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Many non-equilibrium, active processes are observed at a coarse-grained level, where different
microscopic configurations are projected onto the same observable state. Such “lumped” observ-
ables display memory, and in many cases the irreversible character of the underlying microscopic
dynamics becomes blurred, e.g., when the projection hides dissipative cycles. As a result, the obser-
vations appear less irreversible, and it is very challenging to infer the degree of broken time-reversal
symmetry. Here we show, contrary to intuition, that by ignoring parts of the already coarse-grained
state space we may —via a process called milestoning— improve entropy-production estimates.
Milestoning systematically renders observations ”closer to underlying microscopic dynamics” and
thereby improves thermodynamic inference from lumped data assuming a given range of memory.
Moreover, whereas the correct general physical definition of time-reversal in the presence of mem-
ory remains unknown, we here show by means of systematic, physically relevant examples that at
least for semi-Markov processes of first and second order, waiting-time contributions arising from
adopting a naive Markovian definition of time-reversal generally must be discarded.

One-sentence summary: Non-equilibrium processes
are often observed at a coarse resolution, blurring the ir-
reversibility of dynamics; contrary to intuition, we show
that systematically increasing ignorance via a process
called milestoning can improve thermodynamic inference.

INTRODUCTION

Although the nonequilibrium character of active sys-
tems may often be self-evident (e.g., the directed motion
of a kinesin motor or persistent rotation of the F1-ATPase
[1]), differentiating in general between equilibrium and
non-equilibrium steady states at mesoscopic and micro-
scopic scales is surprisingly difficult [2–6]. A key reason is
that a broken time-reversal symmetry often emerges on
length scales where detailed microscopic information is
unavailable, e.g., below the diffraction limit. In particu-
lar, single-molecule experiments probe inherently coarse-
grained representations of microscopic dynamics [7] and
may thus underestimate [2] or even “be blind to” relevant
slow dissipative degrees of freedom [8].

Coarse-graining may be a consequence of experimental
limitations as well as of data analysis: for example, the
location of a microscopic probe is, most optimistically,
limited by the pixel size, which introduces spatial coarse-
graining [9]. Similarly, when protein folding is probed
using optical tweezers [10] or fluorescence resonance en-
ergy transfer [2, 11, 12], many molecular conformations
with, respectively, the same extension or with the same
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FIG. 1. Lumping and milestoning a discrete-state
Markov chain. (a) Schematic of a discrete-state Markov
chain with 32 hidden microstates lumped into domains I-
VIII (gray) each containing 4 microstates. Such a parti-
tioning arises naturally when the underlying process is ob-
served with coarse resolution. Milestoning involves further
post-processing of the lumped process: some lumped states
(here, the domains I, III, V, and VII) are declared to be mile-
stones (blue). Once the trajectory enters a milestone, the
coarse-grained state of the milestone trajectory remains in
said milestone until it enters a different milestone. (b) Tra-
jectory of the full Markov chain x(t). (c) Trajectory of the
coarse-grained semi-Markov chain x̂i(t) obtained by lumping
(gray) and further milestoning (blue).

distance between fluorescent probes are lumped onto a
single state. This projects the high-dimensional confor-
mational dynamics onto a single lumped coordinate.
Consider the total steady-state entropy-production

rate (i.e., dissipation rate), estimated as [13, 14]

⟨Ṡ[x]⟩ ≡ lim
t→∞

1

t

〈
ln

(
P [{x(τ)}0≤τ≤t]

P [{θx(τ)}0≤τ≤t]

)〉
, (1)
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where x(τ) denotes the system’s state at time τ ,
P [{x(τ)}0≤τ≤t] is the probability of a forward path
{x(τ)}0≤τ≤t and θ denotes the physically consistent
time-reversal operation, such that P [{θx(τ)}0≤τ≤t] cor-
responds to the probability of the time-reversed path. In
Eq. (1) Boltzmann’s constant was set to 1, ⟨·⟩ indicates
averaging over P [{x(τ)}0≤τ≤t], and we tacitly assumed
that the dynamics is ergodic. When x(τ) is a Markov
process, {θx(τ)}0≤τ≤t = {ϵx(t − τ)}0≤τ≤t where ϵ de-
notes that we must simultaneously change the sign of all
degrees of freedom that are odd under time reversal (such
as momenta).

Note that in the presence of memory, the physi-
cally consistent form of time-reversal θ is generally not
known. In particular, even in the absence of momenta
one cannot simply assume the Markov definition, i.e.,
{θx(τ)}0≤τ≤t ̸= {x(t − τ)}0≤τ≤t (see [15–17] and coun-
terexamples below). Memory effects require adapted def-
initions of time reversal, analogous to momenta in in-
ertial systems [16, 17]. In particular, naively setting

{θx(τ)}0≤τ≤t
!
={x(t − τ)}0≤τ≤t in Eq. (1) may yield a

positive entropy production for coarse-grained represen-
tations of manifestly reversible microscopic dynamics, as
it leads to a ”waiting-time contribution” to dissipation
[15–17].

If the time-reversal operation and coarse-graining are
carried out correctly, projected representations of micro-
scopic dynamics are usually “less irreversible” than the
true dynamics [16, 18–22]. That is, if a coarse-grained
representation x̂(t) of the full dynamics is considered, we
typically expect to underestimate [23] the true entropy
production [16, 18, 19, 24], i.e.

0 ≤ ⟨Ṡ[x̂]⟩ ≤ ⟨Ṡ[x]⟩. (2)

Recently, there has been a surge in interest in ther-
modynamic inference from coarse-grained, partially ob-
served dynamics [16, 19, 20, 22, 25–27]. The arguably
most direct method to infer a lower bound on the en-
tropy production is via the thermodynamic uncertainty
relation (TUR) [9, 28–40]. Moreover, approaches were
developed that exploit the information encoded in the
non-Markovian character to infer bounds on dissipation
[21, 22, 41–43].

