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Controlling Uncertainty of Empirical First-Passage Times in the Small-Sample Regime
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We derive general bounds on the probability that the empirical first-passage time 7,, = Z

i Ti/n

of a reversible ergodic Markov process inferred from a sample of n independent realizations deviates
from the true mean first-passage time by more than any given amount in either direction. We
construct non-asymptotic confidence intervals that hold in the elusive small-sample regime and
thus fill the gap between asymptotic methods and the Bayesian approach that is known to be
sensitive to prior belief and tends to underestimate uncertainty in the small-sample setting. Our
concentration-of-measure-based results allow for model-free error control and reliable error estimation
in kinetic inference, and are thus important for the analysis of experimental and simulation data in

the presence of limited sampling.

The first-passage time 7 denotes the time a random pro-
cess reaches a threshold a, typically referred to as the “tar-
get”, for the first time. First-passage times [1-4] quantify
the kinetics of chemical reactions [5-10], cell signaling and
gene regulation in the low-copy [11-20] and “fastest en-
counter” limits [21-29], intracellular transport [30], RNA
biosynthesis [31], protein accumulation [32, 33] and DNA-
binding [34], emergence of drug resistance [35], virus up-
take [36], spreading of diseases [37, 38|, and the foraging
behavior of bacteria and animals [39]. First-passage the-
ory was further applied to nanocluster formation [40], cell
adhesion [41-43], gating of ion channels [44], and diffusion
through interfaces [45] and across phase boundaries [46].

In more abstract settings, first-passage times charac-
terize barrier-crossing in energy landscapes [6, 23, 47—
54], persistence properties [55-61], and the statistics of
stochastic currents [62, 63], thermodynamic entropy pro-
duction [64—67], and dynamical activity [68, 69] in non-
equilibrium systems. First-passage ideas are intimately
tied to the statistics of extremes [70-73], and were ex-
tended to quantum systems [74, 75], additive functionals
of stochastic paths [76-81], intermittent targets [82-85],
active particles [86, 87], non-Markovian dynamics [88-91],
and processes under resetting [92-101].

Whereas theoretical studies focus on predicting first-
passage statistics, practical applications typically aim
at inferring kinetic rates—inverse mean first-passage
times—from experimental [52, 102-106] or simulation
data [51, 107-113]. The inference of empirical first-passage
times T,, = Y., 7;/n from data is, however, challenging
because usually only a small number of realizations n
(typically 1-10 [113-118], sometimes up to 100 [119]) is
available, which gives rise to large uncertainties and non-
Gaussian errors. Insufficient sampling is especially detri-
mental in the case of broadly distributed [51, 120, 121]
and high-dimensional data [106]. Moreover, first-passage
times are generically not exponentially distributed [8, 9,
17, 19, 23, 24, 122-127], which further complicates quan-
tification of uncertainty. A systematic understanding of
statistical deviations of the empirical from the true mean
first-passage time (see Fig. la), especially in the small-
sample n < 100 regime, remains elusive.

Computer simulations in particular often suffer from
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FIG. 1. Deviations of empirical first-passage times from the
true mean and model systems. (a) Schematic probability den-
sity of empirical first-passage time 7, inferred from a sample
of n realizations of an ergodic reversible Markov process. The
tail probability that the estimate 7,, deviates from the true
mean (7) by more or equal than ¢ upwards P(7,, > (1) +t)
or downwards P(7,, < (7) —t) is shown in green and blue,
respectively. (b) Brownian molecular search process in a d-
dimensional domain (here d = 2) with outer radius R and
target radius a. Discrete-state Markov jump models of protein
folding for (c) a toy protein and (d) experimentally inferred
model of calmodulin [124]. Transitions between states are in-
dicated by arrows and obey detailed balance. For all systems
considered the absorbing target is colored red.

insufficient sampling, which leads to substantial errors in
inferred rates [128-131] and, in the worst case, erroneous
conclusions (see discussion in [113, 132]). Even extensive
computing resources may result in only a few indepen-
dent estimates spread over many orders of magnitude,
rendering uncertainty quantification challenging and not
amenable to standard error analysis [116].

Constructing reliable confidence intervals is a fundamen-
tal challenge in statistical inference, and many prevalent
methods rely on asymptotic arguments that hold when
the number of realizations tends to infinity. However, the
applicability of asymptotic results in a finite-sample set-
ting is, by definition, problematic. In particular, Central-
Limit- and bootstrapping-based methods [133] may easily



underestimate the uncertainty for small n and fail to guar-
antee coverage of the confidence level [116, 134-139].

Conversely, Bayesian methods (see e.g. [140]) do not
rely on asymptotic arguments and are therefore often (in
general erroneously [141, 142]) believed to readily alle-
viate the small-sample problem. Bayesian estimates are
sensitive to, dependent on, and potentially biased by, the
specification of the prior distribution, especially in the
small-sample setting [140, 143-145]. Due to the prior
dependence of estimates and their uncertainties, Bayesian
methods must be treated with care when applied to small
samples [146, 147] (see [123, 129, 148-150] specifically for
kinetic inference) and can perform worse than asymptotic
frequentist methods [146].

Moreover, so-called “credible intervals”—the Bayesian
analogue to confidence intervals—have a nominally differ-
ent meaning, as they treat the estimated parameter as a
random variable. Bayesian posterior intervals are similarly
affected by limited sampling [116], i.e. the constructed
uncertainty estimates and their quality are sensitive to
the choice of prior probability [141, 142] and may likely
underestimate the true uncertainty and thus fail to pro-
vide trustworthy confidence intervals [129, 151].

On a more subtle level, the classical Bernstein-von-
Mises theorem establishes a rigorous (frequentist) justi-
fication of posterior-based Bayesian credible intervals as
asymptotically correct, prior independent confidence inter-
vals for (finite dimensional) parametric models in the large-
sample limit [152-154]. Analogous statements for semi-
parametric and (infinite dimensional) non-parametric
models are more delicate [155-158] and, despite having
received signifficant attention [159-170] (see also [171]
for misspecified and high dimensional [172] parametric
models), seem to remain—even in the asymptotic, large-
sample regime—an elusive problem.

There is thus a pressing need for understanding fluctu-
ations of inferred empirical first-passage times, a rigorous
error control, and reliable non-asymptotic error estima-
tion in the small-sample regime. These are fundamental
problems of statistical kinetics and are essential for the
analysis of experimental and simulation data.

Here, we present general bounds on fluctuations of
empirical first-passage times that allow a rigorous uncer-
tainty quantification (e.g. using confidence intervals with
guaranteed coverage probabilities for all sample sizes)
under minimal assumptions. We prove non-asymptotic
lower (£) and upper (i) bounds on the deviation proba-
bility P(7,, > (1) + t) and P(7,, < () —t) (see Fig. la),
i.e., the probability that the empirical first-passage time
inferred from a sample of n > 1 realizations of an ergodic
reversible Markov process, 7,, deviates from the true
mean (7) by more than ¢ in either direction,

LEX) <P(£[F, — (1) >t) <UZ(t) vE>0, (1)

the upper bounds U* (¢) corresponding to so-called concen-
tration inequalities [173]. The most conservative version
of the derived upper bounds is independent of any details
about the underlying dynamics. The validity and sharpness

of the bounds are demonstrated by means of spatially con-
fined Brownian molecular search processes in dimensions
1 and 3 (Fig. 1b), and discrete-state Markov jump models
of protein folding for a toy protein [24, 129, 174, 175]
(Fig. 1c) and the experimentally inferred model of calmod-
ulin [124] (Fig. 1d). We use the bounds U5 (¢) to quantify
the uncertainty of the inferred sample mean 7,, in a gen-
eral setting and under minimal assumptions, for all n > 1.
We conclude with a discussion of the practical implications
of the results and further research directions.

Setup.—We consider time-homogeneous Markov pro-
cesses x; on a continuous or discrete state-space {2 with
(forward) generator L corresponding to a Markov rate-
matrix or an effectively one-dimensional Fokker-Planck
operator. Let the transition probability density to find
T; at = at tiAme t given that it evolved from xy be
pi(z|lzg) = eltd,,(x) where §,,(z) denotes the Dirac
or Kronecker delta for continuous and discrete state-
spaces, respectively. We assume the process to be ergodic
limy 00 P(T|20) = Peq (), Where peq(7) = e~#(®) denotes
the equilibrium probability density and ¢(x) the general-
ized potential in units of thermal energy kgT [176]. We
assume that L obeys detailed balance [177] and is either
(i) bounded, (ii) € is finite with reflecting boundary 92,
or (iii) © is infinite but ¢(x) sufficiently confining (see
[178]). Each of the conditions (i)-(iii) ensures that the
spectrum of L is discrete [179].

