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Potassium channels facilitate the passage of K+ ions through
membranes to near-diffusion limited rates. The main structural
element of potassium channels - the selectivity filter - is conserved
in all canonical potassium channels, and yet individual channels can
vary in their conduction rates by at least one order of magnitude.

Recent combined experimental and computational studies [1,2]
suggest that potassium ions permeate through the channel via the
so-called ‘direct knock-on’ mechanism. The 'direct knock-on'
mechanisms provides a framework to study ion conduction in
potassium channels and its regulatory mechanisms in greater detail.

Apart from enabling rapid and selective ion permeation, the
selectivity filter is a gate in many potassium channels: it undergoes
conformational transitions that allow or halt ion permeation in a
process called inactivation or selectivity filter gating [3].
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We use in silico electrophysiology Molecular Dynamics (MD) based
simulations, to obtain a clear view into ion permeation on at the
atomistic scale. We start from high resolution structures of
potassium channels and apply an electric field (membrane voltage),
akin to electrophysiological measurements, that leads to individual
ion permeation events. Counting these events results in measured
ionic currents.
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V55E mutation destabilizes the open
state of MthK in experiments
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MthK is a model potassium
channel gated by Ca2+ ions. We
have previously established that
MthK displays an exquisite
coupling between the lower
activation gate and the selectivity
filter [4]. Here, we investigate how
a pore-helix mutation in MthK
affects its conduction and gating
properties.

Experiments show lower open probability (Po) of MthK V55E, due to
decreased stability of the open state.

Widening of the selectivity filter, especially at the level of the 'second
glycine' (G63 in MthK) has been postulated as the selectivity filter gating
mechanism in voltage gated channels (e.g. Kv1.2) [5,6]. We observe
similar transitions in MD simulations of MthK WT and MthK V55E.

• Experiments and MD simulations are in good agreement,
showing the reduced stability of the conductive state in MthK
V55E, as compared to MthK WT, due to the higher propensity
of entering the inactivated conformation.

• E55 transitions between two rotameric states affect ion
permeation rates in MD simulations, by increasing the free
energy barriers.

• Inactivation of both MthK WT and MthK V55E seems to be
structurally more related to inactivation in voltage gated
channels (widening of the SF at the top part) than in the Kcsa
channel (narrowing of the filter in the middle part).

• Inactivation in MthK V55E is enhanced due to the 'horizontal'
orientation of E55, that attracts water molecules from the
extracellular space, which in turn destabilizes the critical
hydrogen bond between D64 and Y51, leading to an 'aspartate
flip'.

• A single mutation in the pore-helix of potassium channels can
dramatically alter the gating behavior at the selectivity filter

• Further work is required to understand diverging trajectories of
inactivation in Kcsa, MthK and voltage gated potassium
channels

Based on 20 independent, 5 us long simulations per system/force field,
we counted number of inactivation events occurring in MD simulations
of MthK WT and MthK V55E

Examples of individual inactivation events in MD simulations. As the
channel is tetrameric, each curve refers to a distance between
oppositely oriented subunits.

Flipping of an aspartate behind the SF leads to the SF widening. This
flip is a consequence of the E55 horizontal orientation that causes water
flux behind the SF and destabilization of the D64-Y51 hydrogen bond.

Vertical orientation of E55 (red) leads to low currents (top), which is a
consequence of higher free energy barriers for ion permeation (bottom).

We study MthK WT and MthK V55E channels. MthK V55E has a
valine in the pore-helix replaced by a protonated glutamate, a
unique residue, found in another model potassium channel KcsA,
known to play a key role in inactivation.
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