Given the inequality in Eq. (2), optimal estimation of
entropy production from experimental observations re-
mains an open question. Indeed, different coarse-grained
representations yield different estimates; moreover, in
any realistic experimental setting neither the microscopic
dynamics nor the precise coarse-graining is known. Re-
cently, it was found that a coarse-graining method called
“milestoning” preserves the microscopic entropy produc-
tion even in the absence of a time-scale separation be-
tween hidden and observed degrees of freedom, if no dis-
sipative cycles are hidden [16, 44]. In contrast, the more
common coarse-graining approach called “lumping” (see

Fig. 1 and [18]) in general may underestimate ⟨Ṡ[x]⟩ even
in the presence of such time-scale separation [44]. Mile-
stoning, originally developed as a method for efficient

computation [45–47], projects the dynamics onto “hop-
ping” between a set of milestones that do not cover the
entire configuration space, thereby mapping continuous
or discrete-state “microscopic” dynamics onto a gener-
ally non-Markovian random walk. Intriguingly, we here
show that milestoning, if used to post-process lumped dy-
namics, can improve thermodynamic inference. In other
words, milestone trajectories, obtained by discarding cer-
tain details of lumped trajectories (as in Fig. 1), can
provide improved estimates of dissipation; as such, mile-
stoning analysis is directly applicable to experimentally
observed dynamics, which are inherently lumped.
Here we focus on the direct approach (1) and demon-

strate that, contrary to naive intuition, milestoning al-
ready lumped dynamics may improve entropy-production
estimates via Eq. (1) given the same coarse-grained tra-
jectories and even in the presence of hidden cycles. That
is, by ignoring parts of the coarse-grained state space
and thus introducing additional “controlled ignorance”
we actually render the trajectory “closer to the underly-
ing microscopic dynamics” and thereby improve the dis-
sipation estimator (1) [48]. We explicitly address the sce-
nario where lumping hides dissipative cycles and compare
the milestoning estimate with the bound inferred from
the TUR. We show how post-lumped milestoning may
be used systematically to improve thermodynamic infer-
ence, i.e., to enhance the precision of estimating dissipa-
tion from coarse observations. We stress the importance
of considering a physically consistent time-reversal oper-
ation in the presence of memory, and show that asym-
metric waiting-time contributions that emerge upon mile-
stoning generally do not contribute to dissipation.

MILESTONING DYNAMICS WITH HIDDEN
CYCLES

We begin with a toy model that contains hidden dissi-
pative cycles (see [49–51] for similar toy models). Mod-
els of this kind can emerge as descriptions of a system of
magnetically coupled colloidal particles [8, 52], chemical
reaction networks [53], circular hidden Markov models
[54, 55], and molecular conformation dynamics [3]. Here
we consider a discrete-time Markov process as shown in
Fig. 1a. The observed dynamics involves Nlump observ-
able states arranged along a ring, and each such observ-
able state contains Nhid microscopic states forming a ring
(see Fig. 1a). Within each lump there are two maximally
separated microstates which are connected to the pre-
vious/next lump (e.g., microstate 3 and 5 in Fig. 1a),
and in the SM we also consider the case with three mi-
crostates connected between the lumps. The transition
probabilities for internal microstates (i.e., microstates not
connecting two lumps) are whid,+ in the clockwise direc-
tion, and whid,− in the counterclockwise direction. For
microstates connecting two lumps, we have wlump,± for
transitions between the lumps, and (1 − wlump,±)whid,±
for internal transitions. Thus, for whid,+ ̸= whid,−, lump-
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FIG. 2. Estimating the entropy production from a coarse-grained trajectory with hidden cycles. The diffusive
trajectory is governed by the discrete-state ring-like Markov chain shown in Fig. 1, with Nlumps the number of lumped states,
Nhid the number of hidden microstates per lumped state, transition rates {whid,+, whid,−} = {wlump,+, wlump,−} = {0.6, 0.4},
and 108 discrete steps. (a, c) Quality factor Q given by Eq. (5) for the entropy production estimated with the lumped trajectory
assuming 1st order semi-Markov (see Eq. (3)) (a) and 2nd order semi-Markov (see Eq. (4)) (c). (b, d) Quality factor for the
entropy production estimated with the post-lumped milestoned trajectory with 4 equidistant milestones, assuming 1st order
semi-Markov (b) and 2nd order semi-Markov (d).

ing the Nhid states into a single observable state hides
dissipative cycles when Nhid > 2. A microscopic and
lumped trajectory are shown in Fig. 1b and c (gray line),
respectively. We now milestone the trajectory by taking
4 equidistant lumps as milestones (see Fig. 1a and Fig. 1c
blue line).

To evaluate ⟨Ṡ[x̂i]⟩, where the subscript i =
{lump,mil} indicates whether the entropy production is
estimated for the lumped trajectory or the milestone tra-
jectory, we use Eq. (1) and measure lump/milestone-
sequence frequencies in the trajectory [56, 57]. In the
presence of long-range memory this is a computation-
ally demanding task requiring many independent steady-
state trajectories or one extremely long trajectory. Even
if this is given, a finite range of memory must be as-
sumed in practical computations of path probabilities
P [{x(τ)}0≤τ≤t] and P [{θx(τ)}0≤τ≤t]. A numerical im-
plementation of the inference is provided in [58].

Note that x̂i(t) in Fig. 1c is indeed a non-Markovian
process. This is manifested in the fact that the esti-
mate of ⟨Ṡ[x̂i]⟩ strongly depends on the assumption of
the underlying extent of memory. That is, considering
only the preceding step—in the 1st order semi-Markov
approximation—we assume that x̂i(t) depends only on
x̂i(t − 1) but not on x̂i(t − k) for k ≥ 2, leading to the
one-step affinity estimate (assuming all coarse states and
milestones are equivalent as in Fig. 1a)

⟨Ṡaff
1 [x̂i]⟩ =

pi+ − pi−
⟨τi⟩

ln

(
pi+
pi−

)
, (3)

where ⟨τi⟩ is the average waiting time within a coarse-
grained state, and pi± are the forward/clockwise (+) and
backward/counterclockwise (−) jump probabilities in the
sequence of distinct coarse-grained states (i.e., upon re-
moving repeated consecutive coarse-grained states).