We are interested in the first-passage time to a target
a when x;—¢ is drawn from a density po(z)

T= irtlf[t |z = a, po(zo)], (2)

and focus on po(x) = Peq(x) where the tilde denotes that
the absorbing state is excluded [180]. For completeness we
also provide in [181] results for general initial conditions
po(x) that require more precise conditions on ¢(x) [182].
The probability density of 7 for such processes has the
generic form [23, 24]

Qaltlme) = prwiee ™, (3)
k>0

where p, > 0 denote first-passage rates and w;° the
(not necessarily positive) spectral “weights” normalized
according to >, w;® = 1 and w{® > 0. The m-
th moment of 7 is given by (r) = m!> o wi° /i
and the survival probability reads P(r > t) =
Sa(tlzg) = Y ,sqwpte ™t If xzy is drawn from
the equilibrium density, peq(z), we have pq(t|peq) =
fQ\a ©a (t|T0)Peq(x0)dzro [183] which renders all weights
non-negative, wj; = fQ\a Wy Peqdzo > 0 (see proof in
[181]). We henceforth abbreviate S (¢|Peq) = Sa(t)-

To examplify the need for uncertainty bounds in Eq. (1)
we show in Fig. 2a-d that the probability that 7, — (1)
lies within a desired range of say & 10% of the longest
first-passage time scale py ', P(u1[Fp — (7)] € [~0.1,0.1))
is low even for n =~ 50 for all models in Fig. 1b-d.

Lower bounds on deviation probability.—There exists
a “noise floor” for 7, for any n. Since pp < prpy1 and
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FIG. 2. Deviation probabilities and corresponding bounds for a spatially confined Brownian search process in (a,e) d = 1 and
(b,f) d = 3 dimensions, and Markov-jump models of protein folding for (c,g) the experimentally inferred model of calmodulin
and (d,h) the toy protein. (a-d) Probability that 67,, = 7, — (7) lies within a range of £10% of the longest time-scale 1/u1,
P(p167n € [—0.1,0.1]), as a function of n determined from the statistics of 7,, for different fixed n for all model systems. (e-h)
Scaled probabilities P*/™ (sgn(t)é7, > |t|) that the sample mean 7, inferred from n realizations deviates from (r) by more
than ¢ in either direction. Right tail areas are shown for ¢ > 0 and left for t < 0, respectively. Lower £ (t) and upper ur (t;C)
bounds are depicted as red and black lines, respectively, and the model-free upper bound Ut (t;2) as the dashed yellow line.
Symbols denote corresponding scaled empirical deviation probabilities as a function of ¢t and are sampled for different n.

wy, are non-negative [184] and normalized [23, 24|, the
equilibrium survival probability obeys wie 1t < S, (t) <
e ! which directly leads to lower bounds £ZX(t) in
Eq. (1). Namely, 7, > min;ep 7 = 70 and 7, <
max;e(1,, 7 = 7. Therefore, P(rM™ > t) < P(7, >
t) < P(rMa > ¢) and we have P(7/" > ¢) = S(#)" and
P(rprax <) = (1 —S(t))", leading to lower bounds

P(7,— (1) >t)> (w1e_“1(<T>+t))n =L}t
BT (n) < =02 (1= @0) = L0, (@)

where equality is reached for n = 1 and w; — 1. Anal-
ogous results are obtained for upper bounds (see [181])
which, however, are much weaker than those derived be-
low with the Cramér-Chernoff approach and concurrently
require even more information about the dynamics.

We remark that bounds on the survival probability
consequently also bound the probability density pt(ln)(t)
of the fastest first-passage time of n independent par-
ticles [23, 25, 26, 185] according to nw;e (=Dt <
pgn)(t)/pa(t) < ne~(m=Drt We now turn to the more
challenging upper bounds.

Cramér-Chernoff bounds.—Let 07,, = |T,,—(7)| and \ €
RT. We start with the obvious inequality e’\tIL(;;nZt <
e’ where 1 is the indicator function of the set b. Tak-
ing the expectation yields P (07, > t) < e M(eM7n) =
e MF¥s7, (N where we defined the cumulant generating
function of 67, sz, (A) = In(e**™"). Note that 7; are sta-
tistically independent. The bound can be optimized [186]

to find Chernoff’s inequality, IP(67,, > t) < e_m/’T‘ST(t)7

where 5 _(t) is the Cramér transform of o5, () [173], i.e.

P53, () = Slip(kt —Ysr(N)), ()

where §7 = §71. On the interval A € [0, 1) we have the
following bounds on s, () (see proof in [181])

ﬁ# T > <7->
221 — X\ -
Usr ) < s, ) = 4 2T T ©)
T < (1),

% 1= (A p)?

which are non-negative, convex, and increasing on A €
[0, 111), and we introduced C = 2 (72) [187]. The bound (6)
further implies ¢ (t) > ¢5_(t;C) Vt > 0, and may thus
be optimized according to [186] to obtain the inequalities
announced in Eq. (1) via Chernoff’s inequality:

Uy (;C) = exp (—nChy (11t/C))
Uy, (t;C) = exp (—nCh_ (p1t/C))

0<t<
0<t<(r) (7)
where we defined the functions
hi(u)=14u—+vV1+42u
A(u)?
A(u)?

(8)
9)

with A(u) = 1 [g(u) —V4+2/g(u)u— g(u)Q} and

33

)Y oo

g(u) = 57

2 1
— <1+ 2cosh | -arcosh | 1+



The tail behavior of 7 in Eq. (7) provides quantitative
insight into fluctuations of 7 even when (7) is unknown
or is an insufficient or non-representative observable [188-
190]. Deviations are readily expressed relative to the
longest natural time scale 1/p1 that does not need to be
known. That is, deviations are naturally parameterized
by the dimensionless variable = pt. Asymptotically
as n — 0o, UZF is substantial only for /C < 1 and the
tails become symmetric and sub-Gaussian [173], hy(u) =
u?/2 — O(u?) and h_(u) = u?/2 — O(u*) (see [181]).

Notably, details about the underlying dynamics only
enter the tail bounds (7) via the system-dependent con-
stant C that, however, can be bounded. In particular, for
equilibrium initial conditions we have 0 < 2w; < C < 2
(see [181]). Since ¢sr(A;C) is monotonically increasing
with C € (0,2], we have ¢5,(A;C) < ¢s-(A;2) which im-
plies ¢} _(t;C) > ¢5. (t;2). Thus, we find the model-free
bounds

Uy (:C) < U (1:2) = Uy (1) (11)
requiring no information about the system. The non-
asymptotic bounds on deviation probabilities of 7, in
Egs. (7) and (11) are our first main result.

Notably, analogous concentration inequalities were pre-
viously derived for time-averages of Markov processes
[191-193] (see also [194]), and were recently applied to
bound time-averaged measurement outcomes in quantum
Markov processes [195] and to derive inverse thermody-
namic uncertainty relations [196].

Tllustration of bounds.—The lower L£X(t) and upper
UE(t) bounds on P(£[F, — (1)] > t) in Egs. (4) and (7),
respectively, are examplified in Fig. 2e-h (see red and
black lines) for the model systems shown in Fig. 1b-d.
Note that to illustrate all bounds, for convenience in a
single panel, we formally let t — —t for the left tails
L (t) and U,; (t), such that ¢ (as shown) has support on
[—(7),00). Deviation probabilities are in turn expressed
as P(sgn(t)07, > |t|) where sgn(z) denotes the signum
function and 67, = 7, — (7).

To assess the quality of our bounds for several n we
further scale probabilities P1/™ such that £ (¢) and U (t)
collapse onto a master curve for all n (see also inset in
Fig. 2f). Symbols denote empirical deviation probabili-
ties obtained by sampling 7,, for different n (see [181] for
details), which approach the upper bound as n increases.
For n = 1 empirical right-tail deviations are close to L] (¢)
even for wy <1 [197]. As expected the model-free upper
bound UF (t;2) (yellow) holds universally but is generally
more conservative, however, it is remarkably good for
C 2 1.3 (see e.g. Fig. 2e-g) but becomes weaker as C
approaches 0 (see e.g. Fig. 2h).

