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Abstract

The microscopic world of atoms and molecules is continuously in motion,
which is manifested on the macroscopic scale as a non-zero temperature. Due
to collisions with surrounding molecules that perform thermal motion, many
small systems undergo erratic, random motion, known as Brownian motion. In
the presence of external forces, this motion is described by the Langevin equa-
tion, which forms a basis for studying thermodynamics of stochastic systems,
and proved successful in biology, physics, chemistry and beyond. In particular,
unlike classical thermodynamics, the Langevin description applies to systems
far from thermal equilibrium, which is, e.g., vital to approach biological pro-
cesses in living systems.

In this thesis, we investigate properties of stochastic dynamics by applying
the mathematical framework of stochastic calculus, that directly addresses the
notion of fluctuating trajectories. The major part of the thesis is concerned
with fluctuations of time-averaged observables. We derive expressions for the
variance and correlations of empirical densities and currents, which are ob-
servables central to statistical mechanics on the level of individual trajecto-
ries. Based on these results, we uncover the essential role of coarse graining
in space, and explain the results by connecting them to a generalized time-
reversal symmetry in non-equilibrium steady states. In particular, we use the
stochastic-calculus approach to rederive an inequality called thermodynamic
uncertainty relation, that allows to infer entropy production from measure-
ments of time-averaged currents. Based on our simplified derivation, we are
able to systematically determine when this inequality becomes saturated, i.e.,
when the thermodynamic inference is optimal.

Another large part of the thesis investigates how systems prepared at dif-
ferent temperatures relax to the temperature of the environment. While the
classical laws of thermodynamics only apply close to thermal equilibrium and
predict a relaxation that is indifferent with respect to the sign of the tempera-
ture change, it was recently found that for large temperature differences, i.e.,
far from equilibrium, thermal relaxation becomes asymmetric, and heating is
faster than cooling. In a collaboration, we experimentally confirm this asym-
metry, generalize this framework, and extend the study to relaxation towards
non-equilibrium steady states.

Finally, we also address motion beyond Langevin dynamics, namely two-
state dynamics that switches stochastically between different states of motion.
We make predictions for experimentally relevant observables for diverse phys-

III



ical models, and apply the results to particle tracking data recorded in living
cells.

Altogether, in this thesis, we study stochastic dynamics of systems far from
thermal equilibrium. We push forward the framework of stochastic calculus
to handle and understand randomly fluctuating trajectories, and to deduce
thermodynamic insights and properties of experimentally relevant observables
from this intrinsically stochastic dynamics.
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Chapter 1

Introduction

1.1 Brownian motion

A nanometer- to micrometer-sized particle immersed in water undergoes erratic motion
in random directions, a phenomenon known as Brownian motion. This was originally ob-
served under the microscope by Robert Brown [1], and theoretically explained in the sem-
inal works of Albert Einstein [2] and Marian Smoluchowski [3]. Brownian motion was
explained to be a consequence of collisions with water molecules that undergo random
thermal motion. The explanation was thus based on the existence of atoms, which was still
under heavy debate in the early 20th century. Combining observations with theory, one
was able to see manifestations of the existence of atoms under a microscope. This striking
insight, together with the quantitative experimental confirmation of Einstein’s theory by
Jean Perrin, finally settled the debate about the existence of atoms, and Jean Perrin was
awarded with the Nobel Prize for Physics “for his work on the discontinuous structure of
matter” [4,5]. The establishment of the existence of atoms laid the foundation for a whole
new area of physics, namely statistical mechanics, a general framework for understanding
and predicting the behavior of systems consisting of many particles, seeking to bridge the
gap between the microscopic description in terms of atoms and molecules, and the macro-
scopic world of observable phenomena. In particular, Einstein’s approach paved the way
for probabilistic descriptions of classical physical systems that proved successful in biology,
physics, chemistry and beyond [6,7].
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1 Introduction

1.2 Physical approach: The Langevin equation

For the scope of this thesis, we consider a system to be a set of coordinates coupled to
a Markovian, i.e., memoryless, heat bath. The heat bath is the medium, e.g., water, and
heat transfer occurs via a random force that originates from the probabilistically treated
collisions with the surrounding molecules. Since the systems considered here are small,
but at the same time large compared to the microscopic scale of the molecules in the bath,
we say that such systems evolve on mesoscopic scales. A central equation for describing the
stochastic dynamics of such systems, e.g., the position x(t) of a Brownian particle at time t,
on time and length scales between the scale of individual molecules and the macroscopic
world, is the Langevin equation [6, 8]. In the case of a Brownian particle with mass m it
reads

mẍ(t) = −γẋ(t) + Fexternal(x(t), t) + Frandom(t) . (1.2.1)

For simplicity we use a one-dimensional notation throughout the introduction. Equation
(1.2.1) describes the acceleration ẍ due to a friction force with Stokes coefficient γ, ex-
ternal forces (e.g., electrical forces or chemical gradients), and the random force repre-
senting thermal fluctuations. The random influence encompasses the collisions with water
molecules, that are treated probabilistically. A way to relate this stochastic description to
the fundamental, deterministic Newtonian dynamics is given, e.g., by the Mori-Zwanzig
projection formalism [9, 10]. Thereby, one rewrites the equations of motion and projects
them onto the slow mesoscopic dynamics while the remaining motions are assumed to
occur and relax much faster, such that they may be treated statistically.

A further simplification of the dynamics in Eq. (1.2.1), valid in particular for small biolog-
ical systems, is that the friction leads to an effectively instantaneous relaxation of the mo-
mentum of the mesoscopic system. This approximation is typically1 justified on timescales
larger than the collision timescalem/γ, e.g., for particles of comparably low mass or highly
viscous media. Taking this overdamped limit, the Langevin equation becomes [6,7]

γẋ(t) = Fexternal(x(t), t) + Frandom(t) . (1.2.2)

In the absence of the random force, the motion x(t) would simply follow from specifying
initial conditions and solving the differential equation γẋ(t) = Fexternal(x(t), t). However,
the random force leads to a much richer phenomenology.

1In general, taking this limit is more complicated and may depend on further details of the
dynamics, see, e.g., Ref. [11].
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Introduction 1

To understand the stochastic dynamics dictated by the overdamped Langevin equation
(1.2.2), we turn our attention to the random force. Crucially, its statistical properties do not
depend on the precise details of the unobserved particles, i.e., its probability distribution
does not depend on the initial positions and momenta of the water molecules, assuming
that these initial conditions are reasonably mixed. There is a priori no preferred direc-
tion of the impacts of the water molecules, i.e., they occur randomly from all directions,
and therefore the average of the random force vanishes, denoted by ⟨Frandom(t)⟩ = 0. In
a medium like water, the molecular motions decorrelate much faster than the observed
timescales of the mesoscopic system. For the random force, this implies that correlations
at times differing by more than this short decorrelation time vanish, i.e., as a mathemati-
cal idealization ⟨Frandom(t)Frandom(t

′)⟩ = cδ(t − t′) with c > 0. Since the random force is
composed of many, effectively uncorrelated, bounded contributions (the individual impacts
of water molecules), the central limit theorem implies that it will converge to a Gaussian
random distribution. The latter is completely specified by its mean and variance, such that
the above properties determine the random force up to the constant prefactor c.

1.3 Mathematical treatment: Stochastic calculus

Based on these arguments, a mathematical formalization of Brownian motion was estab-
lished, known as the Wiener processWt [12]. It corresponds to Eq. (1.2.2) in the absence
of external forces and for c = γ = 1, i.e., dWt/dt = Frandom(t). Formulating the prop-
erties of the random force in terms of the increments Wt+dt −Wt = dWt = Frandom(t)dt

for dt → 0, we note that dWt follows a zero-mean Gaussian distribution with variance2
⟨dW 2

t ⟩ = dt, and increments are uncorrelated at unequal time ⟨dWtdWt′⟩ = 0 for t ̸= t′.
Writing Wt − W0 as the sum of these Gaussian uncorrelated increments, it follows that
the Brownian motion, or Wiener process, Wt −W0 obeys a zero-mean Gaussian distribu-
tion with variance t, i.e., even though the average position ⟨Wt⟩ remains unchanged, the
Brownian motion leads to displacements along individual trajectories that increase over
time. Considering the probability density p(x, t) of Wt = x, or the density field of many
non-interacting Brownian particles, the average over many random motions leads to deter-
ministic diffusion in time, ∂tp(x, t) = ∂2xp(x, t)/2, a phenomenon, historically known much
before Brownian motion [13].

A particular mathematical intricacy of Brownian motion that formally forbids to write
Eqs. (1.2.1) and (1.2.2) becomes apparent directly from the variance of its increments,
⟨dW 2

t ⟩ = dt, which implies that |dWt/dt| ∼ 1/
√
dt → ∞ with probability one for dt → 0.

2For dt, dt′ → 0 this corresponds to ⟨dWtdWt′⟩ = δ(t− t′)dtdt′ for t = t′, see Subsec. 2.5.2.
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1 Introduction

This means that Brownian motion is not differentiable in t, which appears problematic
since the random force was characterized exactly as the derivative of Brownian motion,
see Eq. (1.2.2) in the absence of external forces. This irregularity, together with the fluc-
tuating nature of the process, demands a generalization of classical calculus.

Such a generalization was developed in stochastic calculus [6, 14–16] in the last century.
Starting from the Brownian motion Wt, this field provides a framework for the analysis of
stochastic differential equations such as the Langevin equation (1.2.2), in the mathematics
literature written in a way that avoids the divergent term dWt/dt as

dxt = a(xt, t)dt+ b(xt, t)dWt . (1.3.1)

To give a brief overview, the main practical difference between stochastic and classical cal-
culus is that due to ⟨dW 2

t ⟩ = dt, quadratic orders of dxt are not negligible compared to dt.
Therefore, the classical chain rule df(x) = f ′(x)dx is replaced by Itô’s Lemma df(xt) =

f ′(xt)dxt + f ′′(xt)dx
2
t /2. Also, one can define stochastic integrals, e.g., ∫ τ=t

τ=0 f(xτ )dxτ , but
unlike in classical calculus, the result will depend on whether f(xτ )dxτ is interpreted as
f(xτ )(xτ+dτ − xτ ) (Itô) or, e.g., f((xτ + xτ+dτ )/2)(xτ+dτ − xτ ) (Stratonovich). Apart from
stochastic calculus, the stochastic motion in Eqs. (1.2.2) and (1.3.1) may also be studied
by Fokker-Planck equations (such as the diffusion equation for Brownian motion) or path
integral techniques [6,16,17]. However, the approach that addresses the fluctuating trajec-
tories most directly is the stochastic calculus. In this sense, stochastic calculus is the most
natural approach, and a consistent way to avoid unclear interpretations of the complex
dynamics.

This stochastic dynamics with an unusual calculus may at first appear quite specific. How-
ever, it is surprisingly widespread, largely due to the universality of the central limit theo-
rem for dynamics influenced by many small contributions. We introduced it for the example
of a Brownian particle, but actually many soft matter and biological systems, like macro-
molecules, viruses and individual cells, are on the relevant mesoscopic scale3 governed by
the Langevin equation. Apart from biological systems, the Langevin equation and stochas-
tic calculus have been applied in chemistry [18], finance [19], fluctuations in electrical
circuits [20] and a variety of other topics.

Coming back to thermodynamic systems, such as the Brownian particle, there is another
general property of the Langevin equation (1.2.2). Intuitively, the friction and the random

3These are on the nanometer to micrometer scale, such that they are small enough to feel the
random force but large enough to be subject to many, effectively uncorrelated collisions on the
relevant timescale.
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force are related, since both originate from collisions with the molecules of the surround-
ing medium. This fixes the diffusion coefficient, i.e., the prefactor of the variance of the
random force, which is known as the Einstein relation, and was first derived by means of
osmotic pressure and diffusive currents [2]. It also follows from requiring consistency with
thermodynamical concepts such as the equipartition theorem for the kinetic energy [8],
linear response theory [21–23], or Boltzmann statistics (see Sec. 2.7). Using this Einstein
relation and the Wiener process to write the random force explicitly, the Langevin equation
(1.2.2) in the notation of Eq. (1.3.1) reads

dxt = γ−1Fexternal(xt, t)dt+
√
2kBTγ−1dWt , (1.3.2)

where kB is the Boltzmann constant and T the temperature of the surrounding medium.

1.4 Equilibrium and non-equilibrium systems

If the external force stems from a confining potential energy function ϕ(x) such that
Fexternal(x) = −∂xϕ(x), the Langevin dynamics will approach thermal equilibrium for long
times, where the probability density of xt will approach the invariant Boltzmann steady-
state density, p(x, t) t→∞−→ ps(x) ∝ exp(−ϕ(x)/kBT ) [6]. Thermal equilibrium is charac-
terized by a vanishing entropy production and the absence of probability currents. For the
considered systems, thermal equilibrium is equivalent to time-reversal symmetry, i.e., to the
statement that the overdamped Langevin trajectories (xτ )0≤τ≤t have the same probabilistic
properties as the time-reversed trajectories (xt−τ )0≤τ≤t [6].

Systems in thermal equilibrium are generally much better understood than non-equilibrium
systems. They are known to approach Boltzmann equilibrium determined by the potential
energy ϕ(x), on average they neither produce entropy nor dissipate energy into the heat
bath, and they can be fully described in terms of thermodynamic potentials such as the
Helmholtz free energy. Also, small deviations from equilibrium are very well understood,
in particular within linear response theory [21, 24] and linear irreversible thermodynamics
[25–27].

All these theories cease to hold for systems and processes far from thermal equilibrium.
Compared to the (close-to-)equilibrium case, very little is known about non-equilibrium
processes. Except for some recent developments (see, e.g., Secs. 1.7 and 1.8), there are
no general laws that describe non-equilibrium dynamics, and systems usually have to be
approached on a case-by-case basis, solving the detailed equations of motion. This is not
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only difficult in theory, but very often also impossible in practice, since there may be many
dissipative degrees of freedom, and usually not all of them can be observed.

Strikingly, the description via the Langevin equation (1.3.2) allows to study systems arbi-
trarily far from equilibrium, i.e., the description holds true for large values of the entropy
production, as long as the underlying assumption that dynamics in the heat bath relax suf-
ficiently faster than the dynamics of the system still holds. There are several ways in which
the Langevin equation can be used to describe non-equilibrium systems. First, there are
non-equilibrium steady states that, like equilibrium systems, feature an invariant probabil-
ity density ps(x), but unlike equilibrium systems possess non-zero probability currents and
a non-vanishing entropy production breaking time-reversal symmetry. Moreover, there are
transient processes that start from a probability density p(x, t = 0) different from ps(x),
and approach equilibrium or non-equilibrium steady states for long times. For finite times,
such systems are always out of equilibrium, and for initial conditions markedly differing
from ps, possibly even very far from equilibrium. Allowing for explicit time dependence in
the parameters of the Langevin equation, we can also study periodic steady states, or even
Langevin dynamics with completely arbitrary time dependence with or without confining
potentials.

1.5 Non-equilibrium steady-states
We now focus on non-equilibrium steady states (NESS) [6, 28] as a particular class of
processes that may operate far from thermal equilibrium. To this end, consider confining,
time-homogeneous (i.e., time-independent) external forces that do not need to simply stem
from a confining potential as in the equilibrium case. As for the equilibrium Langevin dy-
namics mentioned above, p(x, t) approaches a steady-state density ps(x), but there will also
be a non-vanishing steady-state current js(x) ̸= 0 characterizing ongoing flows of probabil-
ity that leave ps(x) invariant4. Note that for a given temperature, there are infinitely many
different NESS (different possible choices of js(x)) sharing the same invariant density ps(x)
of a single equilibrium state (js(x) = 0 for all x). In addition to non-zero currents, NESS
also have a strictly positive entropy production. NESS are particularly relevant for biologi-
cal systems, since living systems are inherently out of equilibrium. A paradigmatic example
are molecular motors [28–32].

An important concept for steady-state dynamics is ergodicity. For the considered steady-
state Langevin dynamics, this implies that the average over many independent copies of the

4We usually consider multidimensional NESS since in one-dimensional space the conditions for
NESS can only be met for periodic boundary conditions.
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Introduction 1

dynamics sampled from the steady-state density ps(x), i.e., the ensemble average ⟨f(xt)⟩s
for any t ≥ 0 and well-behaved function f , agrees with time-averages over long times, i.e.,
⟨f(xt)⟩s = limT→∞

1
T

∫ T
0 f(xτ )dτ [16]. Note that the right-hand side of the equation is a

random variable but equality holds with probability one.

1.6 Time-integrated observables
Given the measurement of a very long trajectory, or several short trajectories, sampled from
the steady state, we may attempt to infer the steady-state density ps(x) and current js(x).
A central object for such inference are time-integrated, or more precisely time-averaged,
densities and currents [33,34]

ρt ≡
1

t

∫ t

0
f(xτ )dτ ,

Jt ≡
1

t

∫ τ=t

τ=0
f(xτ ) ◦ dxτ , (1.6.1)

for some function f . The ◦-symbol denotes the Stratonovich convention f(xτ ) ◦ dxτ =

f((xτ +xτ+dτ )/2)(xτ+dτ −xτ ) required to completely define this integral within stochastic
calculus. For f(y) → δ(x − y), in case of long times or by averaging over many mea-
surements, ρt and Jt tend to the steady-state density ps(x) and current js(x), respectively.
Since small stochastic systems are subject to random fluctuations, and the number and
duration of measurements is restricted, an important part of the analysis of the observ-
ables in Eq. (1.6.1) is understanding their fluctuations. Since ρt and Jt are functionals
of the stochastic dynamics xτ , 0 ≤ τ ≤ t for finite times t, these functionals have com-
plicated statistical properties. The time-integrated density tρt, also known as local time
or occupation time, was studied in different scenarios [33, 35–41], often using Feynman-
Kac theory [33, 42]. Time-integrated currents are mathematically even more challenging
than densities. Together, ρt and Jt, also known as empirical density and current or dynam-
ical functionals, are addressed in the literature mainly in the large deviation limit (large t
limit) [34,43–46] or in terms of inequalities [47–49].

1.7 A brief account of stochastic thermodynamics
We here give a brief introduction to stochastic thermodynamics, focusing on the topics that
are relevant for this thesis. As mentioned above, the Langevin equation (1.3.2) can describe
systems that are far from equilibrium, e.g., a Brownian particle driven by large external
forces. Therefore, it provides a very promising framework to generalize thermodynami-
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1 Introduction

cal concepts to fluctuating trajectories and systems that are arbitrarily far from thermal
equilibrium5. This instigated the recent development of the field of stochastic thermody-
namics [28,50], where the thermodynamic notions of heat, work, energy, and entropy, and
the classical laws of thermodynamics, were generalized to individual, fluctuating trajecto-
ries for processes arbitrarily far from equilibrium connected to a heat bath at temperature
T (the medium/water for the Brownian particle) [51–54]. A central assumption of stochas-
tic thermodynamics is that of local equilibrium or local detailed balance [55], stating that
all unobserved degrees of freedom evolve sufficiently fast compared to the observed ones,
such that the former can be considered to be in equilibrium at the temperature of the heat
bath. In terms of the Langevin description in Eq. (1.3.2) this means that we need to con-
sider all slow (mesoscopic) degrees of freedom in x, which is challenging for large numbers
of degrees of freedom.

A key quantity to describe and quantify non-equilibrium processes is the total entropy pro-
duction ∆Stot = Stot(t) − Stot(0). This encompasses all contributions to the entropy pro-
duction, e.g., in the case of a mesoscopic system in some medium, we account for the
contributions to the entropy production in the system and the medium. Following the prin-
ciples of stochastic thermodynamics, we can assign a fluctuating entropy production ∆stot

to individual trajectories, where the deterministic quantity∆Stot = ⟨∆stot⟩ corresponds to
the average over many realizations of the process [54].

As an illustration of how stochastic thermodynamics and Langevin dynamics (1.3.2) ex-
tend beyond the classical concepts of thermodynamics, consider the integrated fluctuation
theorem for the total entropy production [28,54],

⟨exp(−∆stot)⟩ = 1 . (1.7.1)

Equation (1.7.1) belongs to the class of fluctuation theorems in stochastic thermodynam-
ics [28, 56] that was initiated by seminal works in the 1990s [57–60] and proved par-
ticularly useful for inferring free energy differences from non-equilibrium measurements
via the Jarzynski [61–63] and Crooks relations [64–66]. As mentioned above, the tools
of equilibrium thermodynamics no longer apply far from equilibrium, and little is known
about general concepts. In this sense, fluctuation theorems represent a conceptual ad-
vance to formulate non-system-specific features of non-equilibrium dynamics. Considering
the particular fluctuation theorem in Eq. (1.7.1), we see that, on the one hand, it reflects a
physical law for the probability distribution of the stochastic entropy production along in-

5The same holds true for another class of stochastic processes, namely Markov jump dynamics.
Since they operate on a discrete state space, they are however less fundamental in terms of the
connection to Newtonian dynamics.
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dividual stochastic paths, while classical thermodynamics only considers its average∆Stot.
On the other hand, it also contains the classical statement, since by applying Jensen’s in-
equality ⟨exp(−∆stot)⟩ ≥ exp(−⟨∆stot⟩) the second law of thermodynamics follows from
Eq. (1.7.1), i.e., ∆Stot ≥ 0. This illustrates that the second law only holds on the level of
average values, while Eq. (1.7.1) implies that (unless∆stot = 0with probability one) there
will always be instances of ∆stot < 0.

1.8 Thermodynamic uncertainty relations

An important recent development in the field of stochastic thermodynamics are diverse
trade-off relations between precision and entropy production. Most notably, there are ther-
modynamic uncertainty relations (TURs) [47,48,67] for the precision of stochastic currents.
In an NESS, the TUR states that the product of the relative variation of a current and the av-
erage entropy production∆Stot

6 is bounded from below by 2kB, i.e., for Jt as in Eq. (1.6.1),

variance(Jt)

⟨Jt⟩2
∆Stot ≥ 2kB . (1.8.1)

This inequality highlights the fundamental role of fluctuations in stochastic systems by
showing that the variance of currents is bounded by the entropy production. Thus, we see
that fluctuations do not merely complicate the inference of averages, but instead they con-
tain valuable information about thermodynamical properties of non-equilibrium systems in
practice.

In resemblance to the fluctuation theorem (1.7.1), the TUR (1.8.1) can also be seen as an
extension of the second law of thermodynamics, ∆Stot ≥ 0, since for any Jt with ⟨Jt⟩ ≠ 0,
Eq. (1.8.1) gives a strictly positive lower bound for ∆Stot. In contrast to the fluctuation
theorem, however, the TUR is more directly applicable in practice. Considering a trajectory
xτ with 0 ≤ τ ≤ t, one can evaluate Jt from Eq. (1.6.1), and estimate its average and
variance from repeated measurements. Then the TUR (1.8.1) directly gives a lower bound
for ∆Stot which yields valuable, and otherwise hardly accessible, information on how far
a given process operates from equilibrium [68, 69]. Importantly for practical relevance,
the TUR also applies to partially observed dynamics, i.e., we do not need to measure the
dynamics of all slow degrees of freedom to apply the TUR. Thus, we obtain information on
the entropy production of the full system by observing only a subset of degrees of freedom.

6In the particular case of an NESS, entropy is actually only produced in the medium, and T∆Stot

corresponds to the heat dissipated into the medium, see Sec. 2.9 or Ref. [28].
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Despite a variety of techniques applied to prove and generalize the TUR [48,49,70–72], a
direct derivation solely based on stochastic-calculus techniques was so far elusive.

1.9 Selected further topics

Another emerging topic in non-equilibrium physics is the far-from-equilibrium dynamics
of heating and cooling [73–76], which can be described by the Langevin dynamics for ar-
bitrarily large temperature differences. Close to equilibrium, i.e., for small temperature
differences, linear irreversible thermodynamics predicts that heating and cooling are sym-
metric. Quantifying heating and cooling of a Langevin system in terms of an excess free
energy, it was recently found that in harmonic potentials beyond the linear regime (i.e.,
for large temperature differences) thermal relaxation becomes asymmetric and heating
towards an equilibrium state occurs faster than the corresponding cooling process [73].

On another note, there is a vast variety of non-equilibrium stochastic processes relevant to
biophysical systems beyond the Langevin dynamics in Eq. (1.3.2), e.g., active particles or
field theories [77–80]. In particular, if the unobserved degrees of freedom in the medium
do not relax on a timescale much faster than the observed motions, the system will develop
memory, i.e., the evolution at time t no longer only depends on the current state xt as in
Eq. (1.3.2), but also on preceding dynamics. A prominent example is the diffusive motion
of particles in crowded environments, such as the interior of biological cells, giving rise to
anomalous diffusion with variance(xt) ∝ tα with α > 0 where classical Brownian motion
(normal diffusion) only covers the case α = 1 [81,82].

1.10 Outline of the thesis

An overarching theme of this thesis is to address a selection of open questions through
the lens of stochastic calculus. Even though this requires some initial effort to develop
the necessary mathematical methods, we will see how it can lead to conveniently direct
rederivations of known results, and, in particular, to a variety of new results.

The thesis is organized as follows. In Ch. 2, we provide the basic background on probabil-
ity theory, stochastic calculus and stochastic thermodynamics. The following Chs. 3-6 treat
specific topics and therefore contain separate dedicated introductions, and refine the tech-
nical background developed in Ch. 2, to the respective topics. Each chapter encompasses
one or several of the publications from Refs. [83–90] reproduced from different journals.
Chapter 3 employs stochastic calculus to address the (co)variance and coarse graining of

10
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the time-integrated densities and currents introduced in Eq. (1.6.1). Based on the methods
developed in Ch. 3, we rederive and generalize the TUR (1.8.1) in Ch. 4, and discuss when
the inequality becomes saturated. The investigation of fluctuations of time-integrated ob-
servables in Chs. 3 and 4 makes up the major part of the thesis. Chapter 5 addresses
the asymmetry of heating and cooling based on the Langevin equation by providing ex-
perimental evidence for the results of Ref. [73] and generalizing the theory to relaxation
towards an NESS. Going beyond the Langevin dynamics in Eq. (1.3.2), in Ch. 6 we address
dynamics that stochastically switches between different Langevin motions, and even be-
tween motions featuring anomalous diffusions, and apply the results to particle tracking
data recorded in living cells in Ref. [91]. The thesis is completed by a conclusion, including
an outlook, in Ch. 7.
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Chapter 2

Fundamentals

Here, we lay the mathematical and physical foundation for the coming chapters. For a large
part of this chapter, we recite textbook knowledge, but selected and arranged in a way
that is most suitable for the scope of this thesis. To keep the mathematical introductions
practical and pedagogical, we state many mathematical results and concepts in weaker
or less general versions, sometimes even in a less precise version. The foundation laid in
this chapter is to be completed by more specialized technical introductions given for the
individual topics in the following chapters.

This chapter covers a selection of basic topics in probability theory and stochastic processes,
in particular the mathematical formulation of Brownian motion, i.e., the Wiener process.
We then give a practical introduction to stochastic calculus and the Fokker-Planck equation
with a focus on non-equilibrium steady states. We conclude this predominantly math-
ematical chapter by presenting the physical concept of entropy production for Langevin
dynamics.

2.1 Probability measures and integration

To properly define probability measures and integrals over random variables, we require
a brief review of measure theory and integration. Details on all mentioned facts can, e.g.,
be found in Ref. [92]. Although we will not explicitly need these technical definitions in
the later parts of the thesis, it will sometimes be helpful to be able to reduce problems
back to fundamental mathematical definitions in order to avoid confusion or mistakes. In
particular, we present a solid basis for dealing with technical details of limits and integrals
towards the end of this section, which will be used throughout the work.
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2 Fundamentals

2.1.1 Probability spaces

Here, we formally define probability measures and probability spaces. Consider a set Ω
called sample space. For rolling a dice, this would be Ω = {1, 2, 3, 4, 5, 6}. To assign
probabilities to different events, e.g., the event E = {1, 3, 5} to roll an odd number, we
define a set A containing subsets of Ω. In the example of the dice, we would include all
subsets of Ω inA, i.e., E ∈ A for all subsets E ⊂ Ω. If the set Ω is uncountably infinite, e.g.,
an interval in R, we would run into problems when assigning probabilities to all subsets of
Ω [92]. To formally define a useful set of events, we therefore define a certain class of A.
We call a set A of subsets of Ω a σ-algebra in Ω if it contains Ω, and is closed under the
formation of complements (Ec ≡ Ω\E, i.e., the set that remains if we remove all elements
of E from Ω) and countable unions, i.e.,

1. Ω ∈ A,

2. E ∈ A implies Ec ∈ A,

3. E1, E2, · · · ∈ A implies ⋃iEi ∈ A.

In probability theory, the σ-algebra is called event space. To assign probabilities to events
E ∈ A, we define a probability measure as a function P that satisfies

1. 0 ≤ P(E) ≤ 1 for all E ∈ A,

2. P(Ω) = 1, P(∅) = 0,

3. if E1, E2, · · · ∈ A is a disjoint (i.e., Ei ∩Ej = ∅ for i ̸= j) sequence of sets in A, then

P

(⋃
i

Ei

)
=
∑
i

P(Ei) . (2.1.1)

For the example of a dice, defining P({i}) = 1/6 for i = 1, 2, . . . , 6 implies via Eq. (2.1.1)
that P({1, 3, 5}) = 1/2.

A triple (Ω,A,P) of a set Ω, a sigma-algebra A in Ω, and a probability measure P on A is
called probability space.

2.1.2 Measure spaces and the Lebesgue integral

To address a slightly more general setting, we drop the condition P(E) ≤ 1 that we had for
probability measures to generally define a measure µ satisfying

14
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1. 0 ≤ µ(E) for all E ∈ A,

2. µ(∅) = 0,

3. if E1, E2, · · · ∈ A is a disjoint (i.e., Ei ∩Ej = ∅ for i ̸= j) sequence of sets in A, then

µ

(⋃
i

Ei

)
=
∑
i

µ(Ei) . (2.1.2)

A pair (Ω,A) is called measurable space and a triple (Ω,A, µ) is called measure space.

Apart from the probability spaces defined above (which are a special case of measure
spaces), for the scope of the thesis we only need a particular class of measure spaces,
namely those where Ω is an interval in R, or a product space of intervals such that Ω ⊂ Rd,
e.g., Ω = [0, 1], Ω = [0,∞), Ω = R or Ω = [0,∞)× [0,∞) ⊂ R2. In such cases, we chooseA
to be the Borel σ-algebra B(Ω), which can be defined as the smallest σ-algebra containing
all open intervals inΩ. Note that this also contains all closed sets since σ-algebras are closed
under the formation of complements (in particular, B(Ω) contains all sets {x} for x ∈ Ω).
Given two measurable spaces (Ω,A) and (Ω′,B(Ω′)) with Ω′ ⊂ Rd, we define a function
f : Ω → Ω′ to be a measurable function if the preimages of B(Ω′) are contained in A, i.e., if
f−1(E′) ∈ A for all E′ ∈ B(Ω′). If Ω ⊂ Rd with A = B(Ω), the class of measurable func-
tions is very large, e.g., it contains all pointwise limits of sequences of continuous functions,
which is why one in practice may assume all occurring functions to be measurable.

The standard measure used on B(Ω) is the Lebesgue measure λ that measures the volume
of sets in B(Ω). For Ω ⊂ R, it can be uniquely defined by requiring for intervals (a, b] that
it measures the length λ((a, b]) = b − a. In higher-dimensional space, it is defined via
the volumes of boxes, e.g., λ((a, b] × (c, d]) = (b − a)(d − c) for Ω ⊂ R2. Note that the
above definitions imply that λ((a, b)) = λ([a, b]) = b − a and λ({x}) = 0 for all x ∈ Ω,
i.e., points have Lebesgue measure 0, agreeing with the geometrical intuition of the length
of an interval. Moreover, lines have Lebesgue measure 0 in Rd for d ≥ 2 and in general,
n-dimensional surfaces have Lebesgue measure 0 in Rd for d ≥ n+ 1.

The Lebesgue measure is very useful for defining integration via measure theory, as an
alternative to the Riemann integral. In short, the Lebesgue integral over a function f is
formally defined by requiring linearity and writing f as a limit of linear combinations of
indicator functions (we use the symbol ≡ for definitions throughout this thesis),

1E(x) ≡

1 if x ∈ E

0 otherwise
, (2.1.3)
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where the integral over indicator functions is set to give ∫ 1Edλ = λ(E). In this way, the
Lebesgue integral can be defined for all positive measurable functions, and for all measur-
able functions (with arbitrary signs) as long as ∫ |f |dλ < ∞. As required for consistency,
the Riemann and the Lebesgue integral give the same result for any setting where both are
properly defined, which is why one may also write ∫ f(x)dx for ∫ fdλ.
2.1.3 Random variables and expectation values

Given a probability space (Ω,A,P) and a Borel measurable space (Rd,B(Rd)), a measurable
functionX : Ω → Rd is called random variable. For the purpose of this thesis, all considered
probability measures possess a probability density p : Rd → [0,∞) which relates the proba-
bility measure P to the Lebesgue measure λ, and thus to integrals P(E) =

∫
E p(x)dx. This

allows to define the expectation value, also called mean or average, of f(X) for any measur-
able function f : Rd → Rd′ as (in the multidimensional case, we use dx = dx1 · · · dxd′ to
denote the d′-dimensional volume integral)

⟨f(X)⟩ =
∫
Rd′

f(x)p(x)dx . (2.1.4)

Since expectation values are special cases of integrals, they are linear, i.e., for random
variables X,Y and α ∈ R we have ⟨αX + Y ⟩ = α⟨X⟩+ ⟨Y ⟩.

Apart from probability densities and measures, one may also use probability distribu-
tions defined, e.g., for d = 1 as P (x) ≡ P((−∞, x]) or, if the density exists, as P (x) ≡∫ x
−∞ p(x)dx.

2.1.4 Interchanging integrations, expectation values, limits and
derivatives

We are usually allowed to interchange the order of integrations, expectation values, limits
and derivatives. If we, e.g., consider functions f(t), f(s, t) or fn(t) depending on parame-
ters s, t ∈ Rd and n ∈ N, we usually have

lim
n→∞

∫
dsfn(s) =

∫
ds lim

n→∞
fn(s)

∂t

∫
dsf(s, t) =

∫
ds ∂tf(s, t)∫

ds

[∫
dtf(s, t)

]
=

∫
dt

[∫
dsf(s, t)

]
. (2.1.5)
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As we saw above, expectation values can be understood as integrals, see Eq. (2.1.4), such
that for random variables X the above Eq. (2.1.5) becomes

lim
n→∞

⟨Xn⟩ =
〈
lim
n→∞

Xn

〉
∂t⟨X(t)⟩ = ⟨∂tX(t)⟩〈∫
dtX(t)

〉
=

∫
dt⟨X(t)⟩ . (2.1.6)

These calculation rules, and strict conditions on when they hold, can be very well formu-
lated in terms of measure-theoretic integration.

To this end, we consider the monotone convergence theorem (MCT) [92, Theorem 16.2]
and the dominated convergence theorem [92, Theorem 16.4]. These theorems state that
limits and integrals can be interchanged (i.e., that the first lines of Eqs. (2.1.5) and (2.1.6)
hold) under the condition that fn converges to f (except possibly on sets of measure zero)
and that either 0 ≤ f1 ≤ f2 ≤ . . . (monotone convergence) or that there exists a g with∫
|g(x)|dx < ∞ and |fn| ≤ g for all n (dominated convergence), which are fairly mild

assumptions. By defining fn(s) = n[f(s, t+1/n)−f(s, t)] and using linearity of the integral,
we obtain the second lines of Eqs. (2.1.5) and (2.1.6), respectively, as a consequence of the
first lines. The third lines of Eqs. (2.1.5) and (2.1.6) hold under the related assumption
that either f(s, t) ≥ 0 (everywhere except possibly on sets of measure zero; the value ∞ is
allowed for the result of the integral) or that we have ∫ dt

∫
ds |f(s, t)| < ∞, see Fubini’s

theorem [92, Theorem 18.3].

Due to the weak assumptions under which the mentioned theorems hold, one often uses
Eqs. (2.1.5) and (2.1.6) without explicitly mentioning them. Moreover, examples where
the assumptions, and accordingly Eqs. (2.1.5) and (2.1.6), do not hold are rather intuitive.
E.g., for f(s, t) = sin(t), we have that ∫∞

0 dt
∫∞
0 ds |sin(t)| = ∞ and we cannot say that∫∞

0 dt
∫∞
0 ds sin(t) =

∫∞
0 ds

∫∞
0 dt sin(t) (actually, we cannot compute either side of the

equation).

2.1.5 A note on the delta distribution

Note that the delta distribution δ(x), defined in the sense of Schwartz distributions (i.e.,
through the action on test functions f) via ∫ f(x)δ(x)dx = f(0), is not a Lebesgue inte-
grable function. This is because δ(x) ̸= 0 holds only in the point x = 0 which has Lebesgue
measure 0, which would imply for the Lebesgue integral that ∫ δdλ = 0 if it was defined.
However, one may always view the delta distribution as a limit of integrable functions, e.g.,
δ(x) = limε→0 gε(x) for gε(x) ≡ exp(−x2/2ε2)/

√
2πε2, and then understand the integral
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as ∫ f(x)δ(x)dx =
∫
f(x) limε→0 gε(x)dx

!
= limε→0

∫
f(x)gε(x)dx. The condition that the

integral and the limit commute, as indicated in the last step, is necessary for the distribu-
tional expression to be well-defined, i.e., the left side of the equation is only defined as the
limit of the integrated expression ∫ f(x)gε(x)dx.
2.2 Probability theory based on probability densities

From now we consider the basic concepts of σ-algebra, measurability of functions and
random variables, and the existence of densities for probability measures as given. Under
these simplifying assumptions, we introduce further basic concepts of probability theory.

2.2.1 Moments and cumulants

For a random variable X with probability density function p(x)1, the information about
the distribution of X is completely contained in p(x). For example, a one-dimensional
Gaussian (also called normal or normally distributed) random variable X is specified by the
probability density

pG(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, (2.2.1)

with µ ∈ R and σ > 0. Although all information is contained in Eq. (2.2.1), it is often useful
to state this information, or parts of it, in different forms. In most practical cases, only parts
of this information are available. The arguably most important piece of information about
a random variable X is its expectation value, also called average or mean,

⟨X⟩ =
∫
xp(x)dx. (2.2.2)

In the example Eq. (2.2.1) we have ⟨X⟩ = µ. The most important expression to quantify
fluctuations around this mean value is the variance

var(X) ≡ ⟨(X − ⟨X⟩)2⟩ = ⟨X2⟩ − ⟨X⟩2 ≥ 0 . (2.2.3)

In the example of Eq. (2.2.1) we have var(X) = σ2. We define the k-th moment of X or of
p(x) as Mk ≡ ⟨Xk⟩ =

∫
xkp(x)dx for k ∈ N. If one chooses to include k = 0, the zeroth

moment ⟨1⟩ = 1 trivially reflects the normalization of p(x). The variance is an expression
1Note that x is a meaningless dummy variable here, and the notation p(x) actually refers to the

function p : Rd → R.
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of the meanM1 = ⟨X⟩, and ofM2 = ⟨X2⟩. Although the first two moments contain much
less information than p(x), they already suffice to make statements about the average of
X and fluctuations around it. For example, var(X) = 0 would imply that X = ⟨X⟩ with
probability one. Note, however, that the average value is not always the typical or most
likely value (only in special cases like Eq. (2.2.1) it is the case that p(x) peaks at x = ⟨X⟩),
such that the interpretation of fluctuations around the average is not always the correct
picture.

To obtain a more complete, but still reduced, picture of the properties ofX one can include
further moments. For example, the Gaussian example in Eq. (2.2.1) has ⟨(X − µ)4⟩/σ4 =

3. With this equation, knowledge of the first four moments of X allows to evaluate the
expression ⟨(X −M1)

4⟩/(M2 −M2
1 )

2, also known as kurtosis, and use its deviation from 3

as a measure of non-Gaussianity.

If all moments for k ∈ N of X exist (i.e., if allMk <∞) and if the series∑kMks
k/k! has a

positive radius of convergence in s, then p(x) can in theory be reconstructed from them [92,
Theorem 30.1]. A way to do understand this is via the moment generating function (also
known as characteristic function), which is defined as [92, Eq. (21.21)]2

M(s) ≡ ⟨eisX⟩ =
∫

eisxp(x)dx , (2.2.4)

where the integration runs over the range of X. We stick to one-dimensional X for now,
but the definition in Eq. (2.2.4) generalizes to multidimensional X by interpreting sX as
a scalar product of two vectors.

Taking derivatives at s = 0 shows whyM(s) is called moment generating function,(
d

ds

)k

s=0

M(s) =
〈
ikXkeisX |s=0

〉
= ikMk . (2.2.5)

If the Mk are known and the Taylor series converges, one can thus write M(s) =∑∞
k=0 i

kskMk/k! which determines M(s) uniquely in terms of the moments. From the
inverse Fourier transform, one can then (at least in theory) reconstruct p(x).

For the Gaussian example (2.2.1) the characteristic function reads

MG(s) =

∫ ∞

−∞
eisxpG(x)dx = eiµs−

1
2
σ2s2 , (2.2.6)

2For the scope of the thesis we may assume that the integral exists for all s ∈ R.
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from which one can get the moments via Eq. (2.2.5)M1 = µ,M2 = σ2+µ2 and so on. For
µ = 0, all odd moments vanish, but even moments do not.

The exponential form of Eq. (2.2.6) suggests another concept, closely related to moments,
namely the cumulants, where the k-th cumulant is defined in analogy to the moments in
Eq. (2.2.5) as

κk ≡ i−k

(
d

ds

)k

s=0

log[M(s)] . (2.2.7)

In general, the k-th cumulant is a function of the first k moments, e.g., κ1 = M1 and
κ2 = M2 −M2

1 = var(X). The Gaussian density (2.2.1) can be defined via the property
that the first two cumulants are κ1 = µ and κ2 = σ2, while all higher cumulants vanish,
i.e., κk = 0 for k ≥ 3.

2.2.2 Joint and conditional densities

We mentioned above that the information about the distribution of a random variable is
contained in the density p(x), or alternatively in the moments, cumulants or moment gen-
erating function. However, if we consider more than one random variable, e.g., X and Y ,
there may also be correlations between them which are not contained in the individual
pX(x) and pY (y). Instead, we have to consider the joint density pX,Y (x, y) that for intervals
(or in higher dimensions products of intervals) I1,2 quantifies the joint probability that X
is in I1 and Y in I2, i.e.,

P(X ∈ I1; Y ∈ I2) =

∫
I1

dx

∫
I2

dy pX,Y (x, y). (2.2.8)

Accordingly, one can also define joint expectation values. In general, pX,Y (x, y) contains
more information than pX(x) and pY (y) together. The individual densities are recov-
ered by marginalization, i.e., by integrating out the other variable as, e.g., in pX(x) =∫
dypX,Y (x, y).

Closely related is the concept of conditional probabilities. For the probability of X ∈ I1

conditioned on the event Y ∈ I2, Bayes’ theorem states that3 P(X ∈ I1|Y ∈ I2) = P(X ∈
I1; Y ∈ I2)/P(Y ∈ I2). The conditional density of X given that Y = y accordingly reads

PX|Y (x|y) ≡
pX,Y (x, y)

pY (y)
. (2.2.9)

3Technically, the first P on the right-hand side is the product measure on the product of the two
probability spaces and the second P is the probability measure on Y .
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2.2.3 Independent random variables and the convolution theo-
rem

Random variables X and Y are called independent if for all events E1 and E2 we have
P(X ∈ E1; Y ∈ E2) = P(X ∈ E1)P(Y ∈ E2). Intuitively, this means that the events
happen independently, i.e., fixing the value of X does not alter the distribution of Y and
vice versa. For independent variables, the joint density does not contain more information
than the individual densities and simply factorizes, pX,Y (x, y) = pX(x)pY (y).

More than two random variables are called independent if their joint density factorizes,
i.e., pX1,X2,X3,...(x1, x2, x3, . . . ) = pX1(x1)pX2(x2)pX3(x3) · · · .

When adding independent random variables X,Y , their densities are convoluted, i.e., the
density of X + Y reads

pX+Y (z) =

∫
dxpX,Y (x, z − x) =

∫
dxpX(x)pY (z − x) , (2.2.10)

which via the convolution theorem for Fourier transforms and the definition of the moment
generating function in Eq. (2.2.4) implies that their joint moment generating function fac-
torizes,

MX+Y (s) =MX(s)MY (s) . (2.2.11)

Applying this iteratively to several independent variables yields

M∑n
k=1 Xk

(s) =

n∏
k=1

MXk
(s) . (2.2.12)

For example, when adding two independent Gaussian random variables with density
as in Eq. (2.2.1) with means µx,y and variances σ2x,y, the moment generating functions
Eq. (2.2.6) are multiplied such that

MX+Y (s) = exp[i(µx + µy)s− (σ2x + σ2y)s
2/2] , (2.2.13)

which implies that X + Y is a Gaussian random variable with mean µx + µy and variance
σ2x + σ2y .
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2.2.4 The central limit theorem

As mentioned in the Introduction in Ch. 1, a very powerful statement about the sum of
independent random variables is the central limit theorem, which in a simple form states
the following [92, Theorem 27.1]. Consider one-dimensional random variables Xi, i ∈ N,
that are independent and identically distributed (i.e., they have the same density) with
mean µ1 and variance σ21, then4∑n

i=1Xi − nµ1
σ1

√
n

n→∞−→ N (0, 1), (2.2.14)

where N (µ, σ2) denotes the normal distribution with mean µ and variance σ2 (i.e., with
density as in Eq. (2.2.1)). Thus, the central limit theorem states that the distribution of the
sum of random variables approaches a Gaussian which is the reason why this distribution
is so universal, in particular, for the Brownian motion (see Secs. 1.1 and 1.2).

The central limit theorem can be proven in a simple way via the moment generating func-
tion M(s). For a quick sketch of this proof, consider identically distributed, independent
variables Yi with mean zero, i.e., set Yi = Xi−µ1 above, and variance σ2. Then the moment
generating function for s→ 0 reads

MYi(s) = 1− σ2

2
s2 +O(s3) . (2.2.15)

By definition of the moment generating function, see Eq. (2.2.4), we get for c ∈ R that
McYi(s) =MYi(cs), such that using Eq. (2.2.12) we have

M∑n
i=1 Yi/

√
nσ(s) =

[
1− s2

2n
+O

(
s3

n3/2

)]n
n→∞−→ e−s2/2 , (2.2.16)

where we used (1+x/n)n → ex. The obtained exponential is the moment generating func-
tion of a normal distribution of mean 0 and variance 1, see Eq. (2.2.6). According to Lévy’s
continuity theorem [92, Theorem 26.3], convergence in the moment generating function
implies convergence of the probability density of the random variable, which completes the
proof of the central limit theorem.

The central limit theorem can be generalized in several ways, allowing for non-identically
distributed random variables (see, e.g., [92, Theorem 27.2]) or for weakly correlated ran-
dom variables (see, e.g., [93, Theorem 18.1.1] and [94, Ch. 7]). Crucial, however, is the

4Technically, the convergence in Eq. (2.2.14) is in distribution, i.e., the probability distribution
of the left-hand side converges to that of a Gaussian. Note that one cannot say that the left-hand
side of Eq. (2.2.14) becomes a Gaussian random variable since, e.g., its large deviations remain
non-Gaussian, see Subsec. 3.2.3.
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assumption of a finite variance. Limit theorems for variables with infinite variances also
exist [95], however, they will no longer give Gaussian distributions and are therefore not
direct generalizations of Eq. (2.2.14).

2.3 Stochastic processes

Instead of simple random variables, we are usually interested in random processes in time,
e.g., a Brownian particle with position coordinateXt that stochastically evolves in time t ≥
0. Formally, a stochastic process in continuous time t is defined as a collection {Xt : t ≥ 0}
of random variable on a probability space (Ω,F ,P), where F is a specific time-ordered set
of σ-algebras called filtration. As in the previous section, we consider measurability and
the existence of densities to be given, such that we do not need to go into details regarding
the filtration. In analogy to the example of a Brownian particle, we often refer to Xt as the
position at time t.

