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Heating and cooling are fundamentally 
asymmetric and evolve along distinct 
pathways

M. Ibáñez    1,2, C. Dieball    3, A. Lasanta    2,4,5, A. Godec    3   & R. A. Rica    1,2 

According to conventional wisdom, a system placed in an environment 
with a different temperature tends to relax to the temperature of the latter, 
mediated by the flows of heat or matter that are set solely by the temperature 
difference. It is becoming clear, however, that thermal relaxation is much 
more intricate when temperature changes push the system far from 
thermodynamic equilibrium. Here, by using an optically trapped colloidal 
particle, we show that microscale systems under such conditions heat up 
faster than they cool down. We find that between any pair of temperatures, 
heating is not only faster than cooling but the respective processes, in fact, 
evolve along fundamentally distinct pathways, which we explain with a new 
theoretical framework that we call thermal kinematics. Our results change 
the view of thermalization at the microscale and will have a strong impact on 
energy-conversion applications and thermal management of microscopic 
devices, particularly in the operation of Brownian heat engines.

The basic laws of thermodynamics dictate that any system in contact with 
an environment eventually relaxes to the temperature of its surround-
ings as a result of irreversible flows that drive the system to thermody-
namic equilibrium. If the difference between the initial temperature 
of the system and that of the surroundings is small, that is the system 
is initially ‘close to equilibrium’1, the relaxation is typically assumed to 
evolve quasi-statically through local equilibrium states, an assumption 
that is justifiable only a posteriori1,2. However, if the temperature contrast 
is such that it pushes the system far from equilibrium, the assumption 
breaks down and the relaxation path is no longer unique but depends 
strongly on the initial conditions. This gives rise to counter-intuitive 
phenomena, such as anomalous relaxation (also known as the Mpemba 
effect)3–9, in which a system reaches equilibrium faster upon a stronger 
temperature quench, and the so-called Kovacs memory effect10–14, in 
which there is a non-monotonic evolution towards equilibrium.

Intriguingly, thermal relaxation was recently predicted to depend 
also on the sign of the temperature change. Namely, considering two 
thermodynamically equidistant (TE) temperatures (one higher and the 

other lower than an intermediate temperature selected such that the 
initial free energy difference with the equilibrium state is the same), 
then heating from the colder temperature was predicted to be faster 
than cooling from the hotter one15,16. This prediction challenges our 
understanding of non-equilibrium thermodynamics as it compares 
reciprocal relaxation processes elusive to classical thermodynam-
ics. The initially hotter system must dissipate into the environment 
an excess of both energy and entropy, whereas in the colder system, 
energy and entropy must increase15,17. Moreover, this comparison of 
heating and cooling provokes an even more fundamental question 
relating to reciprocal relaxation processes between two fixed tem-
peratures. According to the ‘local equilibrium’ paradigm1, the system 
relaxes quasi-statically and, thus, traces the same path along recipro-
cal processes. We show, however, that this is not the case: heating and 
cooling are inherently asymmetric and evolve along distinct pathways.

In this work, we used colloidal particles in temperature-modulated 
optical traps to interrogate the relaxation kinetics upon temperature 
quenches (Fig. 1). We unveiled three fundamental asymmetries between 
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at temperature Tj and kB is the Boltzmann constant. In the following, 
equilibrium probability densities are denoted by P j

eq(x), where j = h, w 
or c refers to the bath temperature Tj. Observables with both a subscript 
i = h, w or c and a superscript f = h, w or c, for example, Afi , denote tran-
sient observables, where the subscript refers to the initial and the 
superscript to the target state. The state of the system at any time is 
fully specified by, P f

i (x, t), the probability density of the particle’s posi-
tion at time t.

We first focus on the forward protocol in which relaxation occurs  
at the ‘warm’ temperature Tw and i = h or c. The dynamics is ergodic and, 
therefore, Pwi (x, t) relaxes towards Pweq(x). We use ⟨…⟩wi  to denote averages  
over Pwi (x, t), and quantify the instantaneous displacement from the  
equilibrium distribution Pweq(x) with the generalized excess free energy 
given by15,23,24 𝒟𝒟w

i (t) = ⟨U(xt)⟩
w
i − TwSwi (t) − Fw = kBTwD̃[Pwi (x, t)‖P

w
eq(x)] 

for i = h or c, where Swi (t) = −kB⟨lnPwi (xt, t)⟩
w

i
 is the Gibbs entropy and 

D̃[P‖Q] = ∫P ln(P/Q)dx is the relative entropy between the probability 
distributions P and Q. This generalizes the canonical free energy 
F = U − TS to instantaneous non-equilibrium configurations with a 
probability density P(x,t). Temperatures Th and Tc are said to be TE from 
Tw when the initial excess free energies are equal, that is, 𝒟𝒟w

h (0) = 𝒟𝒟w
c (0) . 

The unexpected prediction was made in ref. 15 that 𝒟𝒟w
c (t) < 𝒟𝒟w

h (t) at 
all times t > 0. That is, the system heats up to the temperature of its 
surroundings faster than it cools down. Albeit an asymmetric relaxation 
is counter-intuitive, our experiments quantitatively corroborate this 
prediction to be true (Fig. 2).

Even more surprising is that the heating also turns out to be faster 
along the reversed, backward protocol. That is, we prepared the  
system in equilibrium at the warm temperature Tw and tracked the 
relaxations to Th or Tc. We again quantified the kinetics with the relative 
entropy 𝒟𝒟i

w(t) ≡ kBTwD̃[Piw(x, t)‖Pweq(x)] , such that 𝒟𝒟h
w(t)  and 𝒟𝒟c

w(t)  
evolve from zero and asymptotically converge to 𝒟𝒟h/c

w (∞) = 𝒟𝒟w
h/c(0).  

Although 𝒟𝒟i
w(t) sensibly quantifies the departure from Pweq(x), it is 

strictly speaking not an excess free energy, in contrast to 𝒟𝒟w
i (t) defined 

above, because Tw and Pweq(x) no longer refer to the target equilibrium, 
that is because 𝒟𝒟i

w(t) = ⟨U ⟩iw − TwSiw(t) − Fw ≠ ⟨U⟩iw − TiSiw(t) − Fw , 
where the latter would correspond to an excess free energy. We observe 
in Fig. 2 that 𝒟𝒟h

w(t) > 𝒟𝒟c
w(t) for all times t > 0, that is the system heats up 

to the new equilibrium at Th faster than it cools back to Tc.  

heating and cooling. We experimentally confirmed the prediction that 
heating is faster than cooling in three complementary situations: 
(1) that heating from a colder temperature towards an intermediate 
target temperature is faster than cooling from the corresponding TE 
hotter temperature15. Unexpectedly, we also show (2) that the reverse 
process, that is heating from the intermediate temperature to a hotter 
temperature, is faster than cooling to the corresponding TE colder 
temperature. Most surprisingly, we show (3) that between a fixed pair 
of temperatures, heating is faster than the reciprocal cooling. In all 
cases, we provide mathematical proofs that establish these asym-
metries as a general feature of systems with (at least locally) quadratic 
energy landscapes.

A key result is that the production of entropy within the system 
during heating is more efficient than heat dissipation during cooling. 
Asymmetries (2) and (3) further imply that the microscopic relaxation 
paths during heating and cooling are distinct. Moreover, whereas a 
system prepared at TE temperatures is by construction equally far from 
equilibrium in terms of free energy, we show that the colder system is, 
in fact, statistically farther from equilibrium and yet heating from the 
said colder temperature is faster. We have developed a new framework 
that we call ‘thermal kinematics’ to explain the asymmetry using the 
propagation in the space of probability distributions. This propagation 
is intrinsically faster during heating.

Heating and cooling under TE conditions
Thermal relaxation kinetics beyond the ‘local equilibrium’ regime  
can be quantified using stochastic thermodynamics18–20, which requires 
knowing the statistics of all slow, mesoscopic degrees of freedom.  
In the present work, in which we use a colloidal particle with a diameter 
of 1 μm trapped with a tightly focused laser (Fig. 1), the overdamped 
regime ensures that only the position has to be analysed20–22.  
Due to the symmetry of the tweezers set-up, it suffices to follow a  
single coordinate of the particle as a function of time, which we  
denote by xt. We consider two different initial conditions. By the nature 
of the set-up (Fig. 1), xt is initially in equilibrium in the optical  
potential U(x) at either the ‘hot’ Th or ‘cold’ Tc temperature,  
with a probability density P j

eq(x) = exp((Fj − U(x))/kBTj) , where 
Fj ≡ −kBTj ln∫

∞
−∞ exp(−U(x)/kBTj)dx  is the equilibrium free energy  
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Fig. 1 | Set-up for probing the heating–cooling asymmetry. a, Schematic 
representation of the experiment. A charged dielectric microparticle dispersed 
in water is confined in a parabolic trap generated by a tightly focused infrared 
laser. Its effective temperature is controlled by an electric field that shakes the 
particle, mimicking a thermal bath at a higher temperature than the water. An 
arbitrary signal generator feeds a noisy signal with a white Gaussian spectrum 
into a pair of gold microelectrodes immersed in the liquid, thus producing the 
required electric field. Therefore, the particle exhibits Brownian motion inside 
the trap. This motion has a Gaussian distribution whose variance is determined 
by the effective temperature. b, In the experiments, we tracked the evolution of 
the position distribution upon quenches of the effective thermal bath during 

heating (red arrows) or cooling (blue arrows). c, Schematic representation of the 
respective protocols. In the forward protocol, the system is initially prepared 
at equilibrium with the thermal bath at a temperature higher (Th) or lower (Tc) 
than the target (Tw) temperature. Th and Tc are chosen to be TE from Tw with 
Th > Tw > Tc. During the backward protocol, the system relaxes at the respective 
TE temperatures Th and Tc, starting from a common initial condition that is the 
equilibrium at Tw. In a third situation, only two temperatures are compared, and 
the evolution of the system upon heating and cooling between them is assessed. 
In b and c, solid and dashed arrows stand for the forward and backward process, 
respectively, and thick lines indicate faster evolution than thin ones.
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This observation is remarkable, as it shows that heating is inherently 
faster than cooling under TE conditions. Further experimental results 
demonstrating the asymmetry for both the forward and backward 
protocols under different experimental conditions are shown in 
Extended Data Fig. 3.