In the kth order semi-Markov approximation we as-
sume that the probability of x̂i(t) depends on the se-
quence {x̂i(t − 1), . . . , x̂i(t − k)}. To be concrete, x̂i(t)
in Fig. 1c is a 2nd order semi-Markov process [41] (see

also [42, 43]), where the jump probabilities and wait-
ing times depend on the previous state. Naively, taking

{θx̂(τ)}0≤τ≤t
!
={x̂(t−τ)}0≤τ≤t in Eq. (1), yields two con-

tributions: the two-step affinity contribution ⟨Ṡaff
2 [x̂i]⟩,

and a contribution of waiting times ⟨Ṡwt
2 [x̂i]⟩ [41]. In

particular, for x̂i(t) in Fig. 1c the two-step affinity con-
tribution reads [41, 44]

⟨Ṡaff
2 [x̂i]⟩ =

pi+ − pi−
⟨τi⟩

ln

(
ϕi++

ϕi−−

)
, (4)

where ϕi±± are conditional splitting probabilities of mak-
ing a forward/backward jump, given that the previous
jump occurred in the forward/backward direction. The

explicit form of the waiting-time contribution ⟨Ṡwt
2 [x̂i]⟩

(see Eq. (S1) below) suggests that as soon as waiting
time distributions to make a forward versus a backward
jump (conditioned on that the preceding jump has also
occurred in the forward or backward direction, respec-
tively) are not equal, these contribute to dissipation [41].

Below, however, we give examples where ⟨Ṡwt
2 [x̂i]⟩ > 0

for systems obeying detailed balance; therefore, the naive
Markovian time-reversal operation leading to ⟨Ṡwt

2 [x̂i]⟩
cannot be generally correct and does not necessarily mea-
sure dissipation. In anticipation that waiting times do
not contribute to dissipation, we ignore them in the in-
ference of ⟨Ṡk[x̂i]⟩. Later, we also prove that they in-
deed result in a spurious contribution to the estimate for
⟨Ṡ[x]⟩.
Taking a single ergodically long trajectory, we use

Eq. (3) or Eq. (4) for the microscopic, lumped, and post-
lump milestoned trajectories to estimate the entropy pro-
duction. To determine the accuracy of the estimates, we
calculate the quality factor 0 ≤ Q ≤ 1, equal to the ratio
of the estimated entropy production to the true entropy
production of the microscopic process:

Q = ⟨Ṡaff
k [x̂i]⟩/⟨Ṡ[x]⟩, (5)

where i = {lump,mil}. We apply the 1st order (i.e.,
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FIG. 3. Estimating the entropy production in single-file diffusion for different driving schemes. (a-c) Schematic
of the different driving scenarios, where the tracer particle is indicated in dark blue, and bath particles in light blue. Red sites
indicate the milestone positions for the tracer particle. Asymmetric transition rates are {1−q, q}={0.55, 0.45}. In the schematics
Nsites=6 and Nvac=3. (d-i) Quality factor of the entropy production estimated with the 1st order semi-Markov approximation
(see Eq. (3)). (j-o) Quality factor of the entropy production estimated with the 2nd order semi-Markov approximation (see
Eq. (4)). (p-u) Quality factor of the entropy production estimated with the discrete-time TUR given by Eq. (6) using the tracer
particle current.

k = 1) semi-Markov and 2nd order (i.e., k = 2) semi-

Markov approximation to estimate ⟨Ṡ[x̂i]⟩, and the re-
sults are shown in Fig. 2. For Nhid ≥ 3 the estimates
from both coarse-grained trajectories (i.e., lumped and
milestoned) are significantly lower than the true entropy-
production rate. This is due to the presence of hid-
den dissipative cycles. Nevertheless, within the 1st order
semi-Markov approximation milestoning the lumped tra-
jectory improves the entropy-production estimate (com-
pare Figs. 2a,b). On the 2nd order semi-Markov level
milestoning does not improve the estimate (Figs. 2c,d),
since the sequence of lumps (milestones, respectively) is

exactly a 2nd order semi-Markov chain.

When there are no hidden cycles, i.e., for Nhid = 2, we
recover the exact microscopic entropy production with
Eq. (4) which, notably, does not take into account the

waiting-time contribution, i.e. ⟨Ṡaff
2 [x̂i]⟩ = ⟨Ṡ[x]⟩. In

fact, since ⟨Ṡwt
2 [x̂mil]⟩ ≥ 0 for asymmetrically placed

milestones, including the waiting-time contribution from
[41] violates the condition (2) and may erroneously yield
a positive entropy production even when the microscopic
dynamics obeys detailed balance (see SM). This under-

scores that Eq. (1) with {θx̂(τ)}0≤τ≤t
!
={x̂(t − τ)}0≤τ≤t

a priori does not measure violation of detailed balance
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of processes with memory.
Interestingly, milestoning lumped dynamics may im-

prove the entropy-production estimate even in the pres-
ence of hidden cycles if the range of memory is not cap-
tured exactly in the evaluation of Eq. (1). Notably, in
practice the extent of memory is unlikely to be known,
and computations at orders higher than 2 quickly become
unfeasible.

DRIVEN SINGLE-FILE DIFFUSION

Next, we consider tracer-particle dynamics in discrete-
time single-file diffusion on a ring (see Fig. 3), a paradig-
matic model of dynamics with long memory and anoma-
lous diffusion [59–65] as well as a paradigm for diffusion
in crowded media [66–70] and transport through biolog-
ical channels [71]. Let Nsites be the total number of
sites on the ring, and Nvac the number of empty sites
(vacancies), such that the total number of particles is
N = Nsites − Nvac. At each discrete time step a parti-
cle is picked at random and shifted with a given proba-
bility to the left or right if the new site is unoccupied.
Note that the latter condition introduces waiting times
between jumps, i.e., it effectively gives rise to local Pois-
sonian clocks in the limit of continuous time. We track
the position of a tracer particle (see e.g., Fig. 3a, dark
blue), which results in a lumped process, where multi-
ple microscopic states correspond to the same location
of the tracer particle but different arrangements of the
unobserved “bath” particles.