Uncertainty quantification.—The bounds (7) provide
the elusive systematic framework to rigorously quantify
the uncertainty of the estimate 7, for any, and especially
for small, sample sizes. In particular, they allow us to
construct “with high probability” guarantees such as con-
fidence intervals, which—unlike traditional confidence
intervals in statistics—are not only asymptotically correct

but hold for any n. Furthermore, these concentration-
based guarantees do not require specifying a prior belief
as in the Bayesian context. Setting U (t(j;i;C) = ay for
chosen acceptable left- and right-tail error probabilities
ay (with atp + a_ < 1) we get an implicit definition of
the confidence interval [~t, ,tf, ] at confidence level (or

“coverage probability”) 1 — (a4 4+ «_) in the form

P(—t, <7, < t&l) >l—a_—ar=1—a, (12)

stating that with probability of at least 1 — v the sample
mean 7, lies within [(7) — ¢ ,(7) +t% ]. Confidence
intervals are closely related to, and can be used for, statis-
tical significance tests [198, 199]. However, they provide
more insight; instead of mere rejection/acceptance they
provide quantitative bounds on statistical uncertainty.

Two-sided intervals are mot uniquely determined by
specifying a confidence level. It is customary to choose
equal tail probabilities ay = a— = «/2 yielding so-called
central confidence intervals for which ¢ . are generally
not equidistant. Two-sided central confidence intervals
for 47,, as a function of n for a confidence level of @ = 0.1
and models systems in Fig. 1b-d are shown (rescaled to a
master scaling) in Fig. 3a. One may also choose symmetric
intervals which in turn do not necessarily imply equal tail
probabilities (i.e. @y # a_). In some situations only one-
sided confidence intervals are required P(+£67, < t%,) >
1 — ay (for a discussion see [181]).

In particular, we may now also answer the practical
question: How many realizations are required to achieve
a desired accuracy with a specified probability? To ensure
with probability of at least 1 — a that 67, € [~t; ,t[ ]
one needs n* realizations defined via

UL (th ;0)+U,.(t, ;C)=a.

ay

(13)

The number of samples n* required to guarantee that 7,
falls within a symmetric interval of length At = 0.2/p4,
(i.e. Tpr € [{(1) — 0.1/p1, (1) + 0.1/p1]) with probability
of at least 1 — «v is shown in Fig. 3b for several values of C
(intersections with the dashed line yield n* guaranteeing
a coverage of at least 90%). Fig. 3c depicts the comple-
mentary symmetric interval At covering the range of 67,
for a given n with probability of at least 90%. Note that
hundreds to thousands of samples may be required to
ensure an accuracy of +0.1/u; with a 90% confidence,
which is seemingly not met in experiments [113-119].

Egs. (12) and (13) constitute our second main result as
they provide rigorous error estimates in the small-sample
regime that allow for systematic error control in kinetic
inference and can be solved for ¢ . and n*, respectively,
using standard root-finding methods (see [181]).

Using Eq. (11) we can construct system-independent
but more conservative universal confidence intervals (see
yellow line in Fig. 3b,c). Interestingly, even when C ~ 1
the universal bound remains reasonably tight, only for
C <« 1 differences become substantial.

Conclusion.—Leveraging spectral analysis and the
framework of concentration inequalities we derived gen-
eral upper and lower bounds on the probability that the
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FIG. 3. Non-asymptotic uncertainty quantification of the sam-
ple mean 7,,. (a) Relative error p107, = p1(7n—{(7)) (symbols)
obtained from sampling of 7, for different model systems and
as a function n (re-scaled to a master scaling). The correspond-
ing two-sided central confidence interval [—p1t /2 pat) /2} with
a = 0.1 is shown as black lines. (b) Required number of sam-
ples n* to ensure that the relative error §7,« falls within the
symmetric interval [—0.1,0.1] of length At = 0.2/p; with
probability of at least 1 — a for several values of C. (c) Cor-
responding symmetric confidence interval [—pu1 At/2, u1 At/2]
(only the upper limit is shown) at confidence level o = 0.1 as
a function of n for different C.

empirical first-passage time 7,, inferred from n indepen-
dent realizations deviates from the true mean (7) by any
given amount. We used these bounds to construct non-
asymptotic confidence intervals that hold in the elusive
small-sample regime and thus go beyond Central-Limit-
and bootstrapping-based methods, which are known to
fail for small n. The results require minimal input and
in particular do not require any prior belief as in the
Bayesian approach that is known to be problematic and
likely underestimates the uncertainty in the small-sample
setting. Our concentration-based results allow for rigor-
ous, model-free error control and reliable error estimation,
which is essential for the analysis of experimental and
simulation data. They may further be applied to popu-
lation dynamics and epidemiology, e.g. in the inference
of extinction or incubation times of diseases [200-204],
and may be extended to the concentration around the
typical instead of mean first-passage times [205] as well
as non-ergodic and irreversible dynamics.
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In this Supplementary Material (SM) we present additional background and details of the calculations, auxiliary
results, numerical methods, and mathematical proofs of the claims made in the Letter. The sections are organized in
the order as they appear in the Letter.
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S1. SPECTRAL REPRESENTATION AND PREPARATORY LEMMAS

In this section we provide additional background on the spectral analysis of first-passage problems and some auxiliary
Lemmas. In particular, we prove that for equilibrium initial conditions all spectral first-passage weights wy(Peq) are
non-negative and that general initial conditions po(z) the sum of positive spectral weights is always bounded.

A. Spectral representation

First, we recall some general results using the spectral representation of first-passage processes (for more details on
see e.g. [1, 2]). As stated in the Letter, we consider time-homogeneous Markov processes x; on a continuous or discrete
state-space Q with (forward) generator L corresponding to a Markov rate-matrix or an effectively one-dimensional
Fokker-Planck operator. Let the transition probability density to find z; at = at time ¢ given that it evolved from zo
be pi(z|zo) = ¥4, (z) where d,,(z) denotes the Dirac or Kronecker delta for continuous and discrete state-spaces,
respectively. We assume the process to be ergodic limy_, o pi(z|20) = peq(x), Where peq(z) = e~ %) denotes the
equilibrium probability density and ¢(x) the corresponding generalized potential in units of thermal energy kgT. We
assume that L obeys detailed balance, such that it is self-adjoint in the left eigenspace with respect to a scalar product
weighted by e_‘P(x)Aand the operator e?(*)/2[e=¢(®)/2 jg self-adjoint with respect to a flat measure.

We assume that L is either (i) bounded, (ii) €2 is finite with reflecting boundary 9€, or that (iii) € is infinite but ¢(x)
is sufficiently confining (precisely, we require that ¢(x) satisfies the Poincaré inequality, i.e. lim‘xHooﬂVgo(:c)\z /2 —
V2p(z)) = 00.). Each of the conditions (i)-(iii) ensures that the eigenvalue spectrum of L is discrete. The relaxation
eigenvalue problem (for the inner product (-|-) defined with respect to a flat Lebesgue measure) reads —LUR (z) =
v R (z) with Uk(z) = UR(2)e?®) vy =0 and vy>; > 0.

The first-passage time to a target a for x;—9 drawn from a density po(z) is defined as 7 = inf;[ ¢ |2y = a, po(xo)]-
We will use (-) to denote an average over all first-passage paths {zy }o<y<r, i.e. those that hit a only once. The
first-passage time density to a, pq(t|xo) = (6(t — 7[{z+}])) to reach the absorbing target at x = a, starting initially
from xg, has the general spectral representation

paltlze) = 3wy (o) e, (S1)
k>1

where py is the k-th first-passage rate and wy(xg) its corresponding first-passage weight. In similar fashion the survival
probability is expressed as

Sa(tlxo) = /too pa(t'|zo)dt’ = Zwk(xo)e_“’“t. (S2)

k>1

We note that in contrast to the relaxation eigenvalues vy, the first-passage rates ux = px(a) depend in the location of
the absorbing target. Moreover, for any target location a the interlacing theorem holds [1, 2] :

vik—1 < ur(a) <vp Yk a (S3)

where equality occurs iff wg(xo) = 0, i.e. for a where ¥E(a) = 0.
Laplace transforming the spectral expansion of the first-passage time density (S1)—according to f(s) = [e™*' f(¢) dt
with f being a generic function locally integrable on ¢ € [0, co)—vyields

Fals) = 3 ezl (54)

=1 S+ Uk

The first-passage weights are then obtained by using the residue theorem to invert the Laplace transformed renewal
theorem [1-3]

pla, —plwo)  Dizo(l — v/ ) "M (@) Wr (o) < 0o
ppa, —pxla) — 350(1 = w1/ 1) 20 (a) U (a) ’
where p(a, s|a) = 0sp(a, s|a) is taken at s = —puy and {v;, YR, W} are the corresponding relazation eigenmodes [1, 2].