The distribution of the process is often quantified in terms of the finite-dimensional distribu-
tions P[(Xt1 , . . . , Xtk) ∈ E] for some (Borel) measurable sets E ⊂ Rk and k ∈ N. Although
the finite-dimensional distributions do not specify a process uniquely (see [92, Eq. (36.1)]),
they usually contain the relevant information about the process and correlations within it.
In terms of probability densities, the finite-dimensional distributions correspond to the k-
point joint densities p(x1, t1; . . . ;xk, tk).

2.3.1 Markov processes

Most of the stochastic processes considered in this thesis belong to the class of Markov
processes, which simplifies the description of their relevant properties. A stochastic process
is called Markov process if for k ≥ 1 and 0 ≤ t1 ≤ · · · ≤ tk ≤ t, the conditional density
fulfills

p(x, t|x1, t1; . . . ;xk, tk) = p(x, t|xk, tk) . (2.3.1)

This means that for Markov processes, the time-evolution after time tk only depends on the
position at tk, and not on earlier positions.

We define a Markov process to be time homogeneous if the conditional density p(x, t|x′, t′)
only depends on the time difference t − t′, i.e., if we always have p(x, t|x′, t′) = p(x, t −
t′|x′) ≡ p(x, t − t′|x′, 0). In this case, the joint density at times 0 ≤ t1 ≤ · · · ≤ tk can be
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written in terms of the transition density p(x, t|x′) (also called Green’s function and written
as G(x, t|x′)) as [16, Eq. (2.23)]

p(x1, t1; . . . ;xk, tk) = p(x1, t1)p(x2, t2 − t1|x1) · · · p(xk, tk − tk−1|xk−1) . (2.3.2)

A central equation for Markov processes is the Chapman-Kolmogorov equation, which in
terms of the transition density for time-homogeneous Markov processes for any 0 < τ < t

reads [16, Eq. (2.26)]

p(y, t|x) =
∫
Rd

p(y, t− τ |z)p(z, τ |x)dz . (2.3.3)

This is very intuitive since it integrates over all possible intermediate points z at time τ when
going from x to y, but note that this crucially requires p(y, t|z, τ ;x, 0) = p(y, t|z, τ) which
is why it only generally holds for Markov processes. Note that while the Markov property
implies the Chapman-Kolmogorov equation, the latter does not imply for a process to be
Markovian [96, 97]. Generalizations of Eqs. (2.3.2) and (2.3.3) to Markov processes that
are not time homogeneous are immediate [16] but are not relevant to the thesis.

2.3.2 Gaussian processes

A stochastic process is called a Gaussian process if all joint densities are mulitvariate (i.e.,
multidimensional) Gaussian densities. Note that this is a stricter requirement than just
demanding that p(x, t) is a Gaussian density for all t ≥ 0. For time-homogeneous Markov
processes, according to Eq. (2.3.2) it suffices if the initial condition and the transition den-
sity are Gaussian.

2.3.3 Steady-state density and ergodic processes

For long times, many processes approach an invariant probability measure with density
called steady-state density ps. Such processes are typically5 ergodic. For our purpose, we
define that a stochastic process xt to be ergodic if a steady-state density exists and [16,
Eqs. (2.38)-(2.39)]

⟨f(xt)⟩s = lim
T→∞

1

T

∫ T

0
f(xτ )dτ , (2.3.4)

where ⟨·⟩s denotes the average over the steady-state density ⟨f(xt)⟩s ≡
∫
dx ps(x)f(x).

5Examples for non-ergodic processes with an invariant density can be constructed by introducing
time-inhomogeneous probability currents that do not alter ps.
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Note that, e.g., a Brownian motion in an infinite domain (e.g., on the real line; detailed
definition in Sec. 2.4) is not an ergodic process6 since the probability density does not
converge to a normalized density for long times (the density spreads out indefinitely such
that we would get ps(x) = 0 for all x but this is not normalizable). However, a Brownian
motion confined in a finite interval or in a sufficiently confining potential is an ergodic
process.

2.4 Mathematical definition of Brownian motion

A Brownian motion or Wiener process is a stochastic process [Wt : t ≥ 0] with the following
properties [16, Def. 1.8]

• The paths ofWt start atW0 = 0 and are continuous in t.

• The increments are independent, i.e., for t0 < t1 < · · · < tn the random variables
Wt1 −Wt0 ,Wt2 −Wt1 ,. . . ,Wtn −Wtn−1 are independent.

• For 0 ≤ s ≤ t the increment Wt − Ws is normally distributed with mean 0 and
variance t− s.

We already mentioned that |dWt/dt| diverges as dt→ 0 (see Sec. 1.3) such thatWt is with
probability one not differentiable in t. One can even show that Wt is with probability one
nowhere differentiable, i.e., for no τ with 0 < τ < t [92, Theorem 37.3].

For later use, we here mention some consequences of the definition of the independence
properties of the Brownian motion. First, note that Wt is a Markov process. Moreover,
for all f and t1 ≤ t2 ≤ t3 we have ⟨f(Wt1)(Wt3 −Wt2)⟩ = ⟨f(Wt1)⟩⟨(Wt3 −Wt2)⟩ = 0.
If we consider the process at discrete points tk ≡ k∆t with k ∈ N we have ⟨(Wtk+1

−
Wtk)(Wtk′+1

−Wtk′ )⟩ = δkk′∆t where δkk′ = 1 for k = k′ and δkk′ = 0 for k ̸= k′ is the
Kronecker delta.

A d-dimensional Brownian motion Wt = (W 1
t ,W

2
t , . . . ,W

d
t )

T is defined as a vector of d
independent one-dimensional Brownian motions.

6Some authors would call this process weakly (but not strongly) ergodic since the statistics of
xt+τ − xt does not depend on x0 as t→ ∞ [98].
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2.5 Stochastic calculus

In this section, we present the mathematical framework to correctly address the Langevin
equation. We introduce stochastic differential equations, calculation rules for stochastic
calculus, and different conventions for stochastic integration.

2.5.1 Definition of stochastic differential equations and
stochastic integration

Now that we defined Brownian motion, we turn to its generalization in terms of the
Langevin equation, see Sec. 1.2, i.e., we consider Brownian dynamics under the influence
of external forces that deterministically depend on the position xt (from now on we write
multidimensional quantities in boldface) and time t. In general, also the amplitude of the
random fluctuations may depend on xt and t. As outlined above, Brownian motion is not
differentiable, which is why we write the Langevin equation in d-dimensional space Rd in
the increment notation as [16, Eq. (3.4)]

dxt = a(xt, t)dt+ σ(t)dWt , (2.5.1)

where a and σ are (real) vector- and matrix-valued functions of xt, t, respectively. We
always assume that σ has no eigenvalues equal to 0. For now, we assume that σ does
not depend on xt. We later relax this assumption and explain all details that have to be
considered in this more general case in Subsec. 2.8. Equation (2.5.1) is called a stochastic
differential equation [14–16, 99]. From Eq. (2.5.1) we already see that xt is a Markov
process since the evolution of xt for t+ ≥ t does not depend on values xt− with t− < t.

We stressed that dWt/dt diverges. However, as dt→ 0 we also have dWt → 0 (in the sense
that P(|dWt| > ε) → 0 for any ε > 0). The completely correct way to state the dynamics
xt (which is meant by Eq. (2.5.1)) is therefore

xt = x0 +

∫ t

0
a(xτ , τ)dτ +

∫ τ=t

τ=0
σ(τ)dWτ , (2.5.2)

where we now need to specify the definition and interpretation of the stochastic integrals.
Note that throughout the thesis we write ∫ τ=t

τ=0 explicitly to show that integration runs from
τ = 0 to τ = t even though it is not a dτ -integral. A process xt that fulfills Eq. (2.5.2)
is called the strong solution of the stochastic differential equation [16, Def. 3.2], which is
known to be unique for reasonable initial conditions if a and σ do not vary too quickly (for
details see, e.g., [16, Theorem 3.1]).
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The first integral, i.e., the integral in dτ , is generally defined as a Lebesgue-Stieltjes integral
which is a slight generalization of Riemann and Lebesgue integration. For the purpose of
the thesis it suffices to think of the ordinary Riemann integral, where we discretize the time
interval into K ∈ N steps of equal size ∆t such that ∆t = ∆t(K) ≡ t/K. We then evaluate
the integrand fτ , which may generally be a random scalar-, vector-, or matrix-valued func-
tion of τ , Wτ and xτ , at discrete times tk = tk(K) ≡ k∆t(K) with k = 0, 1, . . . ,K− 1, and
define the integral as the regular Riemann integral

∫ t

0
fτdτ ≡ lim

K→∞

K−1∑
k=0

ftk(tk+1 − tk)

= lim
K→∞

∆t(K)

K−1∑
k=0

ftk . (2.5.3)

For any such function f that fulfills the very mild assumption ⟨
∫ t
0 ||fτ ||

2
2 dτ⟩ <∞, the dWτ

integral in Eq. (2.5.2) can be defined analogously as a Riemann sum [16, Eq. (3.13)] (here,
vector- or matrix-valued f are assumed to have appropriate dimensionalities)

∫ τ=t

τ=0
fτ · dWτ ≡ lim

K→∞

K−1∑
k=0

ftk · (Wtk+1
−Wtk) . (2.5.4)

This is known as the Itô stochastic integral and we will meet other, related but slightly
different, stochastic integrals in Subsec. 2.5.3. These definitions fully specify the meaning
of a solution xt in Eq. (2.5.2) of the stochastic differential equation (2.5.1).

Integration over dxt is defined as sums over dt and dWτ integrals according to Eq. (2.5.1),
i.e., dxt = a(xt, t)dt+ σ(t)dWt, as∫ τ=t

τ=0
fτ · dxτ ≡

∫ t

0
fτ · a(xτ , τ)dτ +

∫ τ=t

τ=0
fτ · σ(τ)dWτ . (2.5.5)

The stochastic integrals in Eqs. (2.5.3), (2.5.4), and (2.5.5) share most properties of stan-
dard integrals, like linearity, and that we can usually swap integrals with other integrals,
expectation values, limits, and derivatives as described in Subsec. 2.1.47.

However, the dWτ integrals in Eq. (2.5.4) and Eq. (2.5.5) have particular properties not
appearing in standard Riemann integrals that we explain in the following two subsections.

7To rigorously generalize Subsec. 2.1.4 to stochastic integration, use the stochastic dominated
converge theorem [99, Proposition 5.8]
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2.5.2 Calculation rules for Itô stochastic calculus

We here list some important calculation rules for Itô integrals that will prove useful later.

Average values of stochastic integrals

From the definition of Brownian motion, see Sec. 2.4, we see that the increments Wtk+1
−

Wtk in Eq. (2.5.4) are independent of ftk such that for ∆τ ≥ 0 always

⟨fτ · (Wτ+∆τ −Wτ )⟩ = ⟨fτ ⟩ · ⟨Wτ+∆τ −Wτ ⟩ = 0 , (2.5.6)

which gives 〈∫ t

0
fτ · dWτ

〉
= 0 . (2.5.7)

For dτ integrals over functions f(xτ ), we can write in terms of the time-dependent proba-
bility density of xτ by interchanging the expecation value and integral that (∫ dx denotes
the volume integral ∫ dx1dx2 · · · dxd)〈∫ t

0
f(xt)dτ

〉
=

∫ t

0
dτ

∫
dx f(x)p(x, t) . (2.5.8)

Calculation rules for stochastic increments

We now explain some calculation rules for the increments dt, dWt and dxt that are jus-
tifiable by rigorous arguments on the corresponding stochastic integrals with the mathe-
matical concept of quadratic variation [14,15,99], or equivalently by L2-norm limits of the
integrals, see Eq. (2.5.9) below (see also [6, Sec. 4.2.5]).

The central calculation rules for stochastic integrals in one-dimensional space read “dW 2
t =

dt” and “dW 2+N
t = 0” for N > 0 [6]. They are also written as dWt = O(

√
dt) and

dWN
t = O(dtN/2) where orders of O(dt3/2) or higher can be neglected. To make sense

of these expressions one first has to note that they are not meant literally but instead in
the sense of the corresponding stochastic integrals. The equation “dW 2

t = dt” holds true
in terms of ⟨dW 2

t ⟩ = dt (recall that dWt ≡ Wt+dt −Wt has variance dt, see Sec. 2.4) but
this does not encompass the whole meaning of the rule. The expression “dW 2

t = dt” is by
no means an equation as written since dW 2

t is a random variable and, e.g., we have for
any value of ∆t > 0 that ⟨[(Wt+∆t −Wt)

2/∆t − 1]2⟩ = 2 (this holds as a property of the
Gaussian distribution, see also [6, Sec. 4.2.5]), so dW 2

t = dt does not hold as an equality
for ∆t → dt. The actual meaning of the expressions “dW 2

t = dt” and “dW 2
t = 0” can be
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phrased in a well-defined sense as follows (where the occurring integrals are defined as
Riemann sums as in Eqs. (2.5.3) and (2.5.4), and fτ can again be a function of τ ,Wτ and
xτ ) [6, Sec. 4.2.5],

∫ τ=t

τ=0
(dWτ )

2+Nfτ =


∫ t
0 fτdτ for N = 0

0 for N > 0
. (2.5.9)

Here, equality means that the limits agree in the L2-norm, i.e., if we denote the discretized
version (see Eqs. (2.5.3) and (2.5.4)) of the integrals as I1,2(∆t) then lim∆t→0⟨[I1(∆t) −
I2(∆t)]

2⟩ = 0. The fact that orders higher than dW 2
t , i.e., higher than dt, can be neglected

corresponds to the fact that the summation in the discretized integrals contain a number
of K = t/∆t → t/dt terms, such that terms of order dt give finite results after summation
while terms of higher order vanish in the limit ∆t→ 0.

For a multidimensional Brownian motion the i-th and j-th components are independent
for i ̸= j, and the calculation rules are “dW i

t dW
j
t = δijdt”, and that products of more than

two (same or different) components of dWt always give vanishing integrals.

Itô’s isometry

What the calculation rules above do not cover are products of increments at different times,
i.e., dWt1dWt2 at t1 ̸= t2. In such a case we use Itô’s isometry [16, Eq. (3.18)], that states
in one-dimensional space for functions of ti,Wti , xti denoted by fti as above〈∫ t1=t

t1=0
ft1dWt1

∫ t2=t

t2=0
gt2dWt2

〉
=

〈∫ t

0
fτgτdτ

〉
. (2.5.10)

If the details of the xt process are known, the right-hand side can be evaluated using
Eq. (2.5.8). Equation (2.5.10) can be directly proven from the discrete-time definition
in Eq. (2.5.4) using ⟨(Wtk+1

−Wtk)(Wtk′+1
−Wtk′ )⟩ = δkk′∆t, together with the fact that

Wtmax(k,k′)+1
− Wtmax(k,k′) is independent of ftkgtk′ . Itô’s isometry can be phrased as the

calculation rule ⟨dWt1dWt2⟩ = δ(t1 − t2)dt1dt2 which has to be understood as a rule for
double integrals as in Eq. (2.5.10). This delta-correlation property of the noise increments
is also known as the white-noise property [6]. Note that unlike the calculation rules above,
this only holds on average, i.e., for mean values of such double integrals.

For double integrals involving dt1dt2 there is no such calculation rule needed as they are
already in the simplest form and expectation values of those are directly accessible if the
joint density of xt1 and xt2 at different times is known (for details see Ch. 3).
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Averages of double integrals involving dWt1dt2 are significantly more challenging, and ex-
ceed the textbook knowledge presented here. Namely, for t2 > t1 we cannot argue with
independence properties of dWt2 such that non-trivial terms remain in the integration. This
will be the main mathematical challenge addressed in Ch. 3.

Itô’s lemma

Another consequence of dW 2
t = O(dt) is a correction term to the conventional chain rule

of differentiation df(x(t))/dt = f ′(x)dx/dt. The adapted chain rule for stochastic calculus
is known as Itô’s lemma, that states for a twice-differentiable function f(Wt) with first and
second derivatives f ′ and f ′′ that [6, Sec. 4.3.3]

df(Wt) = f ′(Wt)dWt +
1

2
f ′′(Wt)dt . (2.5.11)

This can be thought of as the Taylor expansion for f(Wt + dWt) up to second order with
dW 2

t = dt. For the example f(x) = x2 with f ′(x) = 2x and f ′′(x) = 2 written out in terms
of integrals, Eq. (2.5.11) states

W 2
t −W 2

0 ≡
∫ τ=t

τ=0
d(W 2

τ ) = 2

∫ τ=t

τ=0
WτdWτ +

∫ t

0
dτ . (2.5.12)

Using that by definition W 2
0 = 0 this gives 2

∫ τ=t
τ=0 WτdWτ = W 2

t − t which agrees with
the result obtained by directly computing ∫ τ=t

τ=0 WτdWτ from the properties of Wt and the
definition of the dWτ integral in Eq. (2.5.4), see [6, Sec. 4.2.2]. Itô’s lemma generalizes to
multiple dimensions or functions of multiple components exactly according to the notion
of the Taylor series up to second order, alongside the calculation rules for increments. For
a scalar, twice differentiable function of stochastic dynamics xt specified by Eq. (2.5.1) in
d-dimensional space it therefore reads (throughout the thesis, curly brackets {· · · } denote
that derivatives only act inside the brackets, and not further to the right)

df(xt) = {∇f(xt)} · dxt +
1

2

d∑
i,j=1

{∂i∂jf(xt)}dxitdx
j
t . (2.5.13)

Using for the components of dxit =
∑

i′ σii′(t)dW
i′
t +O(dt) the calculation rule dW i

t dW
j
t =

δijdt as well as that higher orders vanish, we get dxitdx
j
t =

∑
i′,j′ σii′σjj′δi′j′dt =∑

k σikσjkdt = 2Dijdt where D(t) ≡ σ(t)σT (t)/2 is the diffusion coefficient. Using that
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we assumed D(t) to not depend on xt we can commute D through the derivatives to ob-
tain Itô’s lemma in the useful form

df(xt) = a(xt, t) · ∇f(xt)dt+∇ ·D(t)∇f(xt)dt+∇f(xt) · σ(t)dWt . (2.5.14)

2.5.3 Different conventions for stochastic integration

Although the definitions of the dWτ and dxτ integrals in Eqs. (2.5.4) and (2.5.5) are com-
pletely sufficient to introduce and define the stochastic dynamics described by the stochastic
differential equation in Eq. (2.5.1), there are also other useful definitions of stochastic in-
tegration. The alternative definitions can be traced back to dWτ being of order

√
dt such

that products of increments in integrals do not vanish.

Different conventions for dWτ integrals

We extend the definition of the dWτ integral from Eq. (2.5.4) for scalar-, vector-, or matrix-
valued functions f(Wt) to a definition depending on a parameter λ ∈ [0, 1] [16, Eq. (3.13)]

∫ t

0
f(Wτ ) · dλWτ ≡ lim

K→∞

K−1∑
k=0

f [(1− λ)Wtk + λWtk+1
] · (Wtk+1

−Wtk) . (2.5.15)

To understand this definition, think of the regular Riemann integral where this would cor-
respond to

∫ t

0
f(τ) · dλτ ≡ lim

K→∞

K−1∑
k=0

f [(1− λ)tk + λtk+1](tk+1 − tk)

= lim
K→∞

K−1∑
k=0

f [tk + λ∆t(K)]∆t(K) , (2.5.16)

i.e., λ = 0 and λ = 1 correspond to evaluating f at left and right edges of the interval,
respectively, and λ ∈ (0, 1) linearly interpolates between these8. For simplicity, we first
consider one-dimensional notation. For functions with derivative f ′, we use for ∆t → 0

that f [tk + λ∆t(K)]∆t(K) = f(tk)∆t(K) + λf ′(tk)∆t(K)2 + O(∆t(K)3). As ∆t → 0,
the summation over k in Eq. (2.5.16) only cancels an order of ∆t1 such that higher orders

8Considering the notion of evaluating f at intermediate points in the time interval, one might
be tempted to define Eq. (2.5.15) with Wtk+λ∆t instead of (1 − λ)Wtk + λWtk+1

which should
in theory give the same result. However, this alternative definition is less preferable since in both,
theory and practice (i.e., in measurements), we approach the integral by values at the discrete times
tk and Wtk+λ∆t is not included in this discrete set.
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vanish. This shows that the limit K → ∞ in Eq. (2.5.16) is independent of λ such that it
always agrees with the standard definition (λ = 0) in Eq. (2.5.3).

This is different for the dWτ integral defined in Eq. (2.5.15). The same approach here
gives, using the calculation rule dW 2

t = dt as stated in Eq. (2.5.9) (we generalize to mul-
tidimensional space below in Eqs. (2.5.20)-(2.5.22)),∫ t

0
f(Wτ )dλWτ −

∫ t

0
f(Wτ )dWτ =

∫ t

0

[
f ′(Wτ )λdW

2
τ +O(dW 3

τ )
]

= λ

∫ t

0
f ′(Wτ )dτ . (2.5.17)

Therefore, the choice of λ in Eq. (2.5.15) unlike in Eq. (2.5.16) does make a difference. The
most relevant choices are the Itô convention (λ = 0, i.e., as in Eq. (2.5.4)), the Stratonovich
convention (λ = 1/2, from now on denoted by ◦dWt), and the Klimontovich or anti-Itô
convention (λ = 1). Equation (2.5.17) shows how the different conventions for λ can be
rephrased in terms of the Itô integral, for which we can use the calculation rules of the
previous subsection.

Often, the Itô convention is most practical since dWt is independent of f(Wt), but not of
f [(1−λ)Wtk +λWtk+1

], which implies that calculation rules as ⟨∫ f(Wt)dWt⟩ = 0 and Itô’s
isometry in Eq. (2.5.10) only hold for the Itô convention. At the same time, the Stratonovich
convention λ = 1/2 has the advantage that it behaves more natural under time-reversal,
since applying the definition in Eq. (2.5.15) backwards maps λ to 1−λ. Most importantly,
the Stratonovich convention has the advantage that the stochastic chain rule, i.e., Itô’s
lemma df(Wt) = f ′(Wt)dWt+

1
2f

′′(Wt)dt in Eq. (2.5.11), according to Eq. (2.5.17) applied
to f ′ simplifies to

df(Wt) = f ′(Wt) ◦ dWt . (2.5.18)

In other words, the Stratonovich integral fulfills the fundamental theorem of calculus∫ τ=t
τ=0 f

′(Wτ ) ◦ dWτ = f(Wt)− f(W0).

Revisiting the example in Eq. (2.5.12) with the Stratonovich chain rule Eq. (2.5.18) for
f(x) = x2, we obtain that

2

∫ τ=t

τ=0
Wτ ◦ dWτ =W 2

t −W 2
0 . (2.5.19)

The equivalence to the Itô result in Eq. (2.5.12) is given by Eq. (2.5.17) with λ = 1/2

since ∫ τ=t
τ=0 Wτ ◦dWτ =

∫ τ=t
τ=0 WτdWτ +

∫ t
0 dτ/2. Note that, on the one hand, Eq. (2.5.19) is
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simplified compared to the Itô result in Eq. (2.5.12), but, on the other hand, ⟨∫ t
0 WτdWτ ⟩ =

0 is simpler than the non-trivial ⟨∫ t
0 Wτ ◦ dWτ ⟩ = t/2 ̸= 0.

The above calculation rules directly generalize to multidimensional space, i.e.,∫ t

0
f(Wτ )dλWτ −

∫ t

0
f(Wτ )dWτ = λ

∫ t

0
∇f(Wτ )dτ , (2.5.20)

and for d-dimensional vector-valued f ,∫ t

0
f(Wτ ) · dλWτ −

∫ t

0
f(Wτ ) · dWτ = λ

∫ t

0
∇ · f(Wτ )dτ . (2.5.21)

Moreover, we have for the Stratonovich integral with scalar product denoted by “· ◦ dWt”
that

df(Wt) = ∇f(Wt) · ◦dWt . (2.5.22)

Different conventions for dxt integrals

The conventions for dWτ integrals directly translate to functions of xτ and dxτ integrals
for dxt = a(xt, t)dt + σ(t)dWt as in Eq. (2.5.1), since the convention can be computed
as above for the dWτ integral and does not alter the dτ integral as in Eq. (2.5.16). Using
dxt = σ(t)dWt + O(dt) and for the i, j-th components the calculation rule “dW i

t dW
j
t =

δijdt”, we compute in analogy to above∫ τ=t

τ=0
f(xτ )dλWτ −

∫ τ=t

τ=0
f(xτ )dWτ = λ

∫ t

0
[∇f(xτ ) · dxτ ] dWτ

= λ

∫ t

0
[∇f(xτ ) · σ(τ)dWτ ] dWτ

= λ

∫ t

0
σT (τ)∇f(xτ )dτ . (2.5.23)

For dxt integrals, we use that “dW i
t dW

j
t = δijdt” gives [∇f ·σdWτ ]σdWτ = σdWτ [dWτ ·

σT∇f ] = σσT∇f = 2D∇f to obtain∫ τ=t

τ=0
f(xτ )dλxτ −

∫ τ=t

τ=0
f(xτ )dxτ = λ

∫ t

0
[∇f(xτ ) · dxτ ] dxτ

= λ

∫ t

0
[∇f(xτ ) · σ(τ)dWτ ]σ(τ)dWτ

= 2λ

∫ t

0
dτD(τ)∇f(xτ ) . (2.5.24)
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For vector-valued functions we obtain (where ei denotes the i-th unit vector)
∫ τ=t

τ=0
f(xτ ) · dλxτ −

∫ τ=t

τ=0
f(xτ ) · dxτ = λ

d∑
i=1

∫ t

0
[∇fi(xτ ) · dxτ ] dx

i
τei

= λ
d∑

i,j,k,l=1

∫ t

0
∂jfi(xτ )σjk(τ)dW

k
τ σil(τ)dW

l
τei

= λ
d∑

i,j,k=1

∫ t

0
dτ∂jfi(xτ )σjk(τ)σik(τ)ei

= 2λ

∫ t

0
∇ ·D(τ)f(xτ ) . (2.5.25)

The Stratonovich correction term cancels the second order term in Itô’s lemma also for dxt

integrals, such that the Stratonovich chain rule generalizes as [16]

df(xt) = ∇f(xt) · ◦dxt . (2.5.26)

2.5.4 On different notations and approaches

To conclude this section on stochastic calculus, we briefly mention a different, commonly
used notation. Often, the random part in the Langevin equation, denoted by dWt here, is
written as ξ(t)dt, where ξ(t) is the white noise dWt/dt. With this, the Langevin equation
(2.5.1) can be written as ẋ(t) = a[(x(t), t)] + σ(t)ξ(t). As mentioned in Sec. 1.2 and
Subsec. 2.5.1, this notation is mathematically misleading since ξ(t) = dWt/dt formally
diverges as9 dt → 0. However, the notation with ξ(t) is not per se wrong since it generally
should be understood in the sense of dWt in Eq. (2.5.1), or even more precisely in the
integrated sense as in Eq. (2.5.2).

To give a concrete example where ambiguities due to sloppy notation might occur, con-
sider the simple case of a one-dimensional Brownian motion in the notation ẋ(t) = ξ(t)

with the white noise property ⟨ξ(t)ξ(τ)⟩ = δ(t − τ), see Sec. 1.2, i.e., in this exam-
ple ⟨ẋ(t)ẋ(τ)⟩ = δ(t − τ). To be able to apply the standard chain rule in Eq. (2.5.26)
one often interprets integrals written as ∫ t

0 f [x(τ)]ẋ(τ)dτ in the Stratonovich sense (al-
though the clarified notation ∫ t

0 f [x(τ)] ◦ ẋ(τ)dτ is also used). However, when writing
⟨
∫ t
0 f1[x(τ)]ẋ(τ)dτ

∫ t
0 f2[x(τ

′)]ẋ(τ ′)dτ ′⟩ =
∫ t
0 f1[x(τ)]f2[x(τ)]dτ using independence prop-

erties and ⟨ξ(t)ξ(τ)⟩ = δ(t − τ) for the Brownian motion, one necessarily has to interpret
the stochastic integrals in the Itô sense.

9In particular, one should rather refrain from plotting ξ(t) (or only with explicitly stating its
dependence on dt > 0) since doing so misleadingly suggests that it exists.
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On another note, in writing a formal expression for the path probability density of
Langevin trajectories one often encounters the notation ẋ(t) that denotes the derivative
of a non-differentiable path. E.g., for one-dimensional Brownian motion with constant
drift, ẋ(t) = b + ξ(t), the Freidlin-Wentzell or Onsager-Machlup path measure is often writ-
ten as P([x(τ)]0≤τ≤t) ∝ exp(−

∫ t
0 [ẋ(τ) − b]2dτ/4). Since |dxt/dt| diverges as dt → 0 this

expression either has to be understood in discretized time, or as a means to evaluate the
probability that the trajectory tightly follows a smooth path [y(τ)]0≤τ≤t where ẋ(τ) is sub-
stituted by the (actually existing) derivative ẏ(τ), see [14, Theorem 9.1]. From logarithms
of ratios of the path measure one may also arrive at ẋ(τ)dτ integrals where it is not a priori
clear whether these should be interpreted in the Stratonovich sense (as consistent with the
approximation by ẏ(τ)dτ and required to compute the total entropy production from the
path measure [54, Eq. (14)], see also [59]) or Itô sense (as required, e.g., for the derivation
of the thermodynamic uncertainty relation via the Cramér-Rao inequality in Ref. [70]).

Although these are by no means unresolvable issues, they should highlight that the stochas-
tic calculus approach emphasized in this thesis, in particular, bypassing ẋ and the path
measure, represents a direct route to avoid confusions in this mathematically challenging
field.

2.6 The Fokker-Planck equation

So far, we described the stochastic dynamics of individual paths in terms of the Langevin
equation (2.5.1). Alternatively, one can describe the stochastic properties and the time-
evolution of the dynamics in terms of the evolution of the probability density function
p(x, t) over an ensemble of paths. In this section, the equation governing the time evolution
∂tp(x, t) is derived, and selected properties of this equation are discussed.

2.6.1 Derivation of the Fokker-Planck equation

Starting from the Langevin dynamics in Eq. (2.5.1), we derive the Fokker-Planck equation
for the time evolution of the probability density p(x, t) using the calculation rules presented
above (see also [6, Sec. 4.3.4]). Even though there are different ways to derive this equation
(e.g., the Kramers-Moyal expansion [6]), we prefer the derivation from the Langevin equa-
tion to highlight that all information on the stochastic dynamics is contained in Eq. (2.5.1).
Moreover, this derivation is very simple and direct if the methods developed in the previous
section are known.
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Consider a twice-differentiable test function f that obeys the appropriate boundary condi-
tions (i.e., vanishes at the boundaries for infinite space and is periodic for periodic boundary
conditions). We can write the time evolution of an expectation value as (see Subsec. 2.1.4
for interchanging derivative and integral)

d

dt
⟨f(xt)⟩ =

d

dt

∫
dxf(x)p(x, t) =

∫
dxf(x)∂tp(x, t) . (2.6.1)

Alternatively, we may also swap derivative and expectation value (see Subsec. 2.1.4) and
use Itô’s lemma in the form Eq. (2.5.14), and ⟨g(xτ )dWτ ⟩ = 0, see Eq. (2.5.6), to obtain

d

dt
⟨f(xt)⟩ =

〈
df(xt)

dt

〉
= ⟨a(xt, t) · ∇f(xt) +∇ ·D(t)∇f(xt)⟩

=

∫
dxp(x, t) [a(x, t) · ∇f(x) +∇ ·D(t)∇f(x)] . (2.6.2)

Integrating by parts, using DT ≡ (σσT /2)T = D and that f obeys appropriate boundary
conditions, gives (note that derivatives are always, except in curly brackets (e.g., {∂xf(x)}),
understood to act all the way to the right, i.e., −∇ acts on a(x, t) and p(x, t))

d

dt
⟨f(xt)⟩ =

∫
dxf(x) [−∇ · a(x, t) +∇ ·D(t)∇] p(x, t) . (2.6.3)

Since Eqs. (2.6.1) and (2.6.3) agree for all admissible choices of f , we conclude the Fokker-
Planck equation [6,17]

∂tp(x, t) = −∇ · a(x, t)p(x, t) +∇ ·D(t)∇p(x, t) . (2.6.4)

Note that this equation only depends on p(x, t) and not, e.g., on p(x, τ) for τ < t. This
shows again that the considered dynamics xt is a Markov process, such that the theory
developed in Subsec. 2.3.1, e.g., the Chapman-Kolmogorov equation (2.3.3), applies to
p(x, t) obtained from Eq. (2.6.4).

For later use, we define based on Eq. (2.6.4) the Fokker-Planck operator L̂(x, t), its adjoint
operator L̂†(x, t) (also called generator of theMarkov process [16, Sec. 2.3]), the probability
density current or probability current density j(x, t), and the Fokker-Planck equation in the
divergence form ∂tp(x, t) = −∇ · j(x, t) as

∂tp(x, t) = L̂(x, t)p(x, t)

L̂(x, t) ≡ −∇ · a(x, t) +∇ ·D(t)∇
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L̂†(x, t) ≡ a(x, t) · ∇+∇ ·D(t)∇

j(x, t) ≡ [a(x, t)−D(t)]p(x, t)

∂tp(x, t) = −∇ · j(x, t) . (2.6.5)

Since L̂(x, t) is independent of x0, the Fokker-Planck equation equally applies to the tran-
sition density, i.e.,

∂tp(x, t|x0) = L̂(x, t)p(x, t|x0) . (2.6.6)

In the absence of a drift term, i.e., for a(x, t) = 0, the Fokker-Planck equation simplifies to
the diffusion equation ∂tp(x, t) = ∇ ·D(t)∇p(x, t).

Often, we consider the time-homogeneous case, where a and D do not explicitly depend
on time t. There, p(x, t) will generally depend on time but L̂(x, t) = L̂(x) is time homo-
geneous, and, by solving ∂tp(x, t) = L̂(x)p(x, t) for p(x, 0|x0) = δ(x − x0), the transition
function p(x, t|x0) can be formally expressed as

eL̂(x)tδ(x− x0) = p(x, t|x0) . (2.6.7)

The time-evolution operator or propagator eL̂(x)t is said to propagate the final state x. By
repeatedly using ∂xiδ(x−x0) = −∂xi

0
δ(x−x0), Eq. (2.6.7) implies that the adjoint operator

L̂†(x0), see Eq. (2.6.5), propagates initial condition x0, i.e.,

eL̂
†(x0)tδ(x− x0) = p(x, t|x0) . (2.6.8)

2.6.2 Average values of Stratonovich dxτ integrals

We stated calculation rules for average values of stochastic integrals in Eqs. (2.5.7) and
(2.5.8). Based on these equations, we can state another useful expression in terms of
the probability density current j(x, t) defined based on the Fokker-Planck equation in
Eq. (2.6.5) as follows. From the Stratonovich correction term in Eq. (2.5.24) and an inte-
gration by parts using DT = D we that〈∫ τ=t

τ=0
f(xτ , τ) ◦ dxτ

〉
=

〈∫ τ=t

τ=0
f(xτ , τ)dxτ +

∫ t

0
dτD(τ)∇f(xτ , τ)

〉
=

∫
dx

∫ t

0
dτf(x, τ) [a(x, τ)−D(τ)∇] p(x, τ)

=

∫
dx

∫ t

0
dτf(xτ , τ)j(x, τ) , (2.6.9)
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and equivalently using Eq. (2.5.25) for vector-valued f that〈∫ τ=t

τ=0
f(xτ , τ) · ◦dxτ

〉
=

∫
dx

∫ t

0
dτ f(x, τ) · j(x, τ) . (2.6.10)

These equations show that the average values of Stratonovich displacements ◦dxτ for
Langevin dynamics are described by the current j(x, t) in the Fokker-Planck equation.

2.7 Equilibrium and non-equilibrium steady states
As sketched in Sec. 1.4, a particularly interesting class of Langevin dynamics are steady-
state dynamics, emerging for confined Langevin motion dxt = a(xt)dt+σdWt with time-
homogeneous drift and diffusion coefficients. Such processes approach an invariant density
ps(x) and are ergodic, see Subsec. 2.3.3.

2.7.1 Equilibrium steady states

First, we introduce equilibrium steady states and some important properties. Afterwards,
we turn to the non-equilibrium case.

Equilibrium Boltzmann-Gibbs density

In the simplest case, consider the drift a(x) to arise from a potential ϕ(x)10, such that the
force −∇ϕ(x) translates via the inverse mobility with Einstein relation γ−1 = D/kBT , see
Eq. (1.3.2), to a drift a(x) = −D∇ϕ(x)/kBT . The Fokker-Planck equation (2.6.5) for this
motion reads

∂tp(x, t) = L̂(x)p(x, t) = −∇ · j(x, t)

j(x, t) = −D [{∇ϕ(x)}/kBT +∇] p(x, t) , (2.7.1)

where curly brackets denote that the derivative only acts on U . From Eq. (2.7.1), we see
that j(x) = 0 if, and only if, p(x) ∝ exp[−ϕ(x)/kBT ]. Therefore, the normalized density
ps(x) obeys

Z ≡
∫

dx′ exp[−ϕ(x′)/kBT ]

ps(x) ≡ Z−1 exp[−ϕ(x)/kBT ] , (2.7.2)
10One may think here of a potential energy. If entropic effects from hidden dimensions (i.e.,

degeneracy of states) play into ϕ(x), one should more precisely think of a potential of free energy.
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and we have {L̂(x)ps(x)} = 0, such that according to the Fokker-Planck equation
∂tp(x, t) = L̂(x)p(x, t) it is invariant in time, i.e., eL̂(x)tps(x) = ps(x). Then, for any initial
condition p(x, 0), one obtains limt→∞ p(x, t) = ps(x) [6]. For p(x, 0) = ps(x) the system is
in the steady state at all times t ≥ 0.

The density ps(x) is called steady-state density or Boltzmann-Gibbs density, since it has
the familiar form ∝ exp[−ϕ(x)/kBT ] [6]. In the scenario considered here, it is even the
equilibrium density, since setting p(x, t) = ps(x) in Eq. (2.7.1) gives j = 0, and steady states
with j = 0 are in equilibrium (we will see in Sec. 2.9 that the entropy production vanishes
for j = 0) [6].

Einstein relation from Boltzmann density

If one would not assume the Einstein relation, Eq. (2.7.1) in one-dimensional notation
would read j(x, t) = −D[(Dγ)−1{∂xϕ(x)}p(x, t) + ∂x]p(x, t), which would require ps(x) ∝
exp[−ϕ(x)/Dγ] to have j = 0. Thus, if it is given that ps(x) ∝ exp[−ϕ(x)/kBT ], e.g., from
the concept of free energy minimization, see Subsec. 5.2.1, one can deduce the Einstein
relation Dγ = kBT from the given ps.

Rewriting the Fokker-Planck operator

For Langevin systems that approach equilibrium, the Fokker-Planck equation as in
Eq. (2.7.1) can, using ps(x) as in Eq. (2.7.2), be rewritten as (see Subsec. 3.5.3 or [16,
Eq. (4.99)])

L̂(x)ps(x) = ∇x · ps(x)D(x)∇x . (2.7.3)

Rewritten in this form, it becomes directly apparent that L̂(x)ps(x) = [L̂(x)ps(x)]
†.

Equivalently to Eq. (2.7.3) we may also write

L̂ ≡ p−1/2
s (x)L̂(x)p1/2s (x) = p−1/2

s (x)∇x · ps(x)D(x)∇xp
−1/2
s (x) , (2.7.4)

which shows that the Fokker-Planck operator L(x) can be brought into a self-adjoint form
L̂ = L̂†, which is important for the spectral properties of the Fokker-Planck equation. In
particular, this implies that L̂(x) is diagonalizable with real eigenvalues and eigenfunctions.
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Time-reversal symmetry and detailed balance condition for the conditional
density

Using that Eq. (2.7.3) implies L̂(x)ps(x) = [L̂(x)ps(x)]
†, which in turn implies ps(x)eL̂†t =

eL̂tps(x), we can use Eqs. (2.6.7) and (2.6.8) to obtain (see Subsec. 3.5.3 for details)

p(x, t|y)ps(y) = p(y, t|x)ps(x) . (2.7.5)

This strong symmetry of the transition and steady-state densities is known as the detailed
balance condition for conditional densities [6, Sec. 5.3.4]. Since this is a defining charac-
teristic of equilibrium dynamics, the terms detailed balance and equilibrium are often used
interchangeably. We moreover call dynamics obeying Eq. (2.7.5) reversible dynamics or
reversible systems, also for times before equilibrium is approached.

For steady-state initial conditions, p(x, 0) = ps(x), Eq. (2.7.5) implies for two-point (joint)
densities that p(x, t + ∆t;y, t) = p(x, t;y, t + ∆t). Since steady-state dynamics are time-
translation invariant [16], this also implies p(x, t+∆t;y, t) = p(x, t−∆t;y, t), which in turn
implies that correlation functions are symmetric forward and backwards in time. Repeating
the argument for n-point densities for n→ ∞11 shows that the process is symmetric under
time reversal, i.e., that forward and backwards probabilities of paths of length t agree for
equilibrium dynamics, i.e., P[(xτ )0≤τ≤t] = P[(xt−τ )0≤τ≤t]. This symmetry reflects that in
equilibrium there is no arrow of time, as dynamics forward and backwards in time cannot
be distinguished. If this symmetry is broken, the forward dynamics will be characterized
by a strictly positive entropy production, distinguishing it from the backwards dynamics.

2.7.2 Non-equilibrium steady states

We now introduce the case of non-equilibrium steady states (NESS). Deeper theory on
NESS will be developed in later chapters, in particular in Secs. 3.5 and 5.5.

Steady-state currents

If the dynamics is confined in a potential or finite space, but the drift is not solely due to
the potential (as it was for equilibrium states, see Eq. (2.7.1)) the dynamics will approach
an NESS [6,16] with invariant density ps(x) that will not be in equilibrium. That is, there

11The limit n → ∞ is mathematically not trivial to take. For a more rigorous approach to time
reversal, see, e.g., Ref. [100].
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will be a non-zero steady-state current (non-zero for some x, not necessarily for all x; for
equilibrium steady states js(x) = 0 for all x)

js(x) ≡ [a(x)−D∇] ps(x) ̸= 0 . (2.7.6)

This reflects that even in the steady state, there is a flow of probability and the detailed
balance condition (2.7.5) and time-reversal symmetry are broken, and entropy is produced
as we will see in Sec. 2.9.

Since the steady-state density still fulfills {L̂(x)ps(x) = 0} for all x (otherwise it would
not be invariant, see Eq. (2.6.5)), the divergence form of the Fokker-Planck equation in
Eq. (2.6.5) implies for all x

∇ · js(x) = 0 , (2.7.7)

i.e., the steady-state current is divergence free (or incompressible).

Physical interpretation of the invariant density

In equilibrium, we wrote the Boltzmann-Gibbs equilibrium density ps(x) ∝
exp[−ϕ(x)/kBT ] in Eq. (2.7.2). For non-equilibrium steady states, ps(x) might still
be of this form, e.g., for dynamics that are driven out of equilibrium by imposing a current
js(x) that leaves ps(x) invariant (as for the examples that will be considered in Secs. 3.4
and 3.5). However, in general, a drift that forces the system to depart from equilibrium
will also alter ps(x), i.e., it will cause the system to settle into a steady state with another
density pdrivens (x) ̸= pequilibriums (x). Thus, in the general case, the interpretation of
ps(x) ∝ exp[−ϕ(x)/kBT ] with a potential ϕ(x) is lost.

Even though the physical interpretation is not as direct as in the equilibrium case, we will
nevertheless write ps(x) ∝ exp[−ϕ(x)/kBT ] also for NESS, but we should be aware that
ϕ(x) is no longer the potential energy function. Instead, we simply consider ϕ(x) to be an
effective potential, i.e., we define ϕ(x) ≡ −kBT ln ps(x).
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Decomposed Langevin equation for NESS

In terms of ps(x) and js(x), the drift term a(x) in the Langevin equation dxt = a(xt)dt +

σdWt and in the corresponding Fokker-Planck equation (2.6.4) can be decomposed into
reversible and irreversible components12 as (for details see Sec. 3.5 and [6,16])

a(x) = arev(x) + airr(x)

arev(x) = D∇ ln ps(x)

airr(x) = js(x)/ps(x) . (2.7.8)

Note that even though it is easy to verify this decomposition, there is no general way to
obtain this decomposition for a given drift field a(x) where ps(x) is not known [101].

One can, however, use this decomposition to construct different NESS corresponding with
the same ps(x). For a given diffusion matrix, one obtains all such possible NESS by setting
airr(x) = A(x)∇ ln ps(x) + ∇ · A(x) for any asymmetric matrix-valued function A(x) =

−AT (x) [101]. We will use this construction and choose a constantA(x) = A in Secs. 3.5
and 5.5.

Further properties of NESS

We will discuss more properties of non-equilibrium steady-states in the following chapters,
especially in Secs. 3.5 and 5.5. In particular, in Subsec. 3.5.3 wewill generalize the symmet-
ric form of the Fokker-Planck operator in Eq. (2.7.3) to NESS and present a generalization
of the time-reversal symmetry and detailed balance condition (2.7.5).

2.7.3 Langevin motion in harmonic potentials

A standard example for steady-state dynamics is Langevin motion in a harmonic potential
ϕ(x) = kBTx

TAsymx/2Dwith a symmetric, positive definite matrixAsym. The equilibrium
dynamics in this potential with constant, isotropic diffusion coefficientD(x, t) = D1 reads

dxt = −D∇ϕ(xt)dt/kBT +
√
2DdWt

= −Asymxtdt+
√
2DdWt . (2.7.9)

12The names reversible and irreversible reflect that the system without the irreversible component
would settle into equilibrium, see Eq. (2.7.1)
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To address more general motion in harmonic potentials, consider

dxt = −Axtdt+ σdWt , (2.7.10)

for any constant matricesA and σ where eigenvalues ofA have positive real parts (reflect-
ing the confining potential) and eigenvalues of σ are non-zero (note that the matrices do
not have to be diagonalizable, see Sec. 5.5). Compared to Eq. (2.7.9) this is a significant
generalization since it allows to study NESS, i.e., systems with non-zero entropy production
and broken time-reversal symmetry in the steady state.

The dynamics specified in Eqs. (2.7.9) and (2.7.10) is also known as theOrnstein-Uhlenbeck
process [102] or linear diffusion as the drift term is linear in xt. Writing Eq. (2.7.10) as
x(n+1)dt = (1−A)xndtdt+σdWndt, we see from the independence property and Gaussian
distribution of dWndt that, if xndt is Gaussian, then also x(n+1)dt is Gaussian as it is the sum
of two independent Gaussians, see Eq. (2.2.13). Therefore, whenever p(x, 0) is Gaussian,
p(x, t) will be a Gaussian density for all t. Due to the time-homogeneity of the process this
suffices to conclude that for any Gaussian initial condition x0 (or any initial condition that
is localized in a point), the process xt is a Gaussian process, see Subsec. 2.3.2.

For a Gaussian initial condition, solving for the time-dependent density p(x, t) therefore
reduces to computing the first two cumulants which specify the Gaussian density, see
Eq. (2.2.6). Following the stochastic-calculus approach developed above, we compute the
cumulant as follows (for details see Subsecs. 5.5.8 and 6.3.5). Note for the first cumulant
that taking the mean value gives d⟨xt⟩ = −A⟨xt⟩dt, which implies ⟨xt⟩ = e−At⟨x0⟩. For
the second cumulant, the covariance matrix Σ(t) ≡ ⟨xtx

T
t ⟩− ⟨xt⟩⟨xT

t ⟩, we use Itô’s lemma
(2.5.14) to obtain d

dt⟨xtx
T
t ⟩ = −A⟨xtx

T
t ⟩ − ⟨xtx

T
t ⟩AT + 2D which in turn gives

d

dt
Σ(t) = −AΣ(t)−Σ(t)AT + 2D . (2.7.11)

This is known as the a differential Lyapunov equation. In a confining potential, Σ(t) will
approach a steady-state covariance Σs for long times, for which Eq. (2.7.11) implies the
Lyapunov equation

AΣs +ΣsA
T = 2D . (2.7.12)

If thisΣs is given, then for an initial covarianceΣ(0), Eq. (2.7.11) is solved as (easily shown
by plugging Eq. (2.7.13) into Eq. (2.7.11), see Subsec. 5.5.8)

Σ(t) = Σs + e−At [Σ(0)−Σs] e
−AT t . (2.7.13)
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We can write the density p(x, t) and the transition density p(x, t|x0) as the respective mul-
tivariate Gaussian densities with mean and covariance given by ⟨xt⟩ = e−At⟨x0⟩ and Σ(t)

as in Eq. (2.7.13). These expressions will allow for several explicit calculations in the fol-
lowing chapters.