We consider three different driving scenarios: (i) a
uniformly driven system with clockwise (w+) and coun-
terclockwise (w−) transition rates {w+, w−}={1−q, q}
(Fig. 3a), (ii) a driven tracer particle with transition rates
{wt

+, w
t
−}={1−q, q} and bath particles with symmetric

hopping rates {w+, w−}={1/2, 1/2} (Fig. 3b) [72–76],
and (iii) the opposite scenario where the bath particles
are driven, and the tracer particle hops symmetrically
(Fig. 3c) [77].

We further consider 3 maximally separated post-
lumped milestones on the ring (see e.g., Fig. 3a, red
sites). This type of milestoning corresponds to that im-
plemented in [44] and yields the exact entropy production
in the case of a single particle [16, 44].

In each driving scenario we evaluate, numerically, the
exact (microscopic) entropy production ⟨Ṡ[x]⟩ and com-

pare it with ⟨Ṡaff
k [x̂i]⟩ assuming 1st order (i.e., k = 1)

(Fig. 3d-i) and 2nd order (i.e., k = 2) semi-Markov
(Fig. 3j-o) statistics for the lumped and post-lumped
milestoned trajectories, respectively. For all driving sce-
narios, and both semi-Markov approximations, we find
that milestoning of the lumped trajectories significantly
improves the entropy-production estimate.

For a further comparison, we also estimate ⟨Ṡ[x̂i]⟩ via
the discrete-time TUR [78], which provides a universal
trade-off between precision of any thermodynamic flux
and dissipation in the system [28, 39, 78]. By determin-

ing the average ⟨Ji⟩ and variance var(Ji) of the tracer-
particle current in the lumped and post-lumped mile-
stoned trajectories (see SM for details), the quality factor
of the discrete-time TUR [78] estimate reads [78]

QTUR = ln
(
2⟨Ji⟩2/var(Ji) + 1

)
/⟨Ṡ[x]⟩, (6)

and is shown in Fig. 3p-u. Note that for lumped dy-
namics it was proven that 0 ≤ QTUR ≤ 1 [78], but is a
priori not clear if the TUR holds also for the post-lumped
milestoned dynamics. Here we simply assume this to be
true, and find that the milestoned estimates outperform
the lumped estimates (see bottom panel in Fig. 3).

INCREASING IGNORANCE

In Fig. 2b we observe that by increasing Nlumps at
fixed Nhid, which increases the average distance between
the milestones and hence our “ignorance”, the 1st or-
der estimate ⟨Ṡaff

1 [x̂mil]⟩ gradually improves. Similarly,
in Fig. 3g-i we find that for larger Nsites (except for
Nsites−Nvac = 1) the quality factor of the 1st order semi-
Markov approximation is improved for the milestoned
trajectory. On the contrary, the entropy estimates for
the lumped dynamics deteriorate with increasing Nsites

(see Fig. 3d-f). We now show, at first sight paradoxically,
that when milestoning is used, a larger distance between
milestones and hence “more ignorance” may indeed im-
prove thermodynamic inference.
Let us focus on uniformly driven single-file diffusion

with one vacancy, i.e. Nvac = 1, as shown in Fig. 4.
For a given number of sites Nsites, there are Nsites−1
microstates with a fixed location of the tracer parti-
cle. There are in total Nsites(Nsites−1) microscopic
states, with groups of Nsites−1 states forming the lumped
states of the macroscopic system (i.e., the position of the

FIG. 4. Splitting probabilities in milestoned single-
file diffusion. The upper panel depicts the lumped states,
where we only observe the location of the tracer particle. The
lower panel depicts the Nsites−1 hidden microstates. Adja-
cent milestones are separated by Nj,C(Nsites−1) microscopic
states. Here we have N0,C = N1,C = 2 and Nsites = 9. The
random walk on milestones is an 2nd order semi-Markov pro-
cess, with the sequence of milestones visited by the random
walker determined by the splitting probabilities ϕj,±±.
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tracer particle). We now designate some of those coarse
states to be milestones. Specifically, suppose we take
3 milestones with Nj,C coarse states between milestone
j (mod 3) and milestone j+1 (mod 3) (see Fig. 4). From
here on we always take the index j modulo 3. Note that
Nj,C and Nsites are related by

∑
j [1 +Nj,C ] = Nsites.

In the microscopic description of the problem, one can
enumerate the microstates such that each milestone it-
self is composed of Nsites−1 states aligned along a line.
We apply milestoning to obtain the trajectory x̂mil(t)
as described before: the position of the tracer par-
ticle corresponds to the last visited milestone, result-
ing in a 2nd order semi-Markov process. Specifically,
the milestone sequence can be described by the condi-
tional splitting probabilities in the sequence of distinct
states (i.e. upon removing repeated consecutive mile-
stoned states) {ϕj,++, ϕj,+−, ϕj,−+, ϕj,−−}, where ϕj,++,
for example, is the conditional probability of making a
step from milestone j to milestone j + 1, given that the
previous step occurred from milestone j− 1 to milestone
j.

To calculate the splitting probabilities ϕj,++ and
ϕj,−+, for example, we consider the random walker
starting in the leftmost state of the segment of Nsites−1
forming a milestone (see gray box in Fig. 4). If we denote
this state by k, then ϕj,−+ and ϕj,++ are the proba-
bilities to exit the interval {k − ∆j,−, ..., k + ∆j,+}
through its left and right boundaries with
{∆j,−,∆j,+}={Nj−1,C(Nsites−1)+1, (Nj,C+1)(Nsites−1)}.
One may recognize that the solution to this problem is
equivalent to solving the Gambler’s ruin problem [79].
Specifically, if we let αq ≡ q/(1− q), we obtain

ϕj,++ = (1−α∆j,−
q )/(1−α∆j

q ), ϕj,−+ = 1−ϕj,++,

ϕj,+− = (1−α∆j−1,+
q )/(1−α∆j

q ), ϕj,−− = 1−ϕj,+−. (7)

where ∆j = ∆j,−+∆j,+ denotes the territory of mile-
stone j, i.e., the domain size the trajectory needs to exit
upon entering another milestone. Given these splitting
probabilities, we can determine the entropy production
at the level of the 1st order semi-Markov approximation,
which reads

⟨Ṡaff
1 ⟩= 1

⟨τ⟩
∑
j

[πjpj,+−πj+1pj+1,−] ln

(
πjpj,+

πj+1pj+1,−

)
, (8)

where πj is the steady-state probability in milestone j,
pj,± the transition probability to jump from milestone j
to j ± 1, and ⟨τ⟩=

∑
j⟨τj⟩ the total average waiting time

in the milestones. Note that for equidistant milestones
πj = 1/3, and Eq. (S1) reduces to Eq. (3).

