. The consequence can be understood
by considering a particle i (red), with λ dependent parameters, positioned at a
distance rij so large such that all direct interactions between i and j are negligible.
However, when particle i changes its position with respect to its neighboring
particles, the end states Hamiltonians also change, and, therefore, so does the
force on particle j.

In this work, we, �rstly, describe our implementation of the VI approach, and,
by extension, also the MVP and basic principles of the EDS methods for two end
states, into GROMACS [157�159]. It is among the most widely used MD software
packages; however, none of the above approaches are available so far in GROMACS.
Secondly, we introduce an approach to avoid singularities for vanishing particles
with VI.

5.4 Avoiding End State Singularities

Interestingly, the VI sequence, Eq.(5.7), already exhibits soft-core characteristics
for vanishing particles, as shown in Fig. (5.2)(a) on the example of a two-particle

95



Chapter 5

Figure 5.1: Non-pairwise potentials and forces in VI intermediates. Two particles
i and j (red and blue, respectively) are considered that are λ dependent, i.e., their
interaction potential di�ers between A and B. It is assumed that direct interactions
between i and j in both A and B are negligible. If particle i changes its position,
then HA(x) and / or HB(x) change accordingly, and so does HV I(x, λ). Due to
the form of the VI sequence, the derivative, and therefore, the force on particle j
changes.

Lennard-Jones (LJ) potential. However, divergences can still occur when con�gu-
rations from the decoupled states are evaluated at foreign states, i.e., the ones that
no sampling is conducted in, but that the Hamiltonian is evaluated at such as,
e.g., state B in Eq. (5.3). Furthermore, when two particles start to overlap, very
small changes in their separation r lead to large changes in force, which causes
instabilities due to �nite integration steps.

To avoid these divergences, a dependence of the end state Hamiltonians on λ
analogous to common soft-core potentials [91] is introduced, i.e., HA = HA(x, λ)

with HA(x, 0) = HA(x), and HB = HB(x, λ), with HB(x, 1) = HB(x). For two
particle i and j with distance rij , the Coulomb and Lennard-Jones interactions in
state A and B are calculated based on the modi�ed distances rA and rB, respec-
tively, that are de�ned as
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Figure 5.2: Intermediate VI states for a vanishing particle system. The thick red
line shows the Lennard-Jones potential between two particles. The blue one shows
the decoupled end state, i.e., the particles don't �see� each other anymore. The
interpolated colors represent the intermediate states. (a) The VI sequence without
and (b) with λ dependent end states.

rA(rij , λ) =
(
ασ6

ijλ
p + r6

ij

) 1
6 , (5.8)

rB(rij , λ) =
(
ασ6

ij(1− λ)p + r6
ij

) 1
6 , (5.9)

where α and p are soft-core parameters to be speci�ed by the user, and σij the
Lennard-Jones parameter in the coupled state. For a system of two Lennard-Jones
particles, Fig. (5.2) shows the resulting VI states without (a) and with (b) the use
of λ dependent end states. As can be seen, the transition to the overlap region
becomes markedly smoother.

Secondly, for increasingly complex molecules, the likelihood of barriers between
the relevant parts of con�guration space of the end states rises. Aside of additional
techniques such as replica exchange, or meta-dynamics, the factor 2 in the exponent
can be replaced by a user speci�c smoothing factor s introduced in the EDS [100,
101] method. In the limit of small s, a series expansion of the exponential terms
yields the conventional pathway, i.e., Eq. (5.4). The modi�ed VI sequence thus
reads as
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HV I(x, λ) = − 1

sβ
ln

{
(1− λ) exp

[
− sβHA(x, λ)

]
+ λ exp

[
− sβ

(
HB(x, λ)− C

)]}
.

(5.10)

The force on particle i,

FV Ii (x, λ) = − ∂HV I(x, λ)

∂xi
(5.11)

= exp
[
sβHV I(x, λ)

]{
(1− λ) exp

[
− sβHA(x, λ)

]
FAi (x)

+ λ exp
[
− sβ

(
HB(x, λ)− C

)]
FBi (x)

}
,

(5.12)

in the intermediate state characterized by λ, depends on both HA(x, λ) and
HB(x, λ), as well as on the sum of the forces, FAi (x) and FBi (x) on particle i in
end state A and B, respectively.

Along similar lines, the derivate

∂HV I(x, λ)

∂λ
=

exp
[
sβHV I(x, λ)

]
βs{(

(1− λ)sβ
∂HA(x, λ)

∂λ
+ 1

)
exp

[
− sβHA(x, λ)

]
+

(
λsβ

∂HB(x, λ)

∂λ
− 1

)
exp

[
− sβ(HB(x, λ)− C)

]}
(5.13)

depends on the derivatives ∂HA(x, λ)/∂λ and ∂HB(x, λ)/∂λ in the end states.
Equation (5.13) is used for TI.

Due to the dependence of Eq. (5.10) on C, where the accuracy is optimal if
C ≈ ∆GAB, the free energy di�erence has to be determined in an iterative process,

Cn+1 = ∆GAB′ + Cn , (5.14)

where Cn denotes the free energy guess at iteration step n. The free energy dif-
ference ∆GAB′ is obtained from simulations between state A and B′, where the
latter denotes the end state shifted by the constant C, i.e., that is governed by
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H ′B(x, λ) = HB(x, λ)− C. The di�erence ∆GAB′ converges to zero, such that the
desired quantity ∆GAB = ∆GAB′ + Cn ≈ Cn at the end of the iteration process.

5.5 Program Structure and Usage

The end states Hamiltonians,

HA(x, λ) = Hλ
A(x, λ) +Hc(x) (5.15)

HB(x, λ) = Hλ
B(x, λ) +Hc(x), (5.16)

can be split into the λ-dependent energy contributions Hλ
A(x, λ) and Hλ

B(x, λ),
and the common contributions summarized by Hc(x) that are equal in both end
states, such as water-water interactions. To calculate HA(x, λ) and HB(x, λ),
GROMACS only evaluates the λ-dependent contributions separately for the end
states, whereas Hc(x) is calculated only once. Note that, due to the λ dependence
of the end states, Hλ

A(x, λ) andHλ
B(x, λ) di�er for di�erent intermediates for α > 0.