The weights satisfy >, -, wr(xo) = 1 and the first non-zero weight is strictly positive wi(xz¢) > 0. Moreover, the
relaxation eigenvalues vg = 0 and all vg~o > 0 are real as a result of detailed balance.

(S3)

wi(xg) =



B. Lemma 1: All weights are non-negative for equilibrium initial conditions

In the Letter we focus on equilibrium initial conditions, that is we assume that xy is drawn from the invariant
measure, Peq (o), which in the particular case of diffusion processes is assumed to have a reflecting boundary at a
(i.e. we focus on the one-sided first-passage process). We further introduce the non-negative modified spectral weights
wg(x0) = wi(x0)0(sgn[wk (x)]) and now prove that for a normalized equilibrium probability density of initial conditions
po(zo) that excludes the target—i.e. Peq(0) = Peq(20)[1 — da(20)]/(1|peq(z0)[1 — d4(x0)]) Where 4 (o) is the Dirac
measure (note that (1|peq) = 1)—all weights wy, are rendered non-negative. We thus have wy(Peq) = Wi (Peq) > 0, Vk.
. lll\Iamelﬁf, because ¥(a) = eV (@)U (a) we have U} (a)¥}(a) > 0,Vl, and from bi-orthogonality (UF|peq) = d10 it

ollows that

L= Yol = /)" Wi (@) ¥ (a) Peq()
Yool =i/ k) 2V (a) T (a) Yiso(1 =i/ k) =297 (a) ¥y (a)

UN}k = (wklﬁeq) = ﬁeq(af) > 0 (86)

because by definition i, > 0,Vk > 1 denotes the zeros of p(a, sla), i.e. p(a, —urla) =325 — k) PR (a) U (a) =
Ym0l = vi/pk) TP (a) ¥l (a) = 0 which completes the proof of the Lemma.

C. Lemma 2: Sum of positive weights is bounded from above

For the sake of completeness we here additionally present results for general initial conditions po(zg). Recall from
the Letter that we require some additional conditions on ¢(x) or Q in this more general setting.

In particular, we assume that o(z) is sufficiently confining to assure a “nice” asymptotic growth of eigenvalues,
limy 00 v = bk with 8> 1/2 and 0 < b < co. The latter condition is automatically satisfied when € is finite, since
regular Sturm-Liouville problems display Weyl asymptotics with 3 = 2 [4]. The condition is in fact satisfied by most
physically relevant processes with discrete spectra, incl. the (Sturm-Liouville irregular) Ornstein-Uhlenbeck or Rayleigh
process [5] with 3 = 1. This implies, by the interlacing theorem (S3) that b(k — 1)? < p, < bk” and therefore there
exists a real constant C' € (0, 00) such that limy_, o ux diverges as Ck®.

Recall further that the m-th moment of 7 is given by (7) = m!}", o, wr(po)/p}'. By construction we obtain
2> ks1 Wk(po) /1y = (75) = 2345y wi(po)/ 1z = (7p,), where equality holds when py = peq (since in this case all
wy, > 0, i.e., Wg(Peq) = Wk (Peq) as discussed before).

Moreover, because we only consider Markov jump processes on finite state-spaces as well as processes for which
limg s 00 pt = Ck® with 0 < C' < 00 and « > 1/2 (this includes confined Markov jump processes on infinite state-spaces
and all regular Sturm-Liouville problems) convergence is ensured, i.e. 27, wy (po)/u; ™ < 00,¥n > 0.

To prove this consider wyax = maxy>g, Wk(po) such that wmax/uk > wy (po)/,u2+" Vk. Let the smallest k for
which the asymptotic scaling holds be k, then we may split the summation as ), -, = Zk ey > k>, Such that

_ ko—1 _
wy.(po) wy,(po) Winax
Z 2+n < Z 2+n + Z ;n-:ln'

k>1 Mk k=1 k >k, Tk

Because the first term is nominally finite we only need to prove convergence of the second sum, which we do by
means of the integral test. We define a function f(k) = wmax/ uk”’ that is monotonically decaylng in k. This
implies f(z) < f(k), ‘v’x € [k,00) and f(z) > f(k),Vz € [k, k]. We then have for every integer k > k, that

M f(a)da < f’“l = f(k) and conversely, for every integer k > k. +1 that [\ | f(z)dz > [F | f(k)dz = f(k).
We now sum over all k 2 k* to obtain, using ur = Ck“Vk > k.

' Wmax Winax _ _ Wax ' Wpax
/k* (Czo)@+n) Aravarm 4t < Z pz = Ckg)2+n + /k (Czo)2+n dr —
O~ (2+n) kl—a(2+n)

w w
max « 7(2+n) max *
- Z 2+7L < wmaX(Ck*) =+ O[(2 ¥ n) 1 <0

Cf(ZJrn)ki a(2+4n)
a2+n)-1

wmax

where the last integral converges because 1 —a(2+4n) < 0,Vn > 0, which in turn proves convergence of >, <, Wk (po)/ 3.



S2. EXTREME VALUE BOUNDS AND COMPARISON WITH CRAMER-CHERNOFF BOUNDS

In the Letter we derive lower bounds £ (¢) on the deviation probability P(7, — (1) > t) and P((1) — 7, > t)
by utilizing extremal events, i.e., we consider the maximal and minimal first-passage time in a sample of n > 1
i.i.d. realizations. In this section we derive analogous upper bounds building on the same ideas.

A. Extreme value bounds

Recall that for the reversible Markov dynamics considered the equilibrium survival probability S, (¢[feq) = S, (t) in
its spectral representation (S2) obeys

wie Mt < G, (1) < et (S7)

For the upper bound we use p; < pg41 and that Zk>0 wyg = 1 are normalized, whereas the lower bound follows since
wg > 0, Vk, as we consider equilibrium initial conditions throughout. Moreover, from extreme value theory it follows

P > 1) =S,(t)" & P <t)=1-S5,(t)",
P(ry™ <t)=(1-5(@1)" & PE™=t)=1-(1-5@1)", (S8)
where we introduce 7, = max;¢[; ) 7; and roin = min;e[y ) 7i, respectively. Clearly, since Tmin < F < pmax e
can write P(720 > ¢) < P(7, > t) < P(72% > t) and analogously P (70 < ¢) > P(7, < t) > P(r2#* < ¢t). Using
Eq. (S8) in combination with Eq. (S7) we directly arrive at the lower bounds L (t) (see Eq. (4) in the Letter)

. n
P(7n 2 (r) 1) 2 P(T0 2 (1) + 1) = Salt + (1))" = (wye(7+0) (59)
P(7n < (1) =) 2 P(ri < (1) =) = (1= Sa((7) = 1)) = (1 e7m (D=0, (S10)
Introduced considerations are, however, not restricted to only lower bounds such that we can further leverage bounds
on the equilibrium survival probability (S7) to analogously obtain corresponding upper bounds as

(7 > (1) +1) SPEm > 1) = 1= (1= So((r) + )" < 1— (1—em(@+0)",
P(7 < (1) 1) S P < 1) = 1— Su()" < 1— (wre (=07, (S11)

As we will illustrate next, the upper bounds (S11) are much weaker than those derived with the Cramér-Chernoff
approach (Eq. (7) in the Letter) and require more information about the dynamics.

B. Comparison of Cramér-Chernoff vs Extreme value Bounds

In this section we directly compare the concentration-based upper bounds U= (¢) (see Eq. (7) in the Letter) that
are obtained with the Cramér-Chernoff approach, with the upper bounds (S11) which are based on extreme value
considerations in analogy to the lower bounds £ (t). Similar to Fig. 2e-h of the Letter we now exemplify and compare
both upper bounds in Fig. S1 for the model systems shown in Fig. 1b-d.

In Fig. Sla-d we equivalently express re-scaled deviation probabilities P/"(sgn(¢)d7, > |t|) in a single panel, i.e.,
for the left tail we formally let ¢ — —¢ such that ¢ as shown now has support in [—(7),c0) and sgn(x) = £1 for
+x > 0 and sgn(0) = 0 denotes the signum function. Empirical deviation probabilities (symbols) as a function of ¢ are
computed from statistics obtained by sampling 7,, for different fixed n values. Extreme value lower bounds £X(¢) (S10)
(or Eq. (4)) for both tails are depicted in red. Here we now focus on comparing the upper bounds. Concentration
inequalities UE (t;C) (Eq.(7)) are again depicted as black lines whereas the corresponding extreme value upper bounds
are represented as dashed/dotted lines where the respective coloring indicates the number of realizations n. Note, that
the concentration bounds (and the lower bounds) collapse onto a single master curve due to the employed scaling P/,
whereas the extreme value upper bounds do not due to their different functional form (compare Eq. (S11)). Evidently,
while for n = 1 the extreme value bounds remains close to the actual deviation probability, already for n = 3 they
become considerably less tight and overshoot heavily for all considered models. Moreover, extreme value upper bounds
become increasingly weak (even trivial at times) as n increases, therefore highlighting that Cramér-Chernoff-type
bounds are vastly more suitable.