The steady-state and transition probabilities can be
determined from the conditions

πj = πj+1pj+1,− + πj−1pj−1,+,

πjpj,+ = πj−1pj−1,+ϕj,++ + πj+1pj+1,−ϕj,+−, (9)

together with
∑

j πj = 1 and pj,++pj,− = 1. Upon in-

serting Eq. (7) into Eq. (9) we find

πj = (1− α∆j−1,−
q )(1− α∆j,−+∆j+1,−

q )/N ,

pj,+ = (1− α∆j,−
q )/(1− α∆j,−+∆j+1,−

q ), (10)

where N =
∑

j(1− α
∆j−1,−
q )(1− α

∆j,−+∆j+1,−
q ).

The average waiting time in a milestone can be split
in two parts, with respect to entering the milestone from
the left or the right. This yields

⟨τj⟩ = πj−1pj−1,+⟨τ−j ⟩+ πj+1pj+1,−⟨τ+j ⟩, (11)

where the average waiting times conditioned on starting
from the left/right entrance of the milestone are given by
(see page 4 in [79])

⟨τ−j ⟩ = (∆j,− −∆jϕj,++)N/(2q − 1),

⟨τ+j ⟩ = (∆j−1,+ −∆jϕj,+−)N/(2q − 1), (12)

and lead to the total average waiting time in the mile-
stones

⟨τ⟩ =
N

∑
j ∆j,+

(1− 2q)(3− 2
∑

j 1/(1− α
−∆j ,−
q ))

. (13)

Inserting Eqs. (10) and (13) into Eq. (S1) we finally ob-
tain the affinity contribution of the milestoned process
within the 1st order semi-Markov approximation

⟨Ṡaff
1 [x̂mil]⟩ =

3/(Nsites − 1) +
∑

j Nj,C

3 +
∑

j Nj,C
⟨Ṡ[x]⟩

=
3/(Nsites − 1) +Nsites − 3

Nsites
⟨Ṡ[x]⟩ (14)

where ⟨Ṡ[x]⟩ is the exact entropy production which can
be obtained from the dynamics of the vacancy, and reads

⟨Ṡ[x]⟩ = 2q − 1

N
ln

(
q

1− q

)
. (15)

We immediately see that Eq. (14) yields the exact en-
tropy production in the limit Nsites → ∞. This behavior
can be understood, qualitatively, as follows: as the total
inter-milestone spacing increases, the relative difference
between splitting probabilities such as, e.g., ϕj,+− and
ϕj,++ becomes negligible because the relative milestone
“size” (in the microscopic view) is negligible compared
to the milestone territory, which suppresses correlations
between entry- and exit-directions to and from the mile-
stone, respectively. In other words, the milestone trajec-
tory approaches a 1st order semi-Markov process. But in
the latter case, we expect milestoning to become exact
[44].
For the ”bare” lumped trajectory we simply set Nj,C =

0 in the first line of Eq. (14), which gives

⟨Ṡaff
1 [x̂lump]⟩ =

1

Nsites − 1
⟨Ṡ[x]⟩. (16)

Hence, in the limit Nsites → ∞ the 1st order semi-Markov
entropy production estimate in the lumped dynamics
vanishes, as observed in Fig. 3d-f.
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FIG. 5. Asymmetrically placed milestones result in asymmetric waiting-time distributions irrespective of the
driving. (a) Symmetric single file diffusion, that is, with no driving (i.e., q = 1/2), for Nsites = 5, and Nvac = 1. The three
milestones correspond to the positions of the tracer particle (dark blue) indicated in red. (b-d) Waiting-time distributions
ψj

±±(k) in each of the milestones obtained by simulations (blue + orange) and by Eq. (20) (full + dashed black lines).

SPURIOUS WAITING-TIME CONTRIBUTION
AND KINETIC HYSTERESIS

Notably, using Eq. (4) on the uniformly driven single-
file system with one vacancy, we recover the exact entropy
production, i.e.,

⟨Ṡaff
2 [x̂mil]⟩ = ⟨Ṡaff

2 [x̂lump]⟩ = ⟨Ṡ[x]⟩, (17)

which we also observe in Fig. 3j-o at Nvac = 1.
Importantly, in Eq. (4) we have systematically dis-

carded the waiting-time contribution ⟨Ṡwt
2 [x̂i]⟩ that fol-

lows from naively applying Eq. (1) to non-Markovian tra-
jectories [41]. A direct computation shows [41]

⟨Ṡwt
2 [x̂mil]⟩ =

1

⟨τ⟩
∑
j

∑
±
pj,±±D[ψj

±±||ψ
j
∓∓] ≥ 0, (18)

where pj,±±=πjpj,±ϕj,±±, and the Kullback-Leibler di-
vergence is given by

D[ψj
±±||ψ

j
∓∓] ≡

∑
k≥1

ψj
±±(k) ln[ψ

j
±±(k)/ψ

j
∓∓(k)], (19)

which is taken between the conditional waiting-time dis-
tributions for consecutive forward ψj

++(k) and backward

ψj
−−(k) transitions between milestones. Note that as

soon as the conditional forward and backward wait-
ing time distributions are distinct (”asymmetric”), i.e.