2.8 Multiplicative noise

Recall that in the simple case of a spherical Brownian particle in a medium at a constant
temperature, one expects the diffusion matrix to be isotropic and constant in space and
time, i.e., D(x, t) = D1, where 1 is the d-dimensional unit matrix, and in terms of the
friction constant γ, we have the Einstein relation D = kBT/γ, see Eq. (1.3.2). However,
since the components of the vector xt may generally describe arbitrary degrees of freedom,
the isotropy of D (i.e., D(x, t) = D(x, t)1) is not a general feature and not part of the
assumptions that we will make.

Space- or time-dependent diffusion could, e.g., reflect that the temperature or viscosity of
the medium is not constant in space or time. Moreover, space-dependent noise can occur
due to non-linear coordinate transformations [17], or due to the adiabatic elimination of
hidden degrees of freedom [103]. We will often assume that D(x, t) = D, or equivalently
σ(x, t) = σ, but for the sake of generality we will state the results in Chs. 3 and 4 also for
general D(x, t) (retaining, however, the condition that σ is a real matrix with eigenvalues
unequal to zero which implies thatD = σσT /2 is always positive definite and symmetric).

For simplicity, the results in the previous sections were stated for space-independent dif-
fusion matrices D(t), also called additive noise. In this section we generalize the previous
statements to multiplicative noise, i.e., to noise amplitudes σ(x, t) and diffusion matrices
D(x, t) that have explicit x-dependence.

There are two complications that appear for multiplicative noise. First, since ∇ · D(x, t)

no longer vanishes, we cannot commute derivatives and D, such that the Fokker-Planck
equation (2.6.4) slightly changes. Second, since∇·σ(x, t) no longer vanishes, the Langevin
equation gives rise to different dynamics depending on the interpretation of the noise term
σdλWt.
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2.8.1 Conditions for Boltzmann equilibrium and detailed bal-
ance

We first consider the adapted Fokker-Planck equation, for now starting from the Langevin
equation dxt = a(xt, t)dt+σ(xt, t)dWt interpreted with the Itô convention. Repeating the
derivation of the Fokker-Planck equation (2.6.4) would give a Fokker-Planck operator

L̂Itô(x, t) = −∇ · a(x, t) +
d∑

i,j=1

∂i∂jDij(x, t)

= −∇ · [a(x, t)− {∇ ·D(x, t)}] +∇ ·D(x, t)∇ . (2.8.1)

For the physical concepts concerning the Boltzmann equilibrium (see Eqs. (2.7.1) and
(2.7.2)) and the mean values of displacements in terms of the probability current (see
Eq. (2.6.9) and (2.6.10)) to be valid, we require that the Fokker-Planck operator in the
multidimensional case is still of the form −∇ · a(x, t) +∇ ·D(x, t)∇ as for additive noise,
see Eq. (2.6.5), where a(x, t) is the drift resulting from external forces. Even beyond the
properties so far, it is known that the Fokker-Planck equation is required to be of this desired
form, see, e.g., Ref. [17, Eq. (6.96)].

From Eq. (2.8.1) we see that a general way to achieve this is to postulate that for multit-
plicative noise, the Langevin equation with the Itô interpretation has to be written as (see,
e.g., [60, Eq. (5.2)] and [104])

dxt = a(xt, t)dt+∇ ·D(x, t)dt+ σ(xt, t)dWt , (2.8.2)

i.e., there is an extra drift term emerging for multiplicative noise that ensures

L̂(x, t) = −∇ · a(x, t) +∇ ·D(x, t)∇ . (2.8.3)

The disadvantage of this simple remedy is that the physical interpretation of this drift is
not clear since it is only justifiable a posteriori, i.e., it is necessary for the correct physical
results, but its microscopic origin is not obvious.

2.8.2 Anti-Itô interpretation of the Langevin equation

An approach to explain the extra drift term in Eq. (2.8.2) for certain cases is interpreting
the Langevin equation with a convention λ ̸= 0,

dxt = a(xt, t)dt+ σ(xt, t)dλWt . (2.8.4)
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Following the same calculation as for Eq. (2.5.25) but for a matrix-valued function we can
rewrite the dλWt expression in Eq. (2.8.4) in terms of an Itô increment (λ = 0) as [16,
Eq. (3.31)]

dxt = [a(xt, t) + λh(xt, t)]dt+ σ(xt, t)dWt

h(x, t) = 2∇ ·D(x, t)− σ(x, t)
[
∇ · σT (x, t)

]
, (2.8.5)

where the divergence of a matrix is (∇ · A)i ≡
∑d

k=1
∂Aik
∂xk

, and as always D ≡ σσT /2.
Hence, the dynamics for different conventions differ by a correction in the drift term. Com-
paring Eq. (2.8.5) to the desired form in Eq. (2.8.2) we see that this form is obtained
whenever λh(x, t) = ∇ ·D(x, t).

For one-dimensional dynamics we have ∂xD(x, t) = ∂x[σ
2(x, t)/2] = σ(x, t)∂xσ(x, t) such

that h(x, t) = ∂xD(x, t). This means that for multiplicative noise in one-dimensional space
the Klimontovich or anti-Itô interpretation λ = 1 always gives rise to the desired dynamics
in Eqs. (2.8.2) and (2.8.3).

For λ = 1 in multidimensional space we need the further condition that

∇ ·D(x, t)
!
= σ(x, t)

[
∇ · σT (x, t)

]
, (2.8.6)

which does not hold in general. Whenever this condition holds, the correct multidimen-
sional Langevin dynamics for multiplicative noise are obtained from the Klimontovich or
anti-Itô interpretation. For examples where this condition does not hold, one should start
from the postulated dynamics in Eq. (2.8.2) instead. From a microscopic point of view, this
remains an open question.

2.9 Stochastic entropy

2.9.1 Definitions

We introduced the framework of stochastic thermodynamics in Sec. 1.7. For the scope of
the thesis the most important concept from this framework is the entropy production, in
particular the total entropy ∆Stot([0, t]) ≥ 0 that is produced in the time interval [0, t], see
Sec. 1.7.

For the Langevin dynamics dxt = a(xt, t)dt + σdWt (for multiplicative noise, see, e.g.,
Ref. [105]) with Einstein relation kBTγ−1 = D ≡ σσT /2 and external force F(x, t) =

γa(x, t) = kBTD
−1a(x, t) (see Eq. (1.3.2)), a stochastic entropy production in [0, t] can be
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assigned to individual trajectories (xτ )0≤τ≤t as follows [28,54]. First, consider the entropy
production connected to the probability density p(x, τ) of the system. The expected (i.e.,
average) entropy production in the system described by a difference of the familiar Gibbs-
Shannon entropies of initial and final states,

∆Ssys([0, t]) ≡ −kB
∫

dxp(x, t) ln[p(x, t)] + kB

∫
dxp(x, 0) ln[p(x, 0)] . (2.9.1)

Note that this difference vanishes for the steady-state dynamics, i.e., for dynamics as in
Sec. 2.7 with steady-state initial condition p(x, 0) = ps(x). A trajectory-dependent13
stochastic version ∆ssys such that ⟨∆ssys⟩ = ∆Ssys can be defined as

∆ssys[(xτ )0≤τ≤t] ≡ −kB ln[p(xt, t)] + kB ln[p(x0, 0)] , (2.9.2)

where we insert the stochastic position xt. Note that to evaluate this expression for a single
trajectory we nevertheless need information on the ensemble of trajectories since p(x, t)
and p(x, 0) cannot be inferred from single trajectories.

In addition to the entropy production in the system, entropy can also be produced in the
medium due to a heat transfer from the system into the medium. We assume that the
medium remains at a constant temperature and that all heat transferred into the medium
therefore constitutes an entropy production in the medium. We can write this heat as an
integral of the external force F over the displacement such that [28]

∆smed[(xτ )0≤τ≤t] ≡ T−1

∫ τ=t

τ=0
F(xτ , τ) · ◦dxτ

= kB

∫ τ=t

τ=0
[D−1a(xτ , τ)] · ◦dxτ . (2.9.3)

Since this integral reflects that force arises as a change in energy along a stochastic path,
the correct choice is the Stratonovich integral. In particular, only this convention gives∫ τ=t
τ=0{−∇ϕ(xτ )} ◦ dxτ = ϕ(x0)− ϕ(xt) for an external force arising from a potential ϕ(x).
The average entropy production in the medium can be computed from Eq. (2.6.10) as

∆Smed([0, t]) ≡ ⟨∆smed⟩ = kB

∫
dx

∫ t

0
dτ [D−1a(x, τ)] · j(x, τ) . (2.9.4)

As expected, this quantity vanishes in equilibrium since there j = 0, see Sec. 2.7.

13This particular trajectory-dependent object actually only depends on x0 and xt, and not on the
whole trajectory (xτ )0≤τ≤t.
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The stochastic and average total entropy production are then defined as the sum of the
entropy production in the system and in the medium [28,54],

∆stot[(xτ )0≤τ≤t] ≡ ∆ssys[(xτ )0≤τ≤t] + ∆smed[(xτ )0≤τ≤t] ,

∆Stot([0, t]) ≡ ∆Ssys([0, t]) + ∆Smed([0, t]) . (2.9.5)

Alternatively, the total entropy production ∆stot for overdamped Langevin dynamics may
equivalently be defined as the logarithm of the ratio of the path probability of (xτ )0≤τ≤t and
the path probability of the time reversed path (xt−τ )0≤τ≤t [54,69]. In this alternative def-
inition, the time-reversal symmetry (see paragraph below Eq. (2.7.5)) reflects a vanishing
entropy production in equilibrium.

2.9.2 A useful formula

We can rewrite the definitions above to obtain a compact formula for ∆Stot. Using
∂t
∫
p(x, t) = ∂t1 = 0 and the Fokker-Planck equation in divergence form ∂tp(x, t) =

−∇ · j(x, t), see Eq. (2.6.5), we have

∂τ

∫
dx ln[p(x, τ)]p(x, τ) =

∫
dx ln[p(x, τ)]∂tp(x, τ)

= −
∫

dx ln[p(x, τ)]∇ · j(x, τ)

=

∫
dx j(x, τ) · ∇p(x, τ)

p(x, τ)
. (2.9.6)

Using j(x, t) = a(x, t)p(x, t) − D∇p(x, t), see Eq. (2.6.5), we can substitute ∇p(x, t) =

D−1[a(x, t)p(x, t)− j(x, t)] above. Integrating the expression over time gives

∆Ssys([0, t]) = kB

∫ t

0
dτ

∫
dx j(x, τ) ·D−1

[
a(x, τ)− j(x, τ)

p(x, τ)

]
. (2.9.7)

Adding the entropy production in the medium as computed in Eq. (2.9.4) yields the desired
formula for the average total entropy production

∆Stot([0, t]) = ∆Ssys([0, t]) + ∆Smed([0, t]) = kB

∫ t

0
dτ

∫
dx

j(x, τ) ·D−1j(x, τ)

p(x, τ)
.

(2.9.8)

For the case of steady-state dynamics this formula simplifies to

∆Stot([0, t]) = tkB

∫
dx

js(x) ·D−1js(x)

ps(x)
. (2.9.9)
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Moreover, note that for steady-state dynamics ∆Ssys = 0 such that T∆Stot = T∆Smed is
the heat dissipated into the medium.
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Chapter 3

Statistics of time-integrated
densities and currents

After establishing the necessary background in Ch. 2, we now come to the first research
topic of this thesis, addressing time-integrated and time-averaged densities and currents for
Langevin dynamics. This chapter contains four publications reproduced in Secs. 3.4-3.7
and, together with the application of the theory following in Ch. 4, makes up the major
part of the thesis.

In the following sections, we give a short introduction in Sec. 3.1, and then extend the
technical background from Ch. 2 deeper into the specific field of time-integrated observ-
ables, arriving at the state of the art in Sec. 3.2. In Sec. 3.3, we summarize how our results
contribute to this field. Afterwards, in Secs. 3.4-3.7, four related publications are repro-
duced. Since each publication contains an introduction and mentions the contribution to
the field, the sections preceding the publications are kept rather short and are meant to pro-
vide an overview. Only the technical background and state of the art presented here will
be somewhat elaborate, since these parts are often assumed to be known to the specialized
readership of the papers, and therefore not discussed in the publications.

3.1 Definition of time-integrated densities and cur-
rents

As presented in the Introduction in Sec. 1.6, a key type of observables in measurements
of fluctuating dynamics, in particular for the inference of steady-state density and current
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from individual trajectories are the time-averaged density and current (where overlines de-
note time averages)

ρt ≡
1

t

∫ t

0
U(xτ )dτ

Jt ≡
1

t

∫ τ=t

τ=0
U(xτ ) ◦ dxτ . (3.1.1)

First, we note that one could equivalently study the time-accumulated or time-integrated
observables

ρt ≡ tρt =

∫ t

0
U(xτ )dτ

Jt ≡ tJt =

∫ τ=t

τ=0
U(xτ ) ◦ dxτ . (3.1.2)

To more directly address the notion of averaging over time, we use the definition in
Eq. (3.1.1) for now, but both types of observables are completely equivalent whenever t
is just some specified constant. Since the main complications lie in the time-integration,
and the division by t is merely an optional detail, we use time-integrated observables as an
umbrella term for Eqs. (3.1.1) and (3.1.2) as in the title of this chapter. The time-integrated
observables are also known as empirical density and current, dynamical functionals, additive
functionals, and in the case of ρt as local time or occupation time.

The functionals in Eqs. (3.1.1) and (3.1.2) are directly accessible from measured trajecto-
ries (xi∆t)i=0,1,...,N with a sufficiently small time resolution ∆t via the Riemann sums in
Eqs. (2.5.3) and (2.5.15) and are therefore very practical to use. The function U(xτ ) can
thereby be chosen arbitrarily (as long as it is an integrable function), and different choices
of U(xτ ) can be applied to the same measurement to investigate different properties of the
process. To infer spatially local densities and currents of the process, we will often choose
U(xτ ) = Uh

x (xτ ) where Uh
x is a localized function of length scale h (interpreted as coarse-

graining scale) around a point x. In Ch. 4 we will also discuss how to choose U for optimal
inference of entropy production.

We will explain the observables in Eq. (3.1.1) in more detail in Secs. 3.4 and 3.5, connect-
ing them to time or displacement accumulated in a region, to coarse graining in space and
to fluctuating histograms, see in particular Figs. 3.4.1, 3.5.1 and 3.5.2. What is, however,
barely shown in the publications reproduced in the later sections are the technical back-
ground, and in particular the state of the art of techniques to approach such observables,
which we outline in the following.
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3.2 Technical background and state of the art

We here present the technical background and state of the art, focusing on the most com-
mon methods used to approach the time-averaged or time-integrated functionals. As men-
tioned in Sec. 1.6, the statistics of these observables is typically addressed using Feynman-
Kac theory [33,42] or large deviation theory [43,44,46,106,107], or in terms of thermody-
namic uncertainty relations [47–49]. In this section, we first recall and apply the technical
background from the previous chapter. Then, to give an overview of the state of the art
(with a focus on methodology), we address these three approaches individually. Note that
the approach that we pursue in Secs. 3.4, 3.5 and 3.6 will be primarily the use of stochastic
calculus instead.

3.2.1 Average values and a first look at fluctuations

Throughout this section and Secs. 3.4 and 3.5 we consider steady-state dynamics (see
Sec. 2.7; the generalization beyond steady-state dynamics is given in Sec. 3.6). In this
case we use Eqs. (2.5.8) and (2.6.9) to obtain for the steady-state average values of the
observables in Eq. (3.1.1)

⟨ρt⟩s =
1

t

∫ t

0
dτ

∫
dzU(z)ps(z)

=

∫
dzU(z)ps(z) , (3.2.1)

and with the steady-state current js(z) from Eq. (2.7.6),

〈
Jt

〉
s
=

∫
dzU(z)js(z) . (3.2.2)

Therefore, for localized functions U(z) → δ(z− x), the time-averaged density and current
are (unbiased) estimators of ps(x) and js(x), respectively. Together with the fact that ρt
and Jt take all available information in time into account, this makes them very useful
objects for the inference of steady-state properties of the underlying process.

The challenging feature of these observables are their fluctuations. Due to the time inte-
grals, random properties of the whole trajectory (xτ )0≤τ≤t play into the fluctuations of ρt
and Jt. Nevertheless, a simple observation regarding these statistics for long times t→ ∞
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can be made from the basic principles introduced in Ch. 2. Rewriting the definition in
Eq. (3.1.1) for time t = Nt1 with N ∈ N,

ρt =
1

N

N∑
n=1

1

t1

∫ nt1

(n−1)t1

U(xτ )dτ

Jt =
1

N

N∑
n=1

1

t1

∫ τ=nt1

τ=(n−1)t1

U(xτ ) ◦ dxτ , (3.2.3)

we see that when t1 becomes large enough for the individual terms in the sum to be-
come effectively uncorrelated, then for N → ∞, i.e., for long times t → ∞1, we obtain
Gaussian fluctuations around the mean values in Eqs. (3.2.1) and (3.2.2) with variance
var(ρt), var(Jt) ∝ t−1, according to the central limit theorem, see Subsec. 2.2.4.

By swapping orders of averaging and stochastic integration, see Subsec. 2.1.4, we can even
compute the second moment of ρt in terms of two-point joint densities p(z, τ ; z′, τ ′) as

〈
ρt

2
〉
s
=

∫ t

0
dτ

∫ t

0
dτ ′ ⟨U(zτ )U(zτ ′)⟩s

=

∫ t

0
dτ

∫ t

0
dτ ′
∫

dz

∫
dz′p(z, τ ; z′, τ ′)U(z)U(z′) . (3.2.4)

If p(z, τ ; z′, τ ′) is known, i.e., for steady-state dynamics this means that p(z, t|z′) and ps(z′)
are known, the variance 〈ρt2〉s−⟨ρt⟩2s can be computed from Eqs. (3.2.1) and (3.2.4). Even
though p(z, τ ; z′, τ ′) will usually not be known in applications, investigating theoretical
results for such fluctuations can still lead to important insight, as we will illustrate in the
course of this thesis.

Extending the approach from Eq. (3.2.4) to currents, as in ⟨ρtJt⟩s or ⟨Jt
2⟩s, does not

give immediate results since, as described in Subsec. 2.5.2, there are no basic calculation
rules for averages of double integrals involving dWt1dt2. To overcome this challenge and
learn more about the statistics of time-averaged observables, there are different existing
approaches available, which we address now.

3.2.2 Feynman-Kac theory

We here outline the Feynman-Kac approach to gain insight into the statistics of the time-
integrated density ρt ≡

∫ t
0 U(xτ )dτ following Refs. [33, 41]. On the one hand, this sub-

section introduces part of the technical background and state of the art. On the other
1Note that the quantitative meaning of long times depends not only on the considered dynamics,

but also on the choice of f (see also Subsec. 3.2.3).
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hand, this also serves as an introduction to the publication reproduced in Sec. 3.7 where
we generalize this approach to time-integrated currents Jt.

As mentioned before, ρt is a stochastic quantity, depending on the randommotion xτ in the
time interval τ ∈ [0, t]. To approach the statistics of ρt, Mark Kac employed an analogy to
quantum mechanical path integrals to arrive at the characteristic function or moment gen-
erating function (defined in general in Eq. (2.2.4)) for ρt [33,42]. Instead of repeating this
approach, we stay closer to the methods developed in Ch. 2 and reproduce an equivalent
approach from Ref. [41] that involves similar steps as the derivation of the Fokker-Planck
equation in Subsec. 2.6.1

Consider overdamped Langevin dynamics

dxt = F(xt)dt+ σdWt . (3.2.5)

Here and in the following sections, the drift is denoted byF (previously by a), but recall that
it only agrees with the force up to a proportionality constant, see, e.g., Eq. (1.3.2). Carrying
out the same steps as in the derivation of the Fokker-Planck equation in Subsec. 2.6.1 (using
Itô’s lemma (2.5.14) and dρt = U(xt)dt) but for a test function f(xt, ρt) instead of only
f(xt) we obtain with D = σσT /2 that [41] (here, ∇ only acts in the xt components)

df(xt, ρt) =[F(xt) · ∇f(xt, ρt) +∇ ·D∇f(xt, ρt)]dt

+∇f(xt, ρt) · σdWt + U(xt)∂ρf(xt, ρt)dt . (3.2.6)

Suppose the trajectory starts at a deterministic point x0 and denote by ⟨· · · ⟩x0 the average
starting from this point and by Qt(x, ρ|x0) the conditional density to find xt = x and
ρt = ρ. Then, in complete analogy to Subsec. 2.6.1, i.e., by writing d⟨f(xt, ρt)⟩/dt either
in terms of ∂tQt(x, ρ|x0), or in terms of df(xt, ρt) using integration by parts, we obtain a
Fokker-Planck equation for Qt(x, ρ|x0) as

∂tQt(x, ρ|x0) = [L̂(x)− U(x)∂ρ]Qt(x, ρ|x0) , (3.2.7)

where L̂ = −∇x · F(x) + ∇x · D∇x is the familiar Fokker-Planck operator for p(x, t|x0)

as in Eq. (2.6.5). The usual Fokker-Planck dynamics Eq. (2.6.6) is recovered if ρ is in-
tegrated out, i.e., for p(x, t|x0) =

∫∞
−∞ dρQt(x, ρ|x0). In analogy to the Fokker-Planck

equation in Eq. (2.6.6), the operator [L̂(x) − U(x)∂ρ] describes the time-evolution of
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the conditional density. It is convenient to perform a Fourier transform2 Q̃t(x, ω|x0) ≡∫∞
−∞ dρ e−iωρQt(x, ρ|x0) to obtain

∂tQ̃t(x, ω|x0) = [L̂(x)− iωU(x)]Q̃t(x, ω|x0) . (3.2.8)

Using the time-evolution in Eq. (3.2.8) with ρ0 = 0wemaywrite a formal operator equation
in analogy to Eq. (2.6.7),

Q̃t(x, ω|x0) = e[L̂(x)−iωU(x)]tδ(x− x0) . (3.2.9)

For now, we assume that x0 is sampled from the steady-state distribution ps(x). The mo-
ment generating function of ρt can be expressed in terms of Qt(x, ρ|x0) as

〈
e−iωρt

〉
s
=

∫
dx0ps(x0)

∫
dxQ̃t(x, ω|x0) . (3.2.10)

Plugging Eq. (3.2.9) into Eq. (3.2.10) we obtain that

〈
e−iωρt

〉
s
=

∫
dxe[L̂(x)−iωU(x)]tps(x) . (3.2.11)

This is a version of the Feynman-Kac formula [42]. It relates the statistics of ρt, encoded
in its moment generating function, to an operator expression.

To access the information contained in Eq. (3.2.11), we address the moments of ρt as
follows. Expanding the left-hand side of Eq. (3.2.11) around ω = 0 yields the expression
1− iω ⟨ρt⟩s − ω2

〈
ρ2t
〉
s
/2 +O(ω3) in terms of the moments. To expand the right-hand side

of Eq. (3.2.11) we use the Dyson operator identity [41, Appendix B]

e[L̂(x)−iωU(x)]t =1− iω

∫ t

0
dt1e

L̂(x)(t−t1)U(x)eL̂(x)t1

− ω2

∫ t

0
dt2

∫ t2

0
dt1e

L̂(x)(t−t2)U(x)eL̂(x)(t2−t1)U(x)eL̂(x)t1 +O(ω3) .

(3.2.12)

2If ρt has non-negative support, i.e., if U(x) ≥ 0 for all x, one would perform a Laplace transform
instead [41].
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Comparing the individual orders of ω on both sides of the expanded Eq. (3.2.11) yields
the moments in terms of integrals over ps(x) and p(x, t|x0), i.e., using3

∫
dxeL̂(x)tU(x) =∫

dxU(x) and eL̂(x)tps(x) = ps(x), the mean reads (in agreement with Eq. (2.5.8))

⟨ρt⟩s =
∫

dx

∫ t

0
dt1e

L̂(x)(t−t1)U(x)eL̂(x)t1ps(x)

=

∫ t

0
dt1

∫
dxU(x)ps(x)

= t

∫
dxU(x)ps(x) . (3.2.13)

Using p(x, t|x0) = eL̂(x)tδ(x− x0) (see Eq. (2.6.7)), that is∫
dx1U(x0)e

L̂(x0)tg(x0) =

∫
dx

∫
dx0U(x)p(x, t|x0)g(x0) , (3.2.14)

we obtain (for convenience relabeling x → x0 in Eq. (3.2.13)) from the ω2-terms the second
moment (in agreement with Eq. (3.2.4))

〈
ρ2t
〉
s
= 2

∫ t

0
dt2

∫ t2

0
dt1

∫
dx

∫
dx0U(x)p(x, t2 − t1|x0)U(x0)ps(x0) . (3.2.15)

This shows how Feynman-Kac theory makes concrete statements about the fluctuations of
time-integrated observables. Note that we already obtained these moments from a direct
approach above (see Eqs. (2.5.8) and (3.2.4)). Advantages of the Feynman-Kac approach
are that the Feynman-Kac formula (3.2.11) in principle contains much more information
on the statistics, and that it provides a clear formalism that can be directly generalized to
fluctuations of time-integrated currents and joint fluctuations of densities and currents, as
we will show explicitly in Sec. 3.7. Compared to the stochastic-calculus approach that will
be pursued in Secs. 3.4-3.6, the Feynman-Kac approach is, however, somewhat indirect and
looses track of the direct interpretation in terms of stochastic trajectories.

3.2.3 Large deviation theory

Another large part of existing literature on time-averaged densities and currents is within
the framework of large deviation theory [108–110], which in this context describes the
statistics of ergodic systems on the longest time-scales. Although we will not use any of

3The first equation can, e.g., be seen from the divergence form L̂ = ∇ · [· · · ] which shows that
all terms in the series expansion of eL̂(x)t except (L̂(x)t)0 = 1 vanish after integration by parts. The
second equation follows from L̂(x)ps(x) = 0.
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the results presented in this subsection explicitly, they are very relevant for the purpose of
comparing our new results to the state of the art.

For a stochastic process at with time-dependent density p(a, t) one defines a large deviation
rate function as

I(a) ≡ − lim
t→∞

1

t
ln p(a, t) . (3.2.16)

If this limit exists, then one says that at satisfies the large deviation principle [110] which
is often written as a more suggestive version of Eq. (3.2.16) as

p(a, t) ≍ exp[−tI(a)] . (3.2.17)

Here, ≍ is supposed to mean that asymptotically for t→ ∞ the statistics of p(a, t) is (up to
subexponential terms) completely characterized by I(a). Typically [110], in particular for
time-averaged observables [43], I(a) is non-negative and convex with a single zero at the
mean value, i.e., I(⟨at⟩) = 0. Then, the large deviation principle in Eq. (3.2.17) implies
that, as t → ∞, the probability density concentrates around the mean value (which also
becomes the most likely value) and fluctuations are exponentially suppressed. The central
limit theorem is then typically [111] implied, with a limiting variance var(at) → σ2/t =

1/tI ′′(⟨at⟩). The central limit theorem (see Eq. (2.2.14)) also motivates why the factor
1/t is included in the definition in Eq. (3.2.16). While the central limit theorem as stated
in Eq. (2.2.14) asserts that the small deviations around the mean become Gaussian, the
large deviation principle (if it exists) owes its name to the fact that it also applies for large
deviations from the mean [43,110].

For the large deviation theory of time-averaged densities and currents one typically [43–45]
(although not always [112]) defines the empirical density and current with a delta function,
i.e.,

ρe(x, t) =
1

t

∫ t

0
δ(xτ − x)dτ,

Je(x, t) =
1

t

∫ t

0
δ(xτ − x) ◦ dxτ . (3.2.18)

This has the advantage that the mean values for steady-state dynamics are the steady-state
density ⟨ρe(x, t)⟩s = ps(x) and current 〈Je(x, t)

〉
s
= js(x), respectively (see Eqs. (3.2.1)

and (3.2.2)). However, this definition has practical and mathematical disadvantages, as we
point out below.
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Instead of a rate function as in Eq. (3.2.16) one typically considers a rate functional de-
pending on the fields ρe(x, t),Je(x, t) for all x in the considered domain,

I[ρ(·),J(·)] = − lim
t→∞

1

t
ln p[ρ(·),J(·), t] . (3.2.19)

A central result in this part of large deviation theory is the Donsker-Varadhan [46,113,114]
large deviation principle for the empirical density of equilibrium steady-state Langevin
dynamics dxt = F(xt)+

√
2DdWt where the rate functional as presented, e.g., in Ref. [45,

Eq. (1.14)] obeys

I[ρ(·)] = D

4

∫
dxρ(x)

[
∇ ln

ρ(x)

ps(x)

]2
. (3.2.20)

The large deviation functional for ρ is also known as level 2 large deviation theory. Level 1
would correspond to fluctuations of, e.g., ρ(x) in a single x, which can be formally obtained
from Eq. (3.2.20) via the contraction principle [110]. Level 3 large deviations refer to
large deviations of the full trajectory (xτ )0≤τ≤t, and formally include level 1 and 2 large
deviations via the contraction principle.

Another central result including the current J and valid even for non-equilibrium steady
states is the large deviation principle for the joint fluctuations of ρ and J [34]

I[ρ(·),J(·)] =
∫

dx
[J(x)− js(x)]

2

4Dρ(x)
. (3.2.21)

Since this result is between levels 2 and 3 of it is known as level 2.5 large deviations [44].

A great advantage of the results in Eqs. (3.2.20) and (3.2.21) is their simplicity in terms of
appearing properties of the process since ps(x), js(x) and D are the only properties of the
process that appear in the rate functionals. In particular, one does not require knowledge
of F(x) or of p(x, t|x0).

A serious disadvantage is the difficulty to relate it to measurements, or even to simulations.
The limit t→ ∞ required for the approach to hold is of course not experimentally realizable
and it is in practice hard to decide how large t has to be. Even more problematic is the
delta function in the definition in Eq. (3.2.18). The delta function must be understood as
a limit of small localization functions, and not only is this limit hard to take, but it is even
not clear if or in which sense it converges. Moreover, the delta function also leads to an
unfortunate interplay with the limit t→ ∞. In analogy to the application of the central limit
theorem, see Eq. (3.2.3), an appropriate notion of long times scales should guarantee that
the region where U(xτ ) is non-zero is sufficiently often visited in the time [0, t]. Since the
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empirical density and current in Eq. (3.2.18) are defined with a delta function, this notion
of long times scales cannot be satisfied in d ≥ 2-dimensional space since there the Langevin
dynamics hits any specific point x with probability 0, i.e., P(xτ = x for some τ ∈ [0, t]) = 0

(in one-dimensional space also P(xt = x) = 0 but P(xτ = x for some τ ∈ [0, t]) > 0). We
will revisit and discuss this and further issues with the definition with the delta function in
Secs. 3.4 and 3.5.

3.2.4 A first application of thermodynamic uncertainty rela-
tions

Another concept addressing the fluctuations of time-integrated currents are thermodynamic
uncertainty relations (TURs) [47,48] where, as presented in the Introduction in Eq. (1.8.1)
for scalar Jt, the TUR for steady-state dynamics reads

var(Jt)

⟨Jt⟩2s
∆Stot ≥ 2kB . (3.2.22)

Unlike the Feynman-Kac and large deviation approaches presented before, TURs usually
do not serve as a tool to learn about fluctuations of time-integrated observables. Instead,
the TURs mainly serve as a tool to gain insight into entropy production and dissipation
from knowledge about current fluctuations. In particular, the TUR connects dynamical
fluctuations to thermodynamical properties of the system in a quantitative way, which will
be used in the publications in Secs. 3.4 and 3.5. Note that the whole Ch. 4 will be devoted
to TURs which is why, for now, we do not go any deeper into this topic.

3.3 Summary of results

Here, we briefly mention the results of the following four publications reproduced in the
following Secs. 3.4-3.7. Since the results are presented in detail in the individual publica-
tions, and will again be discussed in the Conclusion in Ch. 7, this summary is kept as short
as possible and should mainly serve as an overview to put the following sections into the
context presented so far.

Sections 3.4 and 3.5 are a joint publication consisting of a concise letter (Sec. 3.4) and
an accompanying, extended manuscript (Sec. 3.5). In this joint publication, we develop
the theory to compute variances and correlations of time-integrated densities and currents
based on stochastic calculus, and interpret the results in terms of spatial coarse graining.
Connected to the above difficulties with the delta function (see Subsec. 3.2.3), we find that
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spatial coarse graining is not only necessary for experimental reasons (limited precision
and limited sampling) but also for mathematical and thermodynamical reasons. Without
coarse graining, i.e., for a delta function as discussed in Subsec. 3.2.3, the variances of ρt
and Jt are found to diverge in d ≥ 2-dimensional space, while the average values remain
finite (see Eqs. (3.2.1) and (3.2.2)). Although there are different notions of convergence of
random variables, and a diverging variance does not necessarily prevent convergence, the
results and simulations indicate that the density and current in the limit U(z) → δ(z− x)

in d ≥ 2-dimensional space converge in none of the notions of stochastic convergence, and
that a limiting random variable with the correct mean does not exist.

The publication in Sec. 3.6 uses the stochastic-calculus approach to generalize and illus-
trate the results for the variances and correlations to Langevin systems beyond steady-state
dynamics.

Finally, the publication in Sec. 3.7 focuses on methodology and employs Feynman-Kac the-
ory (as presented above in Subsec. 3.2.2) and a related path integral approach to rederive
the technical results of Secs. 3.4 and 3.5, and thereby puts these technical approaches on
a common footing.

3.4 Mathematical, thermodynamical, and experi-
mental necessity for coarse graining empirical
densities and currents in continuous space (Phys.

Rev. Lett. 2022)

This section is a slightly adapted version of the publication C. Dieball and A. Godec, “Math-
ematical, thermodynamical, and experimental necessity for coarse graining empirical den-
sities and currents in continuous space”, Phys. Rev. Lett. 129, 140601 (2022).

My personal contribution as first author of the publication was in performing calculations
and simulations, analyzing the results, and co-writing the manuscript.

61



Ph
ys
.R

ev
.L

et
t.
12

9,
14

06
01

(2
02

2)

Mathematical, thermodynamical, and experimental
necessity for coarse graining empirical densities and

currents in continuous space
Cai Dieball and Aljaž Godec

Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am
Faßberg 11, 37077 Göttingen, Germany

Abstract

We present general results on fluctuations and spatial correlations of the
coarse-grained empirical density and current of Markovian diffusion in equi-
librium or non-equilibrium steady states on all timescales. We unravel a deep
connection between current fluctuations and generalized time-reversal sym-
metry, providing new insight into time-averaged observables. We highlight the
essential role of coarse graining in space from mathematical, thermodynam-
ical, and experimental points of view. Spatial coarse graining is required to
uncover salient features of currents that break detailed balance, and a thermo-
dynamically “optimal” coarse graining ensures the most precise inference of
dissipation. Defined without coarse graining, the fluctuations of empirical den-
sity and current are proven to diverge on all timescales in dimensions higher
than one, which has far-reaching consequences for the central-limit regime
in continuous space. We apply the results to examples of irreversible diffu-
sion. Our findings provide new intuition about time-averaged observables and
allow for a more efficient analysis of single-molecule experiments.

3.4.1 Introduction

Single-molecule experiments [115–119] probe equilibrium and non-equilibrium (i.e., de-
tailed balance violating) processes during relaxation [49,73,120–124] or in steady states
[34, 47, 48, 106, 125–129] on the level of individual trajectories. These are typically an-
alyzed by averaging along individual realizations, yielding random quantities with non-
trivial statistics [41, 130]. Time-averaged observables, in particular generalized currents,
are central to stochastic thermodynamics [48, 67, 131–134]. Such time-average statisti-
cal mechanics focuses on functionals of a trajectory (xτ )0≤τ≤t, in particular the empirical
density (or occupation time [33, 36, 40, 42, 135–139]) ρx(t) and current Jx(t) at a point
x. Necessary in the analysis of laboratory [115, 140] or computer [68] experiments with
a finite spatial resolution, and useful for smoothing data a posteriori to improve statistics,

62



Phys.Rev.Lett.129,140601
(2022)

Statistics of time-integrated densities and currents 3

the density and current should be defined as spatial averages over a window Uh
x (x

′) at x
with coarse-graining scale h

ρUx (t) ≡
1

t

∫ t

0
Uh
x (xτ )dτ

JU
x (t) ≡

1

t

∫ τ=t

τ=0
Uh
x (xτ ) ◦ dxτ , (3.4.1)

where ◦ dxτ denotes the Stratonovich integral. These observables are illustrated in
terms of sojourns of the window in Fig. 3.4.1a,b. Choosing the window Uh

x as a bin,
the density and current observables appear as histograms along single trajectories over
occupations of or displacements in the bin that fluctuate between different realizations
(see Fig. 3.4.1c-e and accompanying extended paper [84] reproduced in Sec. 3.5).
Aside from coarse graining, the integration over Uh

x (x
′) may also represent a pathwise

thermodynamic potential, e.g., heat dissipation (the force integrated along a stochastic
path ∫ τ=t

τ=0 F(xτ ) · ◦dxτ [131]) or generalized currents [70, 126, 133, 134]. Normalized
windows, i.e., ∫ Uh

x (z)dz = 1, yield ρUx (t) and JU
x (t) that are estimators of the probability

density and current density, respectively. The usually defined empirical density ρx(t)

and current Jx(t) [34, 43–45, 107, 110, 141–144] correspond to no coarse graining, i.e.,
Uh=0
x (z) being Dirac’s delta function δ(x− z).

Reliably inferring from noisy trajectories whether a system obeys detailed balance, notwith-
standing recent progress [68, 115, 116, 140, 145–149], remains challenging. Quantifying
violations of detailed balance is a daunting task. One can quantify broken detailed bal-
ance through violations of the fluctuation dissipation theorem [127, 150, 151], which re-
quires perturbing the system from the steady state. One can also check for a symmetry
breaking of forward and backward transition-path times [147, 148], measure the entropy
production [28, 104, 145, 149], or infer steady-state currents (see arrows in Fig. 3.4.1c)
directly [115,140], all of which require substantial statistics. However, single-molecule ex-
periments often cannot reach ergodic times, have a finite resolution, and only allow for a
limited number of repetitions. This leads to uncertainties in estimates of observables such
as steady-state currents (see Figs. 3.4.1d-f). Notably, fluctuations of ρUx and JU

x encode
information about violations of detailed balance (even where the mean current or its com-
ponents locally vanish; see Figs. 3.4.1d,e, which a priori is hard to interpret.

Current fluctuations have a noise floor—they are bounded from below by the “thermody-
namic uncertainty relation” [47,48,126] which in turn allows for bounding dissipation in
a system from below by current fluctuations [132,152–154]. As we show in Fig. 3.4.1f (see
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3 Statistics of time-integrated densities and currents

Figure 3.4.1: (a) Diffusive trajectory traversing an observation window Uh
0 (x, y) = 1 if

|x| , |y| ≤ 1/2 and Uh
0 (x, y) = 0 otherwise, with time running from dark to bright. Arrows

denote contributions δxs
i = (δxsi , δy

s
i ) of the two sojourns in Uh

0 between times τ−i and τ+i
(see Eq. (3.4.7) in Appendix I). (b) Corresponding tρU0 (t) and components of tJU

0 (t) from
Eq. (3.4.1) as functions of t. (c) Two trajectories (xτ ) (gray lines) of length t = 5 in confined
rotational flow with Ω = 5 (arrows depict the steady-state current js). The red cross is the
reference point xR = (1, 0) considered in (d)-(f). Coarse-grained density (d) and x current
(e) for a Gaussian window Uh

xR
with h = 0.3. Fluctuations of ρUx and JU

x,y ≡ (JU
xR

)x,y encode
violations of detailed balance, even where JU

x vanishes. (f) Squared relative error of JU
y for

Uh
xR

as a function of h (gray) bounded by the thermodynamic uncertainty relation (TUR;
blue). A variance diverging as h−2 (dashed) as h→ 0 and vanishing mean for h≫ 1 allow
for intermediate h optimizing the TUR-bound and thus the inferred dissipation.

Sec. 3.5 for a multiwell potential) the precision of inferring dissipation typically depends
non-monotonically on the coarse-graining scale h—given a system, a point x, and trajec-
tory length t there exists a thermodynamically “optimal” coarse graining due to a diverging
variance for h → 0 and vanishing mean for large h. Moreover, ρx and Jx without coarse
graining turn out to be ill-defined.

In systems and on timescales where dynamics is reasonably described by a Markov jump
process on a small state space, current fluctuations are well understood [44, 48, 60, 106,
155–168]. However, dynamics typically evolves in continuous space, and a continuous
dynamics observed on a discrete space is not Markovian [169, 170] (see Supplemental
Material (SM) in Subsec. 3.4.7 for a quantitative confirmation). An accurate Markov jump
description may require too many states to be practical, and is known to fail when consider-
ing functionals as in Eq. (3.4.1) [170]. We therefore focus on continuous space, where, with
exceptions [34,126,171,172], insight is limited to hydrodynamic scales [157,159,173] and
large deviations [43–45, 107, 110, 141–144]. A comprehensive understanding of fluctua-
tions and spatial correlations of density and current in continuous space remains elusive,
and the interpretation of the typical definition without coarse graining in dimensions d ≥ 2

apparently requires a revision, see below.
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Here, we provide general results on the empirical density and current in overdamped diffu-
sive steady-state systems, revealing a mathematical, thermodynamical, and experimental
necessity for spatial coarse graining. When defined in a point, fluctuations are proven to di-
verge in spatial dimensions above one, contradicting existing central-limit statements. We
explain why a systematic variation of the coarse-graining scale provides deeper insight
about the underlying dynamics and allows for improved inference of the system’s ther-
modynamics. Exploiting a generalized time-reversal symmetry we provide intuition about
fluctuating currents along individual trajectories. Non-vanishing density-current correla-
tions are shown to unravel violations of detailed balance from short measurements. Our
results allow for a more consistent and efficient analysis of experiments, and provide new
insight into non-equilibrium steady states and their thermodynamics.

3.4.2 Setup

We consider time-homogeneous overdamped Langevin dynamics [6, 16] in d-dimensional
space evolving according to the stochastic differential equation dxτ = F(xτ )dτ + σdWτ ,
where dWτ is the increment of a d-dimensional Wiener processes (i.e., white noise)
with covariance ⟨dWτ,idWτ ′,j⟩ = δ(τ − τ ′)δijdτdτ

′. The Fokker-Planck equation for
the conditional probability density with initial condition G(x, 0|y) = δ(x− y) reads
(∂t +∇x · ĵx)G(x, t|y) = 0 with current operator ĵx ≡ F(x)−D∇x, where D ≡ σσT /2 is
the positive definite diffusion matrix. All results directly generalize to multiplicative noise
(see Sec. 3.5). The drift F(x) is assumed to be sufficiently smooth and confining to ensure
the existence of a steady-state density G(x, t→ ∞|y) = ps(x) and, if detailed balance is
violated, a steady-state current js(x) ≡ ĵxps(x) ̸= 0 [6,16].

3.4.3 Correlations and fluctuations from paths

To investigate the non-trivial statistics of the observables in Eq. (3.4.1) we now outline the
derivation detailed in Sec. 3.5 of results for mean values, correlations and fluctuations as-
suming steady-state initial conditions. Let ⟨·⟩s denote the average over all paths {xτ} evolv-
ing from ps. The mean values ⟨ρUx (t)⟩s =

∫
dzUh

x (z)ps(z) and ⟨JU
x (t)⟩s =

∫
dzUh

x (z)js(z)

(see Sec. 3.5) are time-independent estimators of the steady-state density and current
coarse-grained over a window Uh

x . In contrast to the mean values, covariances display a
non-trivial time dependence and therefore contain salient features of the dynamics. We
define the two-point steady-state covariance as

Cxy
AB(t) ≡ ⟨Ax(t)By(t)⟩s − ⟨Ax(t)⟩s⟨By(t)⟩s , (3.4.2)
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Figure 3.4.2: (a) Two sample trajectories in a shear flow Fsh(x) (gray arrows) with
Stratonovich displacements ◦dxt in the initial xt1 = z and final point xt2 = z′ for fixed
t1 < t2 depicted by purple and yellow arrows, respectively. Time is running from dark to
bright. (b) Trajectories as in (a) but running from xt1 = z′ to xt2 = z. (c) As in (b) but
with the inverted shear flow −Fsh(x

′) (blue background arrows) and initial and final in-
crements depicted by gray and blue arrows. (d) Ensemble of paths from xt1 = z to xt2 = z′

contributing to Pz(z
′, t2 − t1). The average initial displacement ⟨◦dxt⟩

xt2=z′

xt1=z is depicted by
the black-purple arrow, and the mean path z → z′ in time t2 − t1 by the gray gradient
line. (e) As in (d) but corresponding to (b) instead of (a). (f) As in (e) but with the reversed
shear flow as in (c). (g),(h) Since the shear flow breaks time-reversal symmetry, initial-point
increments in (a) cannot be obtained by inverting final-point increments in (b). By dual-
reversal symmetry initial-point increments follow from inverting the final-point increments
in the inverted shear flow in (c), which explains initial point increments ◦dxt1 in current-
density correlations and current (co)variances via the easier and more intuitive final point
increments ◦dx−js

t2
.

where A and B are either ρU or JU , respectively. We refer to the case A ̸= B or x ̸= y

as (linear) correlations and to A = B with x = y as fluctuations with the notation
varxA(t) ≡ Cxx

AA(t). Recall that varxρ (t) and varxJ(t) quantify (experimentally relevant) fluc-
tuations of histograms along single trajectories (see Fig. 3.4.1d,e), and varxJ(t) is at the
heart of the thermodynamic uncertainty relation (see Fig. 3.4.1f). Moreover, Cxy

Jρ (t) was
recently found to play a vital role in stochastic thermodynamics [134]. AllCxy

AB(t) are easily
inferred from data, but lack physical understanding. We now give Cxy

AB(t) a physical mean-
ing in terms of the statistics of paths pinned at end points z and z′ (see Fig. 3.4.2). Introduce
⟨·⟩xt2=z′

xt1=z ≡ ⟨ δ(xt1−z)δ(xt2−z′) ·⟩s, the Stratonovich increment ◦dxτ ≡ xτ+dτ/2 − xτ−dτ/2,
and the operator

Ît,U
xy [·] ≡ 1

t2

∫ t

0
dt1

∫ t

t1

dt2

∫
dzUh

x (z)

∫
dz′Uh

y (z
′)[·], (3.4.3)

where [·] represents functions of t1, t2, z, z′ and without loss of generality we choose the
convention ∫ t

t1
dt2δ(t2 − t1) = 1/2. Upon plugging in mean values ⟨Ax⟩s and ⟨By⟩s, the
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definition (3.4.2) becomes (see Sec. 3.5) Cxy
ρρ (t) = Ît,U

xy [Ξzz′
1 − 2ps(z)ps(z

′)] for density-
density correlations, Cxy

Jρ (t) = Ît,u
xy [Ξ

zz′
2 − 2js(z)ps(z

′)] for current-density correlations,
and4 Cxy

J·J(t) = Ît,U
xy [Ξzz′

3 −2js(z) · js(z′)] for current-current correlations, where we defined

Ξzz′
1 ≡ ⟨1⟩xt2=z′

xt1=z + ⟨1⟩xt2=z

xt1=z′

Ξzz′
2 ≡

⟨◦dxt1⟩
xt2=z′

xt1=z

dt1
+

⟨◦dxt2⟩
xt2=z

xt1=z′

dt2
(3.4.4)

Ξzz′
3 ≡

⟨◦dxt1 · ◦dxt2⟩
xt2=z′

xt1=z

dt1dt2
+

⟨◦dxt1 · ◦dxt2⟩
xt2=z

xt1=z′

dt1dt2
.

Eqs. (3.4.3)-(3.4.4) tie Cxy
AB to properties of pinned paths, weighted by Uh

x (z), U
h
y (z

′) and
integrated over space and times 0 ≤ t1 ≤ t2 ≤ t. In contrast to the somewhat better
understood density-density covariance [41, 42, 174], current-density and current-current
covariances involve (scalar products of) more subtle Stratonovich increments along pinned
trajectories, explained graphically in Fig. 3.4.2 and further investigated in the following.