Motivated by the discussion above we next want to gain more quantitative insights for which sample sizes n the
Cramér-Chernoff approach becomes more favorable. For this purpose we introduce a quality factor Q € [0, 00) that is
informally defined as

Extreme value upper bound

Q

. S12
Cramér-Chernoft-type upper bound (512)

A value Q > 1 therefore indicates that the Cramér-Chernoff bound is tighter and Q < 1 suggests that the extreme
value bound should be favored, respectively. In Fig. Sle-h we illustrate the quality factor Q as a function of sample
size n for different fixed dimensionless deviation values u1t (star symbols in Fig. Sla-d). Remarkably for all model
systems considered—which span a large range of possible C values—the Cramér-Chernoff approach is already superior
even in the small-sample regime n < 4. Moreover, we can further study the particular n*, for which one would reach
Q =1, as a function of some desired deviation p;t relative to the longest time scale 1/u;. Note, that again for the
left tail we let t — —t (see discussion above). As depicted in Fig. S1i-l for our model systems, n* (blue) generally is
found to be well below n = 8, i.e., even for most small sample sizes the derived Cramér-Chernoff-type bounds can be
considered to be the better choice, especially when considering large p1t (i.e. large deviations).

Lastly, one could ask the question why the extreme value upper bound is so “weak” when n increases even just
slightly. To answer this question we recall that—since we are interested in deviations of the sample mean 7,, around
(T)—we bound the sample mean with the minimal and maximal first-passage time according to 7" < 7, < rmax
which is further used, in combination with bounds on the survival probability (S7), to derive correspondlng upper
bounds (S11). Clearly, as n increases we expect this bound to become increasingly loose as by larger sample sizes we
increase the chances of sampling rare first-passage times, i.e., maximal and minimal first-passage time that strongly
deviate from the (sample) mean—this also explain why bounds (S10) and (S11) are only particularly tight for n =1
as here 70 = 7, = 7max_ Ip contrast, the Cramér-Chernoff method requires a much more delicate mathematical
analysis 1nv01v1ng bounds of the moment generating function. The Cramér-Chernoff-type bound has the additional
advantage that it can be further used to universally bound deviation probabilities where no specific information about
the underlying system is required (see Eq. (11) in the Letter). Moreover, even the version of Cramér-Chernoff bounds
UE(t;C) that require input of one system-dependent constant C still require less information about the dynamics since
extreme value upper bounds (S11) partly also require knowledge about the first-passage weight wy and (7) itself.

S3. COMPLETE PROOF OF CONCENTRATION INEQUALITIES AND THEIR ASYMPTOTICS

In this section we provide various additional details on the upper bounds UF(t;C) (Eq. (7) of the Letter). In
particular, we prove the required bounds on the cumulant generating function, compute their corresponding Cramér
transform, and give further information about the large-sample limit n — oo, as well as the model-free version of the
bounds.

A. Theorem 1: Cramér-Chernoff bound for the right tail 7 > (1)

We begin with the right tail, i.e. upwards deviations such that 7 > (7), and start by proving a bound for the
moment generating function of the deviation of the first-passage time 7 from the mean (r). Using the spectral
representation (S1) and the inequality x < e*~1, Vz € R, we find

(Mr=(T)y MY — /\/ - < exp <_,\<T> +3 Jﬁ _ 1) (S13)
k>0

for all A < p1x. Moreover, for [A| < p; we may further expand the sum ), _ T = Dm0 AT D s Wk /Py using
the geometric series. Recall that the moments are given by (77) =m! ", _ wx/pu}", such that we obtain

(T=(M)) < exp Z A Z % = exp ( RAENANE Z A Z R ) (S14)
k k

m>2 k>0 m>2 k>0
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FIG. S1. Comparison between Cramér-Chernoff-type upper bounds U (t;C) and extreme value upper bounds for a spatially
confined Brownian search process in dimensions (a,e,i) d =1 and (b,f,j) d = 3, and discrete-state Markov jump processes for
(¢,d,k) the inferred model of calmodulin and (d,h,l) a 8-state toy protein. (a-d) Scaled probabilities P'/™ (sgn(t)d7, > |t|) that
the sample mean 7, inferred from n > 1 realizations deviations from (7) by more than ¢ in either direction. Right tail areas
are shown for t > 0 and left for ¢ < 0, respectively. Cramér-Chernoff upper bounds U (t;C) as black and extreme value upper
bounds as dashed lines, respectively. Corresponding lower bounds cr (t) are depicted as red lines and symbols denoted scaled
empirical deviation probabilities obtained from the statistics of 7,, for different n. (e-h) Quality factor Q as a function of n for
different fixed relative deviations pit (see star symbols (a-d)). (i-1) Sample size n* (blue) for which both upper bounds are
equal, i.e., @ = 1, as a function of re-scaled deviations.

Since p1 < pp>1 and all first-passage weights wy, are positive (due to equilibrium initial conditions) we find

<e*<f<f>>>Sexp< +ZA’”ZM )
k

m>2 k>0

<exp( )y 2Zwk>

N A
< exp </\2 <T22> [1 + /n/\— )\D = &P <A2(1<12>>\;2u1)> .

Introducing ¥s,(A) = In(e*7), with 67 = 7 — (1) for the right tail, we immediately identify the upper bound

hsr(A) < )\2 7 _<T/\>m = %1 E 5 = ¢5-(\;C) T > (1), (S15)

which concludes the derivation of the upper expression in Eq. (6) of the Letter. Note that we further have introduced
the dimensionless quantities £ = yt, C = p2(72), and A = A/ in the last step. In the case of general initial conditions
Po(20) # Peq(To) we must simply replace u3(r%) — C from Lemma 2.

Next, we find the optimizing value of ), i.e., we compute the Cramér transform of Eq. (S15) defined as

o ~ - 12
61.(C) = sup [V — d5r(3iC) = sup [At—A Cj. (S16)
Xel0,1) Xe[o0,1) 21-X



(;55-,—()\ C) is differentiable, non-negative, convex, and increasing on lambda € [0,1), which implies that Eq. (S16) can be
obtained by dlﬁerentlatlon of A — ¢5-(\; C) with respect to A, hence ¢%_(f;C) = /\Tt — ¢5-(A1:C) where the optimum Af

solves ¢ _(A:C) = t. Accordingly, we find the supremum to be attained at Af(f) = 1 — 1/4/1 + 2f/C. For convenience
we further introduce the auxiliary function h4 (u) = 1+ u — /1 + 2u such that we finally arrive at

$5(1,C) = Chy (]/C) = Chy (mt/C), 0<t< (7). (S17)

By using Chernoff’s inequality we subsequently obtain the upper bound P(67, > t) < e "%+t = 1f+(t;C) for
0 <t < oo which completes the proof of Theorem 1 and thus the first announced inequality (7) in the Letter.
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FIG. S2. Illustration of the Cramér-Chernoff bounding method for the right tail with # = 0.1 and parameters for spatially
confined Brownian search process in dimensions d = 1 (a,e) or d = 3 (b,f), and discrete-state Markov jump processes for
the model of calmodulin (c,d) and a 8-state toy protein (d,h). Top row depicts bounds of the cumulant generating function
(1757—()\ C) (black) and ¢5-(A;2) (yellow) as a function of X, respectively. Bottom row shows the differences M — ¢s-(X;C) (red)
and A\ — ¢sr ()\ 2) (green) as a function of X, respectively (see also top row with A in blue). The corresponding suprema are
obtained at Af(Z;C) and AT(#;2) (dotted hneb) and define the Cramér transforms ¢5. (£;C) and ¢%.(£;2) (compare top row). For
all considered models we demonstrate ¢s5.(X;C) < ¢s-(A;2) and @3, (£;C) > ¢%.(1;2) as derived in the maintext. Note for the

K e (t:2)
panels (b,f) we have ¢s5-(A\;C) S ¢s-(X;2) and ¢3.(5;C) L #5,(f;2) since C = 1.99 ~ 2.