The same holds for the VI sequence, Eq. (5.10). Inserting Eqs. 5.15 and 5.16,
yields

HV I(x, λ) = Hλ
V I(x, λ) +Hc(x) , (5.17)

where Hλ
V I(x, λ) is described by Eq. (5.10), where the end states Hamil-

tonians HA(x, λ) and HB(x, λ) have been replaced by the parts Hλ
A(x, λ) and

Hλ
B(x, λ), respectively, that only sum over λ-dependent interactions. The same

principle applies to the calculation of the forces and λ-derivatives. Therefore,
the computational e�ort of VI is very close to the using conventional intermediates.

However, in the current GROMACS implementation structure, all force and
energy contributions from di�erent interaction types are interpolated between the
end states right after they have been calculated, i.e., the overall calculation has the
form,

Hλ
lin(x, λ) =

∑
interaction
type k

...
∑

particles
i,j

(1− λ)Hk
A(xi,j , λ) + λHk

B(xi,j , λ) (5.18)

F iλ(x) =
∑

interaction
type k

...
∑

particles j

(1− λ)F kA(xi,j , λ) + λF kB(xi,j , λ) . (5.19)
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Whereas this has the least memory requirement, for VI, the full Hamiltonians
and forces in the end states need to be known before the individual forces can
be calculated. Therefore, the end states Hamiltonians and forces are stored
separately. After all λ-dependent contributions have been collected, �rst the
Hamiltonian and subsequently the forces are calculated.

The implementation was built based on the GROMACS 2020 version 1 (last
merged with the master branch of the developer's repository on October 19th,
2019). VI can be used with the new following entries in the mdp (i.e., input
parameter) �le:

v a r i a t i o na l−morphing = 1
smoothing−f a c t o r = 2 .
de l tag−es t imate = 10 .3 ; in kJ / mol

Furthermore, the option

ns t ca l c ene rgy = 1

should be set, as the force calculation requires the Hamiltonians of the end state.
The λ dependence of the end state Hamiltonians for VI are controlled via the
already existing soft-core infrastructure,

sc−alpha = 0 .7
sc−r−power = 6
sc−cou l = no
sc−sigma = 0 .3

By nature of Eq. 5.10, the transformation only takes place along a single λ
variable, to be speci�ed by the mdp parameter fep-lambdas. As such, it is not
possible to decouple several interactions simultaneously with di�erent λ spacing
for each type. It is, of course, possible to decouple electrostatic and LJ interac-
tions in a sequence, that can be de�ned via coul-lambdas and vdw-lambdas,
respectively, whereas the other is set to either zero (full interaction) or one (no
interaction) for all intermediate states.

5.6 Example and test cases

When VI is switched o�, all interactions are calculated as in Eqs. (5.18), (5.19) and
(5.13). To test that VI collects all contributions correctly, for the following options
in the mdp �le,
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Figure 5.3: Structure of nitrocyclohexane, which is used as an example case.

v a r i a t i o na l−morphing = 1
l i n e a r−t e s t = 1

Gromacs-VI calculates the intermediate Hamiltonian based on,

Hλ
V I(x, λ) = (1− λ)

∑
interaction
type k

...
∑

particles
i,j

Hk
A(xi,j , λ)

︸ ︷︷ ︸
Hλ
A(x,λ)

+λ
∑

interaction
type k

...
∑

particles
i,j

Hk
B(xi,j , λ)

︸ ︷︷ ︸
Hλ
B(x,λ)

,
(5.20)

and likewise, for the forces and λ derivatives. Setting the seed to a �xed value
such as,

ld−seed = 1

it can be validated that all energies required for the free energy calculation that
are stored in the dhdl.xvg �le match between the implementation of the VI and
the conventional sequence.

Equilibrium States

As an example case, the solvation free energy of nitrocyclohexane in water was
calculated (structure shown in Fig. 5.3). The topologies of the solvation toolkit
package [222] created with the Generalized AMBER Force Field [221] were used.
Upon energy minimization, 2 ns NVT (constant volume and temperature) and
4 ns NPT (constant pressure and temperature) equilibration were conducted,
followed by 100 ns production runs.
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Figure 5.4: Free energy di�erences along intermediate states between A (coupled
state) and B (decoupled state). The bars show the di�erences between the states
denoted below. The conventional linear interpolation method, panels (a) and (c),
is shown in red, whereas VI is shown in blue (panels (b) and (d)). Coulomb inter-
actions were decoupled �rst (with LJ interactions still turned on), LJ interactions
second (Coulomb interactions switched o�).

To asses whether the VI implementation yields accurate results consistent with
the ones from conventional intermediates, �rst, through extensive sampling with
101 states (i.e., λ steps of 0.01), a reference value value of (9.85 ± 0.02) kJ/mol
was obtained. It can be divided into (10.46 ± 0.01) kJ/mol electrostatic, and
(-0.61 ± 0.02) kJ/mol LJ contributions. Next, a set of simulations with 5 states,
i.e., λ steps of 0.25, were conducted.

The distribution of the free energy estimates between the di�erent states is
shown for Coulomb and LJ interactions in Fig. (5.4) and di�ers considerably
between the two methods. The bars denote the free energy di�erence between
the states denoted at the bottom. Again, A represents the coupled, and B the
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decoupled state. The plots shown for VI were created based on the runs where
C was set to the respective reference value, and, as such, sum up to about zero.
When decoupling Coulomb interactions with a conventional linear interpolation
method, shown in panel (a), the largest di�erences between the states occur in
the �rst steps and gradually decreases. For VI (b), the free energy path along
the intermediates has be become very small (note the di�ering unis on the axis).
In contrast, for LJ interactions, the di�erences for VI (d) become larger than for
the linear interpolation (c). The reason is, most likely, that the di�erences in the
contributions from the attractive and the repulsive part of the LJ potential don't
cancel for all intermediates.

To compare the accuracy of both methods, Fig. 5.5 shows the MSEs with
total simulation time, distributed equally over all �ve states. The MSEs were
obtained by dividing the trajectories of the production runs into smaller ones,
and comparing the resulting free energy di�erence to the reference value. For VI,
two di�erent smoothing values were considered (blue and green lines), as well as
an exact initial estimate (solid line) and one that is 1 kJ/mol too low (dashed lines).