ψj
++(k) ̸= ψj

−−(k) for some k, Eq. (S1) implies dissipa-
tion, irrespective of whether the microscopic dynamics
is truly dissipative or not. The conditional waiting-time
distributions read [80]

ψj
++(k) = F∆j (q,∆j,+, k)/ϕj,++,

ψj
−−(k) = F∆j

(1− q,∆j−1,+, k)/ϕj,−−,

where we introduced the auxiliary function

F∆(q, z, k) ≡
2k

∆
(1− q)

k+z
2 q

k−z
2

×
∆−1∑
l=1

cosk−1

(
lπ

∆

)
sin

(
lπ

∆

)
sin

(
lπz

∆

)
. (20)

In Fig. 5 we show that as soon as the distance to the
left/right neighboring milestone is not symmetric, we ob-

tain D[ψj
±±||ψ

j
∓∓] > 0 and thus it follows from Eq. (17)

that ⟨Ṡaff
2 [x̂i]⟩ + ⟨Ṡwt

2 [x̂i]⟩ > ⟨Ṡ[x]⟩. Moreover, even un-
der perfect (microscopic) detailed balance (i.e., q=1/2)
we find that the waiting-time distributions are asymmet-
ric (see Fig. 5), and therefore D[ψj

±±||ψ
j
∓∓]>0 and thus

⟨Ṡwt
2 [x̂mil]⟩>⟨Ṡ[x]⟩=0. The above 2nd order semi-Markov

example and the family of 1st order semi-Markov coun-
terexamples in [15–17] disprove that waiting-times in
general contribute to dissipation in Eq. (1). The waiting-
time contribution in Eq. (S1) in our example quantifies
the difference between the waiting-time distributions be-
tween forward versus backward transitions, but it does
not contribute to dissipation.

Note that the post-lumped milestoned process dis-
plays kinetic hysteresis (i.e., coarse-graining and time
reversal do not commute; see SM) [16], whereas the
original lumped dynamics does not. For the latter,
the waiting-time distributions are symmetric irrespec-
tive of the lump sizes and presence or absence of driv-
ing, resulting in a vanishing waiting-time contribution
⟨Ṡwt

2 [x̂lump]⟩ = 0. Therefore, in the presence of kinetic
hysteresis in coarse-grained dynamics, the waiting-time
contribution in Eq. (S1) does not contribute to dissipa-
tion, and in its absence it typically (i.e. in our examples)
seems to vanish (see, however, non-vanishing contribu-
tions in [41]). Therefore, since it is not possible in practice
to test for the presence of kinetic hysteresis without the
knowledge of the full dynamics, asymmetric waiting-time
distributions generally cannot be used to infer dissipation
via Eq. (S1), i.e., there is no implication between the two:

⟨Ṡ[x]⟩ > 0 ≠⇒ ⟨Ṡwt[x̂]⟩ > 0 and in turn ⟨Ṡwt[x̂]⟩ >
0 ≠⇒ ⟨Ṡ[x]⟩ > 0. In fact, using the naive Markovian

time-reversal operation {θx̂i(τ)}0≤τ≤t
!
={x̂i(t− τ)}0≤τ≤t

in Eq. (1), at least for 1st and 2nd order semi-Markov pro-
cesses in the presence of kinetic hysteresis, is inconsistent
and does not describe dissipation correctly. Notably, the
complete thermodynamically consistent definition of dis-
sipation for 1st order semi-Markov processes has been
established in [16], while for 2nd order semi-Markov pro-
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cesses the affinity contribution ⟨Ṡaff
2 [x̂]⟩ seems to provide

a correct lower bound, ⟨Ṡ[x]⟩ ≥ ⟨Ṡaff
2 [x̂]⟩.

DISCUSSION

Correct notion of time reversal.— Contrasting the set-
ting where all hidden degrees of freedom relax instanta-
neously fast, that is solved essentially completely within
the notion of “local detailed balance” [18], inferring dis-
sipation from general coarse observations remains both
conceptually and technically challenging and is still un-
derstood very poorly. Sufficiently far from equilibrium,
challenges appear even in the presence of a time-scale
separation between the hidden and observed degrees of
freedom [44]. In the absence of such time-scale separa-
tion, and for an arbitrary extent of memory, the prob-
lem remains unsolved. This is because a correct general
mathematical definition of dissipation in the presence of
memory is not known. In particular, the definition in
Eq. (1) is incomplete, because the correct general form
of the time-reversal operation θ remains elusive. Memory
reflects (anti-)persistence in dynamics, and it is therefore
not surprising that it manifests some abstract analogy to
momenta.

Whereas practical methods are available to infer the
presence [81, 82] and range [83–85] of memory in coarse
observations, the precise flavor of non-Markovianity is
typically not known. In particular, if only coarse-grained
trajectories are accessible, such as in experimental stud-
ies, it is inherently impossible to check for the presence
of kinetic hysteresis. Therefore, referring to the absence
of kinetic hysteresis as a ”mild assumption” [86] seems

somewhat inappropriate. Either way, since ⟨Ṡwt[x̂]⟩ can
be positive even under detailed balance, and one can-
not check for kinetic hysteresis, a non-vanishing ⟨Ṡwt[x̂]⟩
generally cannot be used to infer dissipation.