B. Theorem 2: Cramér-Chernoff bound for the left tail (7) < 7

Next we turn to the left tail, 7 < (7), where the corresponding moment generating function analogously reads

_r - w
s )>:ek<>21+/\k/uk§exp< +Z1+A/uk )

k>0 k>0

for A < pg. Using equivalent arguments as for the right tail above we may further write

MMMy < exp Z (=A™ Z w—fl

m>2 >0 Mk
= exp < — + Z Z Mm>
m>2 k>0 "k
)\2m Wi ( 9 <7'2>/2 )
< exp —L 4+ — =exp | N ——"F— |- (S18)
s ) T O/

Recall the definition of the cumulant generating function, 15, (\) = In(e**7), such that Eq. (S18) directly yields
S G DD S
=21 ()

Ysr(A) < 5 = ¢5:(%C) (S19)



which completes the derivation of the lower expression in Eq. (6) of the Letter. Note that for the left tail we
have 67 = (1) — 7 and we again let £ = p1t, A = \/u1, and C = p3(r?). In the case of general initial conditions
Po(20) # Peq(To) we must simply replace pf(r%) — C from Lemma 2.

Analogous to the right tail we next compute the Cramér transform of Eq. (519), i.e

/\QC}

21-)2 (520)

¢i (5;C) = sup [M — ¢5-(X;C)] = sup [)\t
€l0,1) X€lo,1)

where we find the optimal value Af(£;C) to be determined by the transcendental quartic, AT(£) : (1—X%)2 —C;A = 0 with
C; = C/t, which we solve according to the method of Descartes. First, we re-arrange the quartic as A* —2A2 —C;A+1 =0
and make the factorization ansatz

(X =y X+ wp) (N + yp A% + 27) = 0
wi + 2; — yF = —2

yi(wi — 2p) = =C;
zpwg = 1. (S21)

The system of equations (S21) is solved by
wi(ys) = (¥7 — 2 = Ci/v9) /2,

zi(y) = (U — 2+ Ci/v7) /2, (522)
where yt2 = Y7 is the solution of the cubic YES — 4Yt~2 — Ct2 = 0. Moreover, since the discriminant D is strictly
negative, i.e. D = 728Ct3 — 33C;} < 0, the qubic has only one real root. The corresponding depressed qubic
reads 3 — 24/31 — (27/3% 4+ C2) = 0 with {Y; — 4/3. Let p = —2%/3 < 0 and ¢ = —(27/3% + C?) < 0 then
2%p? 4+ 33¢% = —2'2/3% + 33(27/3% + C2)? > 0 for any £ > 0. We can express the unique real root as

4 332
y: = 3 {1 + 2 cosh [3arcosh ( 27t )} } (523)

and y = ++/y? with y? from Eq. (S23) can now be plugged into Egs. (S22) to obtain w;(y) and z;(y) that are required
to solve the pair of quadratic equations (S21). The four roots of the transcendental quartic are hence given by

Ma(l) = 5 (14 /1 = dwila) /)

2
Aol = & (1 /1 dwilwe)/42)
Aa(d) = =2 (1= /1 42()/47) |
M) = =2 (14 /1 - 4z0)/42) (S24)

Moreover, we find wi(y;)/y? = (1 —2/y? — Ci/y?)/2 and z(yz)/y? = (1 —2/y? + Cg/yf)/Q Since y; > 0 while
A€ [0,1), Az, A3 in Eq. (S24) are excluded automatically (note also that the square root in A2, A3 becomes complex for
t — 00). We also have lim;_, y =4 and lim;_,  wi(y;) = 1 such that lim;_,  A; = A2 = 1. Conversely, we find that
lim;_,, £2/3 2= = C?/3 = limj_, T 23 Ci/yz such that lim;_,, w;(yz) = —1 while hmtHO wi(yp)y? = —C?/* = 0. Therefore,

lim; o A\ = yt — 00 whereas lim; .o A2() = y7 x 0/2 \, 0. We recall that A € [0,1) which therefore excludes ()
and identifies AT(f) = Ay(f) as the supremum. Finally, we introduce the auxiliary functions

g(u) = jg {1 +2cosh {3arcosh< ;;ﬂ }1/2 and A(u) = ; [ofw) — VAT 2/gluyu — @], (525)

as well as
1 Au)?
_ =A _——— 2
() = A — 5= (526)
which allows us to obtain and write the Cramér transform as
93, (F:C) = Ch_(F/C) = Ch_(mut/C), 0=t < (). (s27)

In the last step we use Chernoff’s inequality to obtain the bound P (67, > t) < e~ "%+ (5C) =1/ (t;

t;
which completes the proof of Theorem 2 and hence the derivation of the lower expression in Eq (

C) for 0 <t < (7)
) of the Letter.
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FIG. S3. Illustration of the Cramér-Chernoff bounding method for the left tail with # = 0.1 and parameters for spatially confined
Brownian search process in dimensions d = 1 (a,e) or d = 3 (b,f), and discrete-state Markov jump processes for the model of
calmodulin (c,d) and a 8-state toy protein (d,h). Top row depicts bounds of the cumulant generating function ¢s-(A;C) (black)
and ¢s,(\;2) (vellow) as a function of \, respectively. Bottom row shows the differences A — ¢s,(X;C) (red) and A\ — ¢5T(:\ 2)
(green) as a function of X, respectively (see also top row with Af in blue). The corresponding suprema are obtained at \ (£;0)
and A (#;2) (dotted lines) and define the Cramér transforms ¢5, (f;C) and ¢, (¢;2) (compare top row). For all considered models
we demonstrate ¢s,(A;C) < ¢sr(A; 2) and ¢%.(£;C) > ¢;5.(f;2) as derived in the maintext. Note for the panels (b,f) we have
$57(\iC) S ¢sr(A:2) and ¢, (£C) 2 b5, (f;2) since € = 1.99 ~ 2.

C. Behavior of upper bounds L{ni(t) for large sample sizes

Here, we present some further remarks about the limit of large sample sizes. Asymptotically as n — oo, U (t) is
substantial only for £/C < 1. For the right tail bound h, (u) we immediately find that for v < 1 we can Taylor expand
V1+2u=1+u—u?/2+ O(u?®). Consequently we directly obtain h(u) = —u?/2 + O(u?), i.e., the upper tail is
sub-Gaussian for small deviations and will converge to a Gaussian as n — oco. For the left tail we furthermore have
arcosh(1 4+ ) = In(1 + z + \/z(x + 2)) and thus lim,_, arcosh(1 + z) = In(2x) — 1/(2x)%. As a result it follows that
2 lim,,0 arcosh(1 + 3%/27?) ~ 1 In(3%/2%u?) = In(3/4u?/3) — u*2'2/37 and thus

2 ,
2/3\11/2 _ 2/311/2
ilg%)g( u) \[{1+2coshln(3/4u )} \/§[1+3/4u ] (S28)
2
= w3 4+ 4u?3 /3112 = VB + 203 /3 + O(uP)] = B + §u1/3 + O(u). (S29)

A lengthy but straightforward calculation subsequently reveals that lim, o A(u) = u — O(u?®) such that

2 2
lim Auw) o u

.2 4
I T @ ST - oW (830)

We therefore have that lim,_,o h—(u) = u?/2 — O(u?), i.e., both tails are sub-Gaussian for #/C < 1 with C = p?(r?).

D. Proof of bounds on C and model-free concentration inequalities

Notably, system details only enter the Cramér transforms (S17) and (S27) (and consequently upper bounds on the
deviation probability due to Chernoff’s inequality) in the form of a system-specific constant C = p3(r?). Note that here
we only allow for equilibrium initial conditions. Recalling that the moments of the first-passage time 7 are expressed
as (1) =m! Y, we/py" allows us to write

0<2 < () =2) <oy Th o

i k>0'uk k:>0'u1

(S31)

5w
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for equilibrium initial conditions where we have used that wy are non-negative, normalized, and p; < pp>1. Conse-
quently, by Eq. (S31), we immediately find that the system-constant itself is bounded 0 < 2w; < C < 2. Note that
analogous considerations can be used to more generally obtain 0 < mlw; < p*(7™) < m! for the m-th moment.

The fact that C € (0, 2] can now be further leveraged to arrive at the model-free bounds (Eq. (11) in the Letter)
which require no information about the underlying system. Recall the upper bounds of the cumulant generating
function ¢s,(A;C) and their corresponding Cramér transform ¢} _(£;C), i.e.,

\oC
. _ 7—2 <7-> ~
o) 21X « mo ) Che(/C) T = (T)
QS(ST(A?C) - 5\2 C and ¢6T(t7c) - {Ch (g/c) < <7_> (832)
?1_5\2 T < <T>a

Since ¢, (\;C) is monotonically increasing in C it follows that b5 (X;C) < - (X;2), YA € [0, 1) (see Figs S2 and S3 top
row). By definition of ¢, (t;C) = sups¢(q,1)(At—¢sr(A; C)) this bound in turn implies that ¢, (¢;C) > ¢, (t;2) (compare
Figs. S2 and S3 bottom row). With Chernoff’s inequality we moreover arrive at P(67,, > t) < e 5. (60) < g5, (£:2)
and hence U (t;C) < UF(t;2) which completes the derivation of Eq. (11) in the Letter.