For electrostatic interactions, the MSEs in Fig. 5.5(a) are signi�cantly better
for VI with s = 2 and an estimate close to the exact one than the MSE obtained
with linear intermediates, thereby validating the result of Ref. 230. However,
in this case the MSEs are quite sensitive to the initial guess. For Lennard-Jones
interactions, Fig. 5.5(b), VI and linear intermediates yield similar MSEs, but
the VI estimates are less sensitive to the initial guess. In both cases, the MSEs
corresponding to VI with a smoothing factor of 0.1 are close to the linear ones
and insensitive to the initial guess for most of the trajectory lengths in Fig. 5.5.
As such, it is advantageous to start the iteration process with a smaller smoothing
factor that is gradually increased with an improved estimate for C.
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Figure 5.5: MSEs as a function of simulation time for decoupling (a) Coulomb and
(b) Lennard-Jones interactions. The red line indicates the use of the conventional
linear interpolation method, the blue and green line the VI approach, Eq. 5.10,
using two di�erent s values. The solid line indicate the MSEs that were obtained
by using an exact initial guess, whereas a guess of 1 kJ/mol is indicated by the
dashed lines.
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5.7 Summary

We have implemented the VI sequence of states into the GROMACS MD soft-
ware package. For Coulomb interactions, our implementations yields signi�cantly
smaller MSEs and, in this sense, higher accuracy as compared to linearly interpo-
lated intermediates. This results requires a su�ciently accurate initial estimate,
which for the test cases presented here requires only a few percent of the overall
simulation time. Furthermore, using the λ dependence of the end states added
to VI, for LJ interactions, similar MSEs as for conventional soft-core approaches
are achieved. Given the many stepwise improvements that eventually led to the
accuracy of current soft-core protocols, the fact the VI approach achieves similar
accuracy already in the �rst attempt suggests that future re�nements, e.g., of the
lambda dependency on the end states, will push the accuracy even further.

5.8 Code and Data Availability

The source code is available at https://www.mpibpc.mpg.de/

gromacs-vi-extension or https://gitlab.gwdg.de/martin.

reinhardt/gromacs-vi-extension. Documentation, topologies and
input parameter �les of the above test cases are also available on the website and
the repository. In the gitlab repository, all changes with respect to the o�cial
underlying GROMACS code can be retraced.

As installation is identical to that of GROMACS 2020, refer to
http://manual.gromacs.org/documentation/2020/install-guide/

index.html for detailed instructions.
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In the last chapter, the MSEs of VI were assessed for calculating the solvation
free energy of nitrocyclohexane (see Fig. 5.5). For the decoupling of electrostatic
interactions (i.e., turning all Coulomb interaction energies of nitrocyclohexane
with its environment to zero), VI yielded lower MSEs than linearly interpolated
intermediate states. However, for decoupling LJ interactions, the MSEs were only
similar, and in some cases, even slightly worse for VI compared to established
soft-core variants of the linear interpolation scheme. Therefore, the �rst section
of this chapter will investigate the underlying reasons and identify potential
approaches that could improve the accuracy of VI.

Furthermore, is has been shown empirically that if a variant of the linear
interpolation scheme yields accurate predictions with equilibrium methods,
then the underlying path also yields accurate predictions with non-equilibrium
alchemical approaches [85, 248]. Therefore, in the second section of this chapter,
it will be investigated if this �nding also holds true for VI.

6.1 Separate Decoupling of vdW Attraction and Pauli

Repulsion

The LJ potential,

VLJ(rij) =
C12

r12
ij

− C6

r6
ij

, (6.1)

expressed through the LJ parameters C12 = 4εijσ
12
ij and C6 = 4εijσ

6
ij from

Eq. 2.72, combines attractive (vdW) and repulsive (Pauli) interactions. However,
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Figure 6.1: Separate decoupling of LJ interactions using VI. The Hamiltonians
of the intermediates are shown as a function of distance. For illustration, the LJ
parameters of argon were used [237]. (a) In the �rst step, attractive interactions
are decoupled by setting C6 = 0 in state B, while maintaining full repulsive interac-
tions. (b) In the second step, C6 = 0 is maintained, and the repulsive interactions
are decoupled by setting C12 = 0 in B.

the underlying physics of these two contributions di�er. To detect complications,
their decoupling was analyzed in two separate sets of simulations: In the �rst set,
repulsive interactions are maintained, whereas the attractive ones are switched
o�. In the second set, also the repulsive interaction energies are removed. The
Hamiltonian form of the resulting VI states is shown in Fig. 6.1.

Simulation Setup

The MSEs are determined for butanol, but otherwise along similar lines as in
chapter 5. For the attractive part of the LJ interactions, C6 was changed from its
regular value in state A to C6 = 0 in state B whereas C12 remains unchanged.
A reference simulation using 51 states with regular λ spacing and the linear
interpolation scheme yielded a free energy di�erence of 62.013± 0.007 kJ/mol. For
the repulsive part, C6 = 0 was maintained for all states, whereas C12 was changed
from its regular value to zero. The reference simulations yielded a di�erence of
−69.95± 0.02 kJ/mol.
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To assess the MSEs of both VI and the linear interpolation scheme, in each
case �ve states were used for decoupling C6 and C12 (regular λ steps of 0.25). In
addition, a third set of simulations was conducted as a comparison, where the LJ
interactions were decoupled simultaneously (i.e., equal to the procedure of decou-
pling LJ interactions for nitrocyclohexane in chapter 5). To keep the computational
e�ort at the same level, ten states were used in this case (λ steps of 0.11), and the
reference result was obtained from the two above as −7.94 ± 0.02 kJ/mol. For
each state, upon energy minimization, 2 ns NVT and 4 ns NPT equilibration were
conducted, followed by 100 ns production runs that were split into smaller trajec-
tories to analyze the MSEs. BAR was used to calculate the free energy di�erence
between adjacent states. For VI, the reference values were used for the estimate
C. The soft-core path and parameters by Steinbrecher et al. [93] described in the
methods chapter (section 2.3) was used for the linear path, and the λ dependence
of the end states described in chapter 5 was used for VI.