To confirm these observations theoretically, we assume that the 
particle’s dynamics evolve in a parabolic potential with stiffness κ, such 
that U(x) = κx2/2, according to the overdamped Langevin equation 
dxt = −(κ/γ)xt dt + dξit  with friction constant γ given by Stokes’ law 
γ = 6πrη, where η is the viscosity of the suspending medium and r is the 
particle’s radius. The thermal noise dξit, where i = h, w or c denotes the 
temperature of the reservoir, vanishes on average and obeys the fluc-
tuation–dissipation theorem ⟨dξit dξit′ ⟩ = 2(kBTi/γ)δ(t − t′)dtdt′. Under 
these assumptions, we determine the TE temperatures Th and Tc(Th), 
that is, we calculate Tc after we arbitrarily set Th (Supplementary equa-
tion (6)). So, 𝒟𝒟w/i

i/w(t) then reads

𝒟𝒟w/i
i/w(t) =

kBTw
2

[Λw/i
i/w(t) − 1 − lnΛ

w/i
i/w(t)], (1)

where Λw
i (t) = 1 + (Ti/Tw − 1) e−2(κ/γ)t  and Λiw(t) = Ti/Tw + ( 1 − Ti/

Tw ) e−2(κ/γ)t. We consider 𝒟𝒟w
i (t) during the forward protocol and 𝒟𝒟i

w(t) 
during the backward protocol. According to equation (1), by plotting 
𝒟𝒟w/i
i/w(t)/kBTw as a function of ρ = Λ

w/i
i/w(t), all data should collapse onto 

the master curve f(ρ) = (ρ − 1 − lnρ)/2 , which is indeed what we 
observe in Fig. 2. Having established the validity of the model, we prove 
(Supplementary Theorem 1) that our observations hold for all TE tem-
peratures and for any κ and γ, that is

𝒟𝒟w
c (t) < 𝒟𝒟w

h (t) and 𝒟𝒟h
w(t) > 𝒟𝒟c

w(t), for all 0 < t < ∞. (2)

Our observations in Fig. 2 and the inequalities (equation (2))  
establish rigorously that under TE conditions, heating is faster  
than cooling.

Notwithstanding, these results are still unsatisfactory for  
two reasons. First, 𝒟𝒟i

w(t), unlike 𝒟𝒟w
i (t), lacks a consistent thermody-

namic interpretation and, in particular, is not an excess free energy. 

Second, neither the relative entropy D̃[P‖Q] nor √D̃[P‖Q]  is a true 

metric; they are not symmetric, D̃[P‖Q] ≠ D̃[Q‖P] and do not satisfy 
triangle inequalities. The latter in particular implies that although  
a Pythagorean theorem holds (this theorem is discussed in  
ref. 25; see the Supplementary Information for an experimental  
validation), D̃[Pieq(x)‖Pweq(x)] ≥ D̃[Pieq(x)‖Piw(x, t)] + D̃[Piw(x, t)‖Pweq(x)] , 
w h e r e  w e  u s e d  Piw(x,0) = Pieq(x) .  T h u s ,  t h e  t r i a n g l e  

inequality does not hold. That is, in general √D̃[Pieq(x)‖Pweq(x)] ≰ 

√D̃[Pieq(x)‖Piw(x, t)] +√D̃[Piw(x, t)‖Pweq(x)]. As a result, 𝒟𝒟w/i
i/w(t) does not 

measure the ‘distance’ from equilibrium and ∂t𝒟𝒟w/i
i/w(t) is therefore not 

a ‘velocity’, which seems to preclude a kinematic description of relaxa-
tion. In the following sections, we show that combining stochastic 
thermodynamics with information geometry26 makes it possible to 
devise a formulation of thermal kinematics.

Towards thermal kinematics
Immense progress has been made in recent years in understand-
ing non-equilibrium systems. The discovery of thermodynamic 
uncertainty relations27–30 and ‘speed limits’25,26,31,32 revealed that the 
entropy production rate, which quantifies irreversible local flows in 
the system, universally bounds fluctuations and the rate of change 
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Fig. 2 | Experimental evolution of the generalized excess free energy during 
heating and cooling under TE conditions. Thick red arrows stand for heating, 
whereas thin blue arrows represent cooling. a,b, Time evolution of the generalized 
excess free energy for a characteristic time τ = γ/κ = 0.1844(3) ms, Tc/Tw = 0.11(1) 
and Th/Tw = 3.56(1) for the forward protocol (a) and the backward protocol (b). Red 
circles stand for heating and blue squares stand for cooling. Solid lines 
correspond to the theoretical predictions without fitting parameters. Insets 
represent the initial value of the relative entropy 𝒟𝒟w

i (0)/kBTw (y axis) as a function 

of the temperature (x axis) on the logarithmic scale. The arrows represent the 
evolution direction along the master curve f(ρ) = (ρ− 1− lnρ)/2. The data are 
estimated as the mean over ten independent measurements, whereas error bars 
are the s.e.m. (see Methods for further details). c,d, Generalized excess free 
energy 𝒟𝒟w/i

i/w(t)/kBTw as a function of Λw/i
i/w(t), along the master curve f(ρ), for 

several different TE conditions for the forward protocol (c) and the backward 
protocol (d). The corresponding time series (data and error bars) are included in 
Extended Data Fig. 3. Here, error bars have been omitted for clarity.
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in a non-equilibrium system. Closely related is the so-called Fisher 
information from information geometry, which quantifies how 
local flows change in time and can be used to define a statistical 
distance26,33–35.

In our context of thermal relaxation, an infinitesimal statistical 
line element may be defined as follows. As D̃[Pfi (x, t + dt)‖Pfi (x, t)]  
= I fi (t)dt

2 + 𝒪𝒪𝒪dt3)  (Supplementary Information), where we  
introduced the Fisher information I fi (t) ≡ ⟨(∂t lnP f

i (x, t))
2⟩ fi , we can 

define the line element as dl ≡ √D̃[P f
i (x, t + dt)‖P f

i (x, t)]  = √I fi (t)dt, 

and thus, v fi (t) ≡ √I fi (t) is the instantaneous statistical velocity of the 

system26 as it relaxes from Pieq(x) at temperature Tf towards Pfeq(x). The 

statistical length traced by Pfi (x, τ) until time t is ℒfi(t) = ∫t0 v
f
i (τ)dτ. The 

distance between the initial and the final states is, thus, given by ℒfi(∞), 
which does not depend on the direction. That is, ℒba(∞) = ℒab(∞), for 
two different temperatures Ta and Tb. To establish a kinematic basis for 
quantifying thermal relaxation kinetics, we define the degree of com-
pletion φw/i

i/w(t) ≡ ℒw/i
i/w(t)/ℒw

i (∞) , which increases monotonically 
between 0 and 1.

Assuming that the system evolves according to overdamped Lan-
gevin dynamics in a parabolic potential, we find (Supplementary Infor-
mation) that ℒw

i (∞) = | ln(Ti/Tw)|/√2 and

φw/i
i/w(t) = 1 − ln(1 + (Ti/w/Tw/i − 1) e−2(κ/γ)t)

ln(Ti/w/Tw/i)
. (3)

Moreover, we prove (Supplementary Theorem 2) for any pair of  
TE temperatures Th and Tc that ℒw

c (∞) > ℒw
h (∞) and yet

φw
c (t) > φw

h
(t) and φh

w(t) > φc
w(t) for all 0 < t < ∞. (4)

That is, the colder system is statistically farther from equilibrium than 
the hotter system. Nevertheless, heating is faster than cooling. On the 
one hand, equation (4) confirms the asymmetry (equation (2)) from a 
kinematic point of view. On the other hand, it reveals something more 
striking; during heating in the forward protocol, the system traces a 
longer path in the space of probability distributions but it does so faster. 
The reason lies in the propagation speed vi/w

w/i(t), which at short times 
is intrinsically larger during heating than during cooling. This speed-up 
is because entropy production in the system during heating is more 
efficient than the heat flow from the system to the environment during 
cooling (see also ref. 15). These predictions have been fully confirmed 
by experiments (Fig. 3 and Extended Data Figs. 4–6). The results show 
that an initial overshoot of vwc (t) or vhw(t) ensures that under TE condi-
tions, heating is, for both protocols, at all times faster than cooling 
according to the inequalities (equation (4)). As both processes relax 
to the same equilibrium, vwc (t) and vw

h
(t) must eventually cross. Analo-

gously, the crossing of the corresponding velocities is observed in the 
background process.

Between pairs of temperatures, heating is faster 
than cooling
We now take our thermal kinematics approach one step further and con-
sider two arbitrary fixed temperatures T1 < T2 and observe heating, that 
is relaxation to T2 in a temperature quench from an equilibrium prepared 
at T1, and the reverse cooling, that is relaxation to T1 in a temperature 
quench from the equilibrium at T2. By construction, the distances between 
the initial and final states for the reciprocal processes are the same, 
ℒ1
2(∞) = ℒ2

1 (∞) . Nevertheless, according to our model, in particular 
equation (3), we have for any T1 < T2 (Supplementary Theorem 3) that

φ2
1
(t) > φ1

2
(t) for all 0 < t < ∞. (5)
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Fig. 3 | Thermal kinematics of heating and cooling processes under TE 
conditions. All data correspond to the series shown in Fig. 2. As in previous 
figures, red arrows stand for heating whereas blue ones represent cooling, solid 
and dashed arrows refer to the forward and backward protocols, respectively, 
and thicker lines indicate a faster evolution than thin ones. a, Initial value of the 
relative entropy 𝒟𝒟w

i (0)/kBTw as a function of the temperature. b, Total traversed 
statistical distance ℒw

i (∞) = ℒi
w(∞) = ℒ(∞) as a function of the temperature. 

c,e, Temporal evolution of the instantaneous statistical velocity vfi(t) for the 
forward protocol (c) and the backward protocol (e). d,f, Temporal evolution of 
the degree of completion φfi(t) for the forward protocol (d) and the backward 
protocol (f). Red circles stand for heating, whereas blue squares correspond to 
cooling. Solid lines are theoretical predictions without fitting parameters. The 
data are estimated as the mean over ten independent measurements, whereas 
error bars are the s.e.m. (see Methods for further details).
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That is, between any pair of temperatures, heating is faster than cooling, 
which is a much stronger statement. Notice that it was not possible to 
make such a statement based on the generalized excess free energy, 
since in this case, the description of the backward process lacked phys-
ical consistency. This result highlights that heating and cooling are 
inherently asymmetric processes, which is neither limited to the TE 
setting nor to strong quenches. The asymmetry (equation (5)) has been 
fully corroborated by experiments (Fig. 4 and Extended Data Figs. 4–6). 
As before, the asymmetry emerges due to an initial overshoot in v2

1
(t). 