Even if the order of memory is known, the correct no-
tion of physical time reversal generally remains elusive.
For semi-Markov processes of 1st order it has been proven
that the transition-path periods (i.e., the duration of suc-
cessful transitions between coarse states) are ”odd” under
time reversal (i.e., transition paths between any pair of
states must be reverted in the time-reversed trajectory
like momenta in inertial systems), and the thermody-
namically consistent time-reversal operation was estab-
lished [16]. Importantly, by explicit counterexamples it
was proven that waiting-time effects in 1st and 2nd order
semi-Markov processes generally do not measure dissipa-
tion. Note that reverting all transition paths in the time-
reversed trajectories ensures ⟨Ṡwt[x̂]⟩ = 0, and thus has

the same effects as simply ignoring ⟨Ṡwt[x̂]⟩. Moreover,
we found that for the 2nd order semi-Markov process
with no hidden dissipative cycles [87] in Fig. 3 (see also
[17, 44]), the two-step affinity exactly recovers the micro-
scopic dissipation, which requires all waiting time contri-
butions to be systematically discarded. To what extent
and under which conditions this, i.e., ⟨Ṡaff [x̂i]⟩ = ⟨Ṡ[x]⟩

in the absence of hidden cycles, is true for general kth

order semi-Markov processes (k > 2) still needs to be
established. Whether a general form of time reversal θ
exists that would always yield a consistent waiting-time
contribution to dissipation remains unknown. One can
construct 2nd (but not 1st) order semi-Markov processes
without kinetic hysteresis that have asymmetric waiting
time distributions whose contribution does not violate
the inequality (2) [41]. However, our results show that
for 1st and 2nd order semi-Markov processes waiting-time
effects as encoded in ⟨Ṡwt[x̂]⟩ are either nominally zero
or else must be discarded, since one cannot know (nor
can one test) for the presence of kinetic hysteresis with-
out the knowledge of microscopic dynamics. We believe
this to be a result of an incorrect or incomplete definition
of time-reversal θ when applying Eq. (1) to 1st and 2nd

order semi-Markov processes. We expect this to also be
true for processes with longer memory, where, however,
evaluating the path probabilities becomes challenging.

Practical aspects of milestoning.— From a practical
perspective, one therefore does not generally know how
to correctly apply Eq. (1) to infer dissipation from ob-
served non-Markovian trajectories. A convenient, prac-
tical, and consistent approach we push forward here is to
first milestone trajectories and thereafter assume 1st or
2nd order semi-Markov correlations in the evaluation of
Eq. (1) excluding any waiting-time contributions. Even
if this assumption is not satisfied exactly (i.e., the mem-
ory is actually longer-ranged), a meaningful milestoning
will systematically render the observations ”closer” to the
underlying microscopic dynamics and thus improve ther-
modynamic inference. Moreover, a sparser placement of
milestones increases the accuracy of inference and is nu-
merically more efficient.

One is therefore tempted to think that milestones
should generally be placed as sparsely as possible for
optimal thermodynamic inference. There is, however,
a practical limitation. Consider the example of observ-
ing a tracer particle in a single-file. If we increase the
spacing between milestones, the estimate for ⟨Ṡ[x̂mil]⟩
per milestone transition indeed gradually improves (i.e.,
increases). At large distances between milestones, how-
ever, the sequence of visited milestones will appear nearly
deterministic, whereby transitions against the driving
(i.e., “time-reversed trajectory segments”) will become
increasingly unlikely. Thus, the evaluation of Eq. (1) us-
ing trajectory-derived path probabilities will require bet-
ter and better sampling (see the SM for a quantitative
statement). Analytical estimates of transition probabili-
ties (such as presented here) are of course not affected. In
general, the placement of milestones should be optimized
as a trade-off between accuracy and statistical feasibility.

Finally, we stress that the proposed post-lumped mile-
stoning based thermodynamic inference requires at least
one dissipative cycle to be observable. If some dissipa-
tive cycles are hidden by the coarse-graining, milestoning
based estimation will yield a true lower bound on dissi-
pation. However, if truly all dissipative cycles become
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hidden, the method will fail, and one should resort to
alternative “transition-based” approaches developed re-
cently [19–22] to infer some lower bound on dissipation.
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Supplemental Material for:
Milestoning estimators of dissipation in systems observed at a coarse resolution: When ignorance is

truly bliss

In this Supplementary Material (SM) we present details and further extensions of the results shown in the main
manuscript.

A. Toy model for a higher-order semi-Markov process

In Fig. S1a we extend the toy model for a 2nd order semi-Markov process introduced in the main manuscript. The
extension includes an additional exit and entrance connection between the lumped states with different transition

rates {w†
lump,+, w

†
lump,−}. In Fig. S1b-c we observe that milestoning the lumped trajectory significantly improves the

entropy production estimate within the 1st order semi-Markov approximation. On the 2nd order semi-Markov level,
milestoning does not improve nor deteriorate the entropy-production estimate.

FIG. S1. Entropy production inference for a semi-Markov process beyond 2nd order (a) Schematic of the toy
model with 32 microstates lumped into domains I-VIII (gray) each containing 4 microstates. Milestoning involves further post-
processing of the lumped process: some lumped states (here, the domains I, III, V, and VII) are declared to be milestones (blue).
Once the trajectory enters a milestone, the coarse-grained state of the milestone trajectory remains in said milestone until it
enters a different milestone. (b-e) Estimating the entropy production from a coarse-grained trajectory governed by the discrete-
state ring-like Markov chain shown in (a), with Nlumps the number of lumped states, Nhid the number of hidden microstates

per lumped state, transition rates {wlump,+, wlump,−} = {whid,+, whid,−} = {0.52, 0.48}, {w†
lump,+, w

†
lump,−} = {0.51, 0.49},

and 108 discrete steps. (b, d) Quality factor Q (see Eq. (5) in manuscript) for the entropy production estimated with the
lumped trajectory assuming 1st order semi-Markov (see Eq. (3) in manuscript) (b) and 2nd order semi-Markov (see Eq. (4) in
manuscript) (d). (c, e) Quality factor for the entropy production estimated with the post-lumped milestoned trajectory with
4 equidistant milestones, assuming 1st order semi-Markov (c) and 2nd order semi-Markov (e).