Results

Firstly, as shown by the red lines in Fig. 6.2, decoupling the full LJ interactions
simultaneously yields MSEs for VI (solid line) that are similar to the ones from the
linear scheme (dashed line), as was also observed for nitrocyclohexane in chapter 5.
When decoupling the attractive contribution only (blue), then the MSEs are
signi�cantly smaller, and VI is more accurate than the linear scheme. However, for
removing repulsive interactions (green), both methods yield substantially higher
MSEs than before. Whereas the MSEs obtained from the linearly interpolated
states still decrease with simulation time, estimates of VI are highly biased, as the
MSEs barely improve with increasing simulation time.

To quantify the contribution of each step to the total free energy estimate
between the states in the sequence, the individual free energy di�erences are
shown for each method and interaction type in Fig. 6.3. Only the last bar in
each histogram di�ers, and denotes the total free energy di�erence between A and
B. The decoupling of the full LJ interactions is shown in the �rst line. For the
linear path, the contributions of the individual steps gradually turn from positive
to negative. For VI (blue), note again that as the initial estimate was set to the
reference result, a total free energy di�erence of zero is expected. Here, the last
step (second last bar) consists of a positive free energy di�erence that is larger
than all other (negative) ones combined. Furthermore, the di�erence is much
larger than for any step-wise di�erence of the linear scheme.

109



Chapter 6

Figure 6.2: Decoupling of LJ interactions of butanol in water. The dashed lines
denote that the conventional soft-core variant (Steinbrecher et al. [93]) of the
linear interpolation scheme was used, the solid lines the use of the VI method for
vanishing particles described in section 5.4. Three cases are considered: Firstly,
the regular case of full LJ interactions in the �rst and none in the second end
state (red). Secondly, decoupling the two contributions separately, by setting the
attractive parameter from C6 in the start to zero in the second end state, while
the repulsive interactions remain (blue) and next, with all attractive interactions
switched o�, i.e., C6 = 0, changing the repulsive term from C12 to zero (green).
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Figure 6.3: Free energy di�erences along intermediate states between A (coupled
state) and B (decoupled state) for the three cases described for Fig. 6.2. The bars
show the di�erences between the states denoted below: The �rst few bars show
the di�erence between adjacent states, whereas the last one shows the total free
energy di�erence between A and B. Red bars indicate that the linear interpolation
scheme was used, blue bars that VI was used.
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Figure 6.4: Normalized histograms of the di�erences in the Hamiltonians between
adjacent states for the decoupling of the repulsive LJ part (butanol). A� 1 denotes
that the forward distributions (red and blue for linear and VI, respectively) show
the di�erences based samples from A with respect to the �rst intermediate, and
backward vice versa (green). To account for the di�erence in direction, all backward
di�erences have been multiplied by minus one.
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For decoupling the attractive contributions (C6), the free energy di�erences of
all four steps are similar for the linear scheme. Along these lines, for VI, all of the
di�erences are small. However, for the step-wise removal of repulsive interactions
(C12), the individual di�erences become very large. Both for the linear and the
VI states, the largest change occurs in the last step. However, the di�erence to
previous steps is much more drastic for VI. Strikingly, the resulting total free
energy estimate is entirely wrong. It was attempted to use a λ point for state
3 that is closer to one (e.g., λ = 0.99), with the counter-intuitive result that the
di�erence in the last step grew even larger.

Notably, some of the patterns observed for the separate decoupling resemble
the ones for simultaneous decoupling. The linear scheme seems to be a combination
of decoupling attractive interactions �rst and repulsive ones second. For VI, the
large free energy di�erences of the last step is found both in the simultaneous and
the repulsive decoupling.

To analyze the particularity of the last large step with respect to all other
ones for decoupling repulsive interactions, Fig. 6.4 shows the distribution of the
di�erences in the Hamiltonians between the individual states. For, e.g., A � 1,
`forward' (red and blue) refers to the di�erences based on samples from state A,
and `backward' (green) to samples from state 1. The backward di�erences have
been multiplied by minus one to account for the di�erence in direction. If the
free energy landscapes of two states were identical (or if the Hamiltonians only
di�ered by a constant energy o�set), then the forward and (negative) backward
distributions would be identical. Therefore, similar and overlapping distributions
indicate similar con�guration space densities (even though scenarios of disjunct
con�guration space densities leading to identical forward and negative backward
distributions are in theory possible).

Both for the linear and the VI method, the forward and backward distribu-
tions overlap to some degree within the �rst three steps. Especially for VI, these
distributions are very similar. In contrast, for the last step, the distributions are
disjunct. For VI, the reverse distribution based on samples from the decoupled
state essentially consists only of a single di�erence.

Discussion

Decoupling the full LJ potential yields lower MSEs than decoupling the attractive
and repulsive parts in two separate steps. However, the described similarity in the
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histograms of step-wise free energy di�erences suggests that the complications ob-
served for decoupling the repulsive part (Fig. 6.3) partly translate into decoupling
the full LJ interactions, and, therefore, VI does not represent the optimum in this
case.

The distributions of the di�erences in the Hamiltonians (Fig. 6.4) indicate
that simulations in the �nal decoupled state take place in entirely di�erent parts
of con�guration space than all other ones. However, when changing the λ value
of the last intermediate close to one, transitions to the decoupled state where
observed, but none going in the opposite direction. Similarly, when using starting
positions from the decoupled state for all intermediates, also no transitions to the
coupled state were observed.

An observation concerns the VI forces in these transition: For a vanishing
particle in B, HB(x) = 0 and FB(x) = 0 for all x. Leaving the λ dependence of
the end states aside, then the force, Eq. 5.12, in an intermediate state reduces to

Fλ(x) =
(1− λ)e−sβHA(x)

(1− λ)e−sβHA(x) + λesβC
FA(x) . (6.2)

In most of the cases, and for a good estimate C ≈ ∆G⇒ 〈e−sβHA(x)〉λ ≈ esβC .
Therefore, Fλ(x) is a non-zero fraction of FA(x). However, if, due to �uctuations,
temporarily HA(x) >> 0, then the force reduces to

Fλ(x) ≈ (1− λ)

λesβC
e−sβHA(x) FA(x) (6.3)

α e−(βsr−12) r−13 (6.4)

For r → 0⇒ Fλ(x)→ 0 (6.5)

Therefore, upon a certain point, the force decreases with smaller separation r

instead of increasing.