S4. MODEL SYSTEMS AND DETAILS ON NUMERICAL METHODS

In the Letter we exemplify our results by considering a Brownian molecular search process in dimensions d = 1 and
d = 3, as well as discrete-state Markov-jump models of protein folding for a 8-state toy protein and the experimentally
inferred model of calmodulin (compare Fig. 1b-d). In this section we present further details on the model systems and
their numerical treatment.

A. Continuous-time discrete-state Markov jump process

As illustrative discrete-state continuous-time Markov-jump models of protein folding we consider a simple 8-state
toy protein [2, 6] and further use the experimentally inferred folding network of the cellular calcium sensor protein
calmodulin [7]. Since we consider equilibrium initial conditions, proteins start from an initial state drawn from the
equilibrium density peq(x)—note that the tilde denotes that the absorbing target is excluded—from which they search
the native state a (here a = (1,1,1) for the 8-state model and a = Fja34 for calmodulin; cf. Fig. 1b-d). Arrows in the
networks denote possible transitions, e.g. a transition from state i to state j that occurs with the corresponding rate
L;;. We consider reversible dynamics, i.e., the resulting transition matrix L of the relaxation process satisfies detailed
balance peq,j/Peq,i = Lji/Li; = exp(F; — F;) and transitions rates are connected to the free energy of the states F; [8].

We recall that the first-passage time density p,(t) can be evaluated by using the spectral representation (S1). To this
end we set up the modified transition matrix, adopting in this section the Dirac bra-ket notation, L, = L — |a)(a| where
la) = (0,...,0,1,0,...)T defines a vector with all entries zero expect at the a-th position of the absorbing state where
it equals one. This effectively removes all transitions that correspond to jumps leaving the absorbing state a. Next, we
carry out an eigendecomposition of L, and determine the eigenvalues j, right eigenvectors |¢%), and left eigenvectors
(¢%]. We subsequently use obtained eigenmodes to compute the first-passage weights wg (o) = —{alpR)(p¥|xo)
(see [1, 2]), and recall that j; and wy determine the moments according to (1) = m! ), wy/py'. Corresponding
relevant parameters of the Markov jump models are listed in Tab. I. Next we give further details on how corresponding
transition rates are constructed.

TABLE I. Parameters for the Markov jump models for the 8-state toy protein and the inferred model of calmodulin. Listed are
values for the first-passage eigenvalues py, first-passage weights wy, and the first (7) and second moment (72).

Model p owi pe we 3 w3 [1a wy s ws  ope we  pr wr (1) (77

Toy protein 0.976 0.337 6.148 0.009 1.551 0.583 4.203 0.001  4.396 0.0001 6.233 0.060 12.834 0.010 0.385 0.713
Calmodulin 0.469 0.651 3.763 0.349 19.097 9.98E-5 143.749 2.42E-9 1581.629 1.52E-6 - - - - 1.479 5.958
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1. Transitions rates of the 8-state toy protein model

For the 8-state toy protein model we randomly generate a free energy level F; for each state i € {1,2,3,4,5,6,7,8}
with F; uniformly distributed within the interval 0 < F; < 10. Transition rates that satisfy detailed balance are then
obtained using the ansatz

ki—’j = Lji = exp(AFZ/Q) and kj—)i = Lij = exp(—AFi/2), (833)
where AF; = F; — F; and thus In(Lj;/L;;) = AF; = F; — F;. Obtained individual transition rates are listed in Tab. II.

TABLE II. Transition rates for the 8-state toy protein model obtained via the ansatz described in the main text.

transition rate k;—; transition rate k;_,; transition rate k;_.; transition rate k;_,;

1—2 1.878 2—5 2.648 37 4.549 5—8 0.106
2—1 5.327 5—2 3.421 7T—3 100994 8—=5 124.477

1—+3 0.00463 2—6 0.527 4—6 0.358 6—8 0.712
3—1 0.507 6—2 36.0577 6—4 36.457 8 —=6 15.794

1—4 0.326 3—+5 1.109 4 =7 0.523 78 0.322
4—1 0.623 5—3 0.0371 7T—4 6.670 8§ =7 56.998

2. Transitions rates of the calmodulin protein model

In the experimental setup a constant external force f, a so-called pretension, is applied to the calmodulin protein
via optical tweezers. Folding and unfolding processes are observed at different pretensions ranging from 6 pN to 13 pN
and corresponding force-dependent transition rates k;_,;(f) = Lj;(f) between two conformational states i and j are
measured. Note that 4,j € {Unfold, Fia, Fi23, Fa3, F34, F1234} and we further map states according to Unfold < 1,
Fio & 2, Fio3 ¢+ 3, Fog <> 4, F34 <+ 5, and Fa34 <> 6 for convenience. For our purposes we choose, without loss of
generality, a pretension of f = 9pN and obtain the corresponding measured transitions rates from Fig. S8 in the
Supplementary Material of [7]. Clearly, experimental transitions rates are accompanied with measurement uncertainties
which is reflected in slight “deviations” from a mathematically precise definition of detailed balance. To mitigate this
issue, and to ensure that transition rates precisely obey detailed balance k;_,;peq,i = kj—iPeq,j; We further have to
slightly adjust the rates.

First, we compute the invariant density p.q from the experimental rates and obtain a corresponding free energy
level F; = —In(peq,;). Next, we use the ansatz (S33), i.e., Lj; = A; exp(AF;/2) and L;; = A, exp(—AF;/2) where we
introduce a constant A;. Finally, A;’s are chosen such that resulting transition rates fall within experimental error
bars in Ref. [7]. Obtained transition rates are listed in Table III.

TABLE III. Transition rates of the Markov jump model for the calmodulin protein. Rates are extracted from the Supplemental
Material of Ref. [7] and modified such that they obey detailed balance precisely according to the maintext.

transition rate k;_; transition rate k;—; transition rate k;_;

1—=2 5.997 1—4 13.439 1—=5 15.330
2—=1 0.774 4—=1 127968 5 —1 0.121

5—6 3.749 2—3 1514820 2—6 13.441
6—5 13.326 3—2 53.0661 6—2 2.922

B. Spatially confined Brownian molecular search process

We also test our theory for Markov processes on a continuous state-space. More precisely, we consider the spatially
confined diffusive search of a Brownian particle in a d-dimensional unit sphere with a reflecting boundary at R = 1 and
a perfectly absorbing spherical target of radius 0 < a < 1, here a = 0.1, in the center (compare Fig. 1b). The closest
distance of the particle to the surface of the absorbing sphere at time ¢ is a confined Bessel process (see e.g. [2, 9, 10])
which time evolution obeys the It6 equation

dry = (d — 1)y dt + V2dW;, (S34)
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where dW; is the increment of a Wiener process (i.e. Gaussian white noise) with (dW;) = 0 and (dW;dWy) = 6(t —t')dt,
and we have set, without loss of generality, D = 1. The general case with any 0 < D < oo and a sphere of radius R is
covered by expressing time in units of R?/D.

For d =1 Eq. (S34) reduces to a 1 dimensional Brownian motion which has the equilibrium first-passage weights

eq 2 1—sin[(k—1)7]
YR TR (k—1/2)2

(S35)

and matching first-passage eigenvalues are obtained as puy, = m2(k — 1/2)2. Moreover, for d = 3 the first-passage time
probability density of the Bessel process can be evaluated exactly and has the equilibrium weights

— 1
pir 1 —a3 (1 —a)tan[(1 — a)/px] — s

(S36)

with the first-passage eigenvalues py, being the solutions of the transcendental equation ./py = tan([1 — a]\/px) that
can be solved analytically using Newton’s series [2]. Relevant parameters for the spatially confined Brownian search
process with a = 0.1 are listed in Tab. I'V.

TABLE IV. Parameters for the spatially confined Brownian molecular search process in dimensions 1 and 3. Listed are values
for the first 5 first-passage eigenvalues uy,, first-passage weights wy,, and the first (1) and second moment (72), respectively .