B. Waiting-time contribution in the ring process

In Fig. S2 we show the waiting-time distributions for the toy models shown in Fig. 1a in the main manuscript
and Fig. S1a in the SM. For both models, we take 3 milestones which are placed asymmetrically, i.e. the milestones
are not placed equidistantly as shown in Fig. S2a,e. Furthermore, we take fully symmetric transition rates whid,+ =

wlump,+ = w†
lump,+ = whid,− = wlump,− = w†

lump,− = 1/2, which renders both, the exact microscopic result as well as

the affinity entropy estimate zero, i.e. ⟨Ṡ[x]⟩ = ⟨Ṡaff
2 [x̂lump]⟩ = ⟨Ṡaff

2 [x̂mil]⟩ = 0. In Fig. S2b-d and f-h we observe that
the waiting-time distributions ψ++(k) and ψ−−(k) for milestones VII and V are unequal (compare orange and blue
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histograms). This renders the waiting-time contribution to the entropy production nonzero, i.e., (note that the index
j sums over the 3 milestones)

⟨Ṡwt
2 [x̂mil]⟩ =

1

⟨τ⟩
∑
j

∑
±
pj,±±D[ψj

±±||ψ
j
∓∓] ≥ 0. (S1)

Therefore, by incorporating Eq. (S1) in the total estimate for the entropy production, one would mistakenly conclude
that this system (which strictly obeys detailed balance) has dissipative fluxes, which is clearly not the case.

C. Inference via the Thermodynamic Uncertainty Relation

Fig. 3p-u in the main manuscript depicts the inference of the entropy production rate in a single-file system using
the discrete-time thermodynamic uncertainty relation (TUR). The discrete-time TUR reads [1]

⟨ṠTUR⟩ = ln
(
2⟨Ji⟩2/var(Ji) + 1

)
, (S2)

where ⟨Ji⟩ and var(Ji) are the average and variance, respectively, of the tracer-particle current in the lumped and
post-lumped milestoned trajectories. To determine the current in the lumped and post-lumped milestones trajectories
x̂i(t), we simply take the difference between two consecutive jumps, i.e.,

Ji(t) = x̂i(t)− x̂i(t− 1), (S3)

where the difference is taken modulo the number of sites (i = lump) or milestones (i = mil). The mean and variance
of the current are then determined via

⟨Ji⟩ =
1

T

T∑
t=1

Ji(t), var(Ji) =
1

T

T∑
t=1

(Ji − ⟨Ji⟩)2, (S4)

where T is the total number of steps in the trajectory. For the results shown in Fig. 3p-u in the main manuscript we
have T = 108.

FIG. S2. Waiting-time distribution for 3 asymmetrically placed milestones in the ring process with detailed-
balance. In all panels, we consider symmetric transition rates (inside the lumps and those connecting the different lumps)

whid,+ = wlump,+ = w†
lump,+ = whid,− = wlump,− = w†

lump,− = 1/2 for the ring process with Nlump = 8, Nhid = 4, and

milestones placed at lumps {II,V,VII}. Waiting-time distributions are obtained from a stochastic trajectory with 108 discrete
steps. (a-d) Waiting-time distributions for the toy model introduced in Fig. 1a in the main manuscript. (e-h) Waiting-time
distributions for the toy model introduced in Fig. S1a in the SM.
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FIG. S3. Stochastic trajectories and kinetic hysteresis in the ring model and single-file system. For the ring
model, we consider Nlump = 8 lumped macrostates, and Nhid = 4 hidden microstates per lump. For the single-file system, we
consider Nsites = 5 sites, and Nvac = 1 vacancies. Backward trajectories are indicated with the solid red line. (a, d) Microscopic
stochastic trajectories. (b, e) Lumped stochastic trajectories. (c, f) Milestoned stochastic trajectories. The gray shaded area
denotes the kinetic hysteresis where forward and backward trajectories differ.

D. Milestoning and kinetic hysteresis

A fundamental difference between lumping and milestoning is that for the latter, time reversal and coarse-graining
do not commute, which was coined ”kinetic hysteresis” [2]. To see this, let us consider a stochastic trajectory for the
ring model (see Fig. 1a in the main manuscript) and single-file system (see Fig. 3 in the main manuscript), as shown
in Fig. S3. In Fig. S3a,d we display the microscopic stochastic trajectories, for which the forward (black line) and
backward (red line) trajectories are identical under time inversion. For the lumped trajectories, shown in Fig. S3b,e
we also find that the backward trajectories traverse along identical paths under time inversion. However, it turns out
that the milestoned trajectories depicted in Fig. S3c,f display the following phenomenon [2]: If we coarse grain the
same trajectory backward in time, we discover a kinetic hysteresis. That is, the time-reversed coarse trajectory (red
line in Fig. S3c,f), where time is running from right to left, differs from the forward one (green line in Fig. S3c,f).
Hence, using the naive Markovian time-reversal operation θ

{θx̂i(τ)}0≤τ≤t
!
= {x̂i(t− τ)}0≤τ≤t ⊥ (S5)

in the presence of kinetic hysteresis is inconsistent and does not describe dissipation upon inserting into Eq. (1) in
the manuscript.

E. ”Statistical burden” of improving thermodynamic inference via milestoning

In the main manuscript, we pointed out that there is a practical limitation to milestoning a lumped trajectory,
which is due to the fact that for increasing milestone distances the estimation of the entropy production requires
more sampling. In Fig. S4 we show this explicitly for a uniformly biased single-file system with Nvac = 1 and
Nsites = 9. Upon comparing the entropy production estimates for the lumped trajectory (Fig. S4a,b) with the
milestoned trajectory (Fig. S4c,d), we find that convergence of the latter requires much longer trajectories. This
is because larger inter-milestone distances render transitions against the driving increasingly unlikely. We further
observe in Fig. S4b,d that for insufficient sampling, the estimated entropy production can exceed the true entropy
production (indicated with the black dashed line) for both lumping and milestoning. Hence, it is always important
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that sufficiently long (and/or many) trajectories are provided to estimate the entropy production.

FIG. S4. Improved thermodynamic inference via milestoning demands better trajectory statistics. In all panels
we consider a uniformly biased single-file system with Nvac = 1, Nsites = 9, w+ = 0.46, and 3 maximally separated milestones.
Colored lines are obtained from 20 individual trajectories, and the black solid line shows the average. (a-b) Quality factor for
the entropy production estimate in the lumped trajectory, based on the 1st (a) and 2nd (b) order semi-Markov approximation.
(c-d) Quality factor for the entropy production estimate in the post-lumped milestoned trajectory, based on the 1st (c) and 2nd

(d) order semi-Markov approximation.
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