Whereas a similar phenomenon is known for conventional soft-core schemes
[95], the complications are much more drastic for VI due to the characteristic of
non-pairwise interactions of VI. If one atom of a vanishing molecule partly overlaps
with, e.g., a water atom such that HA(x) is substantially increased, then not only
the force Fiλ(x) on atom i is decreased, but the forces of all atoms, such that the
molecule becomes fully decoupled. For the molecule to go back to the coupled
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state, it does not su�ce for one atom to be separated spontaneously by a distance
of approximately σ to its neighboring atoms (as for pairwise potentials); instead,
the water would have to spontaneously form a cavity for the whole solute such
that no overlapping atoms remain. Naturally, this is highly unlikely for entropic
reasons. Therefore, whereas transitions from the coupled to the decoupled state
occur, no transitions in reverse have been observed.

Potential Approaches

The entropic problem could be avoided by maintaining a �nite force for overlapping
con�gurations that drive the system back to the coupled state. The strength of
the force should be chosen such that overlapping con�gurations are frequently
visited, but transitions back to the coupled state also occurred at a high rate.

For the linear interpolation scheme with pairwise interactions, such an
approach has been developed by Gapsys et al. [95]. It was implemented into
GROMACS 4.5, but not available in later versions. However, an implementation
into the future GROMACS 2021 package is currently in process by Gapsys and
coworkers. An alteration of this concept may subsequently be applied to VI.

In their approach, the interaction potential is de�ned via a switching point
rsw(λ). For atom separations r > rsw(λ), the linearly interpolated interaction
functions without any soft-core are used. For smaller separations, the force is
linearly increased up to zero with the gradient at the switching point, as shown by
the green line in Fig. 6.5(a). In contrast, the force of the most widely employed
soft-core potential by Steinbrecher et al. [93] becomes zero for distances close to
r = 0 (blue line). The potential of the soft-core interaction by Gapsys et al. [95],
shown in green in Fig. 6.5(b), is determined through integration of the forces. The
force and Hamiltonian are de�ned as

F(r, λ) =


Flin(r, λ) , if r ≤ rsw(λ)

dFlin(r, λ)

dr

∣∣∣∣
r=rsw

(rsw(λ)− r) + Flin(
r

r
rsw, λ) , if r < rsw(λ)

(6.6)

H(r, λ) =


Hlin(r, λ) , if r ≤ rsw(λ)

−
∫ r

∞
F(r, λ)dr + C , if r < rsw(λ) ,

(6.7)
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Figure 6.5: Comparison of soft-core treatments for LJ interactions in the interme-
diate state at λ = 0.5. Again, the LJ parameters of argon are used as an example.
(a) and (b): Linear interpolation scheme. Forces and potential as a function of
distance without soft-core (red), with the most widely used soft-core treatment
by Steinbrecher et al. [93] (blue), and the one by Gapsys et al. [95]. (c) and
(d): Forces and potential of the approximated VI sequence as derived in chapter 3
(red), of VI with the λ-dependence of the end states developed in chapter 5 with
s = 2, α = 0.7 (blue) and the newly proposed form (green) through adopting the
approach by Gapsys et al. [95] to VI.
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where C denotes the integration constant chosen such that the potential is
continuous at r = rsw(λ), and Hlin(r, λ) = (1− λ)HA(r) + λHB(r). The switching
point is de�ned such that rsw(λ) = 0 at both λ = 0 and λ = 1, thereby recovering
the unperturbed end states.

In the one-dimensional example, this approach can be adopted by using Hvi(r)

and Fvi(r) instead of Hlin(r) and Flin(r) in Eqs. 6.6 and 6.7. The resulting forces
and potentials are shown in Fig. 6.5(c) and (d). In contrast to the VI sequence
derived in chapter 3 (red) and the variant with an end-state dependence on λ

developed in chapter 5 (blue), a constantly increasing force is introduced for
smaller r in the adopted variant (green).

For higher dimensions, a de�nition of the switching point via a distance criteria
is not suitable for VI due its non-pairwise characteristic. However, similarly, a
force can be maintained in cases where the di�erence in the end state Hamiltonians
∆H(x, λ) = ∆HA(x, λ)−HB(x, λ) +C becomes too large. De�ning the switching
point via an energy Esw(λ), the VI may be de�ned above this point, i.e., for
∆H(x, λ) > Esw(λ),

F(r, λ) =
dFVI(r, λ,∆H)

d∆H

∣∣∣∣
∆H=Esw(λ)

β−1

(
(β∆H)−

1
12−

(
βEsw(λ)

)− 1
12

)

+ FVI(Esw(λ), λ) ,

(6.8)

which, in the one-dimensional LJ cases, reduces to a force close to the one
shown in green in Fig. 6.5(c) again. Such an approach could drastically reduce the
entropic barrier separating the coupled from the decoupled state.
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6.2 Non-Equilibrium Application

To analyze the approximated VI path for non-equilibrium transitions, the MSEs
of two calculations were assessed: Firstly, of the free energy di�erence between an
argon LJ gas, consisting of 100 atoms, and an ideal argon gas. Secondly, of the free
energy di�erence of charged and uncharged butanol in solution.

Simulation Setup

For argon, the same LJ parameters as in section 3.6 were used (σ = 3.405 Å,
ε = 1.0446 kJ/mol and m = 39.95 u). In this case, the simulations were conducted
with the GROMACS VI implementation described in chapter 5 and in an NPT
ensemble, with T = 298.15 K and P = 1.013 bar. A reference free energy di�erence
of 0.158 ± 0.005 kJ/mol was obtained using 101 equilibrium states with 100 ns
simulation time in each one of them. For butanol, the same system setup and
reference value as described in section 3.6 was used.

For both systems, 1000 non-equilibrium trajectories were simulated in each
direction, i.e., going from A (coupled state) to B (decoupled state) and in
reverse. For argon, an increment of ∆λ = 2 · 10−5 per time step was used and for
butanol ∆λ = 2 · 10−6. The starting points were drawn from 100 ns equilibrium
simulations in both A and B (i.e., one starting con�guration every 0.1 ns). This
procedure was conducted using the linear interpolation scheme, as well as for VI
with smoothing values s = 2 and s = 0.1. In case of the LJ gas, soft-core was
employed, with α = 0.5 for linear, and using α = 0.7 for the end state dependence
of VI. In all setups, VI calculations were conducted using the reference value
as the initial estimate. For butanol and both smoothing values, and additional
set of simulations was performed were the initial estimate C was 1 kJ/mol too small.