Model ui wr p2 wa U3 w3 4 wy s ws (ry (%)

1D Brownian motion 2.467 0.811 22.207 0.0901 61.685 0.0324 120.903 0.0165 199.859 0.01001 0.333 0.267
3D Bessel process 0.363 0.994 25.174 0.00277 73.926 9.163E-4 147.037 4.573E-4 244.516 2.742E-4 2.739 1.509

2 For the numerical evaluation of (r) and (72) as listed we truncate the sum after M = 1000 terms.

C. Statistics of first-passage times (7) and the sample mean 7,

Here we provide some further details on the sampling method used to obtain the statistics of (i) the first-passage
time 7 and (ii) the sample-mean 7, = ), 7;/n at some fixed value n for our considered models.

We recall that after determining the first-passage eigenvalues i, and first-passage weights wy, the first-passage time
density g, (f) (S1) and survival probability S, (¢) (S2) are fully characterized. To now sample the random variable 7,
i.e. individual realizations of the first-passage process, we employ the so-called inversion sampling method [11]. This
method allows us to generate independent samples of 7 from p,(t) given its cumulative distribution function (CDF)
which is directly related to the survival probability according to 1 — S,(¢). Note that for discrete-state dynamics the
number of states M is finite, i.e. k = 1,..., M and therefore Eq. (S2) (and hence the CDF) is a finite sum. In contrast,
for continuous-state dynamics we formally have M = oo, meaning that sums are here not finite. For the following
numerical evaluation of the spatially confined Brownian search process we therefore truncate the sum after M = 1000
terms. The first-passage time densities g, () obtained via inversion sampling (symbols) for all considered models are
shown in Fig. S4a-d and corroborated by the corresponding analytical result (S1) (dashed black line).

For Fig. 2a-d in the Letter empirical probabilities that 7, — () lies within a desired range of £ 10% of the
longest first-passage time scale u; ', P(u1[7n — ()] € [~0.1,0.1]), are computed using statistics of the sample
mean 7, by fixing n, i.e., the number of individual realizations the average is taken over. In particular, we have
n € {1,2,3,5,10, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500}. Subsequently, for each individual fixed n the sample
mean 7, itself is sampled a total of N = 10° times. That is, we first draw n first-passage times 7, compute 7,, by
averaging over the drawn n realizations, and finally repeat this step N = 10® times to obtain statistics of 7,, for all n
values introduced above. Probability densities of the sample mean are shown in Fig. Sde-h for n € {3,5,10,20} and all
model systems. Corresponding true mean first-passage times (7) are highlighted in grey.

In Fig. 2e-h of the Letter the probabilities to deviate more than ¢ in either direction, P(£[7, — (1)] > t), are
computed from analogous statistics of the sample mean 7,,. Since we also consider empirical probabilities for rare
events with large deviations (i.e. large u1t) we however require substantially more statistics of 7,. To this end we now
have N = 107 for n € {1,3} and N = 10*! for n € {5,10,20}. In addition it should be further noted that we re-scale
obtained probabilities according to P/, To compute an empirical deviation probability where e.g. P*/29 = 0.1 one
would be thus required to sample rare events that occur with a probability of ~ 10720,
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In Fig. 3a of the Letter each data point corresponds to the relative error u1 (7, — (7)) (note that uy and (r) are
different for each model) where the sample mean 7, is again obtained by first fixing n and then sampling n first-passage
times 7 according to the inversion sampling method and subsequently taking the average.
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FIG. S4. Inversion sampling of first-passage statistics for a spatially confined Brownian search process in dimensions (a,e) d = 1
and (b,f) d = 3, and discrete-state Markov jump processes for (c,d) the inferred model of calmodulin and (d,h) a 8-state toy
protein. (a-d) First-passage time density g, (t) obtained using inversion sampling (symbols) and analytical result as black dashed
lines. (e-h) Empirical probability density of the sample mean 7,, for different n values. True mean first-passage times (7) are
shown in grey.

S5. UNCERTAINTY QUANTIFICATION WITH CONFIDENCE INTERVALS

In this section we extend the discussion and present some further details on the confidence intervals introduced in
the Letter. Our derived upper bounds Z/{fl—L (t) can be applied to construct non-asymptotic performance guarantees such
as confidence intervals. In particular, they can be employed to bound the probability that 67,, = 7, — (7) is found to
be in some interval [—t; ,tf ], i.e.,

P(67, € [t .t}

a_ ) o

) =P(~ty <oTn<t])
=P (67, > —t; N7, <tf,)
>1-P(07, < ~t; ) —P(67, > t3,)

> 1= Uy (ty ) =US(tE,). (S37)
\?,_/ N—_——
=a_ =ay

In passing from the second to the third line we have applied Boole’s second inequality, and from the third to forth
line we use bounds (7) of the Letter. In the last line we additionally introduced acceptable right and left tail error
probabilities cey. The implicit interval [—¢,, t(‘L] therefore defines a confidence interval at a confidence level of 1 — «
with a = a4 +a_, and a4 + a_ < 1. In general the choice of the confidence interval for a fixed probability 1 — « is
not unique. Some common options in the literature (see e.g. [12, 13]), all having the same confidence level, are listed

below.

» One common choice are so-called central intervals (blue lines in Fig. S5) which correspond to equal tail probabilities
ot = a_ = a/2 for the complementary intervals [—(7), —t; ] and [t}, ,00). Notably, we remark that central

confidence intervals do not generally imply that t;‘+ and ¢t are equidistant from another, i.e., tl’+ #1i, .
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e As an alternative one could likewise choose tj;r =t, = At/2, which subsequently leads to the symmetric
interval [—At/2, At/2] with total length At (see red lines in Fig. S5) . Analogously, a symmetric interval does
not necessarily imply that the corresponding tail probabilities are equal, i.e., in general ay # a_.

e Both considerations above lead to two-sided intervals. However, another possible choice includes the fully

asymmetric intervals [—(7), ¢ +] and [—t,, ,00), i.e., one-sided intervals with a corresponding confidence level

1 — ay (for the upper limit ¢} ) and 1 — a_ (for the lower limit ¢, ), respectively,

P(+£67, <tr,)>1—ax. (S38)
1 1.0
0.8
| 06 3
Los |
< 0.4~
n =15
. 0.2
—%-central int.
=4=symm. int.
% 05 10 05 1 0.0

pits, pitd, ptd,

FIG. S5. Contour plot of different choices of possible two-sided confidence intervals [—puity , pitd ] for a fixed confidence level
o and (a) n =15, (b) n =20, (c) n = 30. Contour lines for o € {0.1,0.3,0.5} are depicted in white. Specific choices of central
and symmetric are shown in blue and red, respectively, and we let C = 1 for all panels.

Confidence intervals are practically useful as they answer questions such as e.g.:

How many realizations are required to achieve a desired accuracy with a specified probability?
Or: For a given number of realizations a desired accuracy is achieved with at least what probability?

In the case of symmetric confidence intervals ¢} L =t (see Fig. S5 red lines) the interval endpoints are implicitly
defined via the last line of Eq. (S37) which is easily solved using standard root-finding procedures like the bi-section
method [14]. The same holds true for other interval choices, however, when specifying the error probabilities a.
directly—as done for e.g. two-sided central intervals (a1 = «/2) or one-sided intervals—it suffices to solve Eq. (S38) with
the respective ar. Hereby, the lower confidence limit ¢, is again easily obtained using standard root-finding methods.

Notably, the upper confidence limit ¢}, can now be solved analytically. To show this we consider U, (t},;C) = a4,
i.e., we identify the ¢}, that solves

0= —nChy(mtl, /C)—In(ay). (S39)
The roots are identified as

t = CIn(ay)  v2y/-In(ay) and g — _In(ay) n V2y/~In(ay)

pwin u1y/n/C Hin 14/ n/C ’

and we identify t;; = to as the relevant solution. Having obtained an explicit expression for t;f+ further allows us to
re-insert it into the left-hand side of Eq. (S38), i.e., we find that with a probability of at least 1 — ay

_ _ In(ay)  V2y/-In(ay)
oS P~ (S41)

The required number of realizations n* to ensure with a probability of at least 1 — « that §7,, is found within some
interval [—t, ,t! ] (e.g. symmetric interval in Fig. 3b) is analogous identified according to Eq. (14) in the Letter

Yoy

(S40)

Up~(t3,;C) + Uy (15 5C) = a, (S42)
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which once again is readily solved via e.g. the bisection method. Moreover, in the case of one-sided intervals one
immediately finds the corresponding analytical expression

« o In(ax)
~ Cha(mt/C)’

where n* denotes the required number to ensure that +67,, < ¢ with at least 1 — a.

(S43)
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