However, in this case, the difference in the velocities implies that the 
pathway taken during heating is fundamentally different from the path-
way followed during the reciprocal cooling process. Note that this goes 
beyond ‘hysteresis’-type asymmetries that occur during the heating 
and cooling of macroscopic systems through phase or glass transitions.

Near equilibrium, heating and cooling become 
symmetric
Finally, we show that for quenches near equilibrium, heating  
and cooling are indeed almost symmetric, in agreement  

with linear non-equilibrium thermodynamics1. First, for  
Th = (1 + ε)Tw with 0 < ε ≪ 1, we find that Tc(Th) = (1 − ε + 𝒪𝒪𝒪ε2))Tw   
(Supplementary Information). That is, near equilibrium, TE  
temperatures are approximately equidistant from the ambient  
temperature Tw. Second, ∂t𝒟𝒟w

i |t=0 = [2 − Ti/Tw − Tw/Ti]  kBTwκ/γ   
(Supplementary Information), from which, for small ε, we obtain 
(∂t𝒟𝒟w

c |t=0 − ∂t𝒟𝒟w
h |t=0)γ/κkBTw = 𝒪𝒪𝒪ε3), such that heating and cooling 

in terms of 𝒟𝒟w
i  become symmetric. Third, we find in this limit (Sup-

plementary Corollary 4) that φiw(t) = φw
i (t) = 1 − e−2(κ/γ)t + 𝒪𝒪𝒪ε) and

φc
w(t) = φh

w(t) + 𝒪𝒪𝒪ε) and φw
h
(t) = φw

c (t) + 𝒪𝒪𝒪ε). (6)

Thus, for near-equilibrium quenches, that is for Th,c − Tw ≪ Tw, heating 
and cooling in terms of both 𝒟𝒟 and φ are approximately symmetric, 
and the asymmetry is a genuinely far-from-equilibrium phenomenon, 
as claimed. Actually, even for values of (Th,c − Tw)/Tw of the order of 1, 
heating and cooling are virtually symmetric within the experimental 
error (Extended Data Fig. 3, lower row, and Supplementary Informa-
tion).

Discussion
Detailed experiments on colloidal particles corroborated by analytical 
theory have revealed a fundamental asymmetry in thermal relaxation 
upon a rapid change of temperature. For TE temperature quenches as 
well as between two fixed temperatures, heating is always faster than 
cooling. Moreover, the microscopic pathways followed by a system 
during heating and cooling are fundamentally different. Therefore, 
except very near to thermodynamic equilibrium, thermal relaxation, 
in general, does not evolve quasi-statically through quasi-equilibria 
even for systems with a single energy minimum. We, therefore, wit-
ness a breakdown of the ‘near equilibrium’ paradigm of classical 
non-equilibrium thermodynamics1.

Namely, when the system is brought rapidly out of equilibrium, 
such as upon a temperature quench, the probability density of the 
system cannot follow the temperature change quasi-statically and a 
lag develops between the instantaneous Pwi (x, t) and the new equilib-
rium Pweq(x) (ref. 24). This lag, which here corresponds to D̃ [Pwi (x, t)‖
Pweq(x)], is nominally smaller during heating than during cooling. This 
is so because for short times, heating essentially corresponds to a free 
expansion15, which is materialized as an overshoot of the statistical 
velocity and is characterized by a smaller amount of dissipated work. 
The latter, in turn, bounds from above the maximal lag that can 
develop24. The initial free expansion during heating also explains the 
faster departure from the initial equilibrium within the backward 
protocol, as well as for heating and cooling between any two fixed 
temperatures.

During heating, this initial free expansion leads to a rapid increase 
in the system entropy and, therefore, to a decrease in the generalized 
excess free energy, 𝒟𝒟(t) = ⟨U⟩(t) − TwS(t) − Fw. Cooling is dominated 
by the decrease in 〈U〉, which is, however, less efficient than the decay 
of the system entropy during cooling. In turn, this causes the asym-
metry for TE quenches15. Another intuitive argument for faster heating 
follows from spectral theory. Namely, the spectral representation of 
localized initial distributions nominally requires more eigenfunctions, 
in turn implying, since the initial distribution is normalized, that there 
is a larger weight on the higher, faster-decaying modes36,37. Since the 
colder system is more localized, one would expect a faster relaxation 
during heating. The faster heating between any two temperatures, 
established here, may further be rationalized as follows. Microscopi-
cally, diffusion is driven by collisions between molecules in the medium. 
Since heating evolves at a higher temperature of the medium, collisions 
occur at a higher rate, in turn facilitating faster relaxation38.

Our work further underscores that there is a fundamental differ-
ence between equidistant temperatures, TE temperatures and kinemat-
ically equidistant temperatures. The existence of a zero temperature 
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and the e−1/T-dependence of Boltzmann–Gibbs equilibrium statistics 
readily imply that raising and lowering the temperature by the same 
amount pushes the system far from equilibrium in different ways. 
However, even when the temperatures are chosen to be TE, the colder 
system is kinematically farther from equilibrium than the hotter one, 
yet it reaches equilibrium faster.

Thermal relaxation, therefore, seems to be much more complex 
than originally thought, and our results only scratch at the surface. 
In systems with several energy minima3,8,15,16, time-dependent poten-
tials21,22,39–42 and driven relaxation processes43,44 and in the presence of 
time-irreversible, detailed-balance-violating dynamics30,45–47, relaxa-
tion remains poorly understood, which calls for a systematic analysis 
through the lens of thermal kinematics.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
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Methods
Experimental set-up
Silica microspheres of diameter d = 1 μm were dispersed in deionized 
and filtered water at a concentration of a few spheres per millilitre. 
The dispersion was injected into a custom-made electrophoretic fluid 
chamber in which two parallel, gold-coated wires acted as a pair of par-
allel electrodes. A white, Gaussian, noise signal, which was composed 
of a sample of 500,000 independent Gaussian values of zero mean 
and unit variance, was generated by an arbitrary waveform generator 
(RSPro, RSDG2082X with 80 MHz bandwidth), thus producing a voltage 
output signal V(t) that was fed into the pair of electrodes. The repetition 
frequency of the cited signal was chosen to minimize correlations, and 
the time of noise persistence was just 0.04 ms, which is much shorter 
than any characteristic time of the studied processes (these covered a 
range between 0.1 and 0.5 ms).

Our experiment used an optical tweezers set-up, which consisted 
of a commercial device from JPK-Bruker (NanoTracker 2). The optical 
potential was generated by a near-infrared laser with a wavelength of 
1,064 nm, which was used for both trapping and detection. The for-
ward scattered light was analysed using a quadrant position detector 
operating at a rate of 50 kHz. The trap stiffness depended linearly on 
the laser power and could be adjusted by controlling the latter with the 
software provided by the manufacturer.

The noisy signal was modulated by a square signal with a period of 
10 ms (Extended Data Fig. 1). This period was chosen as it was a multiple 
of the sampling time of 0.02 ms to enhance the accuracy of data pro-
cessing. The heights of the square signal were set to ensure equidistant 
quenches between the heating and cooling processes. As only the ratio 
between the initial and final temperatures was important, it was not 
necessary to set the high level of the heating process equal to the low 
level of the cooling process as long as the initial values of the relative 
entropy coincided for both heating and cooling.

In Extended Data Fig. 1, we show an example of the evolution in 
time of the variance of the modulated noisy signal for both heating 
and cooling processes. Note the ‘ramp’ with a finite slope and length 
tr = 0.10 ms linking the initial and final values, instead of an instantane-
ous change. However, this ramp did not prevent the studied phenom-
ena from occurring, as our results seem to corroborate the theory 
even though the ramp time was, in some situations, of the order of the 
characteristic time of the considered relaxation processes.

Effective heating by an external random force
The applied noisy electric field dξextt  mimics an additional, independent 
source of thermal fluctuations in the particle dynamics, due to the 
electric charges all over the particle surface48. When the field is applied, 
the position xt along the considered direction obeys the Langevin 
equation γdxt = −κxt dt + dξtht + dξextt , where dξtht  follows ⟨dξtht dξtht′ ⟩ =  
2γkBTδ(t − t′)dtdt′. If the spectrum of the external noise is also white 
and of amplitude σ2, then the particle is subjected to an effective white 
noise dξefft  of zero mean and autocorrelation ⟨dξefft dξefft′ ⟩ =  
2γkBTeff δ(t − t′)dtdt′, where

Teff = T +
σ2

2kBγ
. (7)

Hence, the position of the particle along the selected axis fluctuates 
corresponding to an effective temperature Teff, which is always higher 
than the temperature of the thermal bath. These fluctuations did not 
affect the dissipation at all. This effective temperature can be estimated 
from the equipartition theorem, κ⟨x2t ⟩ = kBTeff, which must continue to 
hold.

In our case, σ2 = q2V2
0
/d2, where V2

0
 is the variance of the noisy volt-

age output. The previous expression shows that the effective tempera-
ture increases linearly with V2

0
, whose slope can be estimated from 

several realizations of the particle position for different amplitudes. 

Extended Data Fig. 2 shows two examples of power spectral densities 
(PSDs) for the position of the sphere with and without the electric field, 
as well as an example of a calibration curve of Teff versus V2

0
. The effective 

temperatures were estimated with the equipartition theorem.

Data analysis
We collected M = 24,000 trajectories, with each trajectory comprising 
values for the position of the particle at N = 250 different time instants, 
xxx(k) = (x(k)

1
,… , x(k)N ), k = 1, …, M. From the M trajectories, the N histograms 

(one for each time instant) were calculated and properly normalized, 
{p(x, tj)}

N
j=1. A total of Nb = 80 equidistantly distributed bins separated 

by a fixed length Δx = (maxjkxkj −minjkxkj )/Nb were used.
The values of the relative entropy calculated throughout our work 

were computed directly from the definition:

D̃[P‖Q] = ∫ dx P log PQ . (8)

The previous integral was discretized as usual from the histograms:

D̃[P‖Q] ≈ Δx
Nb

∑
k=1
P(xk) log

P(xk)
Q(xk)

. (9)

The convention 0 log0 = 0 was employed. Finally, to smooth out the 
results, the presented series were estimated from an average of ten 
different temporal series. Subsequent uncertainties were estimated 
as the standard error of the mean (s.e.m.).

The number of counts n in each bin of the histogram was assumed 
to follow a Poisson distribution since the spatial interval Δx associated 
with each bin was small and the total number N of measured values of 
the position was high enough. Consequently, the uncertainty associ-
ated with each of the heights could be fairly well approximated by √n, 
as it corresponds to the standard deviation of the cited probability 
distribution.

We estimated the Fisher information from its definition, which 
directly involves the relative entropy: D̃[P(x, t + Δt)‖P(x, t)] =  
I(t)Δt2 + 𝒪𝒪𝒪Δt3). An appropriate choice of Δt had to be made to reduce 
the numerical noise and to smooth the resulting curves. In our case, 
we chose Δt = 0.04 ms. We further took an average of ten different 
temporal series. Subsequent uncertainties were estimated as the s.e.m.

Finally, to calculate the statistical length ℒ(t), we used a first-order 
numerical algorithm to calculate the corresponding integrals. If t = nΔt, 
then n ≥ 0 is a multiple of the sampling time, and v(t) ≡ √I(t)  is the 
instantaneous velocity introduced in the main part, so that

ℒ(t) ≈ Δt
n−1
∑
i=0
v(iΔt). (10)

Transient evolution during a ramp thermal protocol
As we showed earlier, the thermal quench that our particle underwent 
was not completely instantaneous. The noise variance (as shown in 
Extended Data Fig. 1) exhibited a ramp connecting its initial and final 
values. Although the time interval for this ramp was expected to be 
small compared to the relaxation times τ = γ/κ explored in this work, 
this may not have been the case for higher values of this parameter.

We denote the time duration for the ramp as tr. The parameter 
δ ≡ tr/τ determines the strength of the driving protocol into the thermal 
relaxation processes being studied. In this section, we will show that 
from the time instant in which the bath reaches its target temperature, 
the evolution law for ⟨x2t ⟩ coincides in shape with that corresponding 
to an instantaneous quench.

Thus, let us consider a non-instantaneous quench protocol deter-
mined by the bath temperature profile:

T(t) = {
T0 + λt, 0 ≤ t ≤ tr,

Tf, t ≥ tr,
(11)
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where λ ≡ (Tf − T0)/tr and T0,f are the initial and final temperatures, 
respectively. If the initial distribution follows a Gaussian profile

P(x,0) =
√

κ
2πkBT0

e−κx
2/2kBT0 , (12)

the solution of the Fokker–Planck equation

∂tP =
κ
γ∂x(xP) +

kBT(t)
γ ∂2

xP (13)

also follows a Gaussian profile of zero mean and variance:

⟨x2t ⟩ =
kBT0
κ e−2(κ/γ)t + 2∫

t

0

ds kBT(t)γ e−2(κ/γ)(t−s) . (14)

The preceding integral takes a different expression if the con-
sidered time instant t is greater or less than tr. On the one hand, when 
0 ≤ t ≤ tr, it takes the form:

⟨x2t ⟩ =
kBTf
2δκ [(1 − ̃T) e−2(κ/γ)t + ̃T − 1 + 2δ ̃T + 2

κ
γ (1 −

̃T)t] , (15)

where we define ̃T ≡ T0/Tf. On the other hand, when t ≥ tr:

⟨x2t ⟩ =
kBTf
κ [1 + e2δ −1

2δ
( ̃T − 1) e−2(κ/γ)t] . (16)

The previous expression, thus, takes the same form as the one corre-
sponding to an instantaneous quench, but with a parameter that acts 
as a relative temperature:

̃Teff ≡
e2δ −1
2δ

( ̃T − 1) + 1. (17)

All the theoretical curves plotted over the experimental data shown 
throughout this article assume the previous expression for ⟨x2t ⟩.

To accurately observe the phenomena addressed in our study, 
we adopted the closest situation to ideality, which meant maintaining 
the value of δ at or below one, as this aligns with the original theo-
retical model and ensures that the effects of the temperature ramp 
do not overpower the observations. However, our findings indicate 
that the phenomenology studied is relatively robust to the presence 
of a non-zero response time in the generator. Moreover, our theoreti-
cal predictions are undoubtedly substantiated by our experimental 
results, even when δ exceeds unity (see Extended Data Figs. 3–6). Future 
examinations of all the phenomenology derived from the protocol 
analysed in this section will be necessary to fully understand the limits 
of the validity of our predictions.

Data availability
The experimental data presented in this work will be made publicly avail-
able in Zenodo (https://zenodo.org/records/10037877) after publication.
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Extended Data Fig. 1 | White, Gaussian noise modulated by a square signal. Left panel: modulated voltage output signal V(t) (solid line, left axis) and square signal 
Vsq(t) (dashed line, right axis) as a function of time. Right panel: evolution of the modulated signal variance < V(t)2 > as a function of time for heating (upper panel) and 
cooling (lower panel).
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Extended Data Fig. 2 | Effective heating by means of a noisy electric field. Left 
panel: PSD of the position of a trapped microparticle without (1) and with (2) the 
noisy electric eld. Solid, black lines correspond to the fitting curves. The PSD of 
the output voltage signal is also included (3). Right panel: effective temperatures 

as a function of the squared voltage amplitude. The dots represent the mean of 
a set of ten independent measurements of the temperature, while the error bars 
represent the standard deviation of the previous set. The solid line corresponds 
to the linear fitting, according to Eq. (7).
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Extended Data Fig. 3 | Aditional results of the temporal evolution of 
the generalized excess free energy as a function of time during heating 
and cooling at thermodynamically equidistant conditions. Left column 
corresponds to the forward protocol while the right column corresponds to its 
backward counterpart. Red circles stand for heating and blue squares stand for 
cooling. Solid lines are theoretical predictions without fitting parameters. The 

data are estimated as the mean over 10 independent measurements, while error 
bars are the s.e.m. (see Methods for further details). a., d. : time evolution for 
a characteristic time τ = 0.099(1) ms, Tc/Tw = 0.09(1), Th/Tw = 3.78(1). b., e. : time 
evolution for a characteristic time τ = 0.539(2) ms, Tc/Tw = 0.18(1), Th/Tw = 2.95(1). 
c., f. : time evolution for a characteristic time τ = 0.099(1) ms, Tc/Tw = 0.32(1),  
Th/Tw = 2.28(1).
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Extended Data Fig. 4 | Additional results of the temporal evolution of the 
statistical velocity and the degree of completion. Data correspond to the 
results in the first row in Extended Data Fig. 3. a., b. Temporal evolution along 
the thermodynamically equidistant situation, forward protocol. c., d. Temporal 

evolution along the thermodynamically equidistant situation, backward 
protocol. e., f. Temporal evolution during heating and cooling between 
temperatures Tc and Tw.
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Extended Data Fig. 5 | Additional results of the temporal evolution of the 
statistical velocity and the degree of completion. Data correspond to the 
results in the second row in Extended Data Fig. 3. a., b. Temporal evolution 
along the thermodynamically equidistant situation, forward protocol. c., 

d. Temporal evolution along the thermodynamically equidistant situation, 
backward protocol. e., f. Temporal evolution during heating and cooling between 
temperatures Tc and Tw.
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Extended Data Fig. 6 | Additional results of the temporal evolution of 
the statistical velocity and the degree of completion. Data correspond to 
the results in the third row in Extended Data Fig. 3. a., b. Temporal evolution 
along the thermodynamically equidistant situation, forward protocol. c., 

d. Temporal evolution along the thermodynamically equidistant situation, 
backward protocol. e., f. Temporal evolution during heating and cooling between 
temperatures Tc and Tw.
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A Theoretical framework

In this section, we provide all the mathematical proofs referred to in the main text, as well
as the general theoretical concepts to fully understand all the phenomena we present in our
work.

A.1 Fokker-Planck equation for an optically-trapped Brownian parti-
cle

Acolloidal particle trapped by ahighly collimated laser beam is subjected to a three-dimensional
quadratic potential, which in the 𝑥 direction reads𝑈(𝑥) = 1

2
𝜅(𝑥 − 𝑥tr)2. Here, 𝑥tr denotes the

trap center, in which we set the origin of coordinates in the following. The Brownian charac-
ter of the particle under study makes it necessary to model the multiple collisions of the fluid
molecules with it from a stochastic perspective. In the overdamped regime, the differential
equation that rules its dynamics is of Langevin type,

𝑑𝑥𝑡 = −(𝜅∕𝛾)𝑥𝑡𝑑𝑡 + 𝑑𝜉𝑡, (S1)

with friction constant 𝛾 given by the Stokes’ law 𝛾 = 6𝜋𝑟𝜂, where 𝜂 is the viscosity ofwater and
𝑟 the particle radius. The thermal noise 𝑑𝜉𝑒𝑡 vanishes on average and obeys the Fluctuation-
Dissipation theorem ⟨𝑑𝜉𝑒𝑡𝑑𝜉

𝑒
𝑡′⟩ = 2(𝑘B𝑇∕𝛾)𝛿(𝑡 − 𝑡′)𝑑𝑡𝑑𝑡′.

A stochastic process solution of a Langevin equation can alternatively be studied from its
associated probability density function 𝑃(𝑥, 𝑡) for each time instant 𝑡 ≥ 0 [1]. In this case, it
verifies the Fokker-Planck equation, which for a Langevin dynamic such as the one described
by Eq. (S1) takes the form

𝜕𝑃(𝑥, 𝑡)
𝜕𝑡

= 𝜕
𝜕𝑥

(𝜅𝛾𝑥𝑃(𝑥, 𝑡)) +
𝑘𝐵𝑇
𝛾

𝜕2𝑃(𝑥, 𝑡)
𝜕𝑥2

. (S2)

𝑃(𝑥, 𝑡) relaxes towards an equilibrium distribution of Boltzmann type, 𝑃eq(𝑥) = e(𝐹𝑇−𝑈(𝑥))∕𝑘𝐵𝑇,
where 𝐹𝑇 ≡ −𝑘𝐵𝑇 ln ∫

∞
−∞ 𝑒

−𝑈(𝑥)∕𝑘𝐵𝑇𝑑𝑥 is the equilibrium free energy at temperature 𝑇. In our
case, the parabolic form of the potential gives 𝑃eq(𝑥) the Gaussian character.

The probability density is specified (for a given initial condition) by a single parameter,
time 𝑡. In our case, the initial distribution is Gaussian and is associated with a different envi-
ronmental temperature 𝑇0, 𝑃(𝑥, 0) = e

(
𝐹𝑇0−

1
2
𝜅𝑥2

)
∕𝑘𝐵𝑇0 . The parameters that characterise it, the

average position ⟨𝑥𝑡⟩ and variance (∆𝑥𝑡)2 ≡ ⟨(𝑥𝑡 − ⟨𝑥𝑡⟩)2⟩, then depend on time and satisfy the
pair of differential equations

⎧

⎨
⎩

𝑑

𝑑𝑡
⟨𝑥𝑡⟩ = −𝜅𝛾 ⟨𝑥𝑡⟩ ,

𝑑

𝑑𝑡
(∆𝑥𝑡)2 = −2𝜅𝛾(∆𝑥𝑡)

2 +
2𝑘𝐵𝑇
𝛾 ,

(S3)

with the corresponding initial conditions ⟨𝑥0⟩ = 0 and (∆𝑥0)2 = ⟨𝑥20⟩ = 𝑘𝐵𝑇0∕𝜅. The average
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position therefore remains constantly zero, and its variance results in

(∆𝑥𝑡)2 = ⟨𝑥2𝑡 ⟩ = ⟨𝑥20⟩ e
−2(𝜅∕𝛾)𝑡 + ∫

𝑡

0

2𝑘𝐵𝑇
𝛾 e−2(𝜅∕𝛾)(𝑡−𝑠) 𝑑𝑠 =

𝑘𝐵𝑇
𝜅

[
1 + (𝑇0∕𝑇 − 1)e−2(𝜅∕𝛾)𝑡

]
. (S4)
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Figure S1: Histograms of the particle position for hot (green) and cold (blue) temperatures.

We include two videos that show the time evolution of the experimental position his-
tograms during a heating (heating.avi) and a cooling (cooling.avi) process.

As the statistics is at all times a zero-mean Gaussian and its variance may be fully spec-
ified by some instantaneous temperature 𝑇̃ ≡ 𝑇∕𝑇𝑤 we may, without loss of generality, con-
sider a “quasi temperature” 𝜃 as parameterizing the distribution in all physical and abstract,
information-geometric situations, i.e. 𝑃(𝑥, 𝜃). In the physical evolution of the systemwe have
𝜃 ≡ 𝑡 which we will write simply as 𝑃(𝑥, 𝑡). In the general and all other parametrizations, we
will use 𝑃(𝑥, 𝜃).

The relative entropy between two normal, univariate probability distributions 𝑃 and 𝑄 of
zero mean and variances (∆𝑥)2𝑃 and (∆𝑥)

2
𝑄 takes the form

𝐷̃[𝑃||𝑄] = ∫ 𝑃(𝑥) ln
𝑃(𝑥)
𝑄(𝑥)

= 1
2 (

(∆𝑥)2𝑃
(∆𝑥)2𝑄

− 1 − ln
(∆𝑥)2𝑃
(∆𝑥)2𝑄

) =
1
2 (Λ − 1 − lnΛ) . (S5)

When considering 𝐷̃[𝑃(𝑥, 𝑡)||𝑃eq(𝑥)] then Λ = Λ(𝑡) = 1 + (𝑇0∕𝑇 − 1)e−2(𝜅∕𝛾)𝑡, while for
𝐷̃[𝑃(𝑥, 𝑡)||𝑃(𝑥, 0)] we have Λ(𝑡) = 𝑇∕𝑇0 + (1 − 𝑇∕𝑇0)e−2(𝜅∕𝛾)𝑡. The excess of generalized
free energy is thus defined as𝒟𝑤

𝑖 (𝑡) ≡ 𝑘𝐵𝑇𝑤𝐷̃[𝑃(𝑥, 𝑡)||𝑃eq(𝑥)] in the forward protocol, where
𝑇𝑖 = 𝑇𝑐,ℎ denotes the initial temperatures and 𝑇𝑤 the target one.

Conversely, 𝒟𝑖
𝑤(𝑡) ≡ 𝑘𝐵𝑇𝑤𝐷̃[𝑃(𝑥, 𝑡)||𝑃(𝑥, 0)] in the backward protocol, which does not

correspond to a free energy since 𝑇𝑤 and 𝑃(𝑥, 0) no longer refer to the target equilibrium.

A.2 Thermodynamically equidistant temperature quenches

A pair of temperatures 𝑇ℎ and 𝑇𝑐 are said to be thermodynamically equidistant from 𝑇𝑤 when
the the initial excess free energies are equal, i.e. 𝒟𝑤

ℎ (0) = 𝒟𝑤
𝑐 (0). Under the assumptions

2



on the equations of motion specified in the manuscript, the thermodynamically equidistant
temperatures are given by 𝑇ℎ and 𝑇𝑐(𝑇ℎ) [2]

𝑇𝑐(𝑇ℎ) = −𝑇𝑤𝑊0 (−
𝑇ℎ
𝑇𝑤

e−𝑇ℎ∕𝑇𝑤) , (S6)

where𝑊0(𝑧) is the principal branch of the Lambert-𝑊 function [3].

A.3 Relaxation asymmetry in the backward protocol

The thermal relaxation asymmetry in the forward protocol is proven in [2]. We now prove the
thermal asymmetry in the backward protocol.

Theorem 1: For any pair TE temperatures 𝑇𝑐 and 𝑇ℎ relative to 𝑇𝑤 and for all times 𝑡 > 0
we have

∆𝐷(𝑡) ≡ 1
𝑘𝐵𝑇𝑤

(𝒟ℎ
𝑤(𝑡) − 𝒟𝑐

𝑤(𝑡)) > 0. (S7)

That is, during the backward protocol heating is faster than cooling.

Proof: We define

𝜙 ≡ e−2(𝜅∕𝛾)𝑡 ∈ (0, 1], (S8)

such that Λ(𝑡) = Λ𝑐,ℎ
𝑤 (𝑡) takes the expression previously introduced,

Λ𝑐,ℎ
𝑤 (𝑡) ≡ 𝑇̃𝑐,ℎ(1 − 𝜙) + 𝜙, (S9)

where here and in the following we denote 𝑇̃𝑖 ≡ 𝑇𝑖∕𝑇𝑤. We now show Eq. (S7), i.e. that for all
𝜙 ∈ (0, 1] we have

2∆𝐷(𝑡) = Λℎ
𝑤 − Λ𝑐

𝑤 + ln (
Λ𝑐
𝑤

Λℎ
𝑤
) 0. (S10)

First we rewrite this as

2∆𝐷(𝜙) = (𝑇̃ℎ − 𝑇̃𝑐)(1 − 𝜙) + ln (
Λ𝑐
𝑤

Λℎ
𝑤
) = (𝑇̃ℎ − 𝑇̃𝑐)(1 − 𝜙) + ln (

𝑇̃𝑐
𝑇̃ℎ
) + ln (

Λ𝑐
𝑤∕𝑇̃𝑐

Λℎ
𝑤∕𝑇̃ℎ

) . (S11)

Note that for equidistant temperature quenches ln(𝑇̃𝑐∕𝑇̃ℎ) = 𝑇̃𝑐−𝑇̃ℎ which upon introducing
further notation gives

𝐶 ≡
1 − 𝑇̃𝑐
𝑇̃𝑐

> 0, 𝐻 ≡
𝑇̃ℎ − 1
𝑇̃ℎ

> 0, 𝐻 < 1,

2∆𝐷(𝜙) = ln (
Λ𝑐
𝑤∕𝑇̃𝑐

Λℎ
𝑤∕𝑇̃ℎ

) − 𝜙(𝑇̃ℎ − 𝑇̃𝑐) = ln (
1 + 𝐶𝜙
1 − 𝐻𝜙

) − 𝜙 ( 1
1 − 𝐻 − 1

1 + 𝐶
) . (S12)
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Now let us take the derivative:

d
d𝜙

2∆𝐷(𝜙) =
( 𝐶

1−𝐻𝜙
+ 𝐻(𝐶𝜙+1)

(1−𝐻𝜙)2
) (1 − 𝐻𝜙)

𝐶𝜙 + 1
+ 1
𝐶 + 1

− 1
1 − 𝐻 =

(𝐶 + 𝐻) (𝜙 − 1) (𝐶𝐻𝜙 + 𝐶𝐻 − 𝐶 +𝐻)
(𝐶 + 1) (𝐻 − 1) (𝐶𝜙 + 1) (𝐻𝜙 − 1)

. (S13)

Note that for 𝜙 ∈ (0, 1) this expression will be 0 if and only if 𝐶𝐻𝜙 + 𝐶𝐻 − 𝐶 +𝐻 = 0. Since
this is a linear equation we conclude that there is at most one 𝜙 ∈ (0, 1) such that d

d𝜙
∆𝐷(𝜙) = 0.

This means that there is atmost one local extremum of ∆𝐷(𝜙) for 𝜙 ∈ (0, 1).

Note also that 𝑇̃ℎ𝑇̃𝑐 < 1, which follows from the fact that 𝑇̃𝑐 = −𝑊0(−𝑇̃ℎe−𝑇̃ℎ) with
𝑊0(𝑧) ∈ [−1, 0] defined for 𝑧 ∈ (−e−1, 0) is the principal branch of the Lambert-W func-
tion [2], and from Lemma 3.4 in [4].

We thus obtain

2∆𝐷(𝜙 → 0)
(S12)
= ln(1) − 0(𝑇̃ℎ − 𝑇̃𝑐) = 0, 2∆𝐷(𝜙 → 1)

(S10)
= 1 − 1 + ln(1) = 0

d
d𝜙

2∆𝐷(𝜙 → 0)
(S13)
= 𝐻 + 𝐶 + 1

1 + 𝐶
− 1
1 − 𝐻 =

𝑇̃ℎ − 1
𝑇̃ℎ

+
1 − 𝑇̃𝑐
𝑇̃𝑐

+ 𝑇̃𝑐 − 𝑇̃ℎ =

(𝑇̃ℎ − 𝑇̃𝑐)(1 − 𝑇̃𝑐𝑇̃ℎ)
𝑇̃ℎ𝑇̃𝑐

> 0. (S14)

This implies that ∆𝐷(𝜙) for 𝜙 ∈ [0, 1] starts at ∆𝐷(0) = 0, initially increases, and ends at
∆𝐷(1) = 0. The fact that there is at most one local extremum of ∆𝐷(𝜙) for 𝜙 ∈ (0, 1) (as noted
above fromEq. (S13)), implies that∆𝐷(𝜙) never crosses 0. Hence,∆𝐷(𝜙) > 0 for all 𝜙 ∈ [0, 1],
i.e. we have proven the relaxation asymmetry in the backward protocol, Eq. (S7).

A.4 Information geometry and thermal kinematics

To provide intuition about, and to generally formulate the question of, the heating-cooling
asymmetry in the three addressed situations we now turn to the statistical kinematics of the
relaxation process. For this we need to define distance, speed, and progression during the
respective relaxation processes.

We now introduce the Fisher information 𝐼(𝜃) [5, 6] in our (physical) case defined as

𝐼(𝜃) ≡ ∫
∞

−∞
𝑑𝑥

(𝜕𝜃𝑃(𝑥, 𝜃))2

𝑃(𝑥, 𝜃)
. (S15)

The geometric interpretation of the Fisher information follows from defining a statistical line
element 𝑑𝑠 as 𝑑𝑠2 ≡ 𝐼(𝜃)𝑑𝜃2, hence 𝑑𝑠may be considered as a dimensionless distance between
probability densities 𝑃(𝑥, 𝜃) and 𝑃(𝑥, 𝜃 + 𝑑𝜃). To understand this, we note that

𝐷̃[𝑃(𝑥, 𝜃 + 𝑑𝜃)||𝑃(𝑥, 𝜃)] = ∫ 𝑑𝑥𝑃(𝑥, 𝜃 + 𝑑𝜃) ln
𝑃(𝑥, 𝜃 + 𝑑𝜃)
𝑃(𝑥, 𝜃)

= ∫ 𝑑𝑥[𝑃(𝑥, 𝜃) + 𝜕𝜃𝑃(𝑥, 𝜃)𝑑𝜃 + 𝒪(𝑑𝜃2)] ln (1 +
𝜕𝜃𝑃(𝑥, 𝜃)
𝑃(𝑥, 𝜃)

𝑑𝜃 + 𝒪(𝑑𝜃2))

= 𝜕𝜃 ∫ 𝑑𝑥𝑃(𝑥, 𝜃)𝑑𝜃 + ∫ 𝑑𝑥
(𝜕𝜃𝑃(𝑥, 𝜃))2

𝑃(𝑥, 𝜃)
𝑑𝜃2 + 𝒪(𝑑𝜃3)

= 0 + 𝐼(𝜃)𝑑𝜃2 + 𝒪(𝑑𝜃3), (S16)
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where in the third line we used ln(1 + 𝑥) = 𝑥 + 𝒪(𝑥2) and in the fourth that the first term in
the third line vanishes because ∫ 𝑑𝑥𝑃(𝑥, 𝜃) = 1, ∀𝜃. The statistical lengthmay thus be defined
as

ℒ(𝜃i, 𝜃f ) = ∫
𝜃f

𝜃i

𝑑|𝜃|
√
𝐼(𝜃) ≡ ∫

𝜃f

𝜃i

𝑑|𝜃|𝑣(𝜃), (S17)

where in the last step we introduced the local speed 𝑣(𝜃). The expression ℒ(𝜃i, 𝜃f ) measures
the length of the path traced by the probability density under a change of the parameter from
𝜃i to 𝜃f . Note that ℒ(𝜃i, 𝜃f ) has, in contrast to the relative entropy that measures the thermo-
dynamic displacement, all the properties of a path length: it satisfies the triangle inequality
and is invariant under monotonic path reparametrizations.

In addition, to quantify the progression along the path {𝜃𝑠}i≤s≤f we further introduce the
degree of completion as

𝜑(𝑠) ≡
ℒ(𝜃i, 𝜃𝑠)
ℒ(𝜃i, 𝜃f )

∈ [0, 1]. (S18)

A.5 Thermalkinematics along thermodynamically equidistantquenches

In the case of the physical time evolution an elementary calculation shows that

𝐼F(𝑡; 𝑇̃) = 1
2
⎛
⎜
⎝

𝑑

𝑑𝑡
⟨𝑥2(𝑡)⟩F
⟨𝑥2(𝑡)⟩F

⎞
⎟
⎠

2

= 2
[1 + e2𝑡∕(𝑇̃ − 1)]2

, 𝐼B(𝑡; 𝑇̃) = 1
2
⎛
⎜
⎝

𝑑

𝑑𝑡
⟨𝑥2(𝑡)⟩B
⟨𝑥2(𝑡)⟩B

⎞
⎟
⎠

2

= 2
[1 + e2𝑡𝑇̃∕(1 − 𝑇̃)]2

,

(S19)
where time is measured in units of 𝛾∕𝜅 and the superscripts F and B denote the forward (𝑇̃ →
1) and backward (1 → 𝑇̃) quench protocols. This implies the respective local speeds

𝑣F(𝑡; 𝑇̃) =

√
2

|1 + e2𝑡∕(𝑇̃ − 1)|
, 𝑣B(𝑡; 𝑇̃) =

√
2

|1 + e2𝑡𝑇̃∕(1 − 𝑇̃)|
, (S20)

and distances traversed until time 𝑡

ℒF(𝑡; 𝑇̃) = sign(ln(𝑇̃))
√
2[ln 𝑇̃ − ln(1 + (𝑇̃ − 1)e−2𝑡)], ℒF(∞) = ℒ(𝑇̃, 1) = sign(ln(𝑇̃))

√
2 ln 𝑇̃,

ℒB(𝑡; 𝑇̃) = sign(ln(𝑇̃))
√
2 ln(e−2𝑡 + 𝑇̃(1 − e−2𝑡)), ℒB(∞) = ℒ(1, 𝑇̃) = sign(ln(𝑇̃))

√
2 ln 𝑇̃, (S21)

finally yielding also the degrees of completion

𝜑F(𝑡; 𝑇̃) = 1 −
ln(1 + (𝑇̃ − 1)e−2𝑡)

ln 𝑇̃
,

𝜑B(𝑡; 𝑇̃) =
ln(e−2𝑡 + 𝑇̃(1 − e−2𝑡))

ln 𝑇̃
= 1 +

ln(1 − (𝑇̃ − 1)e−2𝑡∕𝑇̃)
ln 𝑇̃

. (S22)

At this point we make the interesting observation:

Theorem 2: (i) For any pair of thermodynamically equidistant temperatures 𝑇̃+ > 1 > 𝑇̃−
the total distance ℒ(0, 𝑇̃) defined in Eq. (S21) obeys ℒ(1, 𝑇̃−) > ℒ(1, 𝑇̃+). Moreover, (ii) for any
pair of thermodynamically equidistant temperatures 𝑇̃+ > 𝑇̃− we have that during the forward
protocol

𝜑F(𝑡; 𝑇̃−) > 𝜑F(𝑡; 𝑇̃+) ∀𝑡 ∈ (0,∞), (S23)
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and during the backward protocol

𝜑B(𝑡; 𝑇̃+) > 𝜑B(𝑡; 𝑇̃−) ∀𝑡 ∈ (0,∞). (S24)

That is, the progress during both forward and backward processes is faster during heating for all
times and thermodynamically equidistant quenches.

Remark: Theorem 2 implies that whereas the hot and cold system are initially thermody-
namically equidistant from the equilibrium, the colder system is initially statistically farther
away from equilibrium than the hotter system.

Moreover, the fact that the colder system is statistically farther from equilibrium than
the corresponding thermodynamically equidistant warmer system shows that the statistical
length of the path to equilibrium does not play an important role in the relaxation asymmetry.
Namely, in the forward protocol heating is faster despite the longer path taken, whereas in the
backward protocol heating is faster while the path taken is shorter. Conversely, the local speed
𝑣(𝑡) =

√
𝐼(𝑡), which initially is always faster during heating than during cooling, ensures that

heating progresses, at all times, faster than cooling. This provides a kinematic explanation of
the fact that the entropy production in the system during heating initially evolves as essen-
tially “free diffusion” (and is not hampered by the drift imposed by the potential), whereas
the heat flow during cooling is always (including at short times) opposed by the reduction of
entropy in the system [2].

Proof: Part (i): By the definition in Eq. (S21) we have for 𝑡 = 0

ℒ(1, 𝑇̃−) − ℒ(1, 𝑇̃+) = −
√
2 ln 𝑇̃−𝑇̃+ > −

√
2 ln 1 > 0, ∀𝑇̃+, 𝑇̃−(𝑇̃+), (S25)

where in the second step we used 𝑇̃−𝑇̃+ ≤ 1 (equality holding only when 𝑇̃− = 𝑇̃+ = 1) (see
Lemma 3.4. in [3] and recall that 𝑇̃− = −𝑊0(−𝑇̃+e−𝑇̃

+) in terms of the principal branch of the
Lambert-W function𝑊0(𝑧)).

Part (ii): We set ∆𝜑F(𝑡) ≡ 𝜑F(𝑡; 𝑇̃−) − 𝜑F(𝑡; 𝑇̃+) and ∆𝜑B(𝑡) ≡ 𝜑B(𝑡; 𝑇̃+) − 𝜑B(𝑡; 𝑇̃−). We have
trivially that ∆𝜑F,B(0) = ∆𝜑F,B(∞) = 0. Let 𝛿± ≡ 𝑇̃± − 1 as well as 0 ≤ 𝑥 ≡ e−2𝑡 ≤ 1. For
convenience and without any loss of generality we consider 𝜑F,B as a function of 𝑥 rather than
𝑡 since 𝑥(𝑡) is monotone in 𝑡 with 𝑥 → 0 ⇐⇒ 𝑡 → ∞ and 𝑥 → 1 ⇐⇒ 𝑡 → 0. We first prove
the statement for the forward and then for the backward protocol. Since ∆𝜑F,B(𝑥) is contin-
uously differentiable we only need to show that ∆𝜑F,B(𝑡) has a single maximum and that it is
positive somewhere on 𝑡 ∈ (0,∞) (i.e. on 𝑥 ∈ (0, 1)).

Forward protocol.—We first carry out the proof for the forward protocol. First we show
that ∆𝜑F(𝑥) > 0 for 𝑥 = 𝜀 ≪ 1. Expanding around 𝑥 = 0, i.e. ∆𝜑F(𝜀) = 𝐾†(𝛿+, 𝛿−)𝜀 + 𝒪(𝜀2),
we find

𝐾†(𝛿+, 𝛿−) = ( 𝛿+

ln(1 + 𝛿+)
− 𝛿−

ln(1 + 𝛿−)
)

=
𝛿− ln(1 + 𝛿+) − 𝛿+ ln(1 + 𝛿−)
ln(1 + 𝛿+)[− ln(1 + 𝛿−)]

> [− ln(1 + 𝛿−)]
𝛿+ − ln(1 + 𝛿+)

ln(1 + 𝛿+)[− ln(1 + 𝛿−)]
> 0, (S26)
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where in the second linewemade the denominator positive and in the third linewe used twice
the concavity of the logarithm implying ln(1 + 𝑥) ≤ 𝑥, ∀𝑥 > −1, i.e. first 𝛿− > ln(1 + 𝛿−) and
in the last step 𝛿+ > ln(1 + 𝛿+), which completely proves that ∆𝜑F(𝜀) > 0.

The final step is to show that ∆𝜑F(𝑥) has a single stationary point on 𝑥 ∈ (0, 1). We do
this by direct computation, i.e. the only solution of 𝑑

𝑑𝑥
∆𝜑F(𝑥) = 0 on the interval 𝑥 ∈ (0, 1) is

𝑥∗F = 1 − 𝐶
𝐶𝛿+ − 𝛿−

where 𝐶 ≡ 𝛿−

𝛿+
ln(1 + 𝛿+)
ln(1 + 𝛿−)

, (S27)

which must be a maximum as ∆𝜑F(𝜀) > 0 and ∆𝜑F(1 − 𝜀) > 0 and because ∆𝜑F(𝑥) is contin-
uously differentiable on 𝑥 ∈ (0, 1). This proves the theorem for the forward protocol.

Backward protocol.—Proceeding as above, we show that lim𝜀→0 ∆𝜑B(1 − 𝜀) > 0. First, by
Taylor expanding we find from the second line in Eq. (S22)

∆𝜑B(1 − 𝜀) = 𝐾†(𝛿+, 𝛿−)𝜀 + 𝒪(𝜀2), (S28)

which already proves lim𝜀→0 ∆𝜑B(1−𝜀) > 0 because we showed in Eq. (S26) that𝐾†(𝛿+, 𝛿−) >
0.

The final step is to show that ∆𝜑B(𝑥) has a single stationary point on 𝑥 ∈ (0, 1). We do
this by showing that the only solution of 𝑑

𝑑𝑥
∆𝜑B(𝑥) = 0 on the interval 𝑥 ∈ (0, 1) is

𝑥∗B =
𝐶(1 + 𝛿+) − (1 + 𝛿−)

𝐶𝛿+ − 𝛿−
, (S29)

with 𝐶 defined in Eq. (S27). 𝑥∗B must be a maximum as ∆𝜑B(𝜀) > 0 and ∆𝜑B(1 − 𝜀) > 0 and
because ∆𝜑B(𝑥) is continuously differentiable on 𝑥 ∈ (0, 1). This proves the theorem also for
the backward protocol.

A.6 Thermal kinematics in heating and cooling processes between a
single pair of temperatures

Finally, we prove that between any pair of temperatures 𝑇̃ and 1 heating is always faster. In
particular, we prove

Theorem 3: Given any pair of temperatures 𝑇̃ ≠ 1 and 1 (denote 𝑇̃ > 1 by 𝑇̃+ and 𝑇̃ < 1
by 𝑇̃−), the heating process between the two temperatures is always faster than the corresponding
cooling processes. Precisely,

𝜑F(𝑡; 𝑇̃−) > 𝜑B(𝑡; 𝑇̃−) ∀𝑡 ∈ (0,∞),
𝜑F(𝑡; 𝑇̃+) < 𝜑B(𝑡; 𝑇̃+) ∀𝑡 ∈ (0,∞). (S30)

Proof: Adopting the previous notation we have

𝜑F(𝑥; 𝑇̃±) − 𝜑B(𝑥; 𝑇̃±) ≡ ∆±(𝑥) =
ln(1 + 𝛿±) − ln(1 + 𝛿±𝑥) − ln(1 + 𝛿± − 𝛿±𝑥)

ln(1 + 𝛿±)

= − 1
ln(1 + 𝛿±)

ln (
(1 + 𝛿± − 𝛿±𝑥)(1 + 𝛿±𝑥)

1 + 𝛿±
)

≡
− lnΞ±(𝑥)
ln(1 + 𝛿±)

, (S31)
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where in the last line we defined Ξ±(𝑥). We further have

Ξ±(𝑥) = 1 +
𝑥(1 − 𝑥)(𝛿±)2

1 + 𝛿±
> 1 ∀𝑥 ∈ (0, 1), (S32)

and thus− lnΞ±(𝑥) < 0. Moreover, we have ln(1+𝛿−) < 0while ln(1+𝛿+) > 0 and therefore
∆−(𝑥) > 0 while ∆+(𝑥) < 0, which proves the theorem.

A.7 Heating and cooling near equilibrium

Near equilibrium, that is, for 𝑇+ = 𝑇𝑤(1 + 𝜀) with 0 < 𝜀 ≪ 1 we have, using Eq. (S6)

𝑇−((1 + 𝜀)𝑇𝑤) = −𝑊0(−(1 + 𝜀)e−(1+𝜀))𝑇𝑤
= −𝑊0(−e−1 + e−1𝜀2∕2 + 𝒪(𝜀3))𝑇𝑤
= −

(
−1 + 𝜀 + 𝜀2∕3 + 𝒪(𝜀3)

)
𝑇𝑤

= (1 − 𝜀[1 − 𝜀∕3])𝑇𝑤 + 𝒪(𝜀3), (S33)

as stated in the manuscript. In passing from the second to the third line we used the Taylor
series of𝑊0(𝑧) around the branch point at−e−1 (see Eq. (4.22) in [3]), i.e.𝑊0(−e−1+𝑧) = −1+√
2e𝑧 + 𝒪(𝑧). Therefore, close to equilibrium thermodynamically equidistant temperatures

are to linear order in the deviation 𝜀 also equidistant.

For theLangevin dynamicsEqs. (S1)we canwrite themean energy as ⟨𝑈(𝑥𝑡)⟩ = 𝜅(∆𝑥𝑡)2∕2
with variance (∆𝑥𝑡)2 as in Eq. (S4). Taking the time-derivative we obtain 𝜕𝑡⟨𝑈(𝑥𝑡)⟩𝑤𝑖 |𝑡=0 =
−𝑘𝐵𝑇𝑤𝜅(𝑇𝑖∕𝑇𝑤 − 1)∕𝛾. For this Gaussian process the time derivative of the system entropy
𝑆(𝑡) = −𝑘𝐵 ∫ 𝑃𝑤𝑖 (𝑥, 𝑡) ln 𝑃

𝑤
𝑖 (𝑥, 𝑡)𝑑𝑥 is calculated as 𝜕𝑡𝑆

𝑤
𝑖 (𝑡)|𝑡=0 = −𝑘𝐵𝜅(1 − 𝑇𝑤∕𝑇𝑖)𝛾. Adding

the two contributions we obtain for the change in excess free energy that

𝜕𝑡𝒟𝑤
𝑖 (𝑡)|𝑡=0 = 𝜕𝑡

[
⟨𝑈(𝑥𝑡)⟩𝑤𝑖 − 𝑇𝑤𝑆𝑤𝑖 (𝑡)

]
|𝑡=0 = 𝑘𝐵𝑇𝑤

𝜅
𝛾 [2 −

𝑇𝑖
𝑇𝑤

−
𝑇𝑤
𝑇𝑖
] . (S34)

Corollary 4: To linear order in 𝜀 heating and cooling between thermodynamically equidis-
tant as well as between any fixed pair of temperatures are symmetric. Precisely,

𝜑F𝑤(𝑡; 1 − 𝜀[1 − 𝜀∕3]) = 𝜑F(𝑡; 1 + 𝜀) + 𝒪(𝜀),
𝜑B(𝑡; 1 + 𝜀) = 𝜑B𝑤(𝑡; 1 − 𝜀[1 − 𝜀∕3]) + 𝒪(𝜀), (S35)

as well as

𝜑B𝑤(𝑡; 1 + 𝜀) = 𝜑F𝑤(𝑡; 1 + 𝜀) + 𝒪(𝜀),
𝜑F𝑤(𝑡; 1 − 𝜀[1 − 𝜀∕3]) = 𝜑B𝑤(𝑡; 1 − 𝜀[1 − 𝜀∕3]) + 𝒪(𝜀). (S36)

Proof: Inserting 𝑇+ = 𝑇𝑤(1 + 𝜀) and 𝑇− = 𝑇𝑤(1 − 𝜀[1 − 𝜀∕3]) into Eqs. (S22) and Taylor
expanding around 𝜀 = 0 we find

𝜑F(𝑡; 1 + 𝜀) = 1 − e−2(𝜅∕𝛾)𝑡 − 𝜀 e−3(𝜅∕𝛾)𝑡 sinh((𝜅∕𝛾)𝑡) + 𝒪(𝜀2),
𝜑F(𝑡; 1 − 𝜀[1 − 𝜀∕3]) = 1 − e−2(𝜅∕𝛾)𝑡 + 𝜀 e−3(𝜅∕𝛾)𝑡 sinh((𝜅∕𝛾)𝑡) + 𝒪(𝜀2),

𝜑B(𝑡; 1 + 𝜀) = 1 − e−2(𝜅∕𝛾)𝑡 + 𝜀 e−3(𝜅∕𝛾)𝑡 sinh((𝜅∕𝛾)𝑡) + 𝒪(𝜀2),
𝜑B(𝑡; 1 − 𝜀[1 − 𝜀∕3]) = 1 − e−2(𝜅∕𝛾)𝑡 − 𝜀 e−3(𝜅∕𝛾)𝑡 sinh((𝜅∕𝛾)𝑡) + 𝒪(𝜀2), (S37)

which proves the corollary.
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A.8 Unphysical shortest-path relaxation

There are infinitely many possible parametrizations of the path from 𝜃i to 𝜃f , {𝜃𝑠}i≤s≤f whose
distributions we parameterize as 𝑃̃(𝑥, 𝜃𝑠) (note that ∫

∞
−∞ 𝑑𝑥𝑃̃(𝑥, 𝜃𝑠) = 1). The shortest path

between𝑃(𝑥, 𝜃i) and𝑃(𝑥, 𝜃f )—the arc length—has the length (also calledBhattacharyya angle
[5])

ℒ∗(𝜃i, 𝜃f ) ≡ Λi,f = 2 arccos (∫
∞

−∞
𝑑𝑥
√
𝑃(𝑥, 𝜃i)𝑃(𝑥, 𝜃f )) , (S38)

with the corresponding geodesic path

𝑃∗(𝑥, 𝜃𝑠) = sin−2 (
Λi,f

2 ) [sin (
Λi,f

2
𝜃f − 𝜃𝑠
𝜃f − 𝜃i

)
√
𝑃(𝑥, 𝜃i) + sin (

Λi,f

2
𝜃 − 𝜃𝑖
𝜃f − 𝜃i

)
√
𝑃(𝑥, 𝜃f )]

2

.