To assess the MSEs of all paths, free energy estimates were calculated based
on trajectory sets of varying sizes, ranging from 3 to 200 in each direction.
For each size, multiple free energy estimates were calculated by using shifted
sets of trajectories ranging from 500 sets (for 3 trajectories) to 20 sets (for 200
trajectories). Estimates of the free energy di�erence were calculated based on
the work values from non-equilibrium trajectories as described in the methods
section 2.4 using both the adapted BAR and the CGI method. In none of the
above cases, the resulting MSEs di�ered signi�cantly between BAR and CGI, so
the results being shown in the following are the ones obtained with BAR using the
implementation within the pmx tool [162].

118



LJ Analysis and Non-equilibrium Application

Results

VI (solid blue line in Fig. 6.6) yields signi�cantly higher MSEs for both calculations
on (a) argon and (b) butanol than for the linear path (red). VI with smoothing
(s = 0.1, green line) yields MSEs that are similar to the linear path. For an initial
estimate that di�ers from the exact free energy di�erence (dashed lines), the MSEs
are higher, and the fast �attening of the curve with the number of trajectories
indicates a systematic bias.

To investigate the reasons leading to the higher MSEs of VI, the underlying
work distributions for butanol are shown in Fig. 6.7. These are much wider for VI
than for the linear path and for VI with s = 0.1. Particularly, rare but large work
values in both directions occur. Furthermore, when C does not equal the reference
value, in the optimal case the distributions would be equal to the one on the
left but centered around a mean of 1 kJ/mol. Instead, these become non-symmetric.

On the example of a single trajectory for the linear path and VI each (C exact,
s = 2), ∂H∂λ is shown as a function of λ for butanol in Fig. 6.8. As can be seen, the
plots highly di�er between the linear and the VI method. For the linear scheme,
the derivate gradually decreases with λ. For VI, the derivatives are large for λ
close to zero and to one, whereas the derivatives are small for the majority of the
λ range in between.
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Figure 6.6: MSEs for di�erent numbers of non-equilibrium trajectories. Half of
the trajectories were conducted in the forward, and half in reverse direction. VI
with di�erent smoothing (red and green) is compared to the linear path (red) for
the calculation of (a) the free energy di�erence between an argon LJ and an ideal
gas and (b) the di�erence between charged and uncharged butanol in solution.
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Figure 6.7: Work distributions from non-equilibrium trajectories for butanol:
comparison between VI and linear path. For VI, di�erent combinations of an
initial estimate C (left: C equals the reference value, right: C is 1 kJ/mol below the
reference value) and smoothing parameter (top: VI, s = 2, middle: VI, s = 0.1) are
shown. Within each plot, the left half shows the work as a function of the trajectory
number in slightly transparent colors for the �rst 100 trajectories, both in forward
(blue and red) and reverse direction (green). The thicker, non-transparent line
shows a moving average. The histograms in the right part combine the work values
from the left part. Based on these histograms, the free energy di�erence was
calculated, as shown in the upper right part of each plot. The images were created
based on the analysis with the pmx tool [162].
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Figure 6.8:
∂H(x)
∂λ as a function of λ for butanol over a single trajectory in forward

direction out of equilibrium. The total work is obtained through integration over
λ. Left: linear path, the white line presents a moving average over a width of 0.05.
Right: VI (C exact and s = 2).

Discussion

In its current form, VI is less accurate than linear paths for non-equilibrium
applications. Several points related to the accuracy are discussed in the following:

Firstly, non-independent samples in the equilibrium simulations that the
starting positions were drawn from � a common reason for inaccuracies non-
equilibrium based simulations � did most likely not cause the complications
observed in this section. As a start, due to its relatively �at free energy landscape,
it is easier to produce samples that can be assumed as independent for an argon
LJ gas than for a molecular system in solution, and the latter would therefore be
more a�ected by such shortcomings. However, the di�erence in accuracy between
the two methods is similar for both butanol and argon, especially at a higher
number of trajectories. Furthermore, correlations are often observed through
systematic trends of the work values as a function of trajectory number. Whereas
the fact that no such trend was observed for the work distributions in Fig. 6.7 is
not a proof that the accuracies are not a�ected by correlations between starting
positions, it gives another indication that the complications observed in this
chapter are most likely caused elsewhere.

Secondly, one potential reason for the inaccuracies of VI is related to the
fact that the largest contributions to the integral over ∂H

∂λ are distributed close
to λ = 0 and 1. Therefore, only a small amount of sampling is conducted in
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these λ regions compared to the total length of the trajectories. As the two large
contributions to the integral at the end of the λ range have an opposite sign,
any �uctuations therein cause large �uctuations in the total work, as observed
in Fig. 6.7. Discretization through �nite ∆λ steps will therefore more strongly
translate into integration errors for VI.

Potential Approaches

Improvements in the accuracy could therefore be achieved by directing more
sampling to the λ regions with the highest absolute values in the ∂H

∂λ and, to
accurately integrate over the regions with changes therein, with high second
derivatives ∂2H

∂λ2
. An adaptive ∆λ increment that is small in these cases and high

in regions with small �rst and second derivatives would achieve this goal.

Note that without soft-core, as discussed in the methods section 2.3, any spacing
for one set of prefactors in front of the exponentials in Eq. 5.10 corresponds to a
di�erent spacing for another set of prefactors. For example, constant ∆λ increments
for the prefactors (1− λ)4 and λ4 lead to identical states as the prefactors (1− λ)

and λ with some other form of irregular spacing. Therefore, alternatively, the form
of the prefactors could be optimized. However, the advantage of an adaptive ∆λ

increment is that the the optimal form prefactors does not have to be assumed or
determined a priori. Nonetheless, even if sampling along λ is optimized via either
option, it is as of now unclear how close the functional form of the approximated
VI path itself is to the optimum for non-equilibrium methods. Ideally, the optimal
functional form with prefactors that are optimal for constant spacing would be
derived through an analytical derivation for non-equilibrium approaches.
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Conclusion and Outlook

7.1 Conclusion

This thesis addressed the question which sequence of intermediate states, out of
all possible ones, yields the highest accuracy. In this context, the highest accuracy
refers to sampling based estimates with the smallest mean-squared error (MSE)
with respect to the exact free energy di�erence. For two of the most widely used
methods to calculate free energy di�erences via atomistic simulations, free energy
perturbation (FEP) [79] and the Bennett acceptance ratio method (BAR) [80],
this sequence was derived in chapter 3 using variational calculus, and is hence
referred to as the Variationally derived Intermediates (VI) method.