3.4.4 Correlations and fluctuations from two-point densities

To obtain quantitative results, we evaluate the averages ⟨·⟩xt2=z′

xt1=z in terms of two-point func-
tions Pz(z

′, t2−t1) ≡ G(z′, t2−t1|z)ps(z). For density-density correlationsCxy
ρρ , the result is

readily obtained from Eq. (3.4.4) using ⟨1⟩xt2=z′

xt1=z = Pz(z
′, t2− t1). Conversely, Stratonovich

increments, are difficult to understand and hard to evaluate, particularly initial-point in-
crements ◦dxt1 because they are correlated with future events.

To gain intuition we examine a two-dimensional shear flow Fsh(x) = 2xŷ shown in
Fig. 3.4.2, depicting initial-, ◦dxt1 , and end-point, ◦dxt2 , increments along forward
(Fig. 3.4.2a) and time-reversed (Fig. 3.4.2b) pinned trajectories between times t1 < t2

and their ensemble averages (Fig. 3.4.2d,e). In the companion extended paper [84], see
Sec. 3.5, we show that ⟨◦dxt2⟩

xt2=z′

xt1=z = ĵz′Pz(z
′, t2)dt2, i.e., mean displacements are given

by the Fokker-Planck current as expected. Moreover, when detailed balance holds, time-
reversal symmetry impliesP(◦dxt1 |

xt2=z′

xt1=z ) = P(− ◦ dxt2 |
xt2=z

xt1=z′), whereas under broken de-
tailed balance, e.g., due to the shear flow in Fig. 3.4.2, this ceases to hold. Wemay, however,
employ a generalized time-reversal symmetry—the dual-reversal symmetry (see Sec. 3.5
and [133,175,176])—implying P(◦dxt1 |

xt2=z′

xt1=z ) = P(− ◦ dx−js
t2

|xt2=z

xt1=z′) connecting ensem-
bles with currents js and−js (see Fig. 3.4.2c,f,g). Via this generalized time-reversal symme-

4Fluctuations and correlations of JU
x (t) are characterized by the d × d covariance matrix with

elements [Cxy
JJ(t)]ik = Cxy

JiJk
(t). We focus on the scalar case Cxy

J·J(t) ≡ TrCxy
JJ(t). See [86] or Sec. 3.7

for the full covariance matrix.
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Figure 3.4.3: t varxJ as a function of the radius |x| in the harmonically confined rotational
flow in Fig. 3.4.1c for increasing Ω with Gaussian Uh

x with width h at (a) t = 0.2 and
(b) t = 1; lines depict Eq. (3.4.5) and symbols simulations, see SM in Subsec. 3.4.7. (c)
t varxJ at t = 1 for Ω = 10 (full lines) and equilibrium Ω = 0 (dashed lines), for various h
decreasing along the arrow. Inset: divergence of varxJ as h → 0 at |x| = 1; the dashed line
depicts Eq. (3.4.6). Note the logarithmic scales. (d) varxJ as a function of t for very strong
driving Ω = 50; inset: (d) on logarithmic scales alongside the central-limit scaling ∝ t−1.

try we circumvent the correlation of ◦dxt1 with the future. To materialize this we isolate the
irreversible drift in ĵx = ps(x)

−1js(x)− ps(x)D∇xps(x)
−1, and introduce the dual current

operator ĵ‡x ≡ −ĵ−js
x = ps(x)

−1js(x)+ ps(x)D∇xps(x)
−1, rendering all terms in Eq. (3.4.4)

(illustrated in Fig. 3.4.2h) tractable, and ultimately leading to our main result

Cxy
Jρ (t) = Ît,U

xy [̂jzPz′(z, t
′) + ĵ‡zPz(z

′, t′)− 2js(z)ps(z
′)]

Cxy
J·J(t) =

2TrD

t

∫
dzUh

x (z)U
h
y (z)ps(z) + (3.4.5)

Ît,U
xy [̂jz · ĵ‡z′Pz′(z, t

′) + ĵz′ · ĵ‡zPz(z
′, t′)− 2js(z) · js(z′)],

where the first term in Cxy
J·J(t) arises from t1 = t2, see Sec. 3.5, and the operator Ît,U

xy

simplifies t−2
∫ t
0 dt1

∫ t
t1
dt2 → t−1

∫ t
0 dt

′(1 − t′/t) since Eq. (3.4.5) depends only on time
differences t′ ≡ t2 − t1 ≥ 0. Notably, written in this simplified form, Eq. (3.4.5) establishes
Green-Kubo relations [24, 177] connecting covariances Cxy

AB to time-integrals of general-
ized correlation functions.

Given the two-point function Pz(z
′, t′), Eq. (3.4.5) gives the correlation and fluctuations

of observables defined in Eq. (3.4.1). In practice, Pz(z
′, t′) may not necessarily be avail-

able. However, the theoretical result Eq. (3.4.5) nevertheless allows us to draw several
conclusions, in particular by considering special cases and limits. At equilibrium ĵ‡z = −ĵz,
implyingCxy

Jρ (t) = 0. A non-zeroCxy
Jρ (t) at any time t is thus a conclusive signature of bro-

ken detailed balance. Moreover, at equilibrium Cxy
J·J(t) does not vanish although ⟨JU

x ⟩s = 0.
When js ̸= 0, varxJ(t) ≡ Cxx

J·J(t)may display maxima where Ps(x) has none (see Fig. 3.4.3a-
c), and an oscillatory time dependence due to circulating currents (see Fig. 3.4.3d), both
signaling non-equilibrium. For a more detailed discussion of Eq. (3.4.5) see Sec. 3.5.
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3.4.5 Necessity of coarse graining

Of particular interest is the dependence of fluctuations on the coarse-graining length scale
h (see Fig. 3.4.1f, Fig. 3.4.3c and Sec. 3.5). Importantly, the limits h → ∞ and h → 0 are
generally accessible from Eq. (3.4.5) independent of the detailed dynamics (see Sec. 3.5).
The limit h→ 0 with Uh

x (z) → δ(x− z) corresponds to no coarse graining, i.e., the observ-
ables Eq. (3.4.1) are evaluated in a single point z. In this limit, the variance and covariance
of ρUx and JU

x for d ≥ 2 and any t behave as (see Sec. 3.5)

varxρ (t)
h→0≃ kps(x)

t
×

h2−d

d−2 for d > 2

− lnh for d = 2

Cxx
Jρ (t)

h→0≃ js(x)varxρ (t)/2ps(x)

varxJ(t) h→0
=

k′ps(x)

t
(d− 1)h−d +O(t−1)O(h1−d), (3.4.6)

where ≃ denotes asymptotic equality, and k, k′ are constants depending on D and Ux, see
Sec. 3.5. Therefore, taking Uh

x (z)
h→0−→ δ(x − z) as implicitly assumed in [41, 43–45, 107,

110, 141–144] we find for d ≥ 2 that varxρ,J(t),Cxx
Jρ (t) diverge for all t (see Fig. 3.4.3c).

Eq. (3.4.6) also applies to Markov-jump processes defined on a grid with spacing h → 0;
for details and an example, see SM in Subsec. 3.4.7. The divergence can be understood
intuitively (see also Sec. 3.5), e.g., based on the following argument.

Note that the probability that a point z is hit by the trajectory (xτ )0≤τ≤t, i.e., that there
is a τ ∈ [0, t] such that xτ = z, delicately depends on the spatial dimensionality d.
This probability is positive for d = 1 but zero in higher-dimensional space. That is,
P(∃τ ∈ (0, t] : xτ = z) = 0 for diffusion in d ≥ 2 [84, 178]. Mean values remain finite
in the limit h → 0, namely ⟨ρx(t)⟩s = ps(x) and ⟨Jx(t)⟩s = js(x) in agreement with ex-
isting literature [34, 43–45, 107, 143, 144, 172]. Since the probability to hit the point z is
approaching zero as h→ 0, this implies that the mean is precisely balanced by the infinite
contribution of the delta function Uh

x (z) → δ(x − z), as in ⟨δ(xτ − x)⟩s = ps(x). Loosely
speaking, here “0×∞” is finite. One may therefore expect diverging second (and higher)
moments when h → 0, as this argument extends to5 “0 × ∞2 = ∞”. The argument is
not limited to overdamped motion but seems to extend to a larger class of stochastic dy-
namics, such as underdamped diffusion and experimental data on anomalous intracellular
transport [91] shown in Fig. 3.5.9 in Sec. 3.5.

5For a concrete example following this reasoning, consider random variables Xn where Xn = n
with probability 1/n and Xn = 0 otherwise. Then ⟨Xn⟩ = n/n = 1 for all n but ⟨X2

n⟩ = n2/n→ ∞
as n→ ∞.
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We hypothesize that not only the moments diverge, but that the density and current cannot
even be consistently defined for h = 0. Moreover, the limits h → 0 and t → ∞ do not
commute. This has important consequences for the central-limit regime, i.e., statistics on
longest timescales (see Appendix II and Sec. 3.5). Some coarse graining h > 0 is therefore
necessary for mathematical consistency and anticipated central-limit properties.

Notably, for small windows, Eq. (3.4.6) implies that fluctuations (unlike correlations) carry
no information about steady-state currents js(x) and thus violations of detailed balance
and thermodynamic properties such as the system’s dissipation. In this limit, fluctuations
reflect only Brownian, thermal currents that are invariant with respect to js(x)—systems
with equal ps(x) and D display identical fluctuations (see Eq. (3.4.6) and Fig. 3.4.3c). Re-
call that the dissipation can be inferred from current fluctuations via the thermodynamic
uncertainty relation [47,48,132]. We now see that only an intermediate coarse graining,
such as the “optimum” in Fig. 3.4.1f, allows to infer dissipation from fluctuations. More-
over, spatial features of steady-state currents (see Fig. 3.4.3c) are only revealed with coarse
graining. Some coarse graining h > 0 is thus necessary to infer thermodynamic properties.
In addition, divergent fluctuations make it impossible to accurately infer densities and cur-
rents without coarse graining from experiments. Experiments also nominally have a finite
spatial resolution. Thus, coarse graining is also experimentally necessary.

3.4.6 Conclusion

Leveraging Itô calculus and generalized time-reversal symmetry, we were able to provide
elusive physical intuition about fluctuations and correlations of empirical densities and cur-
rents that are central to stochastic thermodynamics. We established the so far overlooked
necessity for spatial coarse graining—it is required to ensure mathematically well-defined
observables and the validity of central-limit statements in dimensions d ≥ 2, to improve
the accuracy of inferring thermodynamic properties (e.g., dissipation) from fluctuations
and to uncover salient features of non-equilibrium steady-state currents without inferring
these individually [179–181], and is unavoidable in the analysis of experimental data with
a finite resolution. Non-vanishing current-density correlations were shown to be a con-
clusive indicator of broken detailed balance, and may improve the accuracy of inferring
invariant densities [182] and dissipation far from equilibrium [134]. Our results allow for
generalizations to nonstationary initial conditions or non-ergodic dynamics, which will be
addressed in forthcoming publications.
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Appendix I: Density and current from sojourns

In general, the density and current functionals measure the (Uh
x -weighted) time spent and

displacement accumulated in the window Uh
x averaged over time. Specifically, when Uh

x is
the indicator function, Uh

x (z) = h−d
1Ωx(z), of a region Ωx centered at x with volume hd,

we can write this illustratively in terms of the sojourns of the window as follows. Letting the
times of entering and exiting said window be τ−i and τ+i , respectively, tρUx (t) corresponds
to the sum of sojourn times, τ si = τ+i − τ−i , and tJU

x (t) the sum of vectors δxs
i between

entrance xτ−i
and exit xτ+i

points, that is,

tρUx (t) =
1

hd

∑
i≤Nt

(τ+i − τ−i ) ≡ 1

hd

∑
i≤Nt

τ si

tJU
x (t) =

1

hd

∑
i≤Nt

(xτ+i
− xτ−i

) ≡ 1

hd

∑
i≤Nt

δxs
i , (3.4.7)

where Nt is the number of visits of the window. Note that Nt is almost surely either ∞ or
0, but the sum converges. The points x0 or xt may lie within Uh

x for which we set xτ−1
= x0

and/or xτ+Nt

≡ xt. As a result of correlations between xτ−i
and τ si as well as xτ+i

and xτ−i+1
,

tρU and tJU are in general not renewal processes. A realization of xτ in Fig. 3.4.1a,b
provides intuition about Eq. (3.4.7).

Appendix II: Central-limit regime

Since the observables defined in Eq. (3.4.1) involve time-averages, their statistics on the
longest timescales is expected to be governed by the central limit theorem. Indeed, for
non-zero h or in spatial dimension d = 1 (in both cases we obtained finite variances) on
timescales t that are very large compared to all timescales in the system, different parts of a
trajectory (e.g., the sojourns in Fig. 3.4.1a and Eq. (3.4.7)) become sufficiently uncorrelated
such that the central limit theorem implies Gaussian statistics. However, the diverging
variance for h → 0 for d ≥ 2 prevents Gaussian central-limit statistics on all timescales
for the empirical density and current defined with a delta-function (i.e., without coarse
graining). Since the diverging part of the variance in Eq. (3.4.6) has the dominant central-
limit scaling ∝ t−1, the asymptotic variance σ2A

t→∞
= tvarxA(t) (where Ax(t) denotes ρUx (t)
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3 Statistics of time-integrated densities and currents

or JU
x (t)) also diverges as h → 0. This implies that taking t → ∞ first and then h → 0

also does not yield finite variances. Moreover, note that the longest timescale in the system
becomes the recurrence time, which diverges as h → 0. We hypothesize that a limiting
distribution of Ax(t) only exists as a scaling limit where h→ 0 and t→ ∞ simultaneously
in some d-dependent manner, see Sec. 3.5.

The central-limit regime is generally contained in the framework of large deviation theory
[43,110,183]. Due to the divergent variance σ2A and the resulting breakdown of Gaussian
central-limit statistics, any large deviation principle for empirical densities and currents
without coarse graining that predicts finite variances ceases to hold in d ≥ 2.

3.4.7 Supplemental Material

In this Supplementary Material (SM) we present an explicit numerical confirmation that a
discretely observed diffusion is not a Markov process.Moreover, we apply the results for the
limit of small window sizes to current fluctuations in a Markov jump process in discretized
space. Finally, we list the information that is necessary to reproduce all simulations and
analytical results shown in the figures presented above. Further details and derivations
related to statements above can be found in accompanying extended manuscript [84], see
Sec. 3.5.

Quantification of non-Markovianity of diffusion observed in discrete space
(i.e., on a grid)

In this section, we provide a quantitative example for the statement made above that "a
continuous dynamics observed on a discrete space is not Markovian". This in particular
demonstrates that a Markov-jump description with a limited number of states in general
cannot accurately describe a diffusion process in continuous space. AMarkov-jump descrip-
tion may be accurate in systems with a timescale separation (e.g., as a result of high energy
barriers separating minima) on timescales sufficiently larger than the slowest relaxation
(e.g., much larger than the longest relaxation time in the minima). However, in general
an accurate Markov-jump representation requires too many states to describe diffusive dy-
namics, and in particular to accurately describe functionals of paths [170]. The example
we provide here is the Ornstein-Uhlenbeck process with a rotational flow, see Fig. 3.4.1c.
To quantify the non-Markovianity we discretize the dynamics on a finite grid and quantify
violations of the Chapman-Kolmogorov equation, as described in Ref. [96].

We consider the Ornstein-Uhlenbeck process in two-dimensional continuous space, i.e.,
Eq. (3.4.17) with r = D = 1 and Ω = 3. Then we divide the area [−5, 5] × [−5, 5] into
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N × N squares Si that we label by an index i ∈ {1, . . . N2}. We define the steady-state
occupation of the state i (i.e., of the area/square Si) from the continuous-space steady-state
density ps(x0) (see Eq. (3.4.19)) as

ps(i0) ≡
∫
x0∈Si0

d2x0ps(x0), (3.4.8)

and, for any time t, from the continuous-space propagator (i.e., conditional density)
G(x, t|x0) (see Eq. (3.4.20)) we define the propagator of the discrete space observation
as

G(i, t|i0) ≡
1

ps(i0)

∫
x∈Si

d2x

∫
x0∈Si0

d2x0G(x, t|x0)ps(x0). (3.4.9)

Moreover, we define [96]

GCK
t′ (i, t|i0) ≡

N2∑
j=1

G(i, t− t′|j)G(j, t′|i0). (3.4.10)

Note that by the Chapman-Kolmogorov equation a Markov process would obey
GCK

t′ (i, t|i0) = G(i, t|i0) for all i, i0, t, t′. To quantify non-Markovianity we compute the
Kullback-Leibler divergence between G and GCK,

DCK
KL (t

′, t, i0) ≡
N2∑
i=1

G(i, t|i0) ln
[
G(i, t|i0)
GCK

t′ (i, t|i0)

]
. (3.4.11)

The results for this example are shown in Fig. 3.4.4a. Whenever DCK
KL > 0 the process is

non-Markovian. However, the exact value ofDCK
KL ̸= 0 does not have a direct interpretation.

To gain some intuition about the actual value, in Fig. 3.4.4b we normalize by the Kullback-
Leibler divergence of G and ps,

Dps
KL(t, i0) ≡

N2∑
i=1

G(i, t|i0) ln
[
G(i, t|i0)
ps(i)

]
. (3.4.12)

The rationale is that the actual value (at least) should not directly depend on how far the
actual dynamics is displaced from the steady state, i.e., if the dynamics is closer to the
steady state the same value of DCK

KL should be interpreted as stronger violation of Marko-
vianity as compared to when it is farther away, since the actual dynamics changes less in
magnitude in the former case.
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Figure 3.4.4: Quantification of non-Markovianity (as described in the text) in a discrete-
space observation with N × N states for N = 3, 5, 7, . . . , 19. The integrals in Eq. (3.4.9)
were evaluated numerically. (a) The value of DCK

KL (t
′, t, i0), for i0 denoting the index of the

square containing the point (0, 0), obviously decreases for large numbers of states according
to expectations. For very small numbers of states, where very few details of the dynamics
are observed, the non-Markovianity also appears to be smaller. (b) To gain intuition about
the values of DCK

KL (t
′, t, i0) we normalized it by Dps

KL(t, i0), i.e., a value of 1 means that the
Kullback-Leibler divergence of G and GCK equals the divergence of G and Gps. Since the
Kullback-Leibler divergence is not a metric (it is not symmetric and does not satisfy the
triangle inequality), one should be careful when interpreting its values quantitatively.

As expected, the extent of the violation of Markovianity depends on the grid-size. It reduces
for sufficiently small grids (large N), i.e., the dynamics become effectively Markovian on
shorter time-scales, as well as for large “ignorant” discrete observations (small N), where
all probability flows are averaged over. Both limits are intuitive—non-Markovianity arises
because there is no timescale separation ensuring local-equilibrium. That is, the direction
and rate of leaving a discretely observed state depends on the previous state and the precise
location of entering the binned discrete state. Notably (and obviously), the dynamics in the
limit of infinite number of grid points, i.e., in the continuum limit, is exactly the diffusion
process and thus Markovian. Moreover, the attenuation of non-Markovianity for very “ig-
norant” grids (i.e., small number of states) as a result of spatial averaging over large regions
is easiest understood by realizing that the dynamics with one state is (trivially) Markovian
and stationary at all times, the dynamics with two states slightly less so, etc.

A diffusion observed on a grid is thus not aMarkov jump process and one in general requires
many states for an accurate discrete-state Markov-jump representation, which is typically
not experimentally feasible. Moreover, one actually needs to parameterize the Markov state
model with such a large number of states, which is even less feasible. In contrast, evaluating
empirical densities and currents in finite windows assuming an underlying continuous-
space diffusion—as carried out in the present work—is not constrained to small windows
nor does it require any parameterization of a discrete-state model for its interpretation.
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Implications for fluctuations in Markov jump processes on a grid

If one approximates d ≥ 2-dimensional continuous-space dynamics by a Markov jump pro-
cess on a grid, the fact that the Markov-jump description becomes asymptotically accurate
for the number of states N → ∞ implies that for large N , correlations and fluctuations
of densities and currents will be governed by the limits for h → 0 in Eq. (3.4.6). Corre-
sponding to the problems with large deviation theory for h→ 0 discussed in the Appendix,
central-limit large deviations in dimensions d ≥ 2 exist only for finite grids (corresponding
to h > 0). In contrast, in the continuum limit where the number of states tends to infinity
(see, e.g., [132]; corresponding to h → 0) the recurrence time to visit a state diverges,
which would require t > ∞ for validity of the large deviation principle. In particular, a fi-
nite relaxation timescale (where the relaxation time is the inverse of the smallest non-zero
eigenvalue of the generator of the dynamics) that remains finite in the continuum limit
alone does not guarantee the validity of the large deviation principle.

We now give a specific example for the validity of the limits for h → 0 in Eq. (3.4.6).
A state at position x of a Markov jump process on a grid with spacing h can asymptot-
ically be interpreted as corresponding to a window function Uh

x that is the normalized
indicator function of a square with spacing h around x, e.g., in two-dimensional space
Uh
x (x

′, y′) = h−2
1|x−x′|,|y−y′|≤h/2. With this correspondence, applied to a two-dimensional

example with constant isotropic diffusion, the current fluctuations for a small grid-spacing
h should according to Eq. (3.4.6) (see accompanying paper for prefactor 2D) be governed
by

varxJ(t)
h→0
=

2D

t
ps(x)(d− 1)h−2 +O(t−1)O(h−1). (3.4.13)

Rates kj→j′

i→i′ (denoting x-indices by i and y-indices by j) for a discretized process originat-
ing from continuous dynamics are not unique, but can e.g., be obtained following [184].
Via the pseudo potentials (we need to use pseudo potentials since we consider a non-
equilibrium process [184])

Ũ(x, y) =
r

2D
x2 − Ω

D
xy

Ṽ (x, y) =
r

2D
y2 +

Ω

D
xy, (3.4.14)

we obtain rates

kj→j
i→i±1 =

D

h2
exp

(
−1

2
[Ũ(xi±1, yj)− Ũ(xi, yj)]

)
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Figure 3.4.5: (a) Two sample trajectories of the Ornstein-Uhlenbeck process discretized
as described in the text with time step dt = 0.001 and total time T = 1, starting in steady-
state initial conditions. (b) Mean current as defined in the text obtained from a simulation
of 10,000 trajectories such as the ones in (a). For visibility, arrows are only drawn at every
fourth x and y value contained in the grid. (c) Variance of the current at individual grid
points obtained from the same simulation as in (b). (d) Eq. (3.4.16) evaluated at individual
grid points. The qualitative and quantitative agreement with (c) shows that Eq. (3.4.16),
which was derived in continuous space, has direct consequences for Markov jump processes
on grids with small h.

kj→j±1
i→i =

D

h2
exp

(
−1

2
[Ṽ (xi, yj±1)− Ṽ (xi, yj)]

)
. (3.4.15)

Note that all other rates (i.e., to non-neighboring states) vanish in this construction.

Currents are now defined as transition counts on the edges of the grid. To compare to
continuous-space time-averaged currents, we define the x-component of a current Jx at
a grid point x as the net number of transitions on the edge to the right of x and the y-
component as the net number of transitions on the edge above x. Note that this current
reflects probabilities of transitions and not probability densities which differs by the current
density by a factor of h2, i.e., by the area corresponding to of a state. With this definition,
the limit Eq. (3.4.13) for h→ 0 becomes

varxJ(t)
h→0
=

2D

t
ps(x)(d− 1) +O(t−1)O(h1). (3.4.16)

Note that one could instead equivalently define the current with the normalization h−2 to
obtain densities and use the limit in Eq. (3.4.13).

Fig. 3.4.5 illustrates the validity of the limit Eq. (3.4.16) for a discretized Ornstein-
Uhlenbeck process, see Eq. (3.4.17) with r = D = 1, Ω = 3. The process on the area
[−5, 5]2 is discretized into a 101 × 101 = 10201-state Markov jump process, i.e., the grid
spacing is h = 0.1. The quantitative agreement of Fig. 3.4.5c and d illustrates that the limit
current fluctuations on the jump process are indeed governed by Eq. (3.4.16). Note that
the t−1 scaling of the h−2 term in Eq. (3.4.16) ensures that for h → 0 current fluctuations
are governed by this equation for all time-scales.

76



Phys.Rev.Lett.129,140601
(2022)

Statistics of time-integrated densities and currents 3

Numerical and analytical evaluation used for the figures

This section gives further parameters and all details necessary to reproduce Figs. 3.4.1-
3.4.3.

Analytical results for the two-dimensional Ornstein-Uhlenbeck process

For the numerical and analytical results shown in Figs. 3.4.1 and 3.4.3, we use the two-
dimensional Ornstein-Uhlenbeck process given by the Langevin equation

dxt = Frot(xt)dt+
√
2DdWt, (3.4.17)

with drift field Frot(x) = −Θx where Θ =

[
r −Ω

Ω r

]
, r > 0. The drift part splits into

Frot(x) = −D{∇ϕ(x)}+ js(x)/ps(x), (3.4.18)

with potential ϕ(x) = r
2DxTx and steady-state density and current

ps(x) =
r

2πD
e−r xT x

2D

js(x) = (F−D∇x)ps(x) = Ωps(x)

[
x2

−x1

]
. (3.4.19)

A straightforward left-right decomposition [6] gives the propagator/two-point function

G(x, t′|x0) =
r

2πD(1− e−2rt′)
exp


−r

(
x− e−rt′

[
cos(Ωt′) sin(Ωt′)

− sin(Ωt′) cos(Ωt′)

]
x0

)2

2D(1− e−2rt′)


Px0(x, t

′) ≡ G(x, t′|x0)ps(x0). (3.4.20)

We then analytically solve the necessary Gaussian integrals for Gaussian window functions

Uh
x (z) = (2πh2)−d/2 exp

[
−(z− x)2

2h2

]
, (3.4.21)

and numerically solve the remaining t′-integral. This enables a very fast and stable (even
for very small coarse graining where numerical spatial integrals would eventually fail) com-
putation of the second moments shown in Figures 2 and 3. The analytical integrals were
performed with the Python-based computer algebra system SymPy [185]. To give an ex-
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3 Statistics of time-integrated densities and currents

ample, we now show the computation of one of the terms in the current variance result in
Eq. (3.4.5) (other terms similarly).

We start e.g., with the spatial integrals∫
d2x

∫
d2x0V (x)U(x0)j

2
s (x)j

2
s (x0)G(x, t|x0)ps(x0), (3.4.22)

where we set x = (x1, x2),x0 = (x3, x4) such that j2s (x) = −Ωx1 and j2s (x0) = −Ωx3 and
we use constants {ci} to write

V (x) =
c1
π
e−c1((x1−y1)

2+(x2−y2)
2)

U(x0) =
c2
π
e−c2((x3−y3)

2+(x4−y4)
2)

ps(x0) =
c3
π
e−c3(x2

3+x2
4)

G(x, t|x0) =
c4
π
e−c4((c5x3+c6x4−x1)

2+(c5x4−c6x3−x2)
2). (3.4.23)

Integrating from −∞ to ∞ over x3 and x4 gives (Gaussian integrals with c1, c2, c3, c4 > 0)∫
d2x0V (x)U(x0)j

2
s (x)j

2
s (x0)G(x, t|x0)ps(x0)

=
Ω2c1c2c3c4x1 (c2y3 + c4c5x1 − c4c6x2)

π3
(
c2 + c3 + c4c25 + c4c26

)2
× e

c22y
2
4+2c2c4y4(c5x2y4+c6x1)+c24(c5x2+c6x1)

2+(c2y3+c4c5x1−c4c6x2)
2

c2+c3+c4c
2
5+c4c

2
6

× e−c1x2
1+2c1x1y1−c1x2

2+2c1x2y2−c1(y21+y22)−c2(y23+y24)−c4(x2
1+x2

2). (3.4.24)

To integrate over x1 and x2, we simply use (a4, a5 > 0)∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

(
a1x1 + a2x

2
1 + a3x1x2

)
e−a4x2

1−a5x2
2+a6x1+a7x2+a8

=
π
(
2a1a4a5a6 + a2a5

(
2a4 + a26

)
+ a3a4a6a7

)
e

4a5a8+a27
4a5

+
a26
4a4

4a
5
2
4 a

3
2
5

. (3.4.25)

Equations for the {ai} in terms of the {ci} can be read off Eq. (3.4.24) and the {ci} con-
tain all parameter dependencies of the process, including the t′. The t′-integration is then
performed numerically.
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Details and simulation parameters for Figs. 3.4.1-3.4.3

The process in Fig. 3.4.1a,b is simulated as a free two-dimensional Brownian motion. Nu-
merical Stratonovich integration gives the empirical density and current. The times shown
are τ−1 = 1.14, τ+1 = 3.83, τ−2 = 6.54, τ+2 = 6.80.

The mean and variance in the histograms in Fig. 1d,e and the relative error in Fig. 3.4.1f are
obtained analytically as described above. The TUR-bound is given by 2

σt where σ = 2Ω2

r is
the dissipation in the steady state of the Ornstein-Uhlenbeck process (3.4.17) (see Sec. 3.5).
For Ω = 5, r = 1, t = 5, we obtain that the TUR-bound shown in Fig. 3.4.1f is at 0.008.

The process in Fig. 3.4.2 is the shear flowwithF(x, y) = 2xŷ andD = 1 from (0, 0) to (2, 0)
in total time t2 − t1 = 1. It is simulated with time step size dt = 0.02 as Brownian bridge
in x-direction (exactly hits 2 after time 1) and then pick trajectories that hit yfinal = 0 with
deviation less than 0.02. Time-reversed and dual reversed trajectories are similarly from
(2, 0) to (0, 0) with same or inverted shear. For each transition around 11, 000 − 12, 000

trajectories were considered. Arrows are in the direction of the first/last step in discretized
time.

The trajectory in Fig. 3.4.2e is sampled from an Ornstein-Uhlenbeck process Eq. (3.4.17)
with Ω = 3, r = D = 1 and total time t ≈ 37.

The simulations in Fig. 3.4.3 are performed with time step dt = 10−4 and 8192 repeti-
tions for 3a and 4096 repetitions for 3b. All simulations are performed by discretizing
Eq. (3.4.17) and sampling the initial point x0 from the steady-state distribution ps(x). Ad-
ditional parameters in 3c are h = 1, 0.25, 0.03 from dark to bright.
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3.5 Coarse graining empirical densities and currents
in continuous-space steady states (Phys. Rev. Res. 2022)

This section is a slightly adapted version of the publication C. Dieball and A. Godec, “Coarse
graining empirical densities and currents in continuous-space steady states”, Phys. Rev. Res.
4, 033243 (2022), accompanying the Letter reproduced in Sec. 3.4.

My personal contribution as first author of the publication was in performing calculations
and simulations, analyzing the results, and co-writing the manuscript.
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Coarse graining empirical densities and currents in
continuous-space steady states

Cai Dieball and Aljaž Godec

Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am
Faßberg 11, 37077 Göttingen, Germany

Abstract

We present the conceptual and technical background required to describe
and understand the correlations and fluctuations of the empirical density and
current of steady-state diffusion processes on all timescales— observables cen-
tral to statistical mechanics and thermodynamics on the level of individual tra-
jectories. We focus on the important and non-trivial effect of a spatial coarse
graining. Making use of a generalized time-reversal symmetry, we provide
deeper insight about the physical meaning of fluctuations of the coarse-grained
empirical density and current, and explain why a systematic variation of the
coarse-graining scale offers an efficient method to infer bounds on a system’s
dissipation. Moreover, we discuss emerging symmetries in the statistics of the
empirical density and current, and the statistics in the central-limit regime.
More broadly, our work promotes the application of stochastic calculus as a
powerful direct alternative to Feynman-Kac theory and path-integral methods.

3.5.1 Introduction

A non-vanishing probability current [34,44,48,68,106,126,140,157,159–163,166,167,
172, 173] and entropy production [28, 54, 73, 104, 120, 122, 145, 186–188] are the hall-
marks of non-equilibrium, manifested as transients during relaxation [49,73,120–124] or
in non-equilibrium, current-carrying steady states [34,47,48,106,125,127]. Genuinely ir-
reversible, detailed balance violating dynamics emerge in the presence of non-conservative
forces (e.g., shear or rotational flow) [189–192] or active driving in living matter fueled
by ATP hydrolysis [32, 115, 116, 140, 146, 193–196]. Such systems are typically small
and “soft” and thus subject to large thermal fluctuations. Single-molecule [115–119] and
particle-tracking [130] experiments probe dynamical processes on the level of individual,
stochastic trajectories. These are typically analyzed within the framework of “time-average
statistical mechanics” [41,48,67,130–134], i.e., by averaging along individual finite real-
izations yielding random quantities with non-trivial statistics.
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3 Statistics of time-integrated densities and currents

Ergodic steady states are characterized by the (invariant) steady-state density ps(x) and a
steady-state probability current js(x) in systems with a broken detailed balance. One can
equivalently infer ps(x) and js(x) from an ensemble of statistically independent trajectories
of an ergodic process, or from an individual but very long (i.e., ergodically long6) trajectory.
To infer ps(x) and js(x) from individual sample paths one uses estimators that are called
the empirical density and empirical current, respectively, defined as

ρUx (t) ≡
1

t

∫ t

0
Uh
x (xτ )dτ,

JU
x (t) ≡

1

t

∫ τ=t

τ=0
Uh
x (xτ ) ◦ dxτ , (3.5.1)

where Uh
x (z) is a “window function” around a point x with a characteristic scale h (see

Sec. 3.4) and ◦ dxτ denotes the Stratonovich integral, which both will be specified more
precisely below. Notably, the Stratonovich integration ◦dxτ in Eq. (3.5.1) is the correct way
to make sense of the expression “ẋτdτ”, which is ill-defined since, for any τ with probability
one, |ẋτ | = ∞ for overdamped Langevin dynamics [178]. Because (xτ )0≤τ≤t is random,
ρUx (t) and JU

x (t) are fluctuating quantities. Notably, the empirical density and current are
typically defined with a δ function, i.e., with Uh→0

x (z) = δ(x−z) [34,43–45,107,110,141–
144] . For a variety of reasons detailed below and in the companion Letter (see Sec. 3.4),
we here define Uh

x with a finite length scale h > 0, such that ρUx (t) measures the time
spent in the region Uh

x around x and JU
x (t) the displacements in the region Uh

x around x.
Such a definition is in line with that of generalized currents in stochastic thermodynamics
[48, 67, 131, 132] except that we here consider vector-valued currents. Important recent
results on such generalized currents (however, without the notion of coarse graining) may
be found in Refs. [70,72,126,133,134].

The fluctuations of ρUx (t) and JU
x (t) may be interpreted as variances of fluctuating his-

tograms. Namely, after “binning” into (hyper)volumes around points x (or in our language
the coarse-graining around x), often carried out on a grid, each individual trajectory yields
a random histogram of occupation fractions or displacements. That is, the height of bins in
the histogram reflects the time spent or displacement in said bin accumulated over all visits
of the trajectory until time t for ρUx (t) and JU

x (t), respectively, and is a fluctuating quantity
due to the stochasticity of trajectories. The variance of these fluctuations quantifies the
inference uncertainty. In Fig. 3.5.1 we show such histograms inferred from individual tra-

6An ergodic timescale is longer than any correlation time in the system.
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jectories of a two-dimensional harmonically confined overdamped diffusion in a rotational
flow

dxt = −

[
1 −Ω

Ω 1

]
xdt+

√
2dWt, (3.5.2)

with Gaussian window

Uh
x (z) =

1

2πh2
exp

[
−(z− x)2

2h2

]
. (3.5.3)

For this process and window function we analytically solved all spatial integrals entering
the results derived below (see Sec. 3.4), and numerically evaluated one remaining time
integral.

Figure 3.5.1: (a) Two trajectories (gray) with length t = 5 in harmonically confined ro-
tational flow [Eq. (3.5.2)] with Ω = 5. The steady-state density and current are depicted
by the color gradient and yellow arrows, respectively. (b) Height of bins depicts the time-
averaged x component of the current with Gaussian coarse-graining window [Eq. (3.5.3)]
with h = 0.3 evaluated for several points on the red line in (a) for the two trajectories in
(a). This corresponds to time averaging all local displacements (weighted by Uh

x ) within
a single trajectory. (c) As in (b) but for the continuum of points on the red line in (a).
This can be considered as the x component of the current smoothened over a scale h. (d)
Mean value ⟨A⟩s and standard deviation

√
var(A) of A = JU

(1,y)x
obtained from our result

[Eq. (3.5.52)]. This represents the statistics of many histograms as in (b). (e) As in (d) but
for continuous y as in (c). (f) Overlaying (d) and (e) shows that the histogram picture is
fully contained in the continuous coarse-graining procedure.
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3 Statistics of time-integrated densities and currents

The interpretation of the coarse graining captured in or induced by Uh
x in Eq. (3.5.1) is

flexible; it can represent a projection or a “generalized current” [48, 67, 70, 72, 126, 131–
134] or may be thought of as a spatial smoothing of the empirical current and density
as shown in Figs. 3.5.1c,e and 3.5.2, also for the case of a finite experimental resolution.
Our main focus here is the smoothing aspect in the context of uncertainty of ps(x), js(x)
and steady-state dissipation from individual trajectories. Note that some form of coarse
graining or smoothing is in fact required in order for the quantities in Eq. (3.5.1) to be
well-defined (see Sec. 3.4). A suitable smoothing decreases the uncertainty of the estimate
and, if varied over sufficiently many h and x [see also Fig. 3.5.1c,e) instead of simply
“binning,” one does not necessarily lose information (as compared to input data). Moreover,
a systematic variation of the scale h may reveal more information about ρUx (t) and JU

x (t).
The same reasoning is found to apply to generalized thermodynamic currents and allows
for an improved inference of dissipation (see Sec. 3.4 and below).

The present work is an extended exposé of the conceptual and technical background that is
required to understand and materialize the above observations. It accompanies the Letter
reproduced in Sec. 3.4. Several additional explanations, illustrations and applications are
given here.

The article is structured as follows. In Sec. 3.5.2 we lay out the theoretical background on
stochastic differential equations in the Itô, Stratonovich and anti-Itô interpretations and
the corresponding equations for the probability densities. We furthermore decompose the
drift and steady-state current into conservative and nonconservative (i.e., irreversible) con-
tributions and introduce dissipation. In Sec. 3.5.3 we prove a generalize time-reversal sym-
metry called “dual-reversal symmetry”. In Sec. 3.5.4 we derive our main results for the
steady-state (co)variances of ρUx (t) and JU

x (t) and interpret them in terms of initial- and
end-point currents and increments. We then use these results to explicitly evaluate the
limit h → 0 of no coarse graining in Sec. 3.5.5, where we find that fluctuations diverge in
(d ≥ 2)-dimensional space. In Sec. 3.5.6 we use current fluctuations to infer steady-state
dissipation via the thermodynamic uncertainty relation (TUR) [47, 126] with an empha-
sis on the importance of the coarse-graining scale h. In particular, we demonstrate and
explain the existence of a thermodynamically optimal coarse graining. In Sec. 3.5.7 we
discuss symmetries obeyed by the (co)variances and explain how the results simplify in
thermodynamic equilibrium, and in Sec. 3.5.8 we present a continuity equation for coarse
grained empirical densities and currents. In Sec. 3.5.9 we present asymptotic results for
short and long trajectories and give results for the central-limit regime. We conclude with
an outlook beyond overdamped dynamics in Sec. 3.5.10 by considering underdamped sys-
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Figure 3.5.2: (a) Coarse-graining windows (colors) in the form of an indicator function of
a rectangle centered at different points x with coarse-graining scale h. For each x and h,
each trajectory (gray lines) gives rise to one value for the (coarse grained) time-averaged
density and current. Note that the choice of x and h is flexible, such that the windows
may overlap. (b) Same as (a) but with Gaussian coarse-graining windows. (c, d) Coarse-
graining windows in the case of trajectory data with a finite experimental resolution (grid,
gray trajectories). The coarse graining scale h should be chosen large compared to the
resolution to obtain reliable approximations of the (coarse-grained) densities and currents.

tems as well as experimental data derived from particle-tracking experiments in biological
cells, and with a summary and perspectives for the future.

3.5.2 Theory

Setup: Overdamped Langevin dynamics

In this section we provide background on the equations of motion for the coordinate xτ

highlighting the differences between the Itô, Stratonovich, and anti-Itô interpretations, and
for their corresponding conditional probability density functions of a transition x0 → x.

We consider time-homogeneous (i.e., coefficients do not explicitly depend on time) over-
damped Langevin dynamics in d-dimensional space with (possibly) multiplicative noise
[6, 16] described by the thermodynamically consistent [104, 169] anti-Itô (or Hänggi-
Klimontovich [197,198]) stochastic differential equation7

dxτ = F(xτ )dτ + σ(xτ )⊛ dWτ , (3.5.4)

where dWτ is the increment of a d-dimensional Wiener processes (i.e., white noise) with
zeromean and covariance ⟨dWτ,idWτ ′,j⟩ = δ(τ−τ ′)δijdτdτ ′. The noise amplitude is related
to the diffusion coefficient via D(x) ≡ σ(x)σ(x)T /2. We assume the drift field F(x) to be
smooth and sufficiently confining, such that the anti-Itô (end-point) convention ⊛dWτ =

Wτ −Wτ−dτ guarantees the existence of a steady-state probability density ps(x) = e−ϕ(x)

7For more precise statements in the case of multiplicative noise in multidimensional space see
Sec. 2.8, in particular the additional condition in Eq. (2.8.6).
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3 Statistics of time-integrated densities and currents

and steady-state current js(x), and yields the thermodynamically consistent Boltzmann-
Gibbs (equilibrium) statistics when D(x)−1F(x) = −∇ϕ(x) is a potential force. The anti-
Itô equation (3.5.4) can equivalently be rewritten as an Itô equation with an adapted drift
as8,

dxt =
[
F(xt) +

{
∇TD

}
(xt)

]
dt+

√
2D(xt)dWt, (3.5.5)

where the brackets {·} throughout denote that the differential operator only acts within
the bracket.

At this point, several remarks are in order. First, the anti-Itô interpretation of the stochastic
differential equation (3.5.4) as well as the Stratonovich integral in Eq. (3.5.1) are both
required for thermodynamic consistency. Second, there is no difference between the in-
terpretations of Eq. (3.5.4) if D(x) = D is a constant matrix; i.e., the convention only
matters for multiplicative noise. However, even in this case the Stratonovich integral in
Eq. (3.5.1) is required for thermodynamic consistency of the empirical current and to use
it as an estimator of js(x).

The Fokker-Planck equation for the conditional probability densityG(x, t|y) to be at a point
x at time t after starting at y that corresponds to Eqs. (3.5.4) and (3.5.5) reads

∂tG(x, t|y) = [−∇x · F(x) +∇T
xD(x)∇x]G(x, t|y)

≡ L(x)G(x, t|y), (3.5.6)

which satisfies a continuity equation (∂t +∇x · ĵx)G(x, t|y) = 0, where

ĵx ≡ F(x)−D(x)∇x. (3.5.7)

Decomposing of the drift F(x) into reversible Frev(x) = −D(x){∇ϕ}(x) and irreversible
Firrev(x) = F(x)−Frev(x) parts translates to a decomposition of ĵx into a gradient part ĵgx
and steady-state-current contributions, namely ĵx = Firrev(x) +Frev(x)−D(x)∇x. This is
rewritten using

ĵgx ≡ Frev(x)−D(x)∇

= D(x) {∇ log(ps(x)} −D(x)∇

= D(x)p−1
s (x) {∇ps(x)} −D(x)∇

= −D(x)
[
ps(x){∇p−1

s (x)} − ∇
]

8For more precise statements in the case of multiplicative noise in multidimensional space see
Sec. 2.8, in particular the additional condition in Eq. (2.8.6).
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= −D(x)ps(x)∇p−1
s (x), (3.5.8)

where we have used that {∇ps(x)−1}=−p−2
s (x){∇ps}(x) implies

{∇ps}(x)=−p2s (x){∇p−1
s }(x)). Therefore we have ĵgxps(x) = 0, such that the defi-

nition of the steady-state current js(x) ≡ ĵxps(x) with ĵx = ĵgx + Firrev(x) implies
Firrev(x) = p−1

s (x)js(x) and we obtain

ĵx = ĵgx + p−1
s (x)js(x)

= −ps(x)D(x)∇xp
−1
s (x) + p−1

s (x)js(x). (3.5.9)

Moreover, note that the steady-state two-point density Py(x, t) ≡ G(x, t|y)ps(y) also sat-
isfies the same Fokker-Planck equation as G(x, t|y).

Finally, if the process is irreversible, i.e., Firrev(x) ̸= 0 the steady state is dissipative with
an average total entropy production rate Σ̇ given by [28,105]

Σ̇ =

∫
dxFirrev(x) ·D−1(x)Firrev(x)ps(x)

=

∫
dx

jTs (x)

ps(x)
D−1(x)js(x), (3.5.10)

which can be obtained as the mean value of a sum over steady-state expectations of the
respective i-th component of JUi

x (t) in Eq. (3.5.1) with Ui = (Firrev(x)TD−1(x))i.

Note that by adopting the Itô or Stratonovich conventions instead of the anti-Itô conven-
tion in Eq. (3.5.4) one obtains a different Fokker-Planck equation with a different steady-
state density. In particular, LIto(x) = −∇x · F(x) +

∑d
i,j=1 ∂i∂jDij(x) and LStrato(x) =

L(x)/2 + LIto(x)/2 = −∇x · F(x) +
∑d

i,j=1 ∂i
√
Dij(x)∂j

√
Dij(x) and the respective

steady-state densities pItos (x) and pStratos (x) depend explicitly on D(x) and are there-
fore in general not thermodynamically consistent since the steady state deviates from
Gibbs-Boltzmann statistics [e.g., in dimension one we have pItos (x) ∝ panti-Itos (x)/D(x) and
pStratos (x) ∝ panti-Itos (x)/

√
D(x), respectively, where the deviation from panti-Itos (x) cannot

be absorbed in the normalization if D(x) depends on x].

3.5.3 Generalized time-reversal symmetry

It will later prove useful to take into account a form of generalized time-reversal sym-
metry obeyed by Eq. (3.5.4) called “continuous time reversal” or “dual-reversal symme-
try” [133, 176]. Analogous generalized symmetries were also found in deterministic sys-
tems (see, e.g., Ref. [199]). Generalized time-reversal symmetry relates forward dynamics
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3 Statistics of time-integrated densities and currents

in non-equilibrium steady states to time-reversed dynamics in an ensemble with inverted
irreversible steady-state current, i.e., in an ensemble with Firrev → −Firrev or equivalently
js → −js. The dual-reversal symmetry for the two-point probability densities states that

G(x, t|y)ps(y) = G−js(y, t|x)ps(x), (3.5.11)

or equivalently G−js(x, t|y)ps(y) = G(y, t|x)ps(x) where G−js(y, t|x) is the conditional
probability density of the process with drift F−js(x) ≡ Frev(x) − Firrev(x) instead of
F(x) = Frev(x)+Firrev(x). At equilibrium, i.e., js(x) = 0 (for all x), this symmetry simpli-
fies to the well-known time-reversal symmetry called the “detailed balance” condition for
two-point densities. We here provide an original and intuitive proof of Eq. (3.5.11) that
proceeds entirely in continuous space and time, based on the decomposition of currents
in Eq. (3.5.9). The Fokker-Planck operator L(x) = −∇x · ĵx, using the decomposition in
Eq. (3.5.9) and multiplying by ps from the right-hand side, reads

L(x)ps(x) = −∇x · js(x) +∇T
xps(x)D(x)∇x. (3.5.12)

Taking the adjoint gives (since D = DT )

ps(x)L
†(x) = [L(x)ps(x)]

†

= js(x) · ∇x +∇T
xps(x)D(x)∇x. (3.5.13)

Since for the steady state density Lps = 0, js is divergence free {∇x · js(x)} = 0 and we
have ∇x · js(x) = js(x) · ∇x. Thus we see the symmetry under inversion js → −js

ps(x)L
†(x) = L−js(x)ps(x). (3.5.14)

Under detailed balance js = 0, i.e., L−js = L, and ps(x)L
†(x) = L(x)ps(x) which im-

plies the time-reversal symmetry G(x, t|y)ps(y) = G(y, t|x)ps(x) [16, 17, 178]. Equa-
tion (3.5.14) implies for all integers n ≥ 1 that ps(x)[L†(x)]n = [L(x)−js ]n(x)ps(x), and
consequently for all t ≥ 0 that ps(x) exp[L†(x)t] = exp[L−js(x)t]ps(x). Applying this op-
erator equation to the initial condition δ(y − x) and using ps(x)δ(y − x) = ps(y)δ(y − x)

as well as that L† propagates the initial condition as G(y, t|x) = exp[L†(x)t]δ(y − x)

while L−js propagates the final point in the ensemble with js inverted as G−js(x, t|y) =

exp[L−js(x)t]δ(y − x), we obtain the dual-reversal symmetry in Eq. (3.5.11). This gener-
alized time-reversal symmetry relates the dynamics in the time-reversed ensemble to the
propagation in the ensemble with reversed current, or equivalently, the forward dynam-
ics to the propagation with concurrent time and js-reversal. While at equilibrium (i.e.,
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under detailed balance, js = 0) the forward dynamics is indistinguishable from the time-
reversed dynamics, the statement in Eq. (3.5.11) (if generalized to all paths; see, e.g.,
Ref. [133]) means that forward dynamics (with js) is indistinguishable from backwards or
time-reversed dynamics with reversed js → −js [i.e., js(x) → −js(x) at all x]. We will later
use this dual-reversal symmetry to understand the fluctuations of observables that involve
(time-integrated) currents in non-equilibrium steady states.

3.5.4 Derivation of the main results, initial- and final-point cur-
rents and their application to density-current correlations

Mean empirical density and current

Although the time-averaged density and current defined in Eq. (3.5.1) are functionals
with complicated statistics, their mean values can be readily computed. Throughout the
paper we will assume steady-state initial conditions, i.e., initial conditions drawn from
ps(x

′), denoted by ⟨·⟩s. This renders mean values time independent, and we have (see also
Ref. [106])

〈
ρUx (t)

〉
s
=

1

t

∫ t

0
dτ
〈
Uh
x (xτ )

〉
s

=
1

t

∫ t

0
dτ

∫
dzUh

x (z)ps(z)

=

∫
dzUh

x (z)ps(z), (3.5.15)

and by rewriting the Stratonovich integration ◦dxτ in terms of Itô integration as Uh
x (xτ ) ◦

dxτ = Uh
x (xτ )dxτ+

1
2dU

h
x (xτ )dxτ , where dxτdx

T
τ /2 = D(xτ )dτ and thus dUh

x (xτ )dxτ/2 =

D(xτ ){∇Uh
x}(xτ )dτ ,〈
JU
x (t)

〉
s
=

1

t

∫ t

0

〈
Uh
x (xτ ) ◦ dxτ

〉
s

=
1

t

∫ τ=t

τ=0

〈
Uh
x (xτ )dxτ

〉
s
+

1

t

∫ τ=t

τ=0

1

2

〈
dUh

x (xτ )dxτ

〉
s

=
1

t

∫ t

0
dτ

∫
dzps(z)

[
Uh
x (z)F(z) +

{
∇T

zD(z)
}
Uh
x (z)

+D(z)
{
∇zU

h
x (z)

} ]
+

1

t

∫ τ=t

τ=0

〈
Uh
x (xτ )

√
2D(xτ )dWτ

〉
s
. (3.5.16)
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3 Statistics of time-integrated densities and currents

Note that the mean value involving dWτ vanishes since this Itô-noise increment has zero
mean and is uncorrelated with functions of xτ , i.e., ⟨f(xτ )dWτ ⟩ = ⟨f(xτ )⟩⟨dWτ ⟩ = 0.
Integrating by parts and using that D(z) = DT (z) is symmetric we get〈

JU
x (t)

〉
s
=

∫
dzps(z)

[
Uh
x (z)F(z) +∇T

zD(z)Uh
x (z)

]
=

∫
dzUh

x (z) [F(z)−D(z)∇z] ps(z)

=

∫
dzUh

x (z)̂jzps(z) =

∫
dzUh

x (z)js(z). (3.5.17)

Note that if we had defined Eq. (3.5.1) with an Itô integral instead of the Stratonovich, we
would miss the D(z)∇z term and would not get ĵz and thus js, not even for additive noise.
The Stratonovich integral is therefore required for consistency.

The interpretation of the steady-state mean values in Eqs. (3.5.15) and (3.5.17) is imme-
diate — the mean time-averaged density and current are (at least for positive normalized
windows) the steady-state density ps and current js averaged over the coarse-graining win-
dow function Uh

x .

(Co)variances of empirical density and current

Since fluctuations [41, 47, 48, 67, 126, 130–133] (and correlations [134]) play a cru-
cial role in time-average statistical mechanics and stochastic thermodynamics, we discuss
(co)variances of coarse-grained time-averaged densities and currents (recall the interpre-
tation of the variance within the “fluctuating histogram” picture in Fig. 3.5.1).

To keep the notation tractable, we introduce the integral operator

Ît,U
xy [ · ] ≡ 1

t2

∫ t

0
dt1

∫ t

t1

dt2

∫
dzUh

x (z)

∫
dz′Uh

y (z
′)[ · ], (3.5.18)

with the convention ∫ t
t1
dt2δ(t2−t1) = 1/2. Note that other conventions would only change

the appearance of intermediate steps but not the final result. We define the two-point
steady-state covariance according to Sec. 3.4 as

Cxy
AB(t) ≡ ⟨Ax(t)By(t)⟩s − ⟨Ax(t)⟩s⟨By(t)⟩s , (3.5.19)

where A and B are henceforth either ρU or JU , respectively. We refer to the case when A ̸=
B or x ̸= y as (linear) “correlations” and to the case A = B with x = y as “fluctuations”
whereby we adopt the convention varxA(t) ≡ Cxx

AA(t). Note that for simplicity and enhanced
readability we only assume coarse-graining windows Uh

x and Uh
y where the shape is fixed
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but the center points x,y may differ. All results equivalently hold for window functions
whose shape and h differ as well.

We now address correlations Cxy
ρρ of the coarse-grained time-averaged density at points x

and y, which correspond to the density variance when x = y. To do so, first consider the
(mixed) second moment

t2
〈
ρUx (t)ρ

U
y (t)

〉
s
=

∫ t

0
dτ

∫ t

0
dτ ′
〈
Uh
x (xτ )U

h
y (xτ ′)

〉
s
. (3.5.20)

The expectation value corresponds to an integration over the two-point probability density
to have xτ = z and xτ ′ = z′ given by the two-point function Pz(z

′, τ ′ − τ) ≡ G(z′, τ ′ −
τ |z)ps(z) for τ ′ > τ and Pz′(z, τ − τ ′) for τ ′ < τ . We relabel the times τ, τ ′ as t1 < t2 and
use the integral operator in Eq. (3.5.18) to obtain〈

ρUx (t)ρ
U
y (t)

〉
s
= Ît,U

xy

[
Pz(z

′, t2 − t1) + Pz′(z, t2 − t1)
]
. (3.5.21)

Since the argument only depends on time differences t′ = t2− t1 ≥ 0 the integral operator
Eq. (3.5.18) simplifies to

Ît,U
xy [ · ] ≡ 1

t

∫ t

0
dt′
(
1− t′

t

)∫
dzUh

x (z)

∫
dz′Uh

y (z
′)[ · ]. (3.5.22)

To obtain the correlation we subtract the mean values [see Eq. (3.5.15)] which [noting that
(1/t)

∫ t
0 dt

′(1− t′/t) = 1/2] gives

Cxy
ρρ (t) = Ît,U

xy

[
Pz(z

′, t′) + Pz′(z, t
′)− 2ps(z)ps(z

′)
]
, (3.5.23)

which has been derived before [41,135]. Equation (3.5.23) simplifies further for x = y as
well as under detailed balance and is also symmetric under js → −js, all of which will be
discussed in Sec. 3.5.7.

The interpretation of Eq. (3.5.23) (see also Ref. [41]) is that all paths from z to z′ (i.e.,
from Uh

x to Uh
y ) and vice versa from z′ to z, in time t′ = t2− t1 contribute according to their

correlation to Cxy
ρρ (t). These contributions are integrated over all possible time differences

and pairs of points within Uh
x and Uh

y , respectively.

We now explore the important effect of coarse graining over the windows Uh
x for the infer-

ence of ps(x) from noisy individual trajectories. If one wants to reliably infer the (coarse-
grained) steady-state density from ρUx (t) the relative error varρ/⟨ρUx (t)⟩2 should be small.
We have shown that limh→0 varρ/⟨ρUx (t)⟩2 = ∞ (see Sec. 3.4) and Fig. 3.5.3 (blue line)
demonstrates that varρ/⟨ρUx (t)⟩2 decreases with increasing h. However, such a decrease
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3 Statistics of time-integrated densities and currents

does not guarantee an improved inference. Namely, as h→ ∞ the time spent in the region
around x tends to t and Uh

x becomes constant on a large region and hence ρUx (t) → Uh
x (x)

which contains no information about ps(x). Therefore, to reliably infer that ρUx significantly
deviates from Uh

x (x), we must also consider the relative error of [ρUx − Uh
x (x)] depicted in

Fig. 3.5.3 (orange line). There exists an “optimal coarse graining” where the uncertainty
of simultaneously inferring ρUx and ρUx − Uh

x (x) is minimal (minimum of the solid lines in
Fig. 3.5.3) which represents the most reliable and informative estimate of ρUx . In Sec. 3.5.6
we will turn to an analogous “optimal coarse graining” with respect to current variances
and a system’s dissipation.

Figure 3.5.3: Relative error of ρUx (t) (blue line) compared to the relative error of
[ρUx (t) − Uh

x (x)] (orange line) as a function of the coarsening scale h for the rotational
flow in Eq. (3.5.2) with Ω = 3 for time t = 10 with a Gaussian window function Eq. (3.5.3)
around x = (1, 0)T with width h, i.e., Uh

x (x) = (2πh2)−1. The intersection point of blue and
orange lines at h ≈ 1.3 yields an “optimal coarse graining” where the maximum of the two
lines (solid line) is minimal, whereas the maximum of the relative errors diverges as h→ ∞
since ⟨A⟩s → 0 and diverges logarithmically for h→ 0 [as we will see in Eq. (3.5.51)].

We now consider coarse-grained time-averaged currents. To compute the correlation of the
current at a point x and the density at y we need to consider

t2
〈
JU
x (t)ρ

U
y (t)

〉
s
=

∫ t

0
dτ ′
∫ τ=t

τ=0

〈
Uh
x (xτ )U

h
y (xτ ′) ◦ dxτ

〉
s
. (3.5.24)

Relabeling with t1 ≤ t2, introducing the notation

⟨· · · ⟩xt1=z

xt2=z′ ≡
〈
δ(xt1 − z)δ(xt2 − z′) · · ·

〉
s
, (3.5.25)

and considering the Stratonovich increments

◦dxτ ≡ xτ+dτ/2 − xτ−dτ/2, (3.5.26)
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and subtracting the mean values (3.5.15) and (3.5.17), we can write the correlation as

Cxy
Jρ (t) = Ît,U

xy

[
⟨◦dxt1⟩

xt2=z′

xt1=z

dt1
+

⟨◦dxt2⟩
xt2=z

xt1=z′

dt2
− 2js(z)ps(z

′)

]
. (3.5.27)

Equation (3.5.27) is harder to compute and more difficult to interpret as compared to
Cxy
ρρ (t) [see Eq. (3.5.23)]. The quantities involving Stratonovich increments characterize

the mean initial- and final displacements of “pinned” paths of duration t2 − t1 conditioned
on the initial and final points z, z′ or z′, z, respectively. Note that z always denotes the point
where the increment occurs. Via the integral operator in Eq. (3.5.18) or Eq. (3.5.22) the z
variable is integrated over Uh

x (z); i.e., in Cxy
Jρ (t) the variable z corresponds to the window

at x where the (coarse-grained) current is evaluated. Therefore, correlations between a
current and a density depend on integrals over conditioned initial-point increments at a
point z at time t1, and conditioned final-point increments, also at z, at time t2 > t1. We
define the increments divided by dti to be the “initial- and final-point currents,”

jin(z
′, t2 − t1; z) ≡

⟨◦dxt1⟩
xt2=z′

xt1=z

dt1
,

jfi(z, t2 − t1; z
′) ≡

⟨◦dxt2⟩
xt2=z

xt1=z′

dt2
. (3.5.28)

In order to understand the correlation in Eq. (3.5.27) we must therefore understand initial-
and final-point currents. This is a priori not easy, since initial-point currents involve both,
spatial increments at t1 and probabilities of reaching a final point at time t2 > t1, which
involves non-trivial correlations — a given displacement affects (and thus correlates with)
the probability to reach the final point. We will derive a statement (“Lemma”) in the next
section that solves all mathematical difficulties related to this issue, without resorting to
Feynman-Kac and path-integral methods as in Ref. [86] or Sec. 3.7. Then we will make
intuitive sense of the result by exploiting the dual-reversal symmetry in Eq. (3.5.11).

Before doing so, we also consider the scalar current-current covariance Cxy
J·J(t) [note that

the complete fluctuations and correlations of JU
x (t) are characterized by the d×d covariance

matrix with elements [Cxy
JJ(t)]ik = Cxy

JiJk
(t); here we focus on the scalar case Cxy

J·J(t) ≡
TrCxy

JJ(t)]. Notably, almost all results remain completely equivalent for other elements of
the covariance matrix, scalar products simply have a slightly more intuitive geometrical
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3 Statistics of time-integrated densities and currents

interpretation and notation. Writing down the definition and using the notations as in the
steps towards Eq. (3.5.27) we immediately arrive at

Cxy
J·J(t) =Ît,U

xy

[
⟨◦dxt1 · ◦dxt2⟩

xt2=z′

xt1=z

dt1dt2
+

⟨◦dxt1 · ◦dxt2⟩
xt2=z

xt1=z′

dt1dt2
− 2js(z) · js(z′)

]
, (3.5.29)

which is similar to the correlation in Eq. (3.5.27) but involves an average over scalar prod-
ucts of initial- and final-point increments along individual trajectories “pinned” at initial
and end points. We will return to Eq. (3.5.29) and solve for these increments in Sec. 3.5.4
upon having explained the density-current correlation.

Lemma

To be able to treat expressions involving the increments correlated with future positions,
we need a technical lemma that will turn out to be very powerful and central to all calcula-
tions. The required statement can also be obtained from the more general concept of Doob
conditioning [104,107,133,200], but here we provide a direct proof. Consider an Itô noise
increment

√
2D(xτ )dWτ [or equivalently σ(xτ )dWτ ] with dWτ = Wτ+dτ −Wτ . In the

following we will need to compute the expected values involving expressions like

⋆ =
〈[√

2D(xτ )dWτ

]
k
U(xτ )V (xτ ′)

〉
s
, (3.5.30)

where U(x′) and V (x′) are arbitrary differentiable, square integrable functions, the sub-
subscript k denotes the kth component, and the subsubscript s denotes that the process
evolves from ps(x

′). Correlations of dWτ = Wτ+dτ − Wτ with any function of xτ ′ at a
time τ ′ ≤ τ vanish by construction of the Wiener process (it has nominally independent
increments). However, correlations with functions at τ ′ > τ are non-trivial.

Note that given an initial point x0 = z and setting
√
2D(z)dW0 = ε, the Itô/Langevin

equation in Eq. (3.5.5) predicts a displacement dx0(z, ε) = [F(z) +∇T
zD(z)]dt′ + ε. With

this we can write the expectation in Eq. (3.5.30) for τ = 0 < t′ = τ ′ as εk integrated over
the probability to be at points z, z+ dx0(z, ε), z

′ at times 0, dt′, t′, i.e.,

⋆ =

∫
dz

∫
dz′U(z)V (z′)

×
∫

dεP(ε)εkG(z
′, t′ − dt′|z+ dx0(z, ε))ps(z), (3.5.31)

where the probability P(ε) of
√
2D(z)dW0 = ε is given by a Gaussian distribution with

zero mean and covariance matrix 2D(z)dt′. Since this distribution is symmetric around 0,
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only terms with even powers of the components of ε survive the P(ε) integration. Noting
that for dt′ → 0 we have G(z′, t′ − dt′|z + dx0(z, ε)) → [1 + dx0(z, ε) · ∇z]G(z

′, t′|z), we
see that the only even power of the components of ε in εkG(· · · ) gives

⋆ =

∫
dz

∫
dz′U(z)ps(z)V (z′)

∫
dεP(ε)εkε · ∇zG(z

′, t′|z), (3.5.32)

which using ∫ dεP(ε)εkεj = 2Dkj(z)dt
′ yields the result

⋆ =

∫
dz

∫
dz′U(z)ps(z)V (z′)

[
2D(z)∇zG(z

′, t′|z)
]
k
dt′. (3.5.33)

Rewritten in terms of Pz(z
′, t′) ≡ G(z′, t′|z)ps(z) and ĵgz ≡ −ps(z)D(z)∇zp

−1
s (z) we have

ĵgzPz(z
′, t′) = −ps(z)D(z)∇zG(z

′, t′|z), and thus

⋆ = −2

∫
dz

∫
dz′U(z)V (z′)

[̂
jgz

]
k
Pz(z

′, t′)dt′. (3.5.34)

Motivated by the dual-reversal symmetry and the anticipated applications we define the
dual-reversed current operator by inverting ĵ and concurrently inverting js → −js, i.e.,

ĵ‡x ≡ −ĵ−js
x = −

[̂
jgx − p−1

s (x)js(x)
]

= ps(x)D(x)∇xp
−1
s (x) + p−1

s (x)js(x). (3.5.35)

Since ĵ‡z − ĵz = −2ĵgz we can rewrite Eqs. (3.5.33) and (3.5.34) as

⋆ =

∫
dz

∫
dz′U(z)V (z′)

(
ĵ‡z − ĵz

)
k
Pz(z

′, t′)dt′, (3.5.36)

which will turn out to be the crucial part of the following calculations and will allow for an
intuitive interpretation of the results in terms of dual-reversed dynamics.

Application of the lemma to initial- and final-point currents

In order to quantify and understand the density-current correlation expression in
Eq. (3.5.27), we now turn back to the initial- and final-point currents, recalling the defini-
tions in Eq. (3.5.28). These observables characterize the mean initial- and final displace-
ments of “pinned” paths of duration t2 − t1 conditioned on the respective initial and final
points z, z′ or z′, z. The fact that both are currents in z justifies the name “initial- and
final-point current.” Such objects turn out to play a crucial role in the evaluation and un-
derstanding of correlations of densities and currents [see Eq. (3.5.27)]. The computation of
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current variances in fact involves the expectation of scalar products of such displacements
[see Eq. (3.5.29)], but we first focus on simple displacements.

Final-point currents can be computed by subsubstituting for ◦dxτ and integrating by parts
as in Eq. (3.5.17),

⟨◦dxt2⟩
xt2=z

xt1=z′

dt2
=

∫
dz1

∫
dz2δ(z1 − z′)δ(z2 − z)Pz1(z2, t2 − t1)[F(z2) +∇T

z2D(z2)]

=[F(z)−D(z)∇z]Pz′(z, t2 − t1)

=ĵzPz′(z, t2 − t1), (3.5.37)

where the Itô term involving dWt2 vanishes whereas the Stratonovich correction term sur-
vives. Therefore, the final-point current is obtained from the two-point density and current
operator, both appearing in the Fokker-Planck equation [recall that (∂t+∇x · ĵx)Py(x, t) =

0]

jfi(z, t2 − t1; z
′) = ĵzPz′(z, t2 − t1). (3.5.38)

For the initial-point current analogous computations yield an Itô increment as a correction

jin(z
′, t2 − t1; z) = ĵzPz(z

′, t2 − t1) + ⟨
√
2D(xt1)dWt1⟩

xt2=z′

xt1=z . (3.5.39)

Note that the latter Itô increment also appears in the calculations in Eqs. (3.5.17) and
(3.5.37), but its mean vanishes since it involves end-point increments dWt2 (note t2 and
not t1), which are by construction uncorrelated with the evolution up to time t2. The
correction term here does not vanish since the increment at time t1 is correlated with the
probability to reach z′ at time t2. Therefore, this expectation is non-trivial, but fortunately
we solved this problem with the Lemma derived in Eqs. (3.5.30)–(3.5.36).

When U and V in Eq. (3.5.36) tend to a Dirac delta function (which is mathematically not
problematic since we later integrate over z, z′), we obtain

⟨
√
2D(xt1)dWt1⟩

xt2=z′

xt1=z =
(
ĵ‡z − ĵz

)
Pz(z

′, t2 − t1), (3.5.40)

which gives, recalling Eq. (3.5.35),

jin(z
′, t2 − t1; z) = ĵ‡zPz(z

′, t2 − t1). (3.5.41)

Note that jin(y, t;x, 0) = −j−js
fi (x, t;y, 0) in agreement with dual-reversal symmetry.
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To better understand these currents and their symmetry, we require some intuition about
the generalized time-reversal symmetry (i.e., the dual-reversal symmetry), which we gain
on the basis of a simple overdamped shear flow in Fig. 3.5.4. Consider an isotropic diffusion
with additive noise in a shear flow dxτ = Fsh(xτ )dτ+

√
2dWτ withFsh((x, y)

T ) = (0, 2x)T

(see gray arrows in Fig. 3.5.4a-c). For simplicity, we here only consider shear flow in a flat
potential, such that strictly speaking a steady-state density ps does not exist. The existence
of ps is in fact not necessary for the discussion in this section, nor to connect this example
to a genuine non-equilibrium steady state. One may equally consider the shear flow to
be confined in a box that is large enough to allow to neglect boundary effects at times
before t and yet would yield flat ps as t → ∞. The drift of the unconfined shear flow
is purely irreversible, i.e., Frev

sh (x′) = 0. Thus, inverting the irreversible part completely
inverts the drift F−js

sh (x′) = −Fsh(x
′) (see blue arrows in Fig. 3.5.4a,d). The initial-point

current (purple arrow in Fig. 3.5.4b) is difficult to understand, since it correlates with the
constraint to reach the end point after time t′. In the case of detailed balance, the time-
reversal symmetry would allow to obtain this initial-point current as the inverted final-point
current (yellow arrow in Fig. 3.5.4c). However, since detailed balance is broken by the
shear flow this does not suffice. Instead, one has to consider the final-point current for
the dynamics with the inverted irreversible drift (blue arrow in Fig. 3.5.4d). According to
jin(y, t;x, 0) = −j−js

fi (x, t;y, 0) and as can be seen in Fig. 3.5.4a, this allows to obtain the
cumbersome initial-point current (yellow) as the inverted final-point current (blue).

Figure 3.5.4: (a) Shear drift (gray background arrows) and inverted shear drift (blue
background arrows) as described in the text, and currents and paths from (b) to (d) shown
in purple, yellow, and blue. We see that the purple arrow equals the inverted blue arrow, and
the purple line overlaps with the blue dashed line, as implied by Eq. (3.5.43). (b) Simulated
trajectories in the shear flow (gray background arrows) from z = (0, 0)T to z′ = (2, 0)T in
time t′ = 1with time always running from dark to bright. The initial-point current, i.e., the
initial-point increment averaged over all trajectories, is depicted by the purple arrow and
the mean paths (averaged over all trajectories) by the gray curve. (c) As in (b) but from
z′ = (2, 0)T to z = (0, 0)T and final-point current depicted by a yellow arrow. (d) As in (c)
but with the inverted shear flow depicted by blue arrows in the background.

In addition to the initial- and final-point currents, we also depict in Fig. 3.5.4 the mean
“pinned” paths. In Fig. 3.5.4a we see that the forward and dual-reversed paths (purple
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3 Statistics of time-integrated densities and currents

and blue dashed lines) overlap. This can also be seen from the dual-reversal symmetry in
Eq. (3.5.11).

To prove the equality of mean paths consider 0 < τ < t′ where t′ = t2 − t2 > 0. The (non-
random) point µ(τ) ≡ ⟨xt1+τ ⟩

xt2=z′

xt1=z on the mean path z → z′ is given by an integral over
all possible intermediate points µ(τ) = x weighted by G(z′, t′ − τ |x)G(x, τ |z)/G(z′, t′|z)
(since xτ is a Markov process) which gives the Chapman-Kolmogorov-like equation

G(z′, t′|z)µ(τ) =
∫

dxG(z′, t′ − τ |x)G(x, τ |z)x. (3.5.42)

The corresponding point on the mean dual-reversed path µ‡(τ) ≡ ⟨x−js
t2−τ ⟩

xt2=z

xt1=z′ from z′ to z

with reversed steady-state current js → −js is given by [using three times the dual-reversal
in Eq. (3.5.11)]

G−js(z, t′|z′)µ‡(t′ − τ) =

∫
dxG−js(z, τ |x)G−js(x, t′ − τ |z′)x

=

∫
dxG(x, τ |z) ps(z)

ps(x)
G(z′, t′ − τ |x) ps(x)

ps(z′)
x

=
ps(z)

ps(z′)
G(z′, t′|z)µ(τ)

= G−js(z, t′|z′)µ(τ), (3.5.43)

which implies µ(τ) = µ‡(t′ − τ) for all t1 < τ < t2, so the mean paths indeed agree (but
run in opposite directions), which completes the proof that the blue and purple paths in
Fig. 3.5.4a overlap.

Current-density correlation

With the definitions (3.5.28) and t′ = t2 − t1 > 0 we have [recall the simplification of Ît,U
xy

in Eq. (3.5.22)]

Cxy
Jρ (t) = Ît,U

xy [jfi(z, t
′; z′) + jin(z

′, t′; z)− 2js(z)ps(z
′)]. (3.5.44)

As we have shown in Eqs. (3.5.38) and (3.5.41) the initial- and final-point currents can be
expressed in terms of the current operators, yielding

Cxy
Jρ (t) = Ît,U

xy [̂jzPz′(z, t
′) + ĵ‡zPz(z

′, t′)− 2js(z)ps(z
′)], (3.5.45)

which allows to explicitly calculate Cxy
Jρ (t) if Pz′(z, t

′) is known. An analogous result for
the scalar current variance was very recently obtained in Ref. [133] but did not establish
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a connection to current operators and dual-reversal symmetry and did not consider coarse
graining or multidimensional continuous-space examples. The current-density correlation
Cxy

Jρ (t) can be interpreted analogous to Cxy
ρρ (t) as follows.

All possible paths between points z, z′ in time 0 < t′ ≤ t contribute, weighted by their
corresponding probability, to this correlation. The difference with respect to density corre-
lations Cxy

ρρ (t) is that now currents at position z are correlated with probabilities to be at
the point z′. For paths z′ → z the displacement is obtained from the familiar current oper-
ator jfi = ĵzPz′(z, t

′). Paths from z → z′ are mathematically more involved (and somewhat
harder to understand), but can be understood intuitively with the dual-reversal symmetry
(see also Fig. 3.5.4). More precisely, they can be understood and calculated in terms of the
dual-reversed current operator ĵ‡z ≡ −ĵ−js

z .

A direct observation that follows from the result in Eq. (3.5.45) is that at equilibrium (i.e.,
under detailed balance), we have js = 0, ĵ‡z = −ĵz and Pz(z

′, t′) = Pz′(z, t
′) and thus

Cxy
Jρ (t) = 0 for all window functions and all points x,y. The correlation Cxy

Jρ (t) can also
be utilized to improve the TUR, as recently shown in Ref. [134]. The result in Eq. (3.5.45)
thus allows to inspect and understand more deeply this improved TUR.

An explicit example of the correlation result in Eq. (3.5.45) forCxy
Jρ (t) is shown in Fig. 3.5.5.

In line with the previous arguing, Cxy
Jρ (t) can be understood as a vector with initial- and

final-point contributions, Cxy
Jρ = Cin+Cfi, whereCin ≡ Ît

xy [̂j
‡
zPz(z

′, t′)−js(z)ps(z
′)]. In the

Appendix we shown that for x = y in the limit h→ 0 of small windows the results for the
correlation simplify Cin(t) ≃ [2js(x)/ps(x) − F(x)]varxρ (t)/4 and Cfi(t) ≃ F(x)varxρ (t)/4,
implying Cxx

Jρ (t) ≃ js(x)varxρ (t)/2ps(x). Since F = Frev + js/ps and thus 2js(x)/ps(x) −
F(x) = −F−js(x), the above implies that for x = y and small windows h we have −Cin =

C−js
fi andCfi points along F(x) that is tangent to the mean trajectory [µ] at x, whileCxx

Jρ (t)

points in the js(x) direction (see Fig. 3.5.5b). For longer times t and/or larger h, the
direction of Cfi changes but −Cin = C−js

fi still holds (see Fig. 3.5.5c) since the symmetry
jin(y, t;x, 0) = −j−js

fi (x, t;y, 0) can be applied in the integrands. Conversely, the two-point
correlation Cxy

Jρ need not point along js(x) (Fig. 3.5.5d). In fact, its direction changes over
time (see inset of Fig. 3.5.5d). Notably, results for x ̸= y akin to Fig. 3.5.5d may provide
deeper insight into barrier-crossing problems on the level of individual trajectories in the
absence of detailed balance.

Current (co)variance

Recall that the current (co)variance in Eq. (3.5.29) involves scalar products of initial- and
final-point increments ⟨◦dxt1 · ◦dxt2⟩

xt2=z′

xt1=z , which cannot be easily interpreted as scalar
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3 Statistics of time-integrated densities and currents

Figure 3.5.5: (a) Illustration of the steady-state density (color gradient) and current (ar-
rows) of the two-dimensional rotational flow in Eq. (3.5.2) with Ω = 3. Gray dotted lines
in (a)–(d) are circles with radii 0.25, 0.5, 0.75, 1. (b, c) Single-point x = y and (d) two-
point time-accumulated correlation tCxy

Jρ at t = 0.2 and t = 5 (black arrow), with final
point Cfi ≡ Ît

xy [̂jzPz′(z, t
′) − js(z)ps(z

′)] (orange) and initial-point Cin (green) contribu-
tion, such that Cxy

Jρ = Cin + Cfi. Cfi(js → −js) (gray) is the current-reversed final-point
contribution which agrees with the inverted initial-point contribution −Cin. Solid lines in
(b) are the mean trajectory [µ] ≡ ⟨xτ≥0⟩x0=x (orange) and its current reverse [µjs→−js ]
(gray). Ux,y (shaded circles) is a Gaussian at x,y with width h [see Eq. (3.5.3)].

products of currents. They are not the scalar products of initial- and final-point currents,
since ⟨◦dxt1 · ◦dxt2⟩

xt2=z′

xt1=z ̸= ⟨◦dxt1⟩
xt2=z′

xt1=z · ⟨◦dxt2⟩
xt2=z′

xt1=z . Rather they correspond to the
scalar product of the initial- and final-point increment along the same trajectory and only
then they become averaged over all trajectories from z to z′ (see also Fig. 3.4.2 Sec. 3.4).
For t1 < t2 these are computed equivalently to Eqs. (3.5.37)–(3.5.41) based on the Lemma
(3.5.36) as

⟨◦dxt1 · ◦dxt2⟩
xt2=z′

xt1=z

dt1dt2
= ĵ‡z · ĵz′Pz(z

′, t′). (3.5.46)

However, according to the convention ∫ t
t1
dt2δ(t2 − t1) = 1/2 in Eq. (3.5.18), we also need

to consider the case t1 = t2, i.e., t′ = 0, which did not contribute for Cρρ and CJρ. In the
case t1 = t2 [recall the definition in Eq. (3.5.25)],

⟨◦dxt1 · ◦dxt2⟩
xt2=z′

xt1=z ≡
〈
δ(xt1 − z) ◦ dxt1 · δ(xt2 − z′) ◦ dxt2

〉
s

(3.5.47)
t1=t2=

〈
δ(xt1 − z)

√
2D(xt1)dWt1 · δ(xt2 − z′)

√
2D(xt2)dWt2

〉
,

where we used that for t1 = t2 the only term surviving is dW 2
t1 (and not dWt1dt1 and

dt21, which is why such terms only enter in current-current expressions but not in current-

100



Phys.Rev.Res.4,033243
(2022)

Statistics of time-integrated densities and currents 3

density or density-density correlations). Using Pz(z
′, t′ = 0) = δ(z − z′)ps(z) we find for

t1 = t2

⟨◦dxt1 · ◦dxt2⟩
xt2=z′

xt1=z = Pz(z
′, 0)

d∑
i,j,l=1

[
√

2D(z)]ij [
√
2D(z′)]ilδ(t1 − t2)δjldt1dt2

= ps(z)δ(z− z′)
d∑

i=1

[2D(z)]iiδ(t1 − t2)dt1dt2

= 2Tr[D(z)]ps(z)δ(z− z′)δ(t1 − t2)dt1dt2. (3.5.48)

Plugging this into Eq. (3.5.29), we obtain, using Eq. (3.5.46) and accounting for the t′ = 0

contribution, the result for current covariances in the form of

Cxy
J·J(t) =

2

t

∫
dzTr[D(z)]Uh

x (z)U
h
y (z)ps(z)

+ Ît,U
xy [̂j‡z′ · ĵzPz′(z, t

′) + ĵ‡z · ĵz′Pz(z
′, t′)− 2js(z) · js(z′)]. (3.5.49)

The second line is interpreted analogously to the current-density correlation in Eq. (3.5.45)
with the only difference that the scalar product of current operators reflects scalar products
of increments along individual trajectories. The first term, however, does not appear in Cxy

Jρ

and Cxy
ρρ . As can be seen from the derivation in Eq. (3.5.48) this term originates from the

purely diffusive (i.e., Brownian) term involving dxτ · dxτ = 2TrD(z)dτ and only appears
for t1 = t2, i.e., t′ = 0. Thus, this term cannot be interpreted in terms of trajectories from z

to z′ or vice versa, but instead reflects that due to the nature of Brownian motion the square
of instantaneous fluctuations (dxτ )

2 does not vanish but contributes on the order dτ . Note
that since here z = z′ this term only contributes if Uh

x (z) and Uh
y (z

′) have non-zero overlap.

For x = y the covariance becomes the current variance varxJ(t) ≡ Cxy
J·J(t)which plays a vital

role in stochastic thermodynamics. As an application of the result in Eq. (3.5.49) we use
the TUR-bound under concurrent variation of the coarse-graining scale h to optimize the
inference of a system’s dissipation via current fluctuations. Before we turn to this inference
problem, we take a closer look at the limit of no coarse graining, i.e., h→ 0.

3.5.5 The limit of no coarse graining

In this section we consider the variance varxρ (t) ≡ Cxx
ρρ (t), var

x
J(t) ≡ Cxx

J·J(t) and cor-
relations Cxx

Jρ (t) in Eqs. (3.5.23), (3.5.45), and (3.5.49) with x = y in the limit of no
coarse graining, i.e., when h→ 0. In particular, we consider normalized window functions∫
dzUh

x (z) = 1 such that in the limit of no coarse graining Uh→0
x (z) = δ(x − z) [see, e.g.,
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3 Statistics of time-integrated densities and currents

Eq. (3.5.3)]. Thus, the density and current observables in Eq. (3.5.1) for h = 0 correspond
to the empirical density and current defined with a δ function,

ρx(t) ≡
1

t

∫ t

0
δ(x− xτ )dτ,

Jx(t) ≡
1

t

∫ τ=t

τ=0
δ(x− xτ ) ◦ dxτ , (3.5.50)

which is the definition typically adopted in the literature [34, 43–45, 107, 110, 141–144].
We show in the Appendix that in spatial dimensions d ≥ 2, the variance and correlation
functions diverge varxρ (t), var

x
J(t),C

xx
Jρ (t) → ∞ as h → 0. Note that the mean values in

Eqs. (3.5.15) and (3.5.17) of the observables in Eq. (3.5.50) do not diverge but instead for
Uh→0
x (z) = δ(x − z) directly simplify to ⟨ρx(t)⟩s = ps(x) and

〈
Jx(t)

〉
s
= js(x) (see also

Ref. [34]).

Before we go into the specific results for the limit h→ 0, let us first discuss why divergent
fluctuations of the functionals in Eq. (3.5.50), although overlooked so far, are in fact not
surprising. The simplest argument is that second moments as, e.g., 〈ρx(t)2〉s involve terms
⟨δ(x− xτ )δ(x− xτ ′)⟩s, which diverge for τ = τ ′ since a squared δ function appears. In
contrast, the mean value ⟨ρx(t)⟩s contains ⟨δ(x− xτ )⟩s = ps(x), which is finite. Loosely
speaking, themean value involving ⟨δ(x− xτ )⟩s is given by the probability to be at the point
x, which is zero, multiplied by the height of the δ function at x, which is infinite. Since the
mean value is finite for h→ 0, this can be seen to yield “0×∞ = ps(x),” while the second
moment contains a squared δ peak, such that the second moment loosely speaking diverges
due to “0 ×∞2 = ps(x) ×∞ = ∞”. This argument illustrates that divergent fluctuations
are not surprising, but this argument is oversimplified since it does not take into account
the time integration. In particular, to explain why the divergence only occurs in spatial
dimensions d ≥ 2, we have to note that due to the time integration the one-dimensional
case is qualitatively different. Given some point z in d-dimensional space, the trajectory
will hit z ≡ z with a finite probability in d = 1 (i.e., with nonzero probability there is
some τ ∈ [0, t] such that xτ = z; e.g., if x0 < xt all points in [x0, xt] are hit). This is
qualitatively different for d ≥ 2, since overdamped motion in d ≥ 2 does not hit points,
i.e., the probability to hit a given point z is zero, P(∃τ ∈ (0,∞) : xτ = z) = 0 [178]. This
property is not specific to overdamped motion, but is rather due to the fact that the set of
points (xτ )0≤τ≤t has Lebesgue measure zero for d ≥ 2.

To further explain the divergence and its dependence on the dimensionality in a some-
what less oversimplified way (for the detailed derivation see the Appendix), we take a sec-
ond look at the term ⟨δ(x− xτ )δ(x− xτ ′)⟩s = G(x, |τ − τ ′| |x)ps(x) occurring in 〈ρx(t)2〉s.
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Here, G(x, t′|x) trivially diverges if t′ = 0. However, the relevant question is whether the
return integral ∫ t

0 G(x, t
′|x)dt′ diverges. Any divergence in the integral would come from

t′ → 0 where G(x, t′|x) diverges, i.e., from the limit of small time differences |τ − τ ′|. For
t′ → 0 the overdamped propagator G(x, t′|x) becomes Gaussian with variance ∝ Dt′ [17]
[so for very small t′ we haveG(x, t′|x) ∝ t′−d/2 in d-dimensional space], and thus the return
integral ∫ t

0 G(x, t
′|x)dt′ diverges if and only if ∫ t

0 t
′−d/2dt′ diverges. Therefore, the variance

varxρ (t) diverges in spatial dimensions d ≥ 2.

Apart from the two arguments above providing mathematical intuition about the diver-
gence, there is also a physical intuition that suggests divergent fluctuations. Recall that for
finite h > 0, the observables ρUx and JU

x in Eq. (3.5.1) by definition measure the time and
displacement that the trajectory (xτ )0≤τ≤t accumulates in the region Uh

x of scale h around
x. Now, as h→ 0, only visitations of precisely the point x contribute. Two very similar (but
not equal) trajectories may now give very different values for ρUx and JU

x , depending on
whether the point x is hit or even slightly missed (e.g., by a distance h). Therefore, fluctu-
ations among different trajectories of these functionals diverge as h→ 0. This reasoning is
not restricted to overdamped stochastic motion, and indeed seems to hold for more general
dynamics (see outlook in Sec. 3.5.10).

This simple illustration also explains why fluctuations do not diverge in one-dimensional
space. There, points are hit, meaning that, e.g., a trajectory starting at 0 and ending at 1
always hits all points in between at some intermediate time, which is why the density and
current observables have qualitatively lower fluctuations compared to higher dimensions.
The reason that the divergence for d ≥ 2 was overlooked so far is probably due to the fact
that most explicit examples were analyzed in one-dimensional space only.

Explicitly, in the limit h → 0 the expressions Eqs. (3.5.23), (3.5.45), and (3.5.49) with
x = y for any time t take the form

varxρ (t)
h→0≃ K

D̃xt
ps(x)

h2−d

d−2 for d > 2

− lnh for d = 2

Cxx
Jρ (t)

h→0≃ js(x)var
x
ρ (t)/2ps(x)

varxJ(t) h→0
= K ′ 2D̃

′
x

t
ps(x)(d− 1)h−d +O(t−1)O(h1−d), (3.5.51)

where ≃ denotes asymptotic equality, D̃x, and D̃′
x are constants bounded by the smallest

and largest eigenvalues of D(x), and K,K ′ are constants depending on the specific nor-
malized window Uh

z (see the Appendix). Note that the dominant term in varxJ(t) vanishes
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for d = 1, such that all three expressions only diverge for d ≥ 2. Some details on the case
d = 1 are shown in the Appendix in Sec. 3.5.12.

Thus, the empirical density and current as defined in Eq. (3.5.50) have divergent fluctua-
tions. Note that an infinite variance contradicts Gaussian statistics on all time scales. This
divergence, moreover, leads us to question whether Eq. (3.5.50) is even well-defined, i.e.,
whether these observables are mathematically well-defined random variables, and whether
the result in the limit h → 0 is unaffected by the specific choice of the Uh

x as long as
Uh→0
x (z) = δ(x− z).

3.5.6 Application to inference of dissipation

We now apply the results for the current variance varxJ(t) ≡ Cxx
J·J(t) in Eq. (3.5.49) for

x = y. For an individual component, e.g., Jy ≡ [JU
x ]y, of the vector JU

x the equivalent
result reads

varxJy(t) =
2

t

∫
dz[D(z)]yyU

h
x (z)U

h
x (z)ps(z)

+ Ît,U
xx [(̂j‡z′)y (̂jz)yPz′(z, t

′) + (̂j‡z)y (̂jz′)yPz(z
′, t′)− 2[js(z)]y[js(z

′)]y]. (3.5.52)

With the dissipation rate Σ̇ in Eq. (3.5.10), current observables such as Jy ≡ [JU
x ]y satisfy

the TUR [47,126] (in the form relevant below first proven in Ref. [126]),

varxJy(t)

⟨Jy⟩2s
≥ 2

tΣ̇
. (3.5.53)

This bound is of particular interest since it allows to infer a lower bound on a system’s
dissipation from measurements of the local mean current and current fluctuations [67,68,
153,154,201]. Note that Eq. (3.5.53) implicitly assumes “perfect” statistics; i.e., ⟨Jy⟩s and
varxJy(t) are the exact mean and variance for the process under consideration (not limited
by sampling constraints on a finite number of realizations).

We now investigate the influence of the coarse graining on the sharpness of the bound
(3.5.53). One might naively expect that coarse graining annihilates information. However,
as shown in Sec. 3.4 the current fluctuations diverge in spatial dimensions d ≥ 2 in the limit
h→ 0 (of no coarse graining), whereas the mean converges to a constant (note that Σ̇ does
not at all depend on Uh

x ). The exact asymptotics for h→ 0 in Sec. 3.4 demonstrate that the
bound (3.5.53) becomes entirely independent of the process (i.e., it only depends on ps
but contains no information about the non-equilibrium part of the dynamics). Therefore,
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the left-hand side of inequality (3.5.53) tends to ∞ as h → 0, rendering the TUR without
spatial coarse graining unable to infer dissipation beyond the statement Σ̇ ≥ 0 for h = 0.

However, the naive intuition is correct in the limit of “ignorant” coarse graining h → ∞,
where Uh

x becomes asymptotically constant in a sufficiently large hypervolume centered at
x [i.e., in a hypervolume A where ∫A ps(x)dx ≈ 1]. The integration over a constant Uh

x = c

yields
〈
JU
x (t)

〉
s
= c

∫
dzjs(z) = 0 for the mean in Eq. (3.5.17). The vanishing

〈
JU
x (t)

〉
s

may be seen in two ways. First, since∇z ·js(z) = 0, curl js(z) = ∇z×f(z) and by the Stokes
theorem ∫A d2z∇z×f(z) =

∫
∂A f ·dlwhich vanishes since at the boundary ∂A at∞we have

ps → 0, thus js → 0 and therefore the vector potential f → 0. Second, for Uh
x = c we have

JU
x (t) =

c
t (xt−x0) [and we assume x0 to be sampled from ps(x)]. Then x0 and xt are both

distributed according to ps, and thus ⟨xt⟩s = ⟨x0⟩s and t
〈
JU
x (t)

〉
s
/c = ⟨xt⟩s − ⟨x0⟩s = 0.

Conversely, the variance remains strictly positive. Therefore, also for h→ ∞ the left-hand
side of inequality (3.5.53) diverges, rendering the TUR with an “ignorant” coarse graining
incapable of inferring dissipation (again only giving Σ̇ ≥ 0 as for h = 0).

These two arguments, i.e., the necessity of coarse graining, see Sec. 3.4, and the failure
of an “ignorant” coarse graining, imply that an intermediate coarse graining exists that is
optimal for inferring dissipation via the TUR [Eq. (3.5.53)].

We first demonstrate this finding using a two-dimensional rotational flow (3.5.2) with
Gaussian coarse graining window in Eq. (3.5.3). We evaluate the left-hand side of
Eq. (3.5.53) for varying h and x and compare it to the constant right-hand side of
Eq. (3.5.53). Particularly for D(z) = D1, we have ps(z) = r/(2πD) exp(−rz2/(2D)) and
js(z) = Ωps(z)(z2, −z1)T and the dissipation rate in Eq. (3.5.10) is given by

Σ̇ =

∫
dz

jTs (z)

ps(z)
D−1(z)

js(z)

ps(z)
ps(z) =

Ω2

D

∫
dz z2ps(z)

=
Ω2

D

〈
x2
0

〉
s
=

Ω2

D

〈
x21 + x22

〉
s
=

Ω2

D
2
D

r
=

2Ω2

r
. (3.5.54)

Thus the TUR in Eq. (3.5.53) for the rotational flow becomes

varxJy(t)

⟨Jy⟩2s
≥ r

tΩ2
. (3.5.55)

The results shown in Fig. 3.5.6a-d demonstrate, as argued above, that relative fluctuations
diverge as h→ 0,∞. For this example, the relative error as a function of h has a uniquemin-
imum (slightly depending on x, and possibly on other parameters such as t). This means
that (restricted to Uh

x being a Gaussian around x) there is a coarse graining scale h that is
optimal for inferring a lower bound on the dissipation, that may also provide some intu-
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ition about the formal optimization carried out in Ref. [201]. This result demonstrates that
coarse graining trajectory data a posteriori can improve the inference of thermodynamical
information, which is a strong motivation for considering coarse graining.

In particular, note that this method is readily applicable; i.e., one does not need to know the
underlying process (as long as the dynamics is overdamped). As was done in Fig. 3.5.6e-
h one simply integrates the trajectories to obtain the coarse grained current as defined
in Eq. (3.5.1). Then, the mean and variance are readily obtained from the fluctuations
along an ensemble of individual trajectories, and for each value of x and h one determines
a lower bound on the dissipation via Eq. (3.5.53). Finally, one takes the best of those
bounds. We here only consider Gaussian Uh

x for the coarse graining, but due to the flexi-
bility of the theory one could even choose window functions that do not have to relate to
the notion of coarse graining. Notably, a Gaussian window function is in this case better
than, e.g., a rectangular indicator function (which one usually uses for binning data) due
to an improved smoothing effect. Moreover, one further expects a reduced error due to
discrete-time effects.

Note that compared to many of the similar existing methods [68, 132, 134], we neither
advise to rasterize the continuous dynamics to parametrize (i.e., “count”) currents nor
advise to approximate the dynamics by a Markov-jump process. Our method is therefore
not only correct (note that a Markov-jump assumption is only accurate in the presence
of a timescale separation ensuring a local equilibration, e.g., as a result of high barriers
separating energy minima) but also has the great advantage of not having to parametrize
rates at all. Instead, one simply integrates trajectories according to Eq. (3.5.1).

A generalization to windows that are not centered at individual points, as well as the use of
correlations in Eq. (3.5.45) entering the recent so-called correlation TUR (CTUR) inequality
[134] will be considered in forthcoming publications.

To underscore the applicability of the above inference strategy, we apply it to a more com-
plicated system, for which a Markov jump process description would be difficult due to the
presence of low and flat barriers and extended states. The results are shown in Fig. 3.5.6e-
h. The example is constructed by considering the two-dimensional potential

ϕ(x, y) =0.75(x2 − 1)2 + (y2 − 1.5)2((x+ 0.5y − 0.5)2 + 0.5) + c, (3.5.56)

where c is a constant such that ps(z) = exp[−ϕ(z)] is normalized. We consider isotropic
additive noise D(z) = D1 and construct the Itô/Langevin equation for the process as

dxτ = −D{∇ϕ}(xτ )dτ + Firrev(xτ ) +
√
2DdWτ , (3.5.57)
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where

Firrev(z) =
js(z)

ps(z)
≡ −DΩ

[
0 −1

1 0

]
· {∇ϕ}(z) (3.5.58)

is an irreversible drift that is by construction orthogonal to ∇ϕ and thus does not alter
the steady state [i.e., same ps = exp[−ϕ] for equilibrium (Ω = 0) or any other Ω]. With
Eq. (3.5.58) the dissipation in Eq. (3.5.10) for this process reads

Σ̇ =DΩ2

∫
d2x{∇ϕ}(x)T

[
0 −1

1 0

]T [
0 −1

1 0

]
(3.5.59)

· {∇ϕ}(x)ps(x) = DΩ2

∫
d2x{∇ϕ}2(x) exp [−ϕ(x)] ,

which is solved numerically and gives Σ̇ = 19.65DΩ2. We see in Fig. 3.5.6h that some
intermediate coarse graining h is still optimal, but the optimal scale h now depends more
intricately on x and the curves are not convex in h anymore.

Overall, we see that the approach is robust and easily applicable, and does not require
determining and parametrize any rates. Moreover, due to the implications of the theory to
the limits h → 0,∞, we can assert that some intermediate coarse graining will generally
be optimal.

3.5.7 Simplifications and symmetries

In this section we list the symmetries obeyed by the results in Eqs. (3.5.15), (3.5.17),
(3.5.23), (3.5.45), and (3.5.49) [with integral operator (3.5.22)]. Note that the limit h→ 0

was carried out in Sec. 3.5.5 and the limit h → ∞ gives Uh
x = c as noted before which

greatly simplifies the further analysis. The limits t → 0 and t → ∞ will be addressed in
Sec. 3.5.9.

First consider dynamics obeying detailed balance, i.e., js = 0. We then have ĵ‡z = −ĵz = −ĵgz

and the dual-reversal symmetry in Eq. (3.5.11), simplifies to the detailed balance statement
G(y, t|x)ps(x) = G(x, t|y)ps(y) or Pz(z

′, t) = Pz′(z, t). From this we obtain the following
simplifications for js = 0:〈

JU
x (t)

〉
s
= 0, Cxy

Jρ (t) = 0

Cxy
ρρ (t) = 2Ît,U

xy

[
Pz(z

′, t′)− ps(z)ps(z
′)
]
, (3.5.60)

Cxy
J·J(t) =

2

t

∫
dzTr[D(z)]Uh

x (z)U
h
y (z)ps(z)− 2Ît,U

xy [̂jgz · ĵ
g
z′Pz(z

′, t′) + js(z) · js(z′)].
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Figure 3.5.6: (a) Steady-state density (blue color gradient) and current (yellow arrows)
for the rotational flow in Eq. (3.5.2) with Ω = 3. Points around which the currents are
evaluated in (b)-(d) are denoted by colored crosses. (b) Simulated values (circles) of the
mean y component of the time-integrated current from 2000 trajectories of length t = 10
with time step dt = 0.001 (using the stochastic Euler algorithm) starting from steady-state
initial conditions using a Gaussian window function [Eq. (3.5.3)] with different coarse-
graining scales h. Analytical results in Eq. (3.5.17) are shownwith lines. (c) As in (b) but for
variances. Simulations (circles) are shown alongside analytical results [lines; the results are
analytic up to one time integration; see Eq. (3.5.52)] for the variance of currents. (d) The
relative error (ratio of variance and mean squared) as a function of h features a minimum
at an intermediate h. At this minimum, the current fluctuations give the best lower bound
on the dissipation via the TUR [Eq. (3.5.53)] at the value 2/(tΣ̇) = 2/(10 × 18) = 0.011
(black line). (e) As in (a) but for the more complicated process in Eq. (3.5.57) with D = 1
and we choose Ω = 0.957 to have the same dissipation as in (d); here the dissipation is
obtained by means of a numerical integration. (f) As in (b) but for the process in (e) the
“analytical” mean [Eq. (3.5.17)] had to be evaluated by means of a numerical integration.
(g) As in (c) but simulated values are shown by circles and dashed lines (but without a
comparison to results of numerical integration since these require the knowledge of the
propagator). (h) As in (d) but for the process in (e). The relative error may display several
local minima. Some intermediate h still allows for an optimal inference of the dissipation
via the TUR (black line). Note that the relative error diverges (orange line) where the mean
crosses zero [orange line in (b)].

For the remainder of this section we consider js ̸= 0. Note that by definition the interchange
x ↔ y leaves Cxy

ρρ (t) and Cxy
J·J(t) invariant, but not Cxy

Jρ (t) since it considers currents at x
and densities at y.
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For single-point correlations and variances x = y (more precisely Uh
x = Uh

y ) the integra-
tions over z and z′ are equivalent and thus the results simplify to

Cxx
ρρ (t) = 2Ît,U

xx

[
Pz(z

′, t′)− ps(z)ps(z
′)
]

Cxx
Jρ (t) = Ît,U

xx [(̂jz′ + ĵ‡z)Pz(z
′, t′)− 2js(z)ps(z

′)]

Cxx
J·J(t) =

2

t

∫
dzTr[D(z)][Uh

x ]
2(z)ps(z) + 2Ît,U

xx [̂j‡z · ĵz′Pz(z
′, t′)− js(z) · js(z′)]. (3.5.61)

Now we again allow x ̸= y and consider the process and the js ↔ −js inverted process.
Then, from Eq. (3.5.11) and [̂j‡z′ · ĵz]

−js = −ĵz′ · [−ĵ‡z] = ĵz′ · ĵ‡z = ĵ‡z · ĵz′ , we get [̂j‡z′ ·
ĵzPz′(z, t

′)]−js = ĵ‡z · ĵz′Pz(z
′, t′) and thus obtain〈

ρUx (t)
〉
s
=
〈
ρUx (t)

〉−js

s〈
JU
x (t)

〉
s
= −

〈
JU
x (t)

〉−js

s

Cxy
ρρ (t) = [Cxy

ρρ (t)]
−js

Cxy
Jρ (t) = −[Cxy

Jρ (t)]
−js

Cxy
J·J(t) = [Cxy

J·J(t)]
−js . (3.5.62)

In addition to the symmetries of the first and second cumulants, a stronger path-wise ver-
sion of the dual-reversal symmetry in Eq. (3.5.11) (or time-reversal symmetry at equilib-
rium) dictates symmetries of the full distributions of the functionals of steady-state tra-
jectories under the reversal js ↔ −js. Notably, at equilibrium (js = 0) these simplify to
symmetries of the process [which is a much stronger result since we do not have to compare
to another (artificial) process with an inverted js].

To motivate this stronger symmetry, note that for steady-state initial conditions for any
finite set of times t1 < t2 < · · · < tn we have that the joint density Pn(· · · ) for positions zi
at equally spaced times ti = i×∆t for i = 0, 1, . . . , n is given by [since we have a Markov
process by definition, i.e., Eq. (3.5.4) has no memory]

Pn(z0, t0; z1, t1; . . . ; zn, tn) = ps(x0)G(x1,∆t|x0) · · ·G(xn,∆t|xn−1). (3.5.63)

By applying the dual-reversal symmetry in Eq. (3.5.11) n− 1 times, we obtain

Pn(z0, t0; z1, t1; . . . ; zn, tn) = G−js(x0,∆t|x1) · · ·G−js(xn−1,∆t|xn)ps(xn)

= P−js
n (zn, 0; zn−1,∆t; . . . ; z0, n∆t)

= P−js
n (zn, t0; zn−1, t1; . . . ; z0, tn). (3.5.64)
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The n+ 1 points (z1, . . . , zn) represent a discrete-time path for which Eq. (3.5.64) implies
the path-wise discrete-time dual-reversal symmetry (denote t = tn = n∆t)

Pn(z0, t0; z1, t1; . . . ; zn, tn) = P−js
n (zn, t− tn; zn−1, t− tn−1; . . . ; z0, t− t0), (3.5.65)

i.e., the probability of forward paths (xti)i=0,1,...,n agrees with the probability of backwards
paths of the process with inverted steady-state current js → −js, i.e.,

P [(xti)i=0,1,...,n] = P−js [(xt−ti)i=0,1,...,n] . (3.5.66)

Note that at equilibrium, js = 0, this is nothing but the detailed balance for discrete-time
paths.

Assuming that one can take a continuum limit ∆t → 0 (and that a resulting path mea-
sure exits) one could conclude that continuous time paths fulfill the symmetry (see also
Ref. [133])

P [(xτ )0≤τ≤t] = P−js [(xt−τ )0≤τ≤t] . (3.5.67)

Based on this strong symmetry, and noting that densities are symmetric while currents are
antisymmetric under time reversal, i.e.,

ρUx [(xτ )0≤τ≤t] = ρUx [(xt−τ )0≤τ≤t]

JU
x [(xτ )0≤τ≤t] = −JU

x [(xt−τ )0≤τ≤t] , (3.5.68)

we obtain the following symmetries

P
[
ρUx (t) = u

]
= P−js

[
ρUx (t) = u

]
P
[
JU
x (t) = u

]
= P−js

[
JU
x (t) = −u

]
. (3.5.69)

Equation (3.5.69) implies symmetries for mean values and variances (x = y) listed in
Eq. (3.5.62) since it implies that all moments of ρUx (t) agree and that the n-th moment of
a current component i fulfills

〈
[JU

x (t)]i
n
〉
s
=
〈
[−JU

x (t)]i
n
〉−js

s
= (−1)n

〈
[JU

x (t)]i
n
〉−js

s
.

Note that Eq. (3.5.69) implies that the statistics of ρ(t) (including all moments) in general
depends on js but is invariant under the inversion js ↔ −js. Moreover, current fluctuations
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at equilibrium (js = 0, hence PEQ ≡ P = P−js) are symmetric around the mean
〈
JU
x

〉
s
= 0,

i.e.,

PEQ

[
JU
x (t) = u

]
= PEQ

[
JU
x (t) = −u

]
. (3.5.70)

The symmetries for correlations in Eq. (3.5.62), possibly with x ̸= y, may be seen as
implications of the more general symmetries

P
[
ρUx (t)ρ

U
y (t) = u

]
= P−js

[
ρUx (t)ρ

U
y (t) = u

]
P
[
JU
x (t)ρ

U
y (t) = u

]
= P−js

[
JU
x (t)ρ

U
y (t) = u

]
P
[
JU
x (t) · JU

y (t) = u
]
= P−js

[
JU
x (t) · JU

y (t) = u
]
. (3.5.71)

3.5.8 Continuity equation along individual diffusion paths

In this section, we derive a continuity equation for the time-accumulated density tρUx (t)
and current tJU

x (t) defined with windows that satisfy Uh
x (x

′) = Uh
0 (x

′ − x). This condition
in particular holds for all window functions that may be interpreted as a spatial coarse
graining, as, e.g., a Gaussian around x or any indicator function Uh

x (x
′) ∝ 1||x′−x||≤h with

any norm ||· · ·||. Under this assumption, −∇xU
h
x (x

′) = ∇x′Uh
x (x

′) ≡
{
∇Uh

x

}
(x′) such that

−∇x

∫ τ=t

τ=0
Uh
x (xτ ) ◦ dxτ =

∫ τ=t

τ=0

{
∇Uh

x

}
(xτ ) ◦ dxτ

= Uh
x (xt)− Uh

x (x0) = ∂t

∫ t

0
Uh
x (xτ )dτ, (3.5.72)

which can be written in the form of a continuity equation,

∂t[tρUx (t)] = −∇x · tJU
x (t). (3.5.73)

This generalizes the notion of a continuity equation to individual trajectories (xτ )0≤τ≤t

with arbitrary initial and end points. For steady-state dynamics and normalized window
functions, i.e., ∫ ddzUh

x (z) = 1, taking the mean ⟨·⟩s of Eq. (3.5.73) leads to a continuity
equation for (coarse-grained) probability densities. Conversely, for non-normalized win-
dow functions ∫ ddzUh

x (z) = Volume(Uh
x ), the mean ⟨·⟩s of Eq. (3.5.73) may be interpreted

as a continuity equation for probabilities.

Note that the statement ∫ τ=t
τ=0

{
∇Uh

x

}
(xτ ) ◦ dxτ = Uh

x (xt) − Uh
x (x0) holds only for the

Stratonovich integral but, e.g., not for an Itô integral. Therefore, the continuity equation
further motivates the definition in Eq. (3.5.1) via the Stratonovich integral, which was
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Figure 3.5.7: We consider the rotational flow in Eq. (3.5.2) with Ω = 3 starting from
steady-state initial conditions and use a Gaussian coarse-graining window in Eq. (3.5.3)
around x = (0, 1)T with width h = 0.5. (a) Analytical result for the variance of the time-
averaged density ρUx (t) multiplied by time t as a function of t. At long times the variance
approaches the large deviation variance in Eq. (3.5.76). (b) As in (a) but for the compo-
nents of the correlation vector Cxx

Jρ (t) as in Eqs. (3.5.45) and (3.5.61). (c) As in (a) but for
the variances of the current components in Eq. (3.5.52). (d) Simulation of the probabil-
ity density function of the empirical density ρUx (t) assuming the parameters listed above.
Colors of lines and symbols throughout denote t = 40, 60, 80, 100 from dark to bright. The
simulated probability densities were obtained from histograms of 2 × 104 trajectories for
each set of parameters. (e) Parabolic approximation for the rate function with variance
from Eq. (3.5.76) (line) and simulated rate function I(ρ) = −1

t lnP [ρ
U
x (t) = ρ] (symbols).

The numerical value of the rate function at the mean ρ = ⟨ρUx (t)⟩s was subtracted. (f, g) As
in (d) and (e) but for the x component of the current [JU

x ]x instead of the density ρUx .

also required for the mean empirical current [see comment below Eq. (3.5.17)] and for
consistency of time reversal (e.g., to obtain the symmetry in Eqs. (3.5.45) and (3.5.49);
see also Fig. 3.4.2 in Sec. 3.4.

3.5.9 Short and long trajectories and the central-limit regime

As already noted on several occasions, in the case of steady-state initial conditions the mean
values of the time-averaged density and current are time independent [see Eqs. (3.5.15)
and (3.5.17)]. The correlation and (co)variance results [Eqs. (3.5.23), (3.5.45), and
(3.5.49) with integral operator (3.5.22)] display a non-trivial temporal behavior dictated
by the time integrals 1

t

∫ t
0 dt

′
(
1− t′

t

)
over two-point densities Pz(z

′, t′).

In Fig. 3.5.7a-c we depict this time-dependent behavior for the two-dimensional rotational
flow in Eq. (3.5.2) for x = y. The short-time behavior can be obtained by analogy to
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the short-time expansion in the Appendix. Note that the short-time limit of fluctuations
of time-integrated currents recently attracted much attention in the context of inference
of dissipation, since in this limit the thermodynamic uncertainty relation becomes sharp
[153, 154]. The long-time behavior shows that C(t), var(t) ∝ t−1, as expected from the
central limit theorem (and large deviation theory) due to sufficiently many sufficiently
uncorrelated visits of the window region. Accordingly, a serious problem is encountered
in dimensions ≥ 2 in the limit h → 0 because diffusive trajectories do not hit points (for a
detailed discussion see Sec. 3.4).

The limit of tC(t), tvar(t) for large t can be obtained as follows. We have ∫∞
t′ dt′′[Py(x, t

′′)−
ps(x)] → 0 for t′ → ∞ since Py(x, t

′)
t′→∞−→ ps(x) and ĵxPy(x, t

′)
t′→∞−→ js(x) with exponen-

tially decaying deviations. This implies that for large t, we can replace 1
t

∫ t
0 dt

′
(
1− t′

t

)
by

1
t

∫∞
0 dt′ in the integral operator (3.5.22). This replacement of integrals and the scaling

are also confirmed by a spectral expansion (see, e.g., Ref. [41] for spectral-theoretic results
for the empirical density).

We now discuss the central-limit regime, which is contained in large deviation theory as
small deviations from the mean. According to the central limit theorem [for not almost
surely constant Uh

x , and for finite variances (i.e., strictly positive h, see Sec. 3.5.5)], the
probability distributions p(At = a) for At = ρUx (t) and At = JU

x (t) become Gaussian for
large t. This is contained in large deviation theory in terms of a parabola that locally (for
a ≈ µ) approximates the rate function

I(a) = − lim
t→∞

1

t
ln p(At = a) ≈ (a− µ)2

2σ2A
, (3.5.74)

where the mean µ is given by ⟨ρUx (t)⟩s =
∫
dzUh

x (z)ps(z) and ⟨JU
x (t)⟩s =

∫
dzUh

x (z)js(z)

[see Eqs. (3.5.15) and (3.5.17)] and the large deviation variance σ2A follows by the above
arguments from Eqs. (3.5.23) and (3.5.49) for x = y as in Eq. (3.5.61) as

σ2
ρUx

≡ lim
t→∞

t varxρ (t)

= 2

∫ ∞

0
dt′
∫

dz

∫
dz′Uh

x (z)U
h
x (z

′)
[
Pz′(z, t)− ps(z)ps(z

′)
]
, (3.5.75)

as well as

σ2
JU
x
≡ lim

t→∞
t varxJ(t)

=2

∫
dzTr[D(z)][Uh

x ]
2(z)ps(z)
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+ 2

∫ ∞

0
dt′
∫

dz

∫
dz′Uh

x (z)U
h
x (z

′)
[̂
jz · ĵ‡z′Pz′(z, t)− js(z)js(z

′)
]
. (3.5.76)

For any Lebesgue integrable window function Uh
x (i.e., if the window size h fulfills h > 0),

and in d = 1 even for the δ function, this variance is finite, and the central limit theorem
applies as described above. The parabolic approximation for the rate function for a two-
dimensional system with finite window size h > 0 is shown for the density ρUx (t) and
current JU

x (t) in Fig. 3.5.7e,g. The agreement of the simulation and the variance given by
Eqs. (3.5.75) and (3.5.76) is readily confirmed.

If we instead take the limit of no coarse graining h → 0 in multidimensional space d ≥ 2,
the variances diverge [see Eq. (3.5.51)]. Figure 3.5.8 depicts the distribution of the em-
pirical density ρUx (t) in a fixed point x for different times t and window sizes h. We see
that the distribution becomes non-Gaussian for small h, in particular the most probable
value departs from the mean and approaches zero. Even though a Gaussian distribution is
restored for longer times (see Fig. 3.5.8b), for even smaller window sizes the distribution
again becomes non-Gaussian (see Fig. 3.5.8c). This behavior is not surprising, since Gaus-
sian distributions are only expected for sufficiently many (sufficiently uncorrelated) visits
of the coarse graining window. For h → 0 the recurrence time to return to the window
diverges and thus for any finite t one cannot expect a Gaussian distribution. Note that it is
not clear whether a limit in distribution for h→ 0 of ρUx and JU

x even exists. We hypothesize
that, if the limit h → 0 of the distribution indeed exists, then it does so only as a scaling
limit with h→ 0 and t→ ∞ simultaneously.

Figure 3.5.8: Simulation of the probability density function of the empirical density ρUx (t)
for x = (0, 1)T and Gaussian window function Uh

x in Eq. (3.5.3) with width h for the two-
dimensional driven Ornstein-Uhlenbeck process in Eq. (3.5.2) with Ω = 3 with x0 starting
from the steady state. The simulated probability densities were obtained from histograms
of 2× 105 trajectories for each set of parameters.
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3.5.10 Outlook beyond overdamped dynamics

In this section we give a brief outlook on the relevance of our findings in the limit h → 0

for processes that are not described by purely overdamped dynamics. In particular, we
highlight that although in physical systems the assumption of overdamped dynamics breaks
down at very small time or length scales (which often may not be observable), the predicted
divergence of fluctuations in the limit h → 0 does not break down, or at least it remains
true for sufficiently small finite h that empirical densities and currents attain numerically
very large values, i.e., effectively diverge. We emphasize that this section only establishes an
outlook that underscores the experimental relevance of our approach, but does not contain
quantitative theoretical results. Note that beyond the examples given here, the results in
the limit h → 0 also apply to Markov jump processes, as illustrated in the Supplemental
Material of in Subsec. 3.4.7.

To go beyond the assumption of Markovian overdamped motion assumed in Eq. (3.5.4),
Fig. 3.5.9 depicts the fluctuations of the empirical density and current for two very different
types of stochastic dynamics. In Fig. 3.5.9a,b we evaluate the functionals in Eq. (3.5.1)

Figure 3.5.9: (a) Variance divided by squared mean of the empirical density and (b) vari-
ance of the empirical current with Gaussian coarse graining window [see Eqs. (3.5.1) and
(3.5.3)] around x = (0.1, 0.1)Tµm and x = (0.15, 0)Tµm for 200 experimental trajectories
(xτ − x0)τ≤50 s measured in particle tracking in living cells [91] with time-step dt = 0.1 s
and spatial resolution 10−3 µm. (c, d) Analogous results for underdamped dynamics simu-
lated according to Eq. (3.5.77) for 1000 trajectories with an Euler integration scheme with
time step dt = 0.02, total time 10, initial positions x0 = (0, 0)T , and Maxwellian initial ve-
locities v0 (i.e., zero-mean Gaussian with variance kBT ), evaluated with Gaussian coarse
graining window around x = (0.1, 0)T . The observables in (a) and (c) and in (b) and (d)
relate to the predicted analytical curves in Figs. 3.5.3 and 3.5.6c, respectively, but now for
completely different underlying dynamics. We note that processes not following an over-
damped motion, in fact even non-Markovian processes, also seem to feature the divergence
of fluctuations in the limit h → 0, at least down to relevant small values of h > 0 (larger
than the resolution yet small enough to display impractically large fluctuations to be ex-
perimentally useful).

with a Gaussian window function from Eq. (3.5.3) for particle-tracking data in living cells
that was found to be well described by a two-state fractional Brownian motion [90, 91,
202]. The latter in particular is non-Markovian with subdiffusive antipersistence on a given
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timescale. We observe that, even though the assumption of Markovian overdamped motion
in Eq. (3.5.4) is obviously violated (on some time and spatial scales), and thus the results
of our work do not necessarily apply, we still find divergent fluctuations in the limit of small
coarse-graining scales h. Note that the resolution of the measurement is h = 10−3 µm [91].
In Fig. 3.5.9a,b we observe that even for h above this resolution limit, the fluctuations
approach impracticably large values. Therefore, we propose that in general scenarios (e.g.,
in this experimental setup that extends way beyond the discussed overdamped dynamics)
coarse graining empirical densities and currents may even in the case of very good statistics
be necessary to obtain experimentally meaningful values with limited fluctuations.

In Fig. 3.5.9c,d we similarly evaluate the coarse-grained empirical density and current
for two-dimensional underdamped harmonically confined Langevin dynamics with friction
constant ξ (setting for convenience the mass m = 1 and temperature kBT = 1) simulated
by integrating the equations of motion

dxt = vtdt,

dvt = −ξvtdt− xtdt+
√
2ξdWt. (3.5.77)

This dynamics exhibits persistence on timescales around or below m/ξ (i.e., the ballistic
regime). Again, we find in Fig. 3.5.9c,d that the divergence predicted in the limit h → 0

for overdamped dynamics is qualitatively preserved. The quantitative order of divergence
will depend on the details of the process. We hypothesize that on time scales h2/D (with
diffusion constant D = kBT/ξ) that are smaller that m/ξ the ballistic regime will cause
deviations from the predicted divergence results in Sec. 3.4. Following the arguments in
Sec. 3.5.5, the expressions will still diverge since the probability to hit points in (d ≥ 2)-
dimensional space becomes zero.

The influence of the details of the process, such as memory effects and ballistic transport,
constitutes an interesting direction for future research that, however, goes beyond the scope
of the present work. From the qualitative behavior found in Fig. 3.5.9 we may already
conclude that the relevance of coarse-graining empirical densities and currents to ensure
finite and manageable fluctuations appears to be a quite general result, exceeding beyond
the overdamped dynamics discussed in this work.

3.5.11 Conclusion

In this extended exposé accompanying the Letter reproduced in Sec. 3.4 we presented
the conceptual and technical background that is required to describe and understand the
statistics of the empirical density and current of steady-state diffusions, which are central
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to statistical mechanics and thermodynamics on the level of individual trajectories. In order
to gain deeper insight into the meaning of fluctuations of the empirical density and current,
we made use of a generalized time-reversal symmetry. We carried out a systematic analysis
of the effect of a spatial coarse graining. A systematic variation of the coarse-graining scale
in an a posteriori smoothing of trajectory data was proposed as an efficient method to infer
bounds on a system’s dissipation. Moreover, we discussed symmetries in the statistics of the
empirical current and density that arise as a result of the (generalized) time-reversal sym-
metry. Throughout the work, we advocated the application of stochastic calculus, which is
very powerful in the analysis of related problems and represents a more direct alternative to
Feynman-Kac theory and path-integral methods. The technical background and concepts
presented here may serve as a basis for forthcoming publications, including the generaliza-
tion of the presented inference strategy to windows that are not centered at an individual
point, as well as the use of the correlations result entering the CTUR inequality [134].

Acknowledgments—We thank Diego Krapf and Matthias Weiss for kindly providing traces
from their particle-tracking experiments. Financial support from Studienstiftung des
Deutschen Volkes (to C. D.) and the German Research Foundation (DFG) through the Emmy
Noether Program GO 2762/1-2 (to A. G.) is gratefully acknowledged.

3.5.12 Appendix: Derivations in the limit of no coarse graining

We now take the limit to very small window sizes, i.e., the limit to no coarse graining,
which will turn out to depend only on the properties of the two-point functions Px(y, t

′)

for small time differences t′ = t2 − t1. This allows us to derive the bounds in Eq. (3.5.51).
We consider normalized window functions such that for a window size h→ 0 the window
function becomes a δ distribution Uh

x (z) → δ(x− z).

Density variance

For the variance of the density varxρ (t) ≡ ⟨ρUx (t)2⟩s − ⟨ρUx (t)⟩2s , we have [see Eq. (3.5.23)]

varxρ (t) = 2Ît,U
xx [Pz′(z, t

′)− ps(z)ps(z
′)]. (3.5.78)

For window size h→ 0 the mean remains finite such that Ît,U
xx [ps(z)ps(z

′)]
h→0−→ −2ps(x)

2 =

O(h0). Now consider (the notation ddz denotes, exactly as dz, the volume integral
dz1dz2 · · · dzd)

Ît,U
xx [Pz′(z, t

′)] =
1

t

∫ t

0
dt′
(
1− t′

t

)∫
ddz

∫
ddz′Uh

x (z)U
h
x (z

′)Pz′(z, t
′). (3.5.79)
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For t′ > ε > 0, Pz′(z, t
′) is bounded and thus ∫ ddz

∫
ddz′Uh

x (z)U
h
x (z

′)Pz′(z, t
′) is bounded

using ||Pz′(z, ε)||∞ = O(h0). Contributions diverging for h → 0 can thus only come from
the t′ → 0 part of the integral, i.e., from small time differences t′ = t2 − t1 (but not
small absolute time t) in the Dyson series. To get the dominant divergent contribution, we
can thus set 1 − t′/t → 1 and replace the two-point function Pz′(z, t

′) by the short time
propagator Py(z, t

′) → ps(z
′)Gshort(z, t

′|z′) which reads (for simplicity take D(z) = D1,
which we generalize later) [17]

Gshort(z, t
′|z′) = (4πDt′)−d/2 exp

[
− [z− z′ − F (z′)t′]2

4Dt′

]

= (4πDt′)−d/2 exp

[
− [z− z′]2

4Dt′
+

2(z− z′) · F(z′)t′

4Dt′
+O(t′)

]
z≈z′

≈ (4πDt′)−d/2

[
1 +

1

4D
(z− z′) · F(z′)

]
exp

[
− [z− z′]2

4Dt′

]
. (3.5.80)

We write for t′ → 0, z− z′ → 0,

Gshort,2 ≡ (4πDt′)−d/2

[
1 +

1

2D
(z− z′) · F(z′)

]
exp

[
− [z− z′]2

4Dt′

]
,

Gshort,3 ≡ (4πDt′)−d/2 exp

[
− [z− z′]2

4Dt′

]
, (3.5.81)

where Gshort,2 can be replaced by Gshort,3 (since z − z′ is small) if Gshort,3 does not give
zero in the integrals.

For Gaussian window functions

Uh
x (z) = (2πh2)−d/2 exp

[
−(z− x)2

2h2

]
, (3.5.82)

we obtain for the spatial integrals∫
ddz

∫
ddz′Uh

x (z)U
h
x (z

′)Gshort,3(z, t
′|z′)ps(z′)

≃ ps(x)

∫
ddz

∫
ddz′Uh

x (z)U
h
x (z

′)Gshort,3(z, t
′|z′)

= ps(x)(2πh
2)−d(4πDt′)−d/2

∫
ddz

∫
ddz′ exp

[
−(z− z)2

2h2
− (z′ − z)2

2h2
− (z− z′)2

4Dt′

]
= ps(x)(2πh

2)−d(4πDt′)−d/2

(∫
dx1

∫
dy1 exp

[
− x21
2h2

− y21
2h2

− (x1 − y1)
2

4Dt′

])d
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= ps(x)

 √
2Dh2t′ + h4

2
√
πh2

√
2Dt′ + h2

√
Dt′

h2 + 1

d

= ps(x)(4π)
−d/2(Dt′ + h2)−d/2. (3.5.83)

This implies, throughout denoting by≃ asymptotic equality in the limit h→ 0 (i.e., equality
of the largest order),

Ît,U
xx [Pz′(z, t

′)] ≃ (4π)−d/2 ps(x)

t

∫ t

0
dt′(Dt′ + h2)−d/2

= (4π)−d/2 ps(x)

t
×

− h2−d

D(1− d
2 )

+
(D+h2)

1− d
2

D(1− d
2 )

for d ̸= 2

− log (h2)
D +

log (D+h2)
D otherwise

≃ (4π)−d/2 2ps(x)

Dt
×

h2−d

d−2 for d > 2

− log (h) for d = 2.
(3.5.84)

This gives for Gaussian U with width h the result

varxρ (t)
h→0≃ (4π)−d/2 4ps(x)

Dt
×

h2−d

d−2 for d > 2

− log (h) for d = 2,
(3.5.85)

where only the numerical prefactor changes if we choose other indicator functions, since
the relevant part (close to x) of any finite size window function can be bounded from above
and below by Gaussian window functions.

To extend to general diffusion matrices D(z), we first note that for h → 0 only the lo-
cal diffusion matrix D(x) at position x will enter the result, and, if the local D(x) is not
isotropic we transform to coordinates where the diffusion matrix is diagonal, D(x) =

diag(D1(x), . . . , Dd(x)). One can check this by Taylor expanding around x in h in the
local coordinate frame, isolating the leading-order term, keeping in mind that D(z) was
assumed to be smooth. In the local coordinates we then need to evaluate the integral

∫ t

0
dt′

d∏
i=1

(Di(x)t
′ + h2)−1/2, (3.5.86)

whose integrand can be bounded by

(max
j

(Dj(x))t
′ + h2)−1/2 ≤ (Di(x)t

′ + h2)−1/2 ≤ (min
j

(Dj(x))t
′ + h2)−1/2, (3.5.87)
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implying that in the final result D in Eq. (3.5.85) can be replaced by D̃(x) ∈
[min(Di(x)),max(Di(x))],

varxρ (t)
h→0≃ (4π)−d/2 4ps(x)

D̃(x)t
×

h2−d

d−2 for d > 2

− log (h) for d = 2.
(3.5.88)

The entries Di(x) of the diagonalized D(x) are the eigenvalues; hence in general D̃(x) ∈
[λ(x)min, λ(x)max] is bounded by the lowest and highest eigenvalues λ(x)min and λ(x)max

of the matrix D(x). This proves the density variance result in Eq. (3.5.51).

Correlation of current and density

Now consider the small-window limit for correlations with x = y defined as Cxx
Jρ (t) ≡

⟨JU
x (t)ρ

U
x (t)⟩s − ⟨JU

x (t)⟩s⟨ρUx (t)⟩s, given according to Eq. (3.5.45) by

Cxx
Jρ (t) =Ît,U

xx

[̂
jzPz′(z, t

′) + ĵ‡zPz(z
′, t′)− 2js(z)ps(z

′)
]
. (3.5.89)

Recall that ĵz = F(z) − D(z)∇z. As always the term involving the mean values is finite
for h → 0. We first look at Ît,U

xx [̂jzPz′(z, t
′)], again, first for constant isotropic diffusion

D(z) = D1.

Here we have to use Gshort,2 [see Eq. (3.5.81)], since the integrals over Gshort,3 vanish.
Hence, consider

Ît,U
xx [̂jzPz′(z, t

′)] =
1

t

∫ t

0
dt′
(
1− t′

t

)∫
ddz

∫
ddz′Uh

x (z)U
h
x (z

′)̂jzPz′(z, t
′)

≃ ps(x)

t

∫ t

0
dt′
∫

ddz

∫
ddz′Uh

x (z)U
h
x (z

′)[F(z)−D∇z]Gshort,2(z, t
′|z′), (3.5.90)

where we can use Ît,U
xx [F(z)Pz′(z, t

′)] ≃ F(x)Ît,U
xx [Pz′(z, t

′)] ≃ F(x)× Eq. (3.5.84) and we
compute

∇zGshort,2(z, t
′|z′)

=(4πDt′)−d/2

[
1 +

1

2D
(z− z′) · F(z′)

]
∇z exp

[
− [z− z′]2

4Dt′

]

+ (4πDt′)−d/2F(z
′)

2D
exp

[
− [z− z′]2

4Dt′

]

=− (4πDt′)−d/2

[
1 +

1

2D
(z− z′) · F(z′)

]
z− z′

2Dt′
exp

[
− [z− z′]2

4Dt′

]

120



Phys.Rev.Res.4,033243
(2022)

Statistics of time-integrated densities and currents 3

+ (4πDt′)−d/2F(z
′)

2D
exp

[
− [z− z′]2

4Dt′

]
. (3.5.91)

By symmetry, the spatial integrals over (z − z′) exp
[
− [z−z′]2

4Dt′

]
vanish, and we are left to

compute

−D

∫
ddz

∫
ddz′Uh

x (z)U
h
x (z

′)∇zGshort,2(z, t
′|z′)

≃−D(4πDt′)−d/2

∫
ddx

∫
ddyU(x)U(y)

(
− [(x− y) · F(y)](x− y)

4D2t′
+

F(z′)

2D

)
× exp

[
− [z− z′]2

4Dt′

]
, (3.5.92)

where the second term gives −1
2F(x)Î

t,U
xx [Pz′(z, t

′)]. The remaining term, noting that
F(z′) ≃ F(x) and integrating out all directions except k for the Fk(x) component [by
symmetry (zi − z′i)(zj − z′j) integrates to zero if i ̸= j], becomes

(4πDt′)−d/2

4Dt′

∫
ddz

∫
ddz′Uh

x (z)U
h
x (z

′)[(z− z′) · F(x)](z− z′) exp

[
− [z− z′]2

4Dt′

]

=
F(x)

4Dt′

∫
dz1

∫
dz′1U

1(z1)U
1(z′1)(z1 − z′1)

2Gshort,3,one−dim(z1, t
′|z′1)

=
F(x)

4Dt′
Dh2t′

√
π (Dt′ + h2)

3
2

=
F(x)h2

4
√
π (Dt′ + h2)

3
2

. (3.5.93)

This term is subdominant as we see from the time integral

Ît,U
xx [−D∇zPz′(z, t

′)] ≃ −F(x)

2
Ît,U
xx [Pz′(z, t

′)] +
ps(x)F(x)h

2

4
√
πt

∫ t

0
dt′
(
Dt′ + h2

)− 3
2︸ ︷︷ ︸

h−1

≃ −F(x)

2
Ît,U
xx [Pz′(z, t

′)]. (3.5.94)

Hence, overall we get

Ît,U
xx [̂jzPz′(z, t

′)] =
F(x)

2
Ît,U
xx [Pz′(z, t

′)]. (3.5.95)

The generalization to non-constant or non-isotropic D(z) only changes Ît,U
xx [Pz′(z, t

′)] but
Eq. (3.5.95) is retained.
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Now consider Ît,U
xx [̂j‡zPz(z

′, t′)]. Since this involves derivatives of bothG and ps (at the initial
point) we instead take the form ĵ‡z = js(z)/ps(z)+Dps(z)∇zps(z)

−1 such that ĵ‡zPz(z
′, t′) =

[js(z) +Dps(z)∇z]G(z
′, t′|z) giving

Ît,U
xx [̂j‡zPz(z

′, t′)]

=
1

t

∫ t

0
dt′
(
1− t′

t

)∫
ddz

∫
ddz′Uh

x (z)U
h
x (z

′)[js(z) +Dps(z)∇z]G(z
′, t′|z)

≃ js(x)

ps(x)
Ît,U
xx [Pz(z

′, t′)] +Dps(x)

∫ t

0
dt′
∫

ddz

∫
ddz′Uh

x (z)U
h
x (z

′)∇zGshort,2(z
′, t′|z),

(3.5.96)

where [note that Gshort,3(z, t
′|z′) = Gshort,3(z

′, t′|z)]

∇zGshort,2(z
′, t′|z)

=(4πDt′)−d/2

[
1 +

1

2D
(z′ − z) · F(z′)

]
∇z exp

[
− [z− z′]2

4Dt′

]

+ (4πDt′)−d/2−F(z)

2D
exp

[
− [z− z′]2

4Dt′

]

=− (4πDt′)−d/2

[
1 +

1

2D
(z− z′) · F(z′)

]
z− z′

2Dt′
exp

[
− [z− z′]2

4Dt′

]

− F(z′)

2D
Gshort,3(z

′, t′|z). (3.5.97)

As before, asymptotically only the last term contributes, giving

Ît,U
xx [̂j‡zPz(z

′, t′)]

≃ js(x)

ps(x)
Ît,U
xx [Pz(z

′, t′)] +Dps(x)

∫ t

0
dt′
∫

ddz

∫
ddz′Uh

x (z)U
h
x (z

′)∇zGshort,2(z
′, t′|z)

≃ js(x)

ps(x)
Ît,U
xx [Pz(z

′, t′)]

+Dps(x)

∫ t

0
dt′
∫

ddz

∫
ddz′Uh

x (z)U
h
x (z

′)
−F(z′)

2D
Gshort,3(z

′, t′|z)

≃
[
js(x)

ps(x)
− F(x)

2

]
Ît,U
xx [Pz(z

′, t′)]. (3.5.98)

Overall, this gives for the correlations (having the same form for anisotropic diffusion)

Cxx
Jρ (t)

h→0≃ js(x)

ps(x)
Ît,U
xx [Pz(z

′, t′)] ≃ js(x)

2ps(x)
varxρ (t). (3.5.99)

This proves the correlation result in Eq. (3.5.51).
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Current variance

We now turn to the current variance [see Eq. (3.5.49) for x = y],

varxJ(t) =
2

t

∫
ddzTrD(z)Uh

x (z)U
h
x (z)ps(z) + 2Ît,U

xx

[̂
jz · ĵ‡z′Pz′(z, t

′)− js(z) · js(z′)
]
.

(3.5.100)

The first term for h→ 0 gives

2TrD(z)

t

∫
ddxUh

x (z)U
h
x (z)ps(z) ≃

2TrD(x)

t
ps(x)U

h
x (x), (3.5.101)

where Uh
x (x) ∝ h−d is the height of the δ function approximation, e.g., Uh

x (x) =

(2π)−d/2h−d for Gaussian Uh
x . In the derivation (see Sec. 3.5.4) this term occurred from

cross correlations dWt1dWt1 = dt′ ̸= 0 in the noise part, hence it can be seen to come from
zero time differences t′ = t2 − t1 = 0. Such a term does not appear in the density variance
or density-current correlation, since there dt1dt2 = 0 and dt1dWt2 = 0would occur instead
of dWt1dWt2 .

Due to the fast h−d divergence, the dominant limit does not depend on terms with no or
only one derivative, since they were shown to scale at most as h2−d. The only new term is
the second derivative, for which we see that∫ t

0
dt′D∇z · (−∇z′)Gshort,3(z, t

′|z′) =
∫ t

0
D∇2

zGshort,3(z, t
′|z′)

=

∫ t

0
dt′∂t′Gshort,3(z, t

′|z′)

=
[
Gshort,3(z, t

′|z′)
]t
0

= Gshort,3(z, t|z′)− δ(z− z′), (3.5.102)

such that

Ît,U
xx

[̂
jz · ĵ‡z′Pz′(z, t

′)
]
≃ −D2 ps(x)

t

∫ t

0
dt′
∫

ddz

∫
ddz′Uh

x (z)U
h(z)∇z · ∇z′Gshort,3(z, t

′|z′)

≃ −Dps(x)
t

∫
ddz

∫
ddz′Uh

x (z)U
h(z′)δ(z− z′)

≃ −Dps(x)
t

Uh(x). (3.5.103)
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For non-isotropic and possibly non-constantD(z) ̸= D1, we again note that for h→ 0 only
D(z) at z = x matters, and move to the basis where D = D(x) is diagonal, where we have

D2∇z · ∇z′ −→
d∑

i=1

D2
i ∂zi∂zi′ . (3.5.104)

The operator we need is ∇zD∇z′ =
∑

iDi∂zi∂zi′ so we bound one of the Di in D2
i by

D′ ∈ [min(Di),max(Di)] such that we get

Ît,U
xx

[̂
jz · ĵ‡z′Pz′(z, t

′)
]
≃ −D′ ps(x)

t
Uh(x). (3.5.105)

Since TrD =
∑

iDi we have D̃′ ≡ TrD−D′

d−1 ∈ [min(Di),max(Di)] and we can write

varxJ(t) ≃
2TrD

t
ps(x)U

h(x)− 2D′ ps(x)

t
Uh(x) =

2D̃′

t
ps(x)(d− 1)U(x), (3.5.106)

where U(x) ∝ h−d. This proves the current variance result in Eq. (3.5.51). Thus, we see
that the current fluctuations diverge for h → 0, except in one-dimensional space where
d− 1 = 0.

Limit of no coarse graining in the one-dimensional case

In the one-dimensional case, the variance of empirical density and current remain finite
for h→ 0 which allows to take the limit to Uh=0

x (x′) = δ(x− x′). In terms of the stochastic
integrals, the one-dimensional case is much simpler, since any one-dimensional function
Uh
x (x

′) possesses an antiderivative—a primitive function Uh
x (x

′) =
∫ x′

Uh
x (x

′′)dx′′ such that
Uh
x (x

′) = ∂x′Ux(x
′). This implies for the Stratonovich integral that

tJU
x (t) =

∫ t

0
Uh
x (xτ ) ◦ dxτ = Ux(xt)− Ux(x0). (3.5.107)

Thus, the stochastic current is no longer a functional but only a function of the initial and
end points of the trajectory. Its moments are directly accessible, e.g.,

⟨[JU
x (t)]2⟩s =

1

t2
⟨[Ux(xt)− Ux(x0)]

2⟩s =
1

t2

∫
dz

∫
dz′
[
Ux(z)− Ux(z

′)
]2
Pz′(z, t).

(3.5.108)

If U is Gaussian, then Ux is the error function such that [Ux(x)− Ux(y)]
2 ≤ 1 and thus

⟨[JU
x (t)]2⟩s ≤ 1/t2. This also holds in the limit of a δ function where the primitive function

becomes a Heaviside step function, and we get that the current can only be 0 or ±t−2,

124



Phys.Rev.Res.4,033243
(2022)

Statistics of time-integrated densities and currents 3

see Fig. 3.5.10. The current defined with a δ function at x simply counts the net number
of crossing through x such that all crossings except maybe one cancel out. Note that the
reasoning above only holds for the current defined with a Stratonovich integral—the same
definition with an Itô or anti-Itô integral would give a divergent current for the δ function.

To obtain a 1/t term as in large deviations one would need to have a steady-state current
which could, e.g., be achieved by generalizing to periodic boundary conditions. Then the
current would depend on the initial and final points and, in addition, also on the net number
of crossings of the full interval between the boundaries of the system.

Figure 3.5.10 shows the time-integrated density and current, i.e., the empirical density
and current in Eq. (3.5.1) multiplied by the total time t. Fluctuations remain in the same
order of magnitude for h→ 0 (see Fig. 3.5.10c,e). We see that the time-integrated current
is bounded by 1 which is due to the fact that it simply counts the net number of crossings.
According to Eq. (3.5.107) it only depends on the initial point x0 and end point xt, in this
case x10.

Figure 3.5.10: (a) One-dimensional Brownian motion in a harmonic potential (see
Eq. (3.5.2) in 1d with parameters r =

√
2 and D = 1) starting at x0 = 0 and ending

at x10 = 0.62. (b) Time-integrated density of the trajectory in (a) as a function of x for
normalized window function Uh

x (x
′) = h−1

1|x−x′|≤h/2 with width h = 0.3. The dashed line
shows the expectation value of the time-integrated density conditioned on x0 = 0. (c) As in
(b) with width h = 0.001. (d) Time-integrated current for window as in (b) width h = 0.3.
The dashed line shows the expectation value of the time-integrated current conditioned on
x0 = 0. (e) As in (d) for width h = 0.001.
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3.6 On correlations and fluctuations of time-
averaged densities and currents with general
time dependence (J. Phys. A 2022)

This section is a slightly adapted version of the publication C. Dieball and A. Godec, “On
correlations and fluctuations of time-averaged densities and currents with general time
dependence”, J. Phys. A: Math. Theor. 55, 475001 (2022).

My personal contribution as first author of the publication was in performing calculations
and simulations, analyzing the results, and co-writing the manuscript.
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On correlations and fluctuations of time-averaged
densities and currents with general time dependence

Cai Dieball and Aljaž Godec

Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am
Faßberg 11, 37077 Göttingen, Germany

Abstract

We present technical results required for the description and understand-
ing of correlations and fluctuations of the empirical density and current, as
well as diverse time-integrated and time-averaged thermodynamic currents of
diffusion processes with a general time dependence on all timescales. In par-
ticular, we generalize the results from Refs. [83, 84, 86] (Secs. 3.4, 3.5, and
3.7) to additive functionals with explicit time dependence and transient or
non-ergodic overdamped diffusion. As an illustration, we apply the results to
two-dimensional harmonically confined overdamped diffusion in a rotational
flow evolving from a non-stationary initial distribution.

3.6.1 Introduction

“Time-average statistical mechanics” focuses on the study of additive functionals of stochas-
tic paths and is important in the analysis of single-particle tracking [37, 130, 203], large
deviation theory [43, 107, 110, 143, 204], and stochastic thermodynamics [28, 49, 54,
104, 133, 134, 152, 162], to name but a few. The most important functionals from
a physical point of view include the “empirical density” (also known as local or oc-
cupation time) [33, 36, 40–42, 135–139], time-integrated and time-averaged currents
[34,43–45,83,84,107,110,133,134,141–144,169], and the time-averaged mean squared
displacement (see, e.g., [37,130,205–209]).

Fluctuations of time-averaged observables have a noise floor—they are bounded from be-
low by the dissipation in a system, which is embodied within the “thermodynamic uncer-
tainty relation” (TUR) [47–49, 67, 71, 126, 132, 210–212]. One may fruitfully exploit this
universal lower bound on current fluctuations, e.g., to gauge the thermodynamic cost of
precision [47, 152, 213], infer dissipation from fluctuations [67, 83, 84, 132], or to derive
thermodynamic limits on the temporal extent of anomalous diffusion [214].

Recent works addressed fluctuations of additive functionals in transient non-equilibrium
systems [71,126,210], as well as in periodically [49,211,212] and generally driven systems
[49].
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3 Statistics of time-integrated densities and currents

Our aim here is to generalize the direct, stochastic-calculus approach we developed for
steady-state systems in [83,84] to transients and systems as well as functionals with explicit
time dependence. Note that this includes non-ergodic systems (see, e.g., [40,139]).

The paper is structured as follows. We first set up the formal background and define
the additive functionals in Sec. 3.6.2. In Section 3.6.3 we evaluate the first moments.
In Sec. 3.6.4 we present our main result—a Lemma that allows a direct evaluation of
fluctuations and correlations of general additive functionals in systems with explicit time
dependence—and derive general results for current fluctuations and current-density corre-
lations. In Sec. 3.6.5 we illustrate how to apply the newly developed results by evaluating
current-density correlations in overdamped diffusion in a rotational flow evolving from a
non-stationary initial distribution. We conclude with a brief outlook.

3.6.2 Set-up

Consider overdamped Langevin dynamics with possibly multiplicative noise and explicit
time dependence, described by the anti-Itô (or Hänggi-Klimontovich [197,198]) stochastic
differential equation9

dxτ = F(xτ , τ)dτ + σ(xτ , τ)⊛ dWτ , (3.6.1)

with positive definite diffusion matrix D(xτ , τ) = σ(xτ , τ)σ
T (xτ , τ)/2. Assume that the

drift F(xτ , τ) and noise amplitude σ(xτ , τ) are sufficiently well-behaved for Eq. (3.6.1)
to be well-defined with a unique strong solution (e.g., assume that a weak solution exists
and F and σ are locally Lipschitz continuous [14]). The anti-Itô convention ⊛dWτ =

Wτ − Wτ−dτ is the thermodynamically consistent choice [84, 104, 169], in particular it
ensures Boltzmann statistics if the drift F(xτ , τ) is such that the system settles into ther-
modynamic equilibrium [84]. The time-evolution of the probability density P (x, τ) for any
initial density P (x, τ = 0) obeys a Fokker-Planck equation [6,17]

∂τP (x, τ) = [−∇x · F(x, τ) +∇T
xD(x, τ)∇x]P (x, τ)

≡ L(x, τ)P (x, τ), (3.6.2)

which is equivalent to a continuity equation [∂τ +∇x · ĵ(x, τ)]P (x, τ) = 0, with the current
operator

ĵ(x, τ) ≡ F(x, τ)−D(x, τ)∇x (3.6.3)
9For more precise statements in the case of multiplicative noise in multidimensional space see

Sec. 2.8, in particular the additional condition in Eq. (2.8.6).
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that gives the instantaneous current as j(x, τ) = ĵ(x, τ)P (x, τ).

As a special case of Eq. (3.6.1) we will also study time-homogeneous non-equilibrium
steady-state systems, where the stochastic equation of motion reads (curly brackets
throughout denote that derivatives only act inside brackets)

dxτ =

[
D(xτ ){∇ log ps}(xτ ) +

js(xτ )

ps(xτ )

]
dτ + σ(xτ )⊛ dWτ , (3.6.4)

where ps and js denote the steady-state density and current [84]. Note that (as opposed
to [83,84]) we do not assume that the initial distribution is sampled from ps.

Based on the dynamics defined in Eqs. (3.6.1) or (3.6.4), we consider time-averaged den-
sity and current functionals of the trajectories [xτ ]0≤τ≤t defined as

ρVt =
1

t

∫ t

0
V (xτ , τ)dτ

JU
t =

1

t

∫ τ=t

τ=0
U(xτ , τ) ◦ dxτ , (3.6.5)

with U, V differentiable and square integrable functions and ◦ denotes the Stratonovich
convention of the stochastic integral. The density functional ρVt measures the time spent in
the region V (x) ̸= 0, weighted by V (x), while the current JU

t functional measures weighted
displacements accumulated in U . In particular, for positive V,U that are centered around
some point x and decay on a finite length scale, one can interpret ρVt and JU

t as the coarse-
grained empirical density and current at x [83,84].

In the following, we will derive expressions for the mean values, correlations and fluctu-
ations of these stochastic quantities and illustrate them with an example, thereby gener-
alizing the results in [83,84] to non-steady-state initial conditions and even systems with
explicit time dependence, and thus in particular also without the existence of a steady state.

3.6.3 First moments

Consider overdamped Langevin dynamics as defined in Eq. (3.6.1) starting from an arbi-
trary initial density P (x, τ = 0). Let P (x, τ) be the probability density to find the particle
at position x after time τ , i.e., the solution of the Fokker-Planck equation in Eq. (3.6.2).
Then the mean value of the density functional in Eq. (3.6.5) is given by

⟨ρVt ⟩ =
1

t

∫ t

0
⟨V (xτ , τ)⟩dτ
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3 Statistics of time-integrated densities and currents

=
1

t

∫ t

0
dτ

∫
ddxV (x, τ)P (x, τ). (3.6.6)

The mean value of the current is in turn given accordingly by (following closely the ap-
proach [84] using that the Itô-dWτ -term vanishes on average, integrating by parts, and
using D = DT )

⟨JU
t ⟩ =

1

t

∫ t

0
⟨U(xτ , τ) ◦ dxτ ⟩

=
1

t

∫ τ=t

τ=0
⟨U(xτ , τ)dxτ ⟩+

1

t

∫ τ=t

τ=0

1

2
⟨dU(xτ , τ)dxτ ⟩s

=
1

t

∫ t

0
dτ

∫
dxP (x, τ)×[

U(x, τ)F(x, τ) +
{
∇T

xD(x, τ)
}
U(x, τ) +D(x, τ) {∇xU(x, τ)}

]
=

1

t

∫ t

0
dτ

∫
dxP (x, τ)

[
U(x, τ)F(x, τ) +∇T

xD(x, τ)U(x, τ)
]

=
1

t

∫ t

0
dτ

∫
dxU(x, τ) [F(x, τ)−D(x, τ)∇x]P (x, τ)

=
1

t

∫ t

0
dτ

∫
dxU(x, τ )̂j(x, τ)P (x, τ)

=
1

t

∫ t

0
dτ

∫
dxU(x, τ)j(x, τ). (3.6.7)

The expressions Eq. (3.6.6) and (3.6.7) average the probability density and current over
the function U(x, τ) and over time τ ∈ [0, t], i.e., one can interpret ρVt and JU

t as estimators
of space and time averages of P (x, τ) and j(x, τ). Note that for time-homogeneous steady-
state dynamics (see Eq. (3.6.4)) these results are unchanged. They only further simplify
for dynamics in Eq. (3.6.4) if also the initial condition is sampled from the steady state
P (x, τ = 0) = ps(x), in which case P (x, τ) = ps(x) and j(x, τ) = js(x) implies that ⟨ρVt ⟩
and ⟨JU

t ⟩ become independent of t.

3.6.4 Correlations and fluctuations

We now derive second moments and linear correlations of the time-averaged density and
current in Eq. (3.6.5). The derivations for higher moments of currents are more involved
than the first moments, but as in [84] we solve the complications in the derivation by means
of a single Lemma derived in the following subsection. Note that one could alternatively
derive the following results using a Feynman-Kac approach (and optionally functional cal-
culus) by appropriately generalizing the approach in Sec. 3.7.
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Lemma

In the derivation of expressions for fluctuations and correlations of the time-averaged quan-
tities, we must evaluate correlations of noise increments dWτ and functions of xτ ′ . Corre-
lations for τ ′ ≤ τ vanish by the properties of the Wiener process. Conversely, correlations
for τ ′ > τ are non-trivial. This problem was solved for steady-state dynamics in [84] and
via Doob conditioning [104,107,200] for general time-homogeneous Langevin systems in
the Supplemental Material of [133]. We now generalize the direct approach from [84] to
overdamped Langevin systems with explicit time dependence.

Consider the k-th component [σ(xτ , τ)dWτ ]k of a noise increment in an expectation value
⟨f(xτ ,xτ ′ , τ, τ

′) [σ(xτ , τ)dWτ ]k⟩ with some (differentiable, square integrable) function f .
For τ ′ ≤ τ this term vanishes due to vanishing correlations and zero mean of dWτ . Now
consider τ ′ > τ .

Given a point xτ = x and writing ε ≡ σ(x, τ)dWτ , the equation of motion (3.6.1)
rewritten in Itô form (writing out the anti-Itô correction term) implies a displacement
dxτ (x, τ, ε) = [F(x, τ) + ∇T

xD(x, τ)]dτ + ε. With this we can write the expecta-
tion ⟨f(· · · ) [σ(xτ , τ)dWτ ]k⟩ as εk integrated over the probability to be at points x,x +

dxτ (x, τ, ε),y at times τ < τ + dτ < τ ′, i.e., (with joint density P (y, τ ′;x, τ) and condi-
tional density P (y, τ ′|x, τ) ≡ P (y, τ ′;x, τ)/P (x, τ); we write 1τ<τ ′ for 1 if τ < τ ′ and 0

else)

⟨f(xτ ,xτ ′ , τ, τ
′) [σ(xτ , τ)dWτ ]k⟩ (3.6.8)

= 1τ<τ ′

∫
dx

∫
dyf(x,y, τ, τ ′)

∫
dεP(ε)εkP (y, τ

′|x+ dxτ (x, τ, ε), τ + dτ)P (x, τ) ,

where the probability P(ε) is given by a Gaussian distribution with zero mean and covari-
ance matrix 2D(x, τ)dτ . Since this distribution is symmetric around 0, only terms with
even powers of the components of ε survive the dεP(ε)-integration. Note that

P (y, τ ′|x+ dxτ (x, τ, ε), τ + dτ)
dτ→0−→ [1 + dxτ (x, τ, ε) · ∇x]P (y, τ

′|x, τ) +O(dτ),

(3.6.9)

and we can neglect the higher orders O(dτ) since εkO(dτ) = O(dτ3/2), which (unlike
εkO(dτ1/2)) will still give zero after integration in τ . From the zeroth and first order con-
tribution, we see that the only even power of the components of ε in the above integration
gives

⟨f(xτ ,xτ ′ , τ, τ
′) [σ(xτ , τ)dWτ ]k⟩
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3 Statistics of time-integrated densities and currents

= 1τ<τ ′

∫
dx

∫
dyf(x,y, τ, τ ′)P (x, τ)

∫
dεP(ε)εkε · ∇xP (y, τ

′|x, τ), (3.6.10)

which, using ∫ dεP(ε)εkεj = 2Dkj(x, τ)dτ , yields the result for τ < τ ′

⟨f(xτ ,xτ ′ , τ, τ
′) [σ(xτ , τ)dWτ ]k⟩

= 1τ<τ ′dτ

∫
dx

∫
dyP (x, τ)f(x,y, τ, τ ′)

[
2D(x, τ)∇xP (y, τ

′|x, τ)
]
k
. (3.6.11)

For scalar products with vector valued functions f the result (3.6.11) can be summed over
components fk to obtain

⟨f(xτ ,xτ ′ , τ, τ
′) · σ(xτ , τ)dWτ ⟩

= 1τ<τ ′dτ

∫
dx

∫
dyP (x, τ)f(x,y, τ, τ ′) · 2D(x, τ)∇xP (y, τ

′|x, τ). (3.6.12)

Eq. (3.6.12) is the central result of this work that allows us to directly deduce expressions
for fluctuations and correlations of densities and currents. Upon integrating by parts and
using symmetry DT (x, τ) = D(x, τ) Eq. (3.6.12) could also be rewritten as

⟨f(xτ ,xτ ′ , τ, τ
′) · σ(xτ , τ)dWτ ⟩

= −1τ<τ ′dτ

∫
dx

∫
dyP (y, τ ′|x, τ)∇x · [P (x, τ)2D(x, τ)f(x,y, τ, τ ′)]. (3.6.13)

Fluctuations and correlations of densities and currents

Following the developed approach and generalizing the results obtained in [84] we now
derive expressions for fluctuations and correlations of densities and currents for arbitrary
initial conditions.

For two time-averaged densities ρUt , ρVt , the covariance (variance for U = V ) is given by

⟨ρUt ρVt ⟩ − ⟨ρUt ⟩⟨ρVt ⟩

= t−2

∫ t

0
dτ

∫ t

0
dτ ′
[
⟨U(xτ , τ)V (xτ ′ , τ

′)− ⟨U(xτ , τ)⟩⟨V (xτ ′ , τ
′)⟩⟩
] (3.6.14)

= t−2

∫ t

0
dτ

∫ t

0
dτ ′
∫

dx

∫
dyU(x, τ)V (y, τ ′)

[
P (x, τ ;y, τ ′)− P (x, τ)P (y, τ ′)

]
.

Note that this result can be interpreted as correlations caused by differences of P (x, τ ;y, τ ′)
and P (x, τ)P (y, τ ′), averaged over time and over functions U, V . More precisely, the two-
point function P (x, τ ;y, τ ′) can be understood to be characterized by all paths with xτ = x
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and xτ ′ = y. For further interpretation, in particular for the case of steady-state dynamics,
see [83,84].

For the correlation of JU
t and ρVt we first consider the expectation of the product and carry

out the same steps as in Eq. (3.6.7),

t2⟨JU
t ρ

V
t ⟩ =

∫ t

0
dτ ′
∫ τ=t

τ=0
⟨U(xτ , τ) ◦ dxτV (xτ ′ , τ

′)⟩

=

∫ t

0
dτ

∫ t

0
dτ ′
∫

dx

∫
dyU(x, τ)V (y, τ ′)̂j(x, τ)P (y, τ ′;x, τ)

+

∫ t

0
dτ ′
∫ τ=t

τ=0
⟨U(xτ , τ)σ(xτ , τ)dWτV (xτ ′ , τ

′)⟩. (3.6.15)

Comparing with the calculation in Eq. (3.6.7), the noise term no longer vanishes since
terms with τ < τ ′ give non-trivial correlations according to Eq. (3.6.11), which in turn
gives ∫ t

0
dτ ′
∫ τ=t

τ=0
⟨U(xτ , τ)σ(xτ , τ)dWτV (xτ ′ , τ

′)⟩ =
∫ t

0
dτ ′
∫ t

0
dτ1τ<τ ′×∫

dx

∫
dyU(x, τ)V (y, τ ′)

[
2P (x, τ)D(x, τ)∇xP (x, τ)

−1
]
P (y, τ ′;x, τ), (3.6.16)

where we rewrote P (y, τ ′|x, τ) = P (x, τ)−1P (y, τ ′;x, τ). Introducing the adapted current
operator

ĵ‡(x, τ) ≡ ĵ(x, τ) + 2P (x, τ)D(x, τ)∇xP (x, τ)
−1, (3.6.17)

we thus obtain from Eq. (3.6.15) an expression for the current-density correlation that
reads

⟨JU
t ρ

V
t ⟩ − ⟨JU

t ⟩⟨ρVt ⟩ = t−2

∫ t

0
dτ

∫ t

0
dτ ′
∫

dx

∫
dyU(x, τ)V (y, τ ′)×[

1τ>τ ′ ĵ(x, τ) + 1τ<τ ′ ĵ
‡(x, τ)

] [
P (y, τ ′;x, τ)− P (x, τ)P (y, τ ′)

]
. (3.6.18)

Note that to write the expression more compactly, we used that ĵ(x, τ)P (x, τ) =

ĵ‡(x, τ)P (x, τ) = j(x, τ). To write the result in a more symmetric way, and since the dif-
ference vanishes (as a set of measure 0 in two-dimensional integration), we wrote 1τ>τ ′

instead of 1τ≥τ ′ .

The expression (3.6.18) is a natural generalization of Eq. (3.6.14) with the current op-
erators ĵ, ĵ‡ appearing. Recall that ĵ is the current operator entering the Fokker-Planck
equation, see Eqs. (3.6.2)-(3.6.3). The adapted operator ĵ‡ defined in Eq. (3.6.17) ac-
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3 Statistics of time-integrated densities and currents

counts for the fact that trajectories contributing to P (y, τ ′;x, τ) that first visit x and later
y (i.e., τ < τ ′) have, compared to the Fokker-Planck evolution, altered statistics, since
displacements at x correlate with probabilities of reaching y later. For the particular case
of steady-state systems, the special case of the correlation result (3.6.18) and the adapted
current operator were discussed in detail, and explained using a generalized time-reversal
symmetry, in [83, 84]. Note that for the case of time-homogeneous dynamics (in partic-
ular steady-state dynamics defined in Eq. (3.6.4)), the Fokker-Planck current operator
Eq. (3.6.3) does not have an explicit time dependence such that ĵ(x, τ) in Eq. (3.6.18)
simplifies to ĵ(x). However, the adapted current operator ĵ‡(x, τ) defined in Eq. (3.6.17)
retains explicit time dependence even for time-homogeneous dynamics. Only in the case of
steady-state systems with steady-state initial conditions (where P (x, τ) = ps(x) for all τ) ĵ‡
has no explicit time dependence, and simplifies to the negative ĵ with inverted steady-state
current js → −js [83,84].

Covariances of components m,n of time-integrated currents JU
t,m and JV

t,n can be obtained
analogously by considering

t2⟨JU
t,mJ

V
t,n⟩ =

∫ τ ′=t

τ ′=0

∫ τ=t

τ=0
⟨U(xτ , τ) ◦ dxmτ V (xτ ′ , τ

′) ◦ dxnτ ′⟩, (3.6.19)

where both ◦dxt increments split into dt and dWt terms. The dτdτ ′ terms give rise to the
current operator ĵ as in Eqs. (3.6.7), (3.6.15), but now its components ĵm(x, τ) and ĵn(y, τ

′)

appear. The dWτdWτ ′ term yields (by Itô’s isometry, i.e., “delta-correlated white noise”)∫ τ ′=t

τ ′=0

∫ τ=t

τ=0
⟨U(xτ , τ) [σ(xτ , τ)dWτ ]m V (xτ ′ , τ

′)
[
σ(xτ ′ , τ

′)dWτ ′
]
n
⟩

=

∫ t

0
⟨U(xτ , τ)V (xτ , τ)2Dmn(xτ )⟩dτ

= 2

∫ t

0
dτ

∫
dxU(x, τ)V (x, τ)Dmn(x)P (x, τ). (3.6.20)

The mixed term dτ ′dWτ (and equivalently dτdWτ ′) in Eq. (3.6.19) according to calcula-
tions as in Eq. (3.6.7) and using Eq. (3.6.11) gives∫ t

0
dτ ′
∫ τ=t

τ=0
⟨U(xτ , τ) [σ(xτ , τ)dWτ ]m

[
V (xτ ′ , τ

′)F(xτ ′ , τ
′) + {∇DV }(xτ ′ , τ

′)
]
n
⟩

= 1τ<τ ′

∫ t

0
dτ

∫ t

0
dτ ′
∫

dx

∫
dyU(x, τ)V (y, τ ′)̂jn(y, τ

′)×[
2P (x, τ)∇xP (x, τ)

−1
]
m
P (y, τ ′;x, τ). (3.6.21)
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Collecting all terms and using the and notation ĵ‡m for the components of ĵ‡ in Eq. (3.6.17),
we obtain for Eq. (3.6.19)

t2⟨JU
t,mJ

V
t,n⟩ = 2

∫ t

0
dτ

∫
dxU(x, τ)V (x, τ)Dmn(x, τ)P (x, τ) +

∫ t

0
dτ

∫ t

0
dτ ′
∫
dx

∫
dy×

U(x, τ)V (y, τ ′)
[
1τ<τ ′ ĵ

‡
m(x, τ )̂jn(y, τ

′) + 1τ>τ ′ ĵm(x, τ )̂j‡n(y, τ
′)
]
P (y, τ ′;x, τ). (3.6.22)

From the derivation one sees that the first term is the τ = τ ′-contribution (see also [84]).
This is the natural generalization of the results in Eqs. (3.6.14) and (3.6.18), with the
interpretation of non-trivial displacements (and thus ĵ‡ instead of ĵ) for currents evaluated
at earlier times (see above and [83,84]). As before, for time-homogeneous dynamics ĵ(x, τ)
simplifies to ĵ(x) and in the special case of steady-state dynamics (see Eq. (3.6.4)) with
steady-state initial conditions, ĵ‡(x, τ) simplifies to ĵ‡(x). This special case was discussed
and explained using generalized time-reversal symmetry in [83,84].

3.6.5 Example

To present a concrete minimal example, we consider a two-dimensional harmonically con-
fined overdamped diffusion in a rotational flow (i.e., an irreversible Ornstein-Uhlenbeck
process)

dxt = −

[
1 −Ω

Ω 1

]
xdt+

√
2dWt. (3.6.23)

Assuming that the initial density P (x, τ = 0) is Gaussian, the solution P (x, τ) of the Fokker-
Planck equation corresponding to Eq. (3.6.23) is well known to be a Gaussian density for
all τ ≥ 0 (see, e.g., [6]). We choose U to be a two-dimensional Gaussian centered at z
with width h, i.e.,

Uz(x) =
1

2πh2
exp

[
−(x− z)2

2h2

]
. (3.6.24)

Due to the Gaussianity of P (x, τ) and Uz(x), all spatial integrals entering the results
Eqs. (3.6.14), (3.6.18) and (3.6.22) can be performed analytically, e.g., using the com-
puter algebra system SymPy [185] (as outlined in the Supplemental Material of [83]). The
two remaining time-integrals are computed numerically. For simplicity, we only consider
the (non-steady-state) initial condition in a point, i.e., P (x, τ = 0) = δ(x − x0). For this
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3 Statistics of time-integrated densities and currents

initial condition, via a left-right decomposition for the process Eq. (3.6.23) (see, e.g., [17])
or by solving the Lyapunov equation, we have the time-dependent density

P (x, τ) =
1

2π(1− e−2τ )
exp


−

(
x− e−τ

[
cos(Ωτ) sin(Ωτ)

− sin(Ωτ) cos(Ωτ)

]
x0

)2

2(1− e−2τ )

 , (3.6.25)

i.e., the mean value ⟨xτ ⟩ = e−τ

[
cos(Ωτ) sin(Ωτ)

− sin(Ωτ) cos(Ωτ)

]
x0 moves on a spiral shape towards

the center. The case Ω = 0 corresponds to the equilibrium process, i.e., harmonically
confined overdamped diffusion without rotational flow.

For this example, we compute the density-current correlation vector as in Eq. (3.6.18),

Cjρ(z, t;x0) ≡ ⟨JUz
t ρUz

t ⟩x0 − ⟨JUz
t ⟩x0⟨ρ

Uz
t ⟩x0 = t−2

∫ t

0
dτ

∫ t

0
dτ ′
∫

dx

∫
dy×

Uz(x)Uz(y)
[
1τ>τ ′ ĵ(x) + 1τ<τ ′ ĵ

‡(x, τ)
] [
P (y, τ ′;x, τ)− P (x, τ)P (y, τ ′)

]
. (3.6.26)

with Gaussian Uz as in Eq. (3.6.24). In Fig. 3.6.1 we show the time evolution and spatial
dependence of this correlation vector. For long times without driving Ω = 0, we see that
tCjρ(z, t;x0) → 0. This corresponds to the limit when the initial condition is forgotten,
i.e., for long times Cjρ(z, t;x0) approaches the result of Cjρ(z, t) for steady-state initial
conditions where in equilibrium (Ω = 0) we have P (y, τ ′;x, τ) = P (x, τ ′;y, τ) (time-
reversal symmetry) and ĵ‡(x) = −ĵ(x) [84], implying Cjρ(z, t) = 0 at all z. In the case
Ω ̸= 0, the correlation tCjρ(z, t;x0) becomes constant for long times, where Cjρ ∝ t−1

represents the large-deviation limit of the correlation result, which agrees with the large-
deviation limit for the process starting in steady-state initial conditions [84]. This has a
spatial dependence similar to the steady-state current js(z) but averaged over the Gaussian
Uz. By comparison with the color gradient we see in all panels in Fig. 3.6.1, as expected,
that large values of the correlation can only occur at points that are visited for a significant
amount of time, i.e., with not too small ⟨ρUz

t ⟩.

In addition to the qualitative behavior shown in Fig. 3.6.1, we present a quantitative eval-
uation of the correlation result multiplied by time, tCjρ(z, t;x0), for a single z in Fig. 3.6.2.
Simulations shown in Fig. 3.6.2 confirm the theoretical result in Eq. (3.6.18) (re-stated
in Eq. (3.6.26)). As mentioned above, this result approaches the large-deviation limit
for long times. Moreover, for long times the initial condition will become irrelevant, i.e.,
tCjρ(z, t;x0) approaches the result for tCjρ(z, t) for steady-state initial conditions [84].
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Figure 3.6.1: White arrows depict the correlation result multiplied by time, tCjρ(z, t;x0)
as in Eq. (3.6.18) with x0 = (1, 1)T for the process in Eq. (3.6.23) with Ω = 0 in (a-d),
Ω = 5 in (e-h), and Uz as in Eq. (3.6.24). The position z = (z1, z2)

T around which the
correlation is evaluated varies along the respective axes. The color gradient depicts the
mean time-averaged density ⟨ρUz

t ⟩, i.e., the time spent around z weighted by Uz. Time
increases from left (a,e) to right (d,h), t = 0.3, 0.7, 2, 5

First note that, due to the time-integration, deviations for short times are only slowly ’for-
gotten’ with order t−1 (instead of exponentially fast with some Poincaré timescale). Inter-
estingly, we see in Fig. 3.6.2a that for substantial coarse-graining (i.e., rather large h = 0.5

in Uz in Eq. (3.6.24)), the result for tCjρ(z, t;x0) starting in a point only approaches the
corresponding value for steady-state initial condition (green curve) in the large deviation
regime (black line), but not before. Going to smaller coarse graining h = 0.15 in Fig. 3.6.2b,
we see that the process starting in the center x0 = (0, 0)T (blue line) features the arguably
more intuitive behavior, by first approaching the steady-state (green line) and later the
large deviation result (black line). However, for a different initial condition (see orange
line) the steady state curve is again only approached in the large deviation limit. This
highlights the long-lasting and non-trivial effects of the time-integration and underscores
why interpreting time-average observables, in particular those involving currents, remains
challenging.

3.6.6 Conclusion

To summarize, we presented a new Lemma (3.6.12) that enabled us to derive results
Eqs. (3.6.14), (3.6.18) and (3.6.22) for correlations and fluctuations of the time-averaged
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3 Statistics of time-integrated densities and currents

Figure 3.6.2: Quantitative depiction of the time dependence of the x-component of
the current-density correlation tCjρ(z, t;x0)x with z = (0,−0.2)T for the process in
Eq. (3.6.23) with Ω = 3 and Uz as in Eq. (3.6.24) with (a) h = 0.5 and (b) h = 0.15
for different initial conditions (colors). The new analytical result (blue and orange lines;
Eq. (3.6.18)) is confirmed by simulations (crosses; for each t, (a) 105 and (b) 106 trajecto-
ries with 103 time-steps each were simulated according to the stochastic Euler algorithm).
For t→ ∞, irrespective of the initial condition, all result approach the same large-deviation
limit.

density and current Eq. (3.6.5) for general Langevin dynamics defined in Eq. (3.6.1)
with general initial conditions. This generalization of the recent results derived for non-
equilibrium steady states [83, 84] may improve the understanding of inference of den-
sities and currents with the estimators ρVt and JU

t (in particular in connection with the
notion of coarse graining [83, 84]) in cases where the dynamics does not evolve from the
steady-state, or is not time-homogeneous. Importantly, the strategy of inferring dissipation
from the current variance (see Eq. (3.6.22)) via the thermodynamic uncertainty relation
(TUR) [47, 48, 67, 132] remains valid. Generalized versions of the TUR, e.g., for general
initial conditions [126] or time-dependent dynamics [49], already exist. A recently im-
proved version of the TUR that includes current-density correlations (see Eq. (3.6.18))
is, however, so far only available for steady-state systems with steady-state initial condi-
tions [134]. Notably, as we will show in a forthcoming publication, Lemma (3.6.12) allows
the correlation-TUR to also be proved for transient dynamics.

Acknowledgments.— Financial support from Studienstiftung des Deutschen Volkes (to C.
D.) and the German Research Foundation (DFG) through the Emmy Noether Program GO
2762/1-2 (to A. G.) is gratefully acknowledged.
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3.7 Feynman-Kac theory of time-integrated function-
als: Itô versus functional calculus (J. Phys. A 2023)

This section is a slightly adapted version of the publication C. Dieball and A. Godec,
“Feynman-Kac theory of time-integrated functionals: Itô versus functional calculus”, J.
Phys. A: Math. Theor. 56, 155002 (2023).

My personal contribution as first author of the publication was in performing calculations,
analyzing the results, and co-writing the manuscript.
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Feynman-Kac theory of time-integrated functionals:
Itô versus functional calculus

Cai Dieball and Aljaž Godec

Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am
Faßberg 11, 37077 Göttingen, Germany

Abstract

The fluctuations of dynamical functionals such as the empirical density and
current as well as heat, work and generalized currents in stochastic thermody-
namics are usually studied within the Feynman-Kac tilting formalism, which in
the Physics literature is typically derived by some form of Kramers-Moyal ex-
pansion, or in the Mathematical literature via the Cameron-Martin-Girsanov
approach. Here we derive the Feynman-Kac theory for general additive dy-
namical functionals directly via Itô calculus and via functional calculus, where
the latter results in fact appears to be new. Using Dyson series, we then inde-
pendently recapitulate recent results on steady-state (co)variances of general
additive dynamical functionals derived recently in Dieball and Godec (2022
Phys. Rev. Lett. 129 140601) and Dieball and Godec (2022 Phys. Rev. Res. 4
033243) (see Secs. 3.4 and 3.5, respectively). We hope for our work to put
the different approaches to the statistics of dynamical functionals employed in
the field on a common footing, and to illustrate more easily accessible ways to
the tilting formalism.

3.7.1 Introduction

Dynamical functionals and diverse path-based observables [60,157,215–220], such as local
and occupation times (also known as the “empirical density”) [33,36,40,42,135–139] as
well as diverse time-integrated and time-averaged currents [34, 43–45, 83, 84, 107, 110,
133,134,141–144] are central to “time-average statistical mechanics” [37,41,130], large
deviation theory (see, e.g., [43,107,110,143,204]), macroscopic fluctuation theory [109,
159,173], and path-wise, stochastic thermodynamics [28,49,54,104,133,134,152,162].

Several techniques are available for the study of dynamical functionals, presumably best
known is the Lie-Trotter-Kato formalism [135,221] that was employed by Kac in his sem-
inal work [42]. The techniques typically employed in physics rely on an analogy to quan-
tum mechanical problems (see, e.g., [33]) or assume some form of the Kramers-Moyal
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expansion [137,138,222,223] (see also interesting generalizations to anomalous dynam-
ics [40,139]).

Deriving Feynman-Kac theory [42] of such additive functionals amounts to obtaining a
“tilted” generator which generates the time-evolution of the observables under consider-
ation. The tilted evolution operator can be obtained using the Cameron-Martin-Girsanov
theorem [224,225]— awell-known technical theorem often employed in theMathematical
Physics literature [44,107,142].

In this paper we develop the Itô [14,41] and functional calculus [226,227] approaches to
Feynman-Kac theory, whereby we focus on the methodology and accessibility for readers
that are unfamiliar with the Cameron-Martin-Girsanov approach to “tilting”. We thereby
hope to provide two accessible alternative (but equivalent) ways to obtaining the tilted
generator. While the Itô approach already exists (see, e.g., [41] for the empirical density),
our functional calculus approach is a generalization of the pedagogical work of Fox [226,
227] and is aimed towards readers who prefer to avoid Itô calculus. Since both methods
are equivalent, they yield the same tilted generator. This generator is subsequently used to
rederive recent results on the statistics of time-integrated densities and currents obtained
in References [83, 84] using a different, more direct, stochastic calculus approach that
avoids tilting. In particular, these results illustrate the use of the tilted generator to derive
the statistics of time-integrated observables for finite times, i.e., extending beyond large
deviation theory.

The outline of the paper is as follows. In Sec. 3.7.2 we provide the mathematical setup
of the problem. In Sec. 3.7.2 we derive the Feynman-Kac equation for a general dynam-
ical functional of diffusion processes using Itô calculus. By generalizing the approach by
Fox [226, 227] we derive in Sec. 3.7.2 the Feynman-Kac equation using functional calcu-
lus. In Sec. 3.7.3 we apply the formalism to compute steady-state (co)variances of general
dynamical functionals using a Dyson-series approach. We conclude with a brief perspective.

3.7.2 Tilted Generator

In this section, we first introduce the considered stochastic dynamics and define what we
call “dynamical functionals”. Subsequently, we derive the tilted generator (i.e., the operator
generating the time-evolution of time-integrated functionals) based on Itô calculus, and
finally equivalently also via functional calculus.
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3 Statistics of time-integrated densities and currents

Set-Up

We consider overdamped stochastic motion in d-dimensional space described by the
stochastic differential equation

dxt = F(xt)dt+ σdWt, (3.7.1)

where dWt is denotes increment of the Wiener process [14]. The corresponding diffusion
constant is D = σσT /2. For simplicity, we stick to additive noise whereas all present re-
sults generalize to multiplicative noise D(x) as described in [84]. In the physics literature,
Eq. (3.7.1) is typically written in the form of a Langevin equation

ẋt = F(xt) + f(t), (3.7.2)

with white noise amplitude ⟨f(t)f(t′)T ⟩ = 2Dδ(t− t′). Comparing the two equations, f(t)
corresponds to the derivative of Wt, which however (with probability one) is not differen-
tiable; more precisely, upon taking dt → 0 one has ||dWt/dt|| = ∞ with probability one,
which is why the mathematics literature prefers Eq. (3.7.1).

If one describes the system on the level of probability densities instead of trajectories, the
above equations translate to the Fokker-Planck equation ∂tG(x, t|x0) = L̂(x)G(x, t|x0)with
conditional densityG(x, t|x0) to be at x at time t after starting in x0 and the Fokker-Planck
operator [6,17]

L̂(x) = −∇x · F(x) +∇x ·D∇x = −∇x · ĵx, (3.7.3)

where we have defined the current operator ĵx ≡ F(x)−D∇x. Note that all differential op-
erators act on all functions to the right, e.g.,∇x ·F(x)g(x) = g(x)∇x ·F(x)+F(x) ·∇xg(x).
Although the approach presented here is more general, we restrict our attention to (possi-
bly non-equilibrium) steady states where the drift F(x) is sufficiently smooth and confining
to assure the existence of a steady-state (invariant) density ps(x) = limt→∞G(x, t|x0) and
steady-state current js(x) = ĵxps(x). The special case js(x) = 0 corresponds to equilibrium
steady states. For systems that eventually evolve into a steady state we can rewrite the cur-
rent operator as [84] (again the differential operator in ∇xp

−1
s (x) also acts on functions to

the right if ĵx is applied to a function)

ĵx = js(x)p
−1
s (x)−Dps(x)∇xp

−1
s (x). (3.7.4)

We will later also restrict the treatment to systems evolving from steady-state initial con-
ditions, i.e., the initial condition xt=0 is drawn according to the density ps.
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We define the two fundamental additive dynamical functionals— time-integrated current
and density— as

Jt =

∫ τ=t

τ=0
U(xτ ) ◦ dxτ

ρt =

∫ t

0
V (xτ )dτ, (3.7.5)

with differentiable and square-integrable (real-valued) functions U, V : Rd → R and ◦ de-
noting the Stratonovich integral [7,14,228]. These objects depend on the whole trajectory
[xτ ]0≤τ≤t and are thus random functionals with non-trivial statistics. In the following we
will derive an equation for the characteristic function of the joint distribution of xt, ρt,Jt

via a Feynman-Kac approach, which will then yield the moments (including variances and
correlations) via a Dyson series. The formalism was already applied to the time-averaged
density ρt/t (under the term of local/occupation time fraction) [41, 42, 174]. To do so,
we need to derive a tilted Fokker-Planck equation, which we first do via Itô calculus and
then, equivalently, via a functional calculus. Note that the tilted generator can also be
found in the literature on large deviation theory [44, 107] (in this case obtained via the
Feynman-Kac-Girsanov approach).

Tilting via Itô’s Lemma

We first derive a tilted the Fokker-Planck equation using Itô calculus. From the Itô-
Stratonovich correction term dU(xτ )dxτ/2 and dxτdx

T
τ = 2Ddτ (where D = σσT /2)

we obtain from Eqs. (3.7.1) and (3.7.5) the increments (curly brackets {∇ . . . } throughout
denote that derivatives only act inside brackets)

dJτ = U(xτ ) ◦ dxτ = U(xτ )dxτ +D {∇xU}(xτ )dτ

dρτ = V (xτ )dτ. (3.7.6)

We use Itô’s Lemma [14] in d dimensions for a twice differentiable test function f =

f(xt, ρt,Jt) and Eqs. (3.7.1) and (3.7.6), to obtain

df =
d∑

i=1

∂f

∂xi
dxit +

∂f

∂ρ
dρt +

d∑
i=1

∂f

∂Ji
dJ i

t

+
1

2

d∑
i,j=1

(
∂2f

∂xi∂xj
dxitdx

j
t +

∂2f

∂Ji∂Jj
dJ i

tdJ
j
t + 2

∂2f

∂xi∂Jj
dxitdJ

j
t

)
= [(∇xf) + (∇Jf)U(xt)][F(xt)dt+ σdWt] + (∇Jf)D{∇xU}(xt)dt+ V (xt)∂ρfdt
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+
(
∇T

xD∇x + U(xt)
2∇T

JD∇J + 2U(xt)∇T
xD∇J

)
fdt. (3.7.7)

For the time derivative of f this gives

d

dt
f(xt, ρt,Jt) =

[(
F+ σ

dWt

dt

)
(∇x + U∇J) + {∇xU}D∇J

+ V ∂ρ +∇T
xD∇x + U2∇T

JD∇J + 2U∇T
xD∇J

]
f(xt, ρt,Jt). (3.7.8)

Following this formalism, we move towards a tilted Fokker-Planck equation [41,42]. Using
the conditional probability density Qt(x, ρ,J|x0), we may write (omitting x dependence
in F, U, V for brevity) the evolution equation for ⟨f(xt, ρt,Jt)⟩x0 , i.e., the expected value
of f(xt, ρt,Jt) over the ensemble of paths propagating between x0 and x in time t. Using
Eq. (3.7.8) and integration by parts, we obtain (note that non-negative functions V ≥ 0

imply ρ ≥ 0, such that one would restrict the ρ-integration to ∫∞
0 dρ as in Ref. [41])

d

dt
⟨f(xt, ρt,Jt)⟩x0 =

∫
ddx

∫ ∞

−∞
dρ

∫
ddJf(x, ρ,J)∂tQt(x, ρ,J|x0)

=

∫
ddx

∫ ∞

−∞
dρ

∫
ddJ Qt(x, ρ,J|x0)

[
F(∇x + U∇J) + {∇xU}D∇J

+ V ∂ρ +∇T
xD∇x + U2∇T

JD∇J + 2U∇T
xD∇J

]
f(x, ρ,J)

=

∫
ddx

∫ ∞

−∞
dρ

∫
ddJ f(x, ρ,J)

[
−∇xF− UF∇J − {∇xU}D∇J − V ∂ρ

+∇T
xD∇x + U2∇T

JD∇J + 2U∇T
xD∇J

]
Qt(x, ρ,J|x0). (3.7.9)

Since the test function f is an arbitrary twice differentiable function, the resulting tilted
Fokker-Planck equation reads

∂tQt(x, ρ,J|x0) = L̂x,ρ,JQt(x, ρ,J|x0), (3.7.10)

with the tilted Fokker-Planck operator 10

L̂x,ρ,J =−∇x · F(x) +∇T
xD∇x − V (x)∂ρ − U(x)F(x) · ∇J

− {∇xU(x)}TD∇J + U(x)2∇T
JD∇J + 2∇T

JD∇xU(x)

=− [∇x + U(x)∇J]F(x)− V (x)∂ρ + [∇x + U(x)∇J]
T D [∇x + U(x)∇J] .

(3.7.11)

10For non-negative functions V ≥ 0 an additional boundary term appears at ρ = 0 upon par-
tial integration in Eq. (3.7.9), leading to an extra term −V (x)δ(ρ) in Eq. (3.7.10) that ensures
conservation of probability (see Ref. [41]).
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We see that the ρ dependence enters in standard Feynman-Kac form [41,42], whereas the
J dependence enters less trivially and shifts the gradient operator ∇x → ∇x + U(x)∇J.

Tilting via functional calculus

We now rederive the tilted Fokker-Planck operator in Eq. (3.7.11) using a functional cal-
culus approach [226, 227] instead of the Itô calculus in the previous section. This shows
that both alternative approaches are equivalent, as expected. We closely follow the deriva-
tion of the Fokker-Planck equation in reference [226] but for d-dimensional space, and we
generalize the approach to include the functionals defined in Eq. (3.7.5). The following
approach is equivalent to a Stratonovich interpretation of stochastic calculus, which is man-
ifested in the convention ∫ t

0 δ(t
′)dt′ =

∫ t
0 δ(t − t′)dt′ = 1/2 [226]. The white noise term

f(τ) with 〈f(τ)f(τ ′)T 〉
s
= 2Dδ(τ − τ ′) in the Langevin equation (3.7.2) can be considered

to be described by a path-probability measure [226]

P [f ] = N exp

[
−1

2

∫ t

0
f(τ)TD−1f(τ)dτ

]
, (3.7.12)

with normalization constantN , which may formally be problematic but always cancels out.

We now derive a tilted Fokker-Planck equation for the joint conditional density Q of xt and
the functionals Jt, ρt, as defined in Eq. (3.7.5), given a deterministic initial condition x0 at
time t = 0,

Qt(x, ρ,J|x0) ≡
∫

DfP [f ]δ(x− xt)δ(ρ− ρt)δ(J− Jt). (3.7.13)

Note for the time derivatives that J̇t = U(xt)ẋt and ρ̇t = V (xt) to obtain (as a generaliza-
tion of the calculation in reference [226] to dynamical functionals)

∂tQ(x, ρ,J, t|x0) = ∂t

∫
DfP [f ]δ(x− xt)δ(ρ− ρt)δ(J− Jt)

=

∫
DfP [f ]

[
−∇x · ẋt − ∂ρρ̇t −∇J · J̇t

]
δ(x− xt)δ(ρ− ρt)δ(J− Jt)

=

∫
DfP [f ] [−∇x · [F(xt) + f(t)]− V (xt)∂ρ − U(xt) [F(xt) + f(t)]∇J]×

δ(x− xt)δ(ρ− ρt)δ(J− Jt)

= [−∇xF(x)− V (x)∂ρ − U(x)F(x)∇J]Qt(x, ρ,J|x0)

− [∇x + U(x)∇J] ·
∫

DfP [f ]f(t)δ(x− xt)δ(ρ− ρt)δ(J− Jt). (3.7.14)
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The functional derivative of Eq. (3.7.12) reads [226]

δP [f ]

δf(t)
= −1

2
D−1f(t)P [f ], (3.7.15)

which we use to obtain, via an integration by parts in δf(t),

−
∫

DfP [f ]f(t)δ(x− xt)δ(ρ− ρt)δ(J− Jt)

= 2D

∫
Df

δP [f ]

δf(t)
δ(x− xt)δ(ρ− ρt)δ(J− Jt)

= −2D

∫
DfP [f ]

δ

δf(t)
δ(x− xt)δ(ρ− ρt)δ(J− Jt). (3.7.16)

As before, differentials are understood to act on all functions to the right, i.e., δ
δf(t) here

acts on the full product of delta functions. We obtain

δ

δf(t)
δ(x− xt)δ(ρ− ρt)δ(J− Jt)

=

[
−∇x

δxt

δf(t)
− ∂ρ

δρt
δf(t)

−∇J
δxt

δf(t)

]
δ(x− xt)δ(ρ− ρt)δ(J− Jt), (3.7.17)

and we use that δρt/δf(t) = 0, and δxt/δf(t) = 1/2 [226] which implies δJt/δf(t) =

U(xt)1/2, to get

δ

δf(t)
δ(x− xt)δ(ρ− ρt)δ(J− Jt)=

1

2
[−∇x − U(xt)∇J] δ(x− xt)δ(ρ− ρt)δ(J− Jt).

(3.7.18)

Plugging Eq. (3.7.18) first into Eq. (3.7.16) and then into Eq. (3.7.14) yields the tilted
Fokker-Planck equation for the joint conditional density

∂tQt(x, ρ,J|x0) =
[
−∇xF(x)− V (x)∂ρ − U(x)F(x)∇J

+ [∇x + U(x)∇J]
T D [∇x + U(x)∇J]

]
Qt(x, ρ,J|x0). (3.7.19)

Note that Eq. (3.7.19) fully agrees with Eq. (3.7.11) derived via Itô calculus thus establish-
ing the announced equivalence of the two approaches.
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3.7.3 Steady-state covariance via Dyson expansion of the tilted
propagator

In this section, we employ the tilted Fokker-Planck equation (3.7.19) to derive results for
the mean value and (co)variances of time-integrated densities and currents. These fol-
low as derivatives of the characteristic function evaluated at zero, and it thus suffices to
treat the tilt as a perturbation of the “bare” generator (see [41]). The derivation is based
on a Dyson expansion of the exponential of a Fourier-transformed tilted generator (i.e.,
tilted Fokker-Planck operator). Therefore, consider a one-dimensional Fourier variable ν
and a d-dimensional Fourier variable ω = (ω1, . . . , ωd) and define the Fourier transform of
Qt(x, ρ,J|x0) as

Q̃t(x, ν,ω|x0) ≡
∫ ∞

−∞
dρ

∫
ddJ Qt(x, ρ,J|x0) exp (−iνρ− iω · J) . (3.7.20)

In the case V ≥ 0 where ρ ≥ 0 one would instead take the Laplace transform in the ρ-
coordinate, see Ref. [41]. Recall the (untilted) Fokker-Planck operator L̂(x) = −∇x · ĵx
with the current operator ĵx = F(x)−D∇x from Eq. (3.7.3). The Fourier transform of the
tilted Fokker-Planck operator in Eqs. (3.7.11) and (3.7.19) reads

L̂(x, ν,ω) = L̂(x)− iνV (x)− iωT · L̂U (x)− U(x)2ωTDω,

L̂U (x) ≡ U(x)̂jx −D∇xU(x). (3.7.21)

As always, the differential operators act on all functions to the right unless written inside
curly brackets, i.e., ∇xU(x) = {∇xU(x)} + U(x)∇x. Note that whereas we obtained
the tilted generator directly and only subsequently Fourier transformed it, there are also
approaches that directly target the Fourier image of the tilted generator (see, e.g., [229]).
Compared to the tilt of the density (i.e., the ν-term; see also [41]), the tilt corresponding
to the current observable (ω-terms) involves more terms and even a term that is second
order in ω. The second order term occurs since (dWτ )

2 ∼ dτ and therefore (in contrast to
dτdWτ and dτ2) contributes in the tilting of the generator.

We now restrict our attention to dynamics starting in the steady state ps, and denote the
average over an ensemble over paths propagating from the steady state by ⟨·⟩s. Extensions
of the formalism to any initial distribution are straightforward and introduce additional
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transient terms. For the derivation of the moments of ρt and Jt, we introduce and expand
the characteristic function (also known as moment-generating function)

P̃ρJ
t (ν,ω|ps) ≡

〈
e−iνρt−iω·Jt

〉
s
= 1− iν ⟨ρt⟩s − iω · ⟨Jt⟩s−νω · ⟨ρtJt⟩s +O(ω2, ν2).

(3.7.22)

This expansion in ν,ω will now be compared to the Dyson expansion of the exponential
of Eq. (3.7.21) which yields expressions for ⟨ρt⟩s , ⟨Jt⟩s , ⟨ρtJt⟩s by comparing individual
orders.

The Dyson expansion allows to expand for small |ν|, |ω| (see also [41])

eL̂(x1,v,ω)t =1−i

∫ t

0
dt1e

L̂(x1)(t−t1)
[
νV (x1) + ωT · L̂U (x1)

]
eL̂(x1)t1

−
∫ t

0
dt2

∫ t2

0
dt1e

L̂(x1)(t−t2)
[
νV (x1) + ωT · L̂U (x1)

]
eL̂(x1)(t2−t1)[

νV (x1) + ωT · L̂U (x1)
]
eL̂(x1)t1 +O(ω2, ν2). (3.7.23)

Using that the first propagation only differs from 1 by total derivatives (recall L̂(x) =

−∇x · ĵx), and using for the last propagation term eL̂(x1)t1ps(x1) = ps(x1), we obtain

P̃ρJ
t (v,ω|ps) =

∫
ddx1 e

L̂(x1,v,ω)tps(x1)

=1−i

∫
ddx1

∫ t

0
dt1

[
νV (x1) + ωT · L̂U (x1)

]
ps(x1)

−
d∑

l,m=1

∫
ddx1

∫ t

0
dt2

∫ t2

0
dt1

[
νV (x1) + ωT · L̂U (x1)

]
eL̂(x1)(t2−t1)

[
νV (x1) + ωT · L̂U (x1)

]
ps(x1) +O(ω2, v2). (3.7.24)

We substitute the one-step propagation by the conditional density G(x2, t|x1) =

eL̂(x1)tδ(x2 − x1) [7,16],∫
ddx1f(x1)e

L̂(x1)(t2−t1)g(x1) =

∫
ddx1

∫
ddx2f(x2)G(x2, t2 − t1|x1)g(x1), (3.7.25)

which yields

P̃ρJ
t (v,ω|ps) =1−i

∫
ddx1

∫ t

0
dt1

[
νV (x1) + ωT · L̂U (x1)

]
ps(x1)

−
∫

ddx1

∫
ddx2

∫ t

0
dt2

∫ t2

0
dt1

[
νV (x2) + ωT · L̂U (x2)

]
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G(x2, t2 − t1|x1)
[
νV (x1) + ωT · L̂U (x1)

]
ps(x1) +O(ω2, ν2). (3.7.26)

This concludes the expansion of the exponential of the Fourier transformed tilted generator.
Now, by comparing the definition and expansion of the characteristic function Eq. (3.7.22)
with the result Eq. (3.7.26) from the Dyson expansion, we obtain the moments and corre-
lations of the functionals Jt =

∫ τ=t
τ=0 U(xτ ) ◦ dxτ and ρt =

∫ t
0 V (xτ )dτ .

Note that the first moments (i.e., the mean values for steady-state initial conditions) can
also be obtained directly [34,84], but we obtain them here by comparing the terms of order
ν and ω in Eqs. (3.7.22) and (3.7.26),

⟨ρt⟩s =
∫ t

0
dt1

∫
ddx1V (x1)ps(x1) = t

∫
ddx1V (x1)ps(x1)

⟨Jt⟩s = t

∫
ddx1[U(x1)̂jx1 −D∇x1U(x1)]ps(x1) = t

∫
ddx1U(x1)js(x1), (3.7.27)

where ∇x1U(x1)ps(x1) vanishes after integration by parts and js(x1) ≡ ĵx1ps(x1) is the
steady-state current.

By comparing the terms of order νω in Eqs. (3.7.22) and (3.7.26) we have for the steady-
state expectation ⟨Jtρt⟩s that

⟨Jtρt⟩s =
∫ t

0
dt2

∫ t2

0
dt1

∫
ddx1

∫
ddx2[

L̂U (x2)G(x2, t2 − t1|x1)V (x1) + V (x2)G(x2, t2 − t1|x1)LU (x1)
]
ps(x1)

=

∫ t

0
dt2

∫ t2

0
dt1

∫
ddx1

∫
ddx2

[
U(x2)̂jx2G(x2, t2 − t1|x1)V (x1)

+ V (x2)G(x2, t2 − t1|x1)[U(x1)̂jx1 −D∇x1U(x1)]
]
ps(x1). (3.7.28)

We note that for any function f the following identity holds∫ t

0
dt2

∫ t2

0
dt1f(t2 − t1) =

∫ t

0
dt′(t− t′)f(t′), (3.7.29)

and further introduce the shorthand notation

Ît
xy[· · · ] =

∫ t

0
dt′(t− t′)

∫
ddx1

∫
ddx2U(x1)V (x2)[· · · ]. (3.7.30)

Moreover, we define the joint density Py(x, t) ≡ G(x, t|y)ps(y) and following Ref. [84] in-
troduce the dual-reversed current operator ĵ‡x ≡ js(x)/ps(x)+Dps(x)∇xp

−1
s (x) = −ĵx(js →

−js) . With these notations, using integration by parts, and by relabeling x1 ↔ x2 in one
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term, we rewrite Eq. (3.7.28) to obtain for the correlation, reproducing the main result of
Refs. [83,84],

⟨Jtρt⟩s − ⟨Jt⟩ ⟨ρt⟩s =Ît
xy

[̂
jx1Px2(x1, t

′) + js(x1)p
−1
s (x1)Px1(x2, t

′)

+Dps(x1)∇x1ps(x1)
−1Px1(x2, t

′)
]
− ⟨Jt⟩ ⟨ρt⟩s

=Ît
xy

[̂
jx1Px2(x1, t

′) + ĵ‡x1
Px1(x2, t

′)− 2js(x1)ps(x2)
]
, (3.7.31)

We will discuss this result below, but first derive analogous results for (co)variances of
densities and currents, respectively.

Instead of obtaining 〈ρ2t 〉s from the ν2 order in Eq. (3.7.26) we here consider a gen-
eralization to two densities, ρt =

∫ t
0 V (xτ )dτ and ρ′t =

∫ t
0 U(xτ )dτ . The Fourier-

transformed tilted generator in Eq. (3.7.21) with Fourier variables ν, ν ′ corresponding to
ρt, ρ

′
t is obtained equivalently and gives L̂(x, v, v′) = L̂(x) − iνV (x) − iν ′U(x). The re-

lated term in the Dyson series (by an adaption of Eq. (3.7.26) including ν ′U) becomes
[νV (x2) + ν ′U(x2)]G(x2, t2 − t1|x1)[νV (x1) + ν ′U(x1)]ps(x1) (see also [41]). By compar-
ison with the characteristic function in Eq. (3.7.22) including ρ′t, one obtains the known
result [41,42],

〈
ρtρ

′
t

〉
s
− ⟨ρt⟩s

〈
ρ′t
〉
s
= Ît

xy[Px2(x1, t
′) + Px1(x2, t

′)− 2ps(x1)ps(x2)]. (3.7.32)

For U = V this becomes the variance of ρt which can also be obtained from the order ν2
in Eqs. (3.7.22) and (3.7.26).

To obtain the current covariance, we accordingly require a tilted generator with two Fourier
variables ω,ω′ corresponding to Jt =

∫ τ=t
τ=0 U(xτ ) ◦ dxτ and J′

t =
∫ τ=t
τ=0 V (xτ ) ◦ dxτ , which

can, by the same formalism, be derived as

L̂(x,ω,ω′) =L̂(x)− iωT · L̂U (x)− iω′T · L̂V (x)− U(x)2ωTDω − V (x)2ω′TDω′

− 2U(x)V (x)ωTDω′

L̂V (x) ≡V (x)̂jx −D∇xV (x). (3.7.33)

The Dyson series (by adapting Eq. (3.7.26)) based on L̂(x,ω,ω′) for two currents J,J′

reads

P̃JJ′
t (ω,ω′|ps) =

1−
∫

ddx1

∫ t

0
dt1

[
iωT · L̂U (x1) + iω′T · L̂V (x1) + 2U(x1)V (x1)ω

TDω′
]
ps(x1)
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+

∫
ddx1

∫
ddx2

∫ t

0
dt2

∫ t2

0
dt1

[
iωT · L̂U (x2) + iω′T · L̂V (x2)

]
G(x2, t2 − t1|x1)

[
iωT · L̂U (x1) + iω′T · L̂V (x1)

]
ps(x1) +O(ω2, ω′2). (3.7.34)

The expectation value of the product of current components 〈Jt,nJ ′
t,m

〉
s
is given by the

terms that are linear in ωnω
′
m, i.e., (recall Dnm = Dmn)

〈
Jt,nJ

′
t,m

〉
s
= 2tDnm

∫
ddx1 U(x1)V (x1)ps(x1) +

∫ t

0
dt′(t− t′)

∫
ddx1

∫
ddx2[

L̂U
n (x2)G(x2, t

′|x1) · L̂V
m(x1)ps(x1) + L̂V

m(x2)G(x2, t
′|x1) · L̂U

n (x1)ps(x1)
]
. (3.7.35)

We denote by =̂ equality up to gradient terms that vanish upon integration to write

L̂U
n (x2)G(x2, t

′|x1) · L̂V
m(x1)ps(x1)=̂U(x2)̂jx2,nG(x2, t

′|x1)×[
V (x1)js(x1)p

−1
s (x1)− ps(x1)D∇x1ps(x1)

−1 −D∇x1V (x1)
]
m
ps(x1)

=̂U(x2)V (x1)̂jx2,n[js(x1)p
−1
s (x1) + ps(x1)D∇x1p

−1
s (x1)]mG(x2, t

′|x1)ps(x1)

= U(x2)V (x1)̂jx2,nĵ
‡
x1,mPx1(x2, t). (3.7.36)

Inserting this into Eq. (3.7.35), and relabeling in one term x1 ↔ x2 we obtain for the
nm-element of the current covariance matrix
〈
Jt,nJ

′
t,m

〉
s
− ⟨Jt,n⟩s

〈
J ′
t,m

〉
s
=2tDnm

∫
ddx1 U(x1)V (x1)ps(x1)

+ Ît
xy

[̂
jx1,mĵ‡x2,nPx2(x1, t

′) + ĵx2,n · ĵ‡x1,mPx1(x2, t
′)
]
.

(3.7.37)

This reproduces and slightly generalizes the main result of Refs. [83, 84] where the di-
agonal elements (m = n) of the covariance matrix were derived. This result for the cur-
rent covariance matrix and Eq. (3.7.31) for the current-density correlation are the natu-
ral generalizations of the density-density covariance Eq. (3.7.32), as described in detail
in references [83, 84], with the additional 2tDnm-term in Eq. (3.7.37) arising from the
(dWτ )

2 contribution in Jt,nJ ′
t,m manifested in the term −2U(x)V (x)ωTDω′ in the tilted

generator in Eq. (3.7.33). While the density-density covariance Eq. (3.7.32) only depends
on integration over all paths from x1 to x2 (and vice versa) in time t′ via Px1(x2, t

′), the
current-density correlation Eq. (3.7.31) instead involves ĵx1Px2(x1, t

′) and ĵ‡x1Px1(x2, t
′)

which describe currents at the final- and initial-points, respectively [84]. This notion is
further extended in the result Eq. (3.7.37) where ĵx2,nĵ

‡
x1,mPx1(x2, t

′) corresponds to prod-
ucts of components of displacements along individual trajectories from x1 to x2 [83].
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3.7.4 Conclusion

We employed a Feynman-Kac approach to derive moments and correlations of dynamical
functionals of diffusive paths — the time-integrated densities and currents. We presented
two different but equivalent approaches to tilting the generator — Itô and functional calcu-
lus. These two approaches illustrate how one can freely choose between Itô and functional
calculus to derive results on dynamical functionals. In particular, both approaches are
accessible without further technical mathematical concepts such as the Cameron-Martin-
Girsanov theorem that is often used in the study of tilted generators. Our methodological
advance thus provides a flexible repertoire of easily accessible methods that will hopefully
prove useful in future studies of related problems.

The derivation of the moments and correlations based on the tilted generator reproduces
results with important implications for stochastic thermodynamics and large deviation the-
ory, in particular for the physical and mathematical role of coarse graining [83, 84], and
thereby displays how the tilted generator yields results on the statistics of dynamical func-
tionals, even beyond the large deviation limit.
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Chapter 4

Direct route to thermodynamic
uncertainty relations and their
saturation

We now come to an explicit application of stochastic time-integrated currents, namely ther-
modynamic uncertainty relations (TURs). We already encountered the TUR for dynamics
in a non-equilibrium steady state (NESS) in the publications shown in Secs. 3.4 and 3.5.
Here, we give a more comprehensive introduction to TURs (Sec. 4.1), presenting the tech-
nical background (Sec. 4.2) and state of the art (Sec. 4.3). We then summarize (Sec. 4.4)
and reproduce (Sec. 4.5) original results from a publication, showing how the methods
developed in the previous chapter allow to gain a deep insight into the TUR, far beyond
the notion of coarse graining.

4.1 Introduction to TURs

The term TURs refers to a class of inequalities for overdamped Langevin dynamics and
Markov jump dynamics on a discrete state space. The original TUR was discovered and
formulated for non-equilibirum steady-state dynamics in 2015 in Ref. [47], and subse-
quently proven in Ref. [48]. For steady-state dynamics in continuous space, the TUR states
that for an overdamped Langevin dynamics (xτ )0≤τ≤t governed by dxτ = a(xτ )dτ+σdWτ

and for any time-integrated (or time-averaged) current Jt =
∫ τ=t
τ=0 U(xτ ) · ◦dxτ where “· ◦”
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denotes the scalar product and Stratonovich integration, the expected heat Σt dissipated
into the medium in a time-interval [0, t]1 obeys the inequality

var(Jt)

⟨Jt⟩2
× Σt ≥ 2kBT . (4.1.1)

It can be seen as an improved version of the second law of thermodynamics, stating that
the total entropy production is non-decreasing Σt/T = ∆Stot ≥ 0, in the sense that for
any Jt the zero can be replaced by the superior bound ∆Stot ≥ 2kB⟨Jt⟩2/var(Jt). Beyond
this improvement of the second law, there are two very intriguing ways to read Eq. (4.1.1),
presented in Subsecs. 4.1.1 and 4.1.2. The main power of the inequality lies in its direct
experimental accessibility, explained in Subsec. 4.1.3, and its generality, discussed in Sub-
sec. 4.1.4.

4.1.1 The cost of precision

From a conceptual point of view, the TUR (4.1.1) can be read as a “cost of precision” [152],
in the sense that a precise stochastic current (that is, a current with a small relative fluc-
tuation var(Jt)/⟨Jt⟩2) implies a large energy cost Σt. This nicely matches the observation
that living systems, that generally require a high precision for functionality, produce much
entropy.

To illustrate the cost of precision for a concrete example, it is instructive to consider the
thought experiment of a thermodynamic clock [213]. For a simple example consider as
a current simply the displacement Jt =

∫ t
0 1 ◦ dxτ = xt − x0 for the one-dimensional

overdamped motion2 dxτ = a(xτ )dτ +
√
2DdWτ on some interval with periodic boundary

conditions, illustrated as a circle in Fig. 4.1.1. The position at time τ can then be thought of
as a hand of a clock. Assuming steady-state initial conditions, demanding a precision that
allows for an expected fluctuation of, say one second per hour, i.e., var(xt−x0)/⟨xt−x0⟩2 ≤
1/3600, implies that the dissipation is at least Σt ≥ 7200kBT which we would call the
energetic cost of the precision.

For comparing this to actual clocks, note that despite the large generality of the TUR (see
Subsec. 4.1.4), the assumptions exclude quantum mechanical effects and underdamped
motion, which is why this precision limit of clocks is not fully universal. Also note that

1The expected heat Σt dissipated into the medium equals the product of temperature and
entropy production in the medium, and in the steady state also the total entropy production
Σt = T∆Smed([0, t]) = T∆Stot([0, t]), see Sec. 2.9

2More generally, the one-dimensional motion in this example may also originate from a projec-
tion of a higher-dimensional overdamped motion, see Subsec. 4.1.4.
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7200kBT for a few hundred Kelvins are around 10−17 Joules, so for a macroscopic clock
this is only a small energy cost.

Figure 4.1.1: Sketch of a thermodynamic clock. The orange arrow indicates the direction
of the non-equilibrium drift.

Related to the cost of precision, the TUR is also useful for quantifying the efficiency (quality
factor) of a molecular motor by comparing the minimal cost of precision obtained from the
TUR to the actual energy dissipation (see, e.g., [152]).

4.1.2 The inference of dissipation or entropy production

From a more practical point of view, as already pointed out in the previous chapter, for any
observed current Jt the inequality (4.1.1) yields a lower bound for Σt. This is very useful,
since the explicit expressions shown for the total entropy production in Sec. 2.9 require
complete knowledge of ps, js, and D, or even more details for systems that are not in a
steady state. In contrast, inferring a lower bound for Σt via the TUR (4.1.1) is directly
accessible from measured trajectories without extra knowledge.

Decisive in the inference of dissipation via currents computed from observed trajectories
is the choice of the window function U. As found in Ch. 3, for multidimensional space
(d ≥ 2) it is beneficial to choose a function that varies on the correct length scale, i.e.,
not a delta function or a constant (for the special case of periodic boundaries, see, e.g.,
Fig. 4.1.1, a constant may also work well). For the sake of inference, the notion of coarse
graining developed in Ch. 3 is particularly useful if only some local part of the system is
sampled well.

If more than a local part of the system is sampled well, one can combine the different length
scales corresponding to the different areas (see Fig. 3.5.6). Building up on the previous
insight, which was to choose window functions around points with large currents, it is
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expected that the optimal window function will be some local weighting of regions with
high currents. We will show precisely how this works in the discussion of the saturation of
the TUR, see Subsec. 4.3.2 and in the reproduced publication in Subsec. 4.5.6.

4.1.3 Experimental accessibility

An important point about the TUR (4.1.1) is the direct accessibility of the expressions in-
volving the current from measured trajectories (also called operational accessibility, see,
e.g., [211]). As already pointed out in Subsec. 3.1, the time-integrated current Jt is di-
rectly accessible from a measured trajectory via the Riemann sum in Eq. (2.5.15). Then
the ensemble average ⟨Jt⟩ and variance var(Jt) can be directly estimated by sample aver-
ages over the measured trajectories. If sufficiently many trajectories are available with a
sufficient time resolution, the TUR (4.1.1) can be readily applied to infer a lower bound on
Σt.

4.1.4 Generality of the TUR

For both applications of the TUR presented in the previous two subsections, a vital point is
the generality of the statement. Above, we assumed overdamped Langevin dynamics. As
presented in the Introduction in Ch. 1, this assumption is often reasonable. However, due to
the limited number of observed degrees of freedom, many observations do not fall into this
class because the projection of the full dynamics onto the experimentally observed degrees
of freedom may introduce memory in the observed dynamics, yielding more complicated,
typically non-Markovian motion. In particular, this observed motion is no longer described
by a standard overdamped Lagevin equation. Strikingly, the TUR is still applicable since the
definition of the projection can be incorporated in the generalized current, as we show in
the following. This largely extends the validity of the TUR, since it then only requires some
high-dimensional, unobserved dynamics to be governed by overdamped Langevin motion,
which following the lines in the Introduction in Ch. 1 is a very reasonable assumption.

After establishing the validity for such projected Langevin dynamics, we also exclude an-
other source of error, namely the uncontrolled occurrence of different, uncoupled Langevin
dynamics in the observation. Consider the scenario that trajectories of some particles are
measured, where the particles may belong to different species that obey different dynam-
ics, but the species are not distinguishable in the measurement. Then, we show that if the
TUR applies to the individual species, it will also apply to the mixed observation of the
indistinguishable species. This means that such a, possibly unavoidable, complication does
not impede the application of the TUR.
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We now provide short unpublished, possibly original, proofs of the above statements. We
here consider the original TUR (4.1.1) but the statements directly extend to the TUR be-
yond steady-state dynamics that will be shown in Subsec. 4.3.1.

Generalization to projected dynamics

For Markov jump processes, it is well known that the TUR also gives a lower bound for
the full dissipation even if only parts of the system are observed, see, e.g., Ref. [132]. For
Langevin dynamics, we give a short proof here.

For a projection f⃗ : Rd → Rm of the full dynamics in Rd to the observed dynamics
in Rm with m ≤ d (denote m-dimensional vectors with arrows, and matrices and d-
dimensional vectors as bold) we have (transforming the integral from ◦df⃗(xτ ) to ◦dxτ

as in [16, Eq. (3.65)])∫ t

0
V⃗ (qτ ) · ◦dq⃗τ =

∫ t

0
V⃗ (f⃗(xτ )) ◦ df⃗(xτ )

=

∫ t

0
V⃗ (f⃗(xτ )) · Jacf (xτ ) ◦ dxτ

=

∫ t

0
U(xτ ) · ◦dxτ (4.1.2)

where U ≡ V⃗ (f⃗) · Jacf : Rd → Rd consists of f⃗ : Rd → Rm and the Jacobian matrix
Jacf : Rd → Rm×d. This rewriting in terms of U shows that the current ∫ t

0 V⃗ (qτ ) · ◦dq⃗τ =∫ t
0 U(xτ ) · ◦dxτ is of the form for which TUR in the full, d-dimensional space applies.
Therefore, the TUR also holds for an observation of a projected current, but the dissipation
in the formula remains the total dissipation of the full dynamics. Thus, it is possible to
obtain bounds on the full dissipation from the limited observation. Note, however, that it is
of course possible that the TUR only gives very poor bounds, e.g., if the relevant dissipative
parts of the system are not observed. In particular, no non-trivial bound for the entropy
production can be obtained if the mean of the projected current vanishes.

Generalization to indistinguishable species

Consider distinct, non-interacting species denoted by an index i that follow different steady-
state Langevin dynamics, but are experimentally indistinguishable. For each species i, the
TUR Σi

tvari(Jt) ≥ 2kBT ⟨Jt⟩2i applies. Assume that in a measurement, the experimen-
tally indistinguishable species are sampled randomly with probability pi, respectively. If
the measurement is repeated very often, we measure a mean current ⟨Jt⟩ =

∑
i pi⟨Jt⟩i

(where ⟨· · · ⟩i denotes the average with respect to the i-th species’ dynamics), while the

157



4 Direct route to thermodynamic uncertainty relations and their saturation

total dissipation per particle of the mixture of species reads Σt =
∑

i piΣ
i
t. The measured

variance obeys3 var(Jt) =
∑

i pi⟨J2
t ⟩i−⟨Jt⟩2 =

∑
i pi⟨(Jt−⟨Jt⟩)2⟩i ≥

∑
ipi⟨(Jt−⟨Jt⟩i)2⟩i =∑

i pivari(Jt). We now show that the TUR remains valid in an operationally accessible sense
in this scenario, i.e., we show that, we have Σtvar(Jt) ≥ 2kBT ⟨Jt⟩2 also for this indepen-
dent mixture.

This can be derived as follows. From the Cauchy-Schwarz inequality with Σt =
∑

i piΣ
i
t

and∑i pivari(Jt) ≤ var(Jt) (see above), we have[∑
i

pi

√
vari(Jt)Σi

t

]2
≤

[∑
i

pivari(Jt)

]
Σt ≤ var(Jt)Σt . (4.1.3)

Using |⟨Jt⟩| ≤
∑

i pi |⟨Jt⟩i|, averaging over the individual TURs √
2kBT |⟨Jt⟩i| ≤√

Σi
tvari(Jt), and using Eq. (4.1.3) yields the desired TUR,

2kBT ⟨Jt⟩2 ≤

(∑
i

pi
√

2kBT |⟨Jt⟩i|

)2

≤

[∑
i

pi

√
Σi
tvari(Jt)

]2
≤ var(Jt)Σt . (4.1.4)

As apparent from the individual steps, the inequality (4.1.4) becomes saturated if all
species are the same, and if the saturation criteria for a single species are fulfilled (see
Subsecs. 4.3.2 and 4.5.6).

The proof in Eqs. (4.1.3) and (4.1.4) can be performed in an even shorter way using∑
i pia

2
i /bi ≥ (

∑
i piai)

2/
∑

i′ pi′bi′ for bi > 0, which is known as Sedrakyan’s inequality or
Titu’s lemma, and is a direct consequence of the Cauchy-Schwarz inequality. Together with
var(Jt) ≥

∑
i pivari(Jt) (see above) and the individual TURs vari(Jt)/2kBT ≥ ⟨Jt⟩2i /Σi

t,
this gives

var(Jt)

2kBT
≥
∑
i

pi
vari(Jt)

2kBT
≥
∑
i

pi
⟨Jt⟩2i
Σi
t

≥
(
∑

i pi⟨Jt⟩i)
2∑

i′ pi′Σ
i′
t

=
⟨Jt⟩2

Σi
t

. (4.1.5)

3Here, we use that for random X and constant c we have ⟨(X − c)2⟩ ≥ ⟨(X −⟨X⟩)2⟩, which can
be shown by minimization of the left-hand side over c, i.e., from ∂c⟨(X − c)2⟩ = 2(c− ⟨X⟩) = 0 if,
and only if, ⟨X⟩ = c, and ∂2c ⟨(X − c)2⟩ = 2 > 0. Note that the variances do not simply add up since
we are not considering the sum of independent random variables, but instead a random sampling
of different random variables.
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4.2 Technical background

The technical background required to understand the entropy production and fluctuations
of time-integrated currents was already developed in Sec. 2.9 and Ch. 3, respectively. The
only remaining technical issue is the proof of the TUR which is sketched in the following.

4.2.1 Derivation of the TUR

While the first proof of the TUR used the framework of large deviation theory [48], later
proofs of the TUR and its generalizations employed techniques ranging from bounds to the
scaled cumulant generating function [49, 72, 126] to martingale [104] and Hilbert-space
[230] techniques. The arguablymost insightful proof for the TUR [70,71] employs concepts
of information theory and statistics, namely the generalized Cramér-Rao inequality [231,
232]. To state this inequality, we define Fisher information of a random variable X with
probability density pθ(x) for some parameter θ as I(θ) ≡ ⟨[∂θ log pθ(x)]2⟩θ with the notation
⟨· · · ⟩θ ≡

∫
dxpθ(x) · · · . This measures the information that the random variableX contains

about the parameter θ that is used to model its distribution. The generalized Cramér-Rao
inequality [231,232] then states that for a function f(X) we have

varθ(f(X))

[∂θ⟨f(X)⟩θ]2
× I(θ) ≥ 1 . (4.2.1)

With a specific choice of the artificial tilt of the dynamics parametrized by θ around the
value θ0 corresponding to the actual dynamics, one can map this inequality to the TUR
(4.1.1) via varθ0(f(X)) = var(Jt) and ∂θ⟨f(X)⟩θ|θ=θ0 = ⟨Jt⟩, and by computing the Fisher
information of the Onsager-Machlup path measure for the specific tilt I(θ0) = Σt/2kBT

[70] (for Markov jump dynamics I(θ0) ≤ Σt/2kBT , see Subsec. 4.5.12 and [233]). By
showing the analogy to the established Cramér-Rao inequality, this derivation yields some
insight into the information theoretic foundations of the TUR. However, this proof involves
the generalized Cramér-Rao inequality and the Onsager-Machlup path measure under an
artificial tilt of the dynamics, and is therefore not a direct proof. In the publication in Sec. 4.5
we instead provide a direct proof, solely relying on the stochastic equation of motion and
the Cauchy-Schwarz inequality, which has some advantages compared to existing proofs.
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4.3 State of the art

4.3.1 Generalizations of the original TUR

The original TUR (4.1.1) applies to steady-state dynamics following overdamped Langevin
motion or Markov jump processes. We showed above that Eq. (4.1.1) also applies under
projections and for observations of indistinguishable species. Here, we outline several gen-
eralizations beyond Eq. (4.1.1), both within and beyond steady-state dynamics. Note that
out of the vast literature on this topic, we here only consider genuine generalizations, in
the sense that we only consider other versions of the TUR that contain to Eq. (4.1.1) as a
special case.

Retaining the assumption of steady-state dynamics, a generalization to multidimensional
currents is directly possible [70]. More importantly, there is even the possibility to include
not only currents, but also densities of the form ρt =

∫ t
0 V (xτ )dτ to arrive at the correlation

TUR [134]

Σt var(Jt)
[
1− χ2

Jρ

]
≥ 2⟨Jt⟩2,

χ2
Jρ ≡ cov2(Jt, ρt)

var(Jt)var(ρt)
, (4.3.1)

where the coefficient χ2
Jρ ∈ [0, 1] involving the covariance of current and density generally

leads to a tighter inequality. This is an extremely powerful generalization since it is equally
operationally accessible as the original TUR (ρt is just as easily obtained from observed
trajectories as Jt), and the tighter inequality generally leads to better estimation of the
dissipation (more on this in Subsec. 4.3.2 and in the publication in Sec. 4.5).

The TUR does not generalize to underdamped dynamics, as shown by a counterexample
in Ref. [234]. It is, however, possible to generalize the TUR to overdamped dynamics that
is not in a steady state. Note that in this case, Σt refers to the product of temperature and
total entropy production Σt = T∆Stot([0, t]) ̸= T∆Smed([0, t]) (only in the steady state we
have ∆Stot([0, t]) = ∆Smed([0, t])).

For time-homogenous Langevin dynamics (i.e., no explicit time dependence in the drift and
diffusion), the generalization beyond steady-state dynamics of the original TUR (4.1.1)
with window function U(xτ ) without explicit time dependence reads [126]

Σtvar(Jt) ≥ 2(t∂t⟨Jt⟩)2 . (4.3.2)
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This simplifies to Eq. (4.1.1) for steady-state dynamics since there ⟨Jt⟩ scales linearly in
time, see Eq. (3.2.2).

Finally, for one-dimensional space and additive diffusion, the TUR was extended to
Langevin motion with explicitly time-dependent drift and diffusion, assuming a time de-
pendence entering through a protocol speed v (i.e., a drift term a(xτ , vτ)), where v has to
be varied for experimental accessibility. In this form, the generalized TUR reads [49]4

Σtvar(J
v
t ) ≥ 2[(t∂t − v∂v)⟨Jv

t ⟩]2 . (4.3.3)

More details on the different generalizations, and results that go beyond beyond the state
of the art, will be presented in the publication reproduced in Sec. 4.5.

4.3.2 Saturation of the TUR

Facing an inequality, one naturally wonders where it becomes saturated, i.e., in which case
or limit equality is approached. From a practical point of view, the saturation is important
for the best inference of dissipation—the tighter the inequality, the closer the lower bound is
to the actual value for the dissipation. We now summarize the state of the art for saturation
of TURs. More insight into these statements, and generalizations beyond the state of the
art, will be given in the publication reproduced in Sec. 4.5.

In general, saturation of Eq. (4.1.1) only occurs close to equilibrium, i.e., for small values
of mean current and dissipation (the variance does not approach zero in equilibrium as
we know from the previous chapter, see, e.g., Ω → 0 in Fig. 3.4.3). Note that we refer
to saturation when the ratio of the left and right side of Σtvar(Jt) ≥ 2⟨Jt⟩ approaches 1,
i.e., it does not generally suffice if both sides tend to zero, as always becomes the case
close to equilibrium. Actual saturation additionally requires the correct choice of U in the
definition of Jt, for details, look into the publication in Subsec. 4.5.6. Intuitively, saturation
also requires that all dissipative parts of the system are sampled, since sampling only some
parts can always only give lower bounds. Note that the actual knowledge of the correct
window function requires knowledge of many details of the system, but since any window
function gives a valid lower bound (given sufficient statistics), one can obtain good lower
bounds for the total entropy production by guessing or estimating the optimal choice of
window function.

4Note that the appearance of the result is slightly different compared to [49], since we here
consider time-integrated instead of time-averaged currents.
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For systems far from equilibrium, saturation for the correct choice of window function can
be obtained in the limit of short trajectories [153,154]. More importantly, it was shown how
to saturate the steady-state TUR arbitrarily far from equilibrium using the correlation TUR
(4.3.1) [134]. So far, it remained elusive to saturate TURs beyond steady-state dynamics.

In the case of projected dynamics, see Subsec. 4.1.4, achieving saturation is even harder
since the projection f⃗(xτ ) is typically not known. Moreover, if dissipative parts of the system
are hidden by the projection, saturation is generally impossible to achieve.

4.4 Summary of results

Before we turn to the publication in Sec. 4.5, we here outline the contribution beyond the
state of the art and literature summarized in the previous sections.

The idea that led to the publication was the following: In the Ch. 3 we derived an exact
equality for the variance of time-integrated currents. The TUR is an inequality where the
mathematically most difficult part is the variance of time integrated currents. Therefore,
we should be able to understand the TUR in terms of the previous methods and results.

This idea led to a rederivation of the TUR based on the same stochastic-calculus approach
as pursued in Secs. 3.4-3.6. This shows that the TUR is an inherent consequence of the
stochastic equation of motion, and therefore it is not necessary to resort to proofs involving
concepts from, e.g., information theory (see Subsec. 4.2.1). The new derivation has several
advantages due to its very direct character. The only step that turns equalities into inequali-
ties is a single application of the Cauchy-Schwarz inequality, which allows to systematically
investigate the saturation of the TUR based on the saturation of this single calculation
step. Moreover, in the new proof, the extension to the correlation TUR becomes trivial and
new generalizations come naturally, exceeding the state of the art for multidimensional,
multiplicative noise, and most importantly for time-dependent window functions that turn
out to be necessary for saturation for transient (i.e., non-stationary) dynamics. Moreover,
we extend the correlation TUR to transient dynamics and, for the correct choices of win-
dow functions, achieve saturation also for transient dynamics (which was so far limited to
steady-state dynamics [134]).
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4.5 Direct route to thermodynamic uncertainty rela-
tions and their saturation (Phys. Rev. Lett. 2023)

This section is a slightly adapted version of the publication C. Dieball and A. Godec, “Direct
route to thermodynamic uncertainty relations and their saturation”, Phys. Rev. Lett. 130,
087101 (2023).

My personal contribution as first author of the publication was in performing calculations,
analyzing the results, and co-writing the manuscript.
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Direct route to thermodynamic uncertainty relations
and their saturation
Cai Dieball and Aljaž Godec

Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am
Faßberg 11, 37077 Göttingen, Germany

Abstract

Thermodynamic uncertainty relations (TURs) bound the dissipation in
non-equilibrium systems from below by fluctuations of an observed current.
Contrasting the elaborate techniques employed in existing proofs, we here
prove TURs directly from the Langevin equation. This establishes the TUR as
an inherent property of overdamped stochastic equations of motion. In addi-
tion, we extend the transient TUR to currents and densities with explicit time
dependence. By including current-density correlations we, moreover, derive a
new sharpened TUR for transient dynamics. Our arguably simplest and most
direct proof, together with the new generalizations, allows us to systemati-
cally determine conditions under which the different TURs saturate and thus
allows for a more accurate thermodynamic inference. Finally, we outline the
direct proof also for Markov jump dynamics.

4.5.1 Introduction

A defining characteristic of non-equilibrium systems is a non-vanishing entropy produc-
tion [28, 54, 104, 120, 122, 145, 187, 188] emerging during relaxation [73, 120–124], in
the presence of time-dependent (e.g., periodic [49,167,211,212,235,236]) driving, or in
non-equilibrium steady states (NESS) [34,47,48,83,84,106,125,127]. A detailed under-
standing of the thermodynamics of systems far from equilibrium is in particular required
for unraveling the physical principles that sustain active, living matter [146, 237–240].
Notwithstanding its importance, the entropy production within a non-equilibrium system
beyond the linear response is virtually impossible to quantify from experimental observa-
tions, as it requires detailed knowledge about all dissipative degrees of freedom.

A recent and arguably the most relevant method to infer a lower bound on the entropy pro-
duction in an experimentally observed complex system is via the so-called thermodynamic
uncertainty relation (TUR) [67,68,83,84,132,133,153,154,201,241], which relates the
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(time-accumulated) dissipation Σt to fluctuations of a general time-integrated current Jt.
For overdamped systems in a NESS it reads [47,48]

Σt

kBT
≥ 2

⟨Jt⟩2

var(Jt)
, (4.5.1)

with variance var(Jt) ≡ ⟨J2
t ⟩ − ⟨Jt⟩2 and thermal energy kBT , which will henceforth be

dropped for convenience and replaced by the convention of energies measured in units
of kBT . The TUR may be seen as the natural counterpart of the fluctuation-dissipation
theorem [242] or a more precise formulation of the second law [134]. Notably, it may also
be interpreted as gauging the “thermodynamic cost of precision” [152], and it was found
to limit the temporal extent of anomalous diffusion [214].

Since its original discovery [47] and proof [48] for systems in a NESS, a large number of
more or less general variants of the TUR were derived. In particular, for paradigmatic over-
damped dynamics and Markov jump processes, such generalized TURs have been found
for transient systems (i.e., nonstationary dynamics emerging, e.g., from non-steady-state
initial conditions) in the absence [71, 126, 210] and presence of time-dependent driv-
ing [49, 211]. Moreover, an extension to state variables (which we will refer to as “den-
sities”) instead of currents has been formulated [49], and recently correlations of densities
and currents have been incorporated to significantly sharpen and even saturate the in-
equality for steady-state systems [134]. Note, however, that the validity of the TUR is
generally limited to overdamped dynamics, as it was shown to break down in systems with
momenta [234].

Many different techniques have been employed to derive TURs, including large deviation
theory [48, 132, 162, 242, 243], bounds to the scaled cumulant generating function [49,
72, 126], as well as martingale [104] and Hilbert-space [230] techniques. Most notably,
the TUR has been derived as a consequence of the generalized Cramér-Rao inequality [70,
71] which is well known in information theory and statistics. However, while providing
valuable insight, the proof via the Cramér-Rao inequality includes quantifying the Fisher
information of the Onsager-Machlup path measure [70] and involves a dummy parameter
that “tilts” the original dynamics. Thus, it may not be faithfully considered as being direct.
In fact, the TUR and its generalizations seem to be an inherent property of overdamped
stochastic dynamics and are thus, akin to quantum-mechanical uncertainty, expected to
follow directly from the equations of motion.

Here we show that no elaborated concepts beyond the equations of motion are indeed re-
quired. Using only stochastic calculus and the well known Cauchy-Schwarz inequality, we
prove various existing TURs (including the correlation TUR [134]) for time-homogeneous
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overdamped dynamics in continuous space directly from the Langevin equation. Thereby
we both, unify and simplify, proofs of TURs. Moreover, we derive, for the first time, the
sharper correlation TUR for transient dynamics without explicit time dependence. This im-
proved TUR can be saturated arbitrarily far from equilibrium for any initial condition and
duration of trajectories, which we illustrate with the example of a displaced harmonic trap.
Our simple proof offers several advantages and we therefore believe that it deserves atten-
tion even in cases that have already been proven before. Most notably, it enables immediate
insight into how one can saturate the various TURs and allows for easy generalizations. Be-
yond the results for overdamped dynamics, we illustrate the analogous direct proof of the
steady-state TUR also for Markov jump dynamics.

4.5.2 Setup

We consider d-dimensional5 time-homogeneous (i.e., coefficients do not explicitly depend
on time) overdamped dynamics described by the stochastic differential (Langevin) equation
[6,16]

dxτ = F(xτ )dτ + σ(xτ )⊛ dWτ , (4.5.2)

where the anti-Itô product ⊛ assures thermodynamical consistency in the case of multi-
plicative noise6 (i.e., space-dependent σ(xτ )) [84, 104, 169, 197, 198]. The choice of the
product is irrelevant in the case of additive noise σ(xτ ) = σ. The increment dWτ of the
Wiener process, has zero mean ⟨dWτ ⟩ = 0 and is due to its covariance ⟨dWτ,idWτ ′,j⟩ =

δ(τ − τ ′)δijdτdτ
′ known as delta-correlated or white noise. The noise amplitude is related

to the diffusion coefficient via D(x) ≡ σ(x)σ(x)T /2 where σ and D are d × d matrices.
Let P (x, τ) be the probability density to find xτ at a point x given some initial condition
P (x, 0). Then the instantaneous probability density current j(x, τ) is given by

j(x, τ) = [F(x)−D(x)∇]P (x, τ) , (4.5.3)

and the Fokker-Planck equation [16, 17] for the time evolution of P (x, τ) follows from
Eq. (4.5.2) and reads [6]

∂τP (x, τ) = −∇ · j(x, τ) . (4.5.4)

5We consider Rd or a finite subspace with periodic or reflecting boundary conditions.
6For more precise statements in the case of multiplicative noise in multidimensional space see

Sec. 2.8, in particular the additional condition in Eq. (2.8.6).
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In the special case that F(x) is sufficiently confining a NESS is eventually reached with
invariant density Ps(x) ≡ P (x, τ → ∞) and steady-state current js(x) ≡ [F(x) −
D(x)∇]Ps(x) with ∇ · js(x) = 0 [16]. The mean total (medium plus system) entropy
production in the time interval [0, t] is given by [28,54]

Σt =

∫
dx

∫ t

0

jT (x, τ)D−1(x)j(x, τ)

P (x, τ)
dτ . (4.5.5)

Let Jt be a generalized time-integrated current with some vector-valued U(x, τ) defined
via the Stratonovich stochastic integral (only for x-dependent U the convention matters)

Jt ≡
∫ τ=t

τ=0
U(xτ , τ) · ◦dxτ . (4.5.6)

Note that for any integrand U this current and its first two moments are readily obtained
from measured trajectories (xτ )0≤τ≤t. Therefore, a TUR involving such Jt is “operationally
accessible.” For dynamics in Eq. (4.5.2) the current may be equivalently written as the sum
of an Itô integral and a dτ integral, Jt = J I

t + J II
t , with [84]

J I
t ≡

∫ τ=t

τ=0
U(xτ , τ) · σ(xτ )dWτ

J II
t ≡

∫ t

0

[
U(xτ , τ) · F(xτ ) +∇ · [D(xτ )U(xτ , τ)]

]
dτ

≡
∫ t

0
U(xτ , τ)dτ . (4.5.7)

By the zero-mean and independence properties of the Wiener process ⟨J I
t ⟩ = 0 and thus

⟨Jt⟩ = ⟨J II
t ⟩ =

∫ t
0 dτ

∫
dxU(x, τ)P (x, τ). Integrating by parts and using Eq. (4.5.3) we

obtain (see also [84])

⟨Jt⟩ =
∫ t

0
dτ

∫
dxU(x, τ) · j(x, τ) . (4.5.8)

The variance var(Jt) can in turn be computed from two-point densities [83–86], but is not
required to prove TURs.

We now outline our direct proof of TURs. First, we rederive the classical TUR (4.5.1) and
its generalization to transients [126], whereby we find a novel correction term that extends
the validity of the transient TUR. Next we prove the TUR for densities [49] and thereafter
the correlation-improved TUR [134], for the first time also for nonstationary dynamics.
Finally, we explain how to saturate the various TURs and illustrate our findings with an
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example. The proof relies solely on the equation of motion Eq. (4.5.2) and implied Fokker-
Planck equation (4.5.4), which is why we call the proof “direct.”

4.5.3 Direct proof of TURs

The essence of the direct proof is fully contained in the following Eqs. (4.5.9)-(4.5.11).
First, we require a scalar quantity At with zero mean and whose second moment yields the
dissipation defined in Eq. (4.5.5), i.e., ⟨A2

t ⟩ = Σt/2 (the factor “1/2” is introduced for conve-
nience). Considering the “delta-correlated” property of dWτ andD = DT = σ(x)σ(x)T /2

leads to the “educated guess”

At ≡
∫ τ=t

τ=0

j(xτ , τ)

P (xτ , τ)
· [2D(xτ )]

−1σ(xτ )dWτ , (4.5.9)

where At cannot be inferred from trajectories since only dxτ but not dWτ is observed. At

can be understood as the “purely random” part σ(xτ )dWτ of the increment dxτ weighted
by the local velocity and inverse diffusion coefficient. Because ⟨AtJ

I
t ⟩ = ⟨Jt⟩ and ⟨At⟨Jt⟩⟩ =

⟨At⟩⟨Jt⟩ = 0 we have

⟨At(Jt − ⟨Jt⟩)⟩ = ⟨Jt⟩+ ⟨AtJ
II
t ⟩ , (4.5.10)

and the Cauchy-Schwarz inequality ⟨At(Jt − ⟨Jt⟩)⟩2 ≤ ⟨A2
t ⟩var(Jt) further yields

Σt

2
var(Jt) ≥

[
⟨Jt⟩+ ⟨AtJ

II
t ⟩
]2
. (4.5.11)

Compared to Eq. (4.5.10) the inequality (4.5.11) has the advantage that var(Jt) is opera-
tionally accessible and Σt (unlike At) has a clear physical interpretation.

To obtain the TUR we are left with evaluating ⟨AtJ
II
t ⟩, which involves the two-time corre-

lation of dWτ and dτ ′ integrals in Eqs. (4.5.9) and (4.5.7), respectively. For times τ ≥ τ ′,
this correlation vanishes due to the independence property of theWiener process. However,
non-trivial correlations occur for τ < τ ′ because the probability density of xτ ′ depends on
dWτ . We quantify these correlations including dWτ by writing ⟨AtJ

II
t ⟩ as an average over

the joint density to be at points x,x + dx,x′ at times τ < τ + dτ < τ ′, respectively, and
expanding

P (x′, τ ′|x+ dx, τ + dτ) = P (x′, τ ′|x, τ) + dx · ∇xP (x
′, τ ′|x, τ) +O(dτ) . (4.5.12)
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Following this approach [84, 85] (or alternatively via Doob conditioning [104, 107, 200]
as in Ref. [133]) one can formulate a general calculation rule that in this case reads (for
details, see Supplemental Material in Subsec. 4.5.12)

⟨AtJ
II
t ⟩ =−

∫ t

0
dτ ′
∫

dx′U(x′, τ ′)

∫ τ ′

0
dτ

∫
dxP (x′, τ ′|x, τ)∇x · j(x, τ) . (4.5.13)

For steady-state systems, we have ∇ · j(x, τ) = ∇ · js(x) = 0 and thus ⟨AtJ
II
t ⟩ = 0, such

that Eq. (4.5.11) immediately implies the original TUR in Eq. (4.5.1).

To generalize to transients, we use Eq. (4.5.4)∇x · j(x, τ) = −∂τP (x, τ), integrate by parts
twice (see Subsec. 4.5.12 for details), and define a second operationally accessible current

J̃t ≡
∫ τ=t

τ=0
τ∂τU(xτ , τ) · ◦dxτ , (4.5.14)

to obtain

⟨AtJ
II
t ⟩ = (t∂t − 1)⟨Jt⟩ − ⟨J̃t⟩ . (4.5.15)

Thus, we have expressed the correlation ⟨AtJ
II
t ⟩ in terms of operationally accessible quan-

tities. From this and Eq. (4.5.11), the TUR for general initial conditions and general time-
homogeneous Langevin dynamics Eq. (4.5.2) reads

Σt var(Jt) ≥ 2
[
t∂t⟨Jt⟩ − ⟨J̃t⟩

]2
. (4.5.16)

The fact that the TUR for transient dynamics (4.5.16) follows from the original TUR (4.5.1)
upon replacing ⟨Jt⟩ → t∂t⟨Jt⟩ is well known [71,210] and was first derived in continuous
space in Ref. [126]. However, the novel correction term ⟨J̃t⟩ extends the validity of the TUR
to currents with an explicit time dependenceU(x, τ). We show below and in Fig. 4.5.1 that
this additional freedom in choosingU is crucial for saturating the transient TUR under gen-
eral conditions. To highlight that end-point derivative t∂t and the correction term ⟨J̃t⟩ are
strictly necessary, we provide explicit counterexamples (see Supplemental Material (SM)
in Subsec. 4.5.12).

We note that Eq. (4.5.16) in one-dimensional space and for additive noise can be deduced
from restricting the result in [49], where an explicit time dependence was introduced via
a speed parameter v, to a time-homogeneous drift, translated to time-integrated currents,
and noting that v∂vU(x, vτ) = τ∂τU(x, vτ). The form without the speed parameter has the
advantage that the correction term ⟨J̃t⟩ is accessible from a single experiment, while the
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∂v correction requires perturbing the speed of the experiment. However, the result in [49]
even holds for an explicitly time-dependent drift.

Notably, generalizing this proof to explicitly time-dependent drift or diffusion, although
probably possible, is not straightforward because it requires perturbing the dynamics (see
[49]), and therefore all relevant information is no longer contained in a single equation of
motion.

Figure 4.5.1: (a) Brownian particle in a one-dimensional harmonic trap with stiffness
a, φ(x, τ) = a(x − x0τ )

2/2D displaced from x0τ<0 = z to x0τ≥0 = 0. Upon being
initially equilibrated in φ(x, τ < 0) = a(x − z)2/2D (i.e., from the initial condition
p0(x) ∝ exp[−a(x−z)2/2D]) the particle evolves for τ ≥ 0 due toD∂xφ(x, τ ≥ 0) = ax ac-
cording to dxτ = −axτdτ +

√
2DdWτ towards an equilibrium pτ→∞(x) ∝ exp(−ax2/2D).

(b) Illustration of the evolution of P (x, τ) for z = 5
√
D/a. (c) Quality factors defined as the

ratio of right- and left-hand side of the TURs as a function of the dimensionless quantity at.
All quality factors turn out to be independent of z,D and only depend on a, t through at;
explicit analytic expressions are given in Subsec. 4.5.12. Except for Jt =

∫
1◦dxτ = xt−x0

(blue line) we always choose the current defined with U(τ) = ν(τ) and density defined
with V (x, τ) = −xν(τ).

4.5.4 TUR for densities

We define general, operationally accessible densities (the term “density” is motivated by
the analogy to “current” as e.g., in [43,83,84,86])

ρt =

∫ t

0
V (xτ , τ)dτ ,

ρ̃t ≡
∫ τ=t

τ=0
τ∂τV (xτ , τ)dτ . (4.5.17)

Since in the proof above we did not use the explicit form of U , the density can be treated
analogously to Jt in Eq. (4.5.7) by replacing U → V and omitting the J I

t term. Analogously
to Eqs. (