(S39)

The Fisher information 𝐼(𝜃) = Λ2
i,f , and thus the “local speed” 𝑣(𝜃) =

√
𝐼(𝜃) = Λi,f , are

constant along the geodesic path 𝑃∗(𝑥, 𝜃) in Eq. (S39) (see Appendix E in [5]). The degree of
completion in Eq. (S18) along the geodesic is therefore simply 𝜑∗(𝜃) = 𝜃, symmetrically in
both protocols and irrespective of the heating and cooling direction (as expected). However,
the arc-lengths for “geodesic heating and cooling” are not the same, i.e.,

Λ−
i,f = − ln 𝑇̃− > Λ+

i,f = ln 𝑇̃+, ∀𝑇̃+ > 1. (S40)

Consequently, even for the unphysical “geodesic relaxation” the total length of the relaxation
path plays no role in setting the relaxation in terms of degree of completion in Eq. (S18), since
𝜑∗+(𝜃) = 𝜑∗−(𝜃). Moreover, since by definitionℒF,B(∞; 𝑇̃±) > Λ±

i,f the relaxation does not follow
the shortest path (where dissipation is minimised [5]).

Finally, we compare the physical with the geodesic relaxation. However, since there is
by construction no time evolution in the latter (as it is only a mathematical construction with
a priori no physical bearing) we must put in “time” by hand. Since in the physical situation
𝜃i ≡ 𝑥(𝑡 = 0) = 1 and 𝜃f ≡ 𝑥(𝑡 → ∞) = 0 and thus 𝑡 ∶ 0 → ∞ corresponds to 𝑥 ∶ 1 → 0,
it is natural to assume that the same exponential scaling in time parameterises the geodesic
evolution as

𝜃∗(𝑡) ≡ 1 − e−2𝑡 ≡ 1 − 𝑥 ≡ 𝜃∗(𝑥). (S41)

In this way we obtain a direct comparison between ∆𝜑F,B(𝑥) and 𝜑∗+(𝑥). From here follows
another interesting observation:

Theorem 5: For any pair of thermodynamically equidistant quenches the degree of completion
obeys, relative to the “geodesic relaxation” 1 − 𝑥, the inequalities

𝜑F(𝑥; 𝑇̃−) > 𝜃∗(𝑥) and 𝜑F(𝑥; 𝑇̃+) < 𝜃∗(𝑥), ∀𝑥 ∈ (0, 1);
𝜑B(𝑥; 𝑇̃+) > 𝜃∗(𝑥) and 𝜑B(𝑥; 𝑇̃−) < 𝜃∗(𝑥), ∀𝑥 ∈ (0, 1). (S42)

That is, heating is always faster than the corresponding geodesic relaxation and cooling is always
slower than the geodesic relaxation for all times.

Proof: At the respective end points 𝑥 = 0 and 𝑥 = 1 we have, by definition, 𝜑F,B(0; 𝑇̃±) =
𝜃∗(0)=1 and 𝜑F,B(1; 𝑇̃±) = 𝜃∗(1) = 0. At all finite times (i.e. for 𝑥 ∈ (0, 1)) we instead have the
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strict inequality. Starting from the definition we have for all 𝑥 ∈ (0, 1)

𝜑F(𝑥; 𝑇̃−) − 𝜃∗(𝑥) =
ln 1 + 𝛿−𝑥
(1 + 𝛿−)𝑥

− ln(1 + 𝛿−)
> ln 1
− ln(1 + 𝛿−)

= 0,

𝜑F(𝑥; 𝑇̃+) − 𝜃∗(𝑥) =
ln
(1 + 𝛿+)𝑥

1 + 𝛿+𝑥
ln(1 + 𝛿+)

< ln 1
ln(1 + 𝛿+)

= 0,

𝜑B(𝑥; 𝑇̃−) − 𝜃∗(𝑥) =
ln

(1 + 𝛿−)1−𝑥

1 + 𝛿− − 𝛿−𝑥
− ln(1 + 𝛿−)

< ln 1
− ln(1 + 𝛿−)

= 0,

𝜑B(𝑥; 𝑇̃+) − 𝜃∗(𝑥) =
ln 1 + 𝛿+ − 𝛿+𝑥

(1 + 𝛿+)1−𝑥

ln(1 + 𝛿+)
> ln 1
ln(1 + 𝛿+)

= 0, (S43)

where we simply applied the Bernoulli inequality stating that for any 𝑦 ≥ −1 and 𝑞 ∈ [0, 1]
that (1+𝑦)𝑞 ≤ 1+𝑞𝑥 (where equality occurs only for 𝑥 = 0 and 𝑞 = 0, 1). This completes the
proof.

Corollary 6: Theorem 5 directly implies that the paths taken along the forward and backward
protocols towards/from the same temperature differ. That is, during heating from equilibrium
towards a given higher temperature the system takes another path than during cooling from the
same higher temperature towards equilibrium.

B Experimental check of the Pythagorean inequality

As we mentioned in the main part and had been proven in Ref. [7], the relative entropy satis-
fies what is called the Pythagorean inequality when it tracks a pure thermal relaxation process
such as the ones covered throughout ourwork. More specifically, if a trapped, Brownian parti-
cle suffers an instantaneous temperature quench that links an initial state 𝑃(𝑥, 0)with a target
state 𝑃(𝑥,∞) (reached when 𝑡 → ∞), then

𝐷̃[𝑃(𝑥, 0)||𝑃(𝑥,∞)] ≥ 𝐷̃[𝑃(𝑥, 0)||𝑃(𝑥, 𝑡)] + 𝐷̃[𝑃(𝑥, 𝑡)||𝑃(𝑥,∞)]. (S44)

As it is stated in the reference cited above, it establishes a tighter bound to the entropy pro-
duction than the one imposed by the Second Principle of Thermodynamics, since 𝑠[0,𝑡] ≡
𝐷̃[𝑃(𝑥, 0)||𝑃(𝑥,∞)] − 𝐷̃[𝑃(𝑥, 𝑡)||𝑃(𝑥,∞)] is the entropy production until time 𝑡 ≥ 0.

Furthermore, it trivially leads to a bound for the relaxation time: 𝑡 ≥ 𝐷̃[𝑃(𝑥, 0)||𝑃(𝑥, 𝑡)]∕𝑠,
where 𝑠 ≡ 𝑠[0,𝑡]∕𝑡 is the average entropy production. Put in this way, the previous inequality es-
tablishes that large entropy production rates are necessary for shorter relaxation times, which
cannot be arbitrarily small.

We address here the experimental check of the Pythagorean inequality, Eq. (S44), by
studying two particular thermal relaxation processes, one corresponding to a heating process
and the other corresponding to a cooling one. As amatter of closure, we choose two initial con-
ditions for which their corresponding states are thermodynamically equidistant with respect
to the target, but the validity of the inequality (S44) does not depend at all on this fact. Fig. S2
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shows the values of 𝐷̃[𝑃(𝑥, 0)||𝑃(𝑥, 𝑡)], 𝐷̃[𝑃(𝑥, 𝑡)||𝑃(𝑥,∞)] and the sum of both magnitudes.
In order for the inequality to be fulfilled, the lattermust be below the value 𝐷̃[𝑃(𝑥, 0)||𝑃(𝑥,∞)]
for all times, which has to coincide with the initial value of 𝐷̃[𝑃(𝑥, 𝑡)||𝑃(𝑥,∞)] and the final
value of 𝐷̃[𝑃(𝑥, 0)||𝑃(𝑥, 𝑡)].

a. b.

Figure S2: Experimental check of the Pythagorean inequality. Each plot shows the
quantities 𝐷̃[𝑃(𝑥, 𝑡)||𝑃(𝑥,∞)] (cyan, circles), 𝐷̃[𝑃(𝑥, 0)||𝑃(𝑥, 𝑡)] (magenta, squares) and the
sum of both (green, diamonds). In order for the inequality to be fulfilled, the latter must
be below the orange, horizontal line 𝐷̃[𝑃(𝑥, 0)||𝑃(𝑥,∞)]. Solid lines are theoretical predic-
tions without fitting parameters. Both graphics correspond to a characteristic time 𝛾∕𝜅 =
0.96(3)ms and relative temperatures𝑇0∕𝑇𝑓 = 0.0841 (left panel, heating) and𝑇0∕𝑇𝑓 = 4.1020
(right panel, cooling). Solid lines are theoretical predictions without fitting parameters. The
data are estimated as the mean over 10 independent measurements, while error bars are the
SEM (see Methods for further details).

In view of the previous figure, it is noticeable that the magnitude 𝐷̃[𝑃(𝑥, 0)||𝑃(𝑥, 𝑡)] +
𝐷̃[𝑃(𝑥, 𝑡)||𝑃(𝑥,∞)] reaches a minimum value which is higher (and closer to the limit value
𝐷̃[𝑃(𝑥, 0)||𝑃(𝑥,∞)]) during the heating process than during its cooling counterpart when
thermodynamically equidistant quenches are considered. We have checked that this is ac-
tually the general case (though we do not include a mathematical proof here as it goes far
away from the main objectives of our work), a fact that may support the already proven fact
that heating is always faster than cooling.
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