The VI sequence o�ers a number of insights: Firstly, it shows that the form
of these optimal intermediates is very di�erent from established ones. Whereas
the most widely used linear schemes, and soft-core variants thereof, interpolate
the Hamiltonians of the end states A and B, VI is closer to the interpolation
of the squared con�guration space densities. The resulting densities decrease
in the region of A and increase in the region of B. Hence, unlike previously
assumed, sampling of con�gurations that lie between A and B in con�guration
space, but are relevant to neither state, is therefore not e�cient and should only
enable transitions between these regions. For tests on one-dimensional systems,
substantial improvements were observed for VI compared to states from the linear
interpolation scheme. These improvements were the most pronounced (a factor
of two or more) for the notoriously di�cult cases where the con�guration space
densities of the end states overlap only by a small amount.

Secondly, as VI is optimal for any number of states in the sequence, it is a
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generalization of the two main alternatives to the linear interpolation scheme.
In the limit of many states, VI yields the same MSEs as the minimum variance
path (MVP) [78, 104, 105], which was derived in this limit for Thermodynamic
Integration (TI) [90]. In contrast, when using only one intermediate state, VI
resembles the empirically constructed Enveloping Distribution Sampling (EDS)
potential [100].

Thirdly, VI was directly optimized as a sequence of discrete states. As a
result, it di�ers from all other forms developed in the past in that the intermediate
states are coupled. As such, these are not directly de�ned as a functional of the
end state Hamiltonians, but instead via adjacent states in the sequence, and the
optimal solution is determined through a system of equations. Conceptually,
only in reverse a path may be implied by taking the limit of in�nitely many
intermediates and de�ning a path variable via the fractional labels of these
intermediates. Essentially, by optimizing the sequence of discrete states, VI not
only accounts for the bias that arises from such a discretization, but also yields a
lower variance than, e.g., the MVP, which is only optimal in the limit of many steps.

Fourthly, for FEP with only one virtual intermediate (i.e., in which no
sampling is conducted) between the end states, VI yields the BAR formula.
Importantly, via this connection VI o�ers a new and more general derivation of
BAR, which was initially derived by optimizing the variance in the large sample
limit and under the assumption that the di�erences in the Hamiltonians follow
a Gaussian distribution. The VI derivation therefore shows that, �rstly, BAR
not only optimizes the variance but also the MSE, and secondly, also does so for
�nite numbers of sample points with less restrictive assumptions than the initial
derivation. Furthermore, BAR represents an implicit problem, where the optimal
estimator depends on an estimate of the free energy itself, and is therefore solved
iteratively. VI generalizes the BAR principle for many states, as not only the
estimator, but also the form of all intermediate states is determined through such
an iterative procedure.

In the next step, we considered correlated Free Energy Perturbation (cFEP),
which is an extended setup to calculate free energy di�erences. For cFEP, the
same sample points are used to evaluate the free energy di�erences to adjacent
states in the sequence, rather than separate ones. This procedure is common
practice, as it is much more e�cient to evaluate sample points with multiple
Hamiltonians than to generate uncorrelated ones. However, correlations arise
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between the step-wise free energy estimates that had not been accounted for prior
to this work. The sequence of intermediate states (cVI) yielding optimal MSEs
under these conditions was derived and assessed for a number of 1-D systems,
giving, in the optimal case, an improvement up to more than a factor of two
compared to using VI with either FEP or cFEP. The equivalence between virtual
intermediates and estimators was further used to develop an improved estimator
(cBAR) for cFEP with arbitrarily chosen intermediates. However, for linearly
interpolated intermediates, cBAR only yielded improvements of about one to two
percent compared to regular BAR.

Interestingly, the con�guration space density of a single cVI sampling state
is proportional to the absolute di�erence of the densities from the end states.
Therefore, it is optimal to sample in the regions that are only relevant to one,
but not to both end states. This fact contradicts previous assumptions that
intermediates should be chosen such that they sample the overlap region and,
therefore, rather represents an �anti overlap� principle. As such, it is in line with
the dart-board analogy from Fig. 1.1(c) of the introduction: A higher accuracy
is achieved through importance sampling in the regions where the shapes di�er
instead of sampling in the overlapping bulk.

We next considered the application of VI and cVI to realistic atomistic
many-particle systems. Fundamentally, there is no obstacle to apply the VI and
cVI sequences to such systems. However, their parallelization and implementation
into current software packages is nonetheless challenging due to the di�erence of
the coupled form from established paths. To avoid this technical drawback, a
sequence based on an approximated path was devised that yielded similar MSEs
as the optimal VI sequence at a small number of intermediates in one-dimensional
systems. The approximated VI sequence was implemented, �rstly, into a self-
written program that models a LJ gas, and secondly, into the GROMACS MD
software package. The implementation into the latter was described in detail in
chapter 5.

The approximated VI sequence yields substantial improvements for a number
of systems compared to the linear interpolation scheme. To calculate the free
energy di�erence for a change in atom type of a LJ gas, almost ten times less
sampling was required to achieve the same accuracy. For the calculation of the
solvation free energy di�erence between charged and uncharged butanol, about
two times less sampling was required. Note again that, as outlined in the chapter
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on theory and methods (2), the MSEs were assessed by comparing the estimates
from numerous short simulations to a converged reference result based on the same
Hamiltonian. For comparisons with experiments, not only the sampling errors,
but also force �eld inaccuracies would contribute to the MSEs, and therefore not
allow a conclusive evaluation of our sampling method.

In chapter 5, VI was tested on one of the most challenging cases, the
(de)solvation of an entire molecule (nitrocyclohexane). Interestingly, the VI se-
quence, as well as the approximation thereof, already exhibit soft-core properties.
However, a lambda dependence of the end state Hamiltonians still had to be
introduced to avoid numerical instabilities in regions of large gradients. For the
calculation of the solvation free energy of nitrocyclohexane, similar MSEs were
obtained between VI and the established linear soft-core approach.

In the last step, based on empirical �ndings that paths yielding accurate results
for equilibrium methods also do so for non-equilibrium ones [85, 248], we also
tested the path underlying the approximated VI sequence with a non-equilibrium
approach. However, in the cases analyzed in chapter 6 � the transformations of
a LJ to an ideal gas as well as from charged to uncharged butanol in solution �
the subsequent estimates were less accurate than the ones of established soft-core
variants of linear interpolation schemes. An analysis of the individual work
distributions revealed that most of the changes in the simulated system occurred
within a small fraction of the entire λ range. As of now, it remains unclear
if a suboptimal distribution of sampling along λ, caused by an inappropriately
constant ∆λ increment, is the sole reason for obtaining higher MSEs than the
linear interpolation scheme, or if the approximated VI path itself is far from the
optimal functional form for non-equilibrium approaches.

A major challenge remains: As most of the analytical approaches in the
context of free energy calculations, all of the above presented analytical results
were derived assuming independent sample points. However, in practice, this
assumption is violated in MD simulations to an extent that depends on factors
such as simulation time, the choice of starting points and barriers within the
free energy landscape. Unfortunately, VI seems to be more a�ected by this
sampling problem than linear interpolation schemes. In the extreme case of
two completely disjunct con�guration space densities of the end states, the
intermediate states would even consist of two disconnected regions. In these cases,
which region is explored is entirely dependent on the starting position, even for
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in�nitely long trajectories. For cVI, even for connected regions, large barriers
occur and cVI has, for this reason, so far not been tested on many-particle systems.

Whereas for the calculation of solvation free energies presented in this thesis
no substantial enthalpic barriers were encountered, a detailed analysis on butanol
(chapter 6) revealed that entropic barriers lead to VI yielding MSEs that were
not more accurate than conventional soft-core approaches. The problem can
partly be mitigated by introducing a smoothing factor in the exponents, as was
introduced in the EDS method [100], that gradually switches between the linear
and the exponential form of a potential. Furthermore, an approach avoiding
entropic barriers through maintaining non-zero forces for overlapping particles in
intermediate states has been suggested.

In summary, the VI and cVI derivations provide the sequences of interme-
diate states with minimal MSEs assuming independent sample points. Marked
improvements in accuracy compared to linear intermediates were observed for
one-dimensional test systems, and a number of fundamental insights were ob-
tained. Furthermore, VI also provided estimates of free energy di�erences with
improved accuracy for several many-particle systems. The major challenge, i.e.,
non-independent sample points, still needs to be addressed through approaches
outlined in the following section.

7.2 Outlook

This work may be extended into several directions. These can be broadly catego-
rized into, �rstly, analytical approaches addressing some of the more fundamental
questions in the context of VI, and secondly, future applications of the concepts
from this work.

Analytical Approaches

Firstly, it has been veri�ed empirically on a variety of test cases that the �xed
point iteration used to solve the system of equations de�ning the optimal VI
sequence converges to a unique solution, independent of the initial guess. However,
attempts to analytically proof � or refute � this �nding were so far unsuccessful.
In case this empirical �nding was incorrect, potentially a solution yielding even
lower MSEs than the one analyzed in this work may exist.

Secondly, it was empirically shown that in the limit of many states the VI
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sequence yields the same MSEs as the MVP which, however, also remains to be
proven analytically.

Thirdly, the cVI derivation may be extended for a setup in which not only the
di�erence in enthalpy of an intermediate to the two adjacent ones is used, but
instead the enthalpy di�erence to all other states.

Essentially, the �holy grail� of theories for free energy calculations would derive
the optimal sequence of states without assuming independent sample points. It
would also include correlations between subsequent points by, e.g., considering
sampling as a di�usive process in a free energy landscape. It would thereby avoid
complications arising from both enthalpic and entropic barriers.

Application

Firstly, the complication that regions in conformation space are separated through
entropic barriers for the calculation of solvation free energies with VI needs to
be addressed. To this aim, we have suggested an approach maintaining non-zero
forces for overlapping vanishing particles in intermediates states, as outlined
in chapter 6. This approach was adopted from a soft-core variant developed
by Gapsys et al. [95] for linear interpolation schemes. As it already yielded
marked improvements for linear intermediates that su�er less from this problem,
improvements are also expected for VI.

Secondly, barriers in the free energy landscape may, in addition, be overcome
through the combination of VI with sampling techniques devised for this purpose.
Examples, brie�y introduced in the introduction, include metadynamics, confor-
mational �ooding or replica exchange (RE). The latter is readily usable with
the current GROMACS VI implementation, but will require optimization of the
acceptance criteria to switch conformations between di�erent states.

Thirdly, an optimization of the iteration process updating the free energy
estimate C, which the approximated VI sequence depends on, needs to be
conducted. An update of C is only preferable if the prediction based on the
obtained data to this point has a signi�cantly lower standard deviation than the
di�erence to the previously used estimate. The optimal criterion, however, still
needs to be determined. Furthermore, a future approach may address how to
extract and combine the information from trajectories based on di�erent C to
make full use of the initial optimization runs. For example, a variance weighted
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average is an option, which may, however, still be biased to an unknown degree.

Fourthly, the implementation of the optimal VI sequence instead of the
approximated one has already been started, but not su�ciently tested, yet.
Similar to the approximated sequence, the estimated ratio of the partition sums
between adjacent states is updated iteratively based on the free energy estimates
obtained to this point.

Lastly, for non-equilibrium simulations, it can be determined how much the
observed inaccuracies of VI result from a suboptimal distribution of sampling
capacities along λ. To do so, a variable ∆λ increment that would be small for
large �rst and second order derivatives ∂Hλ

∂λ and ∂2Hλ
∂λ2

, respectively, and vice versa,
may be designed. Such an adaptive increment would lead to better sampling in λ
ranges where large changes in the system occur, whereas avoiding oversampling
the ones with few changes therein. As this disparity was particularly large for
VI with non-equilibrium methods, substantial improvements are expected here
through such an adaptive approach, but applications based on other paths may
bene�t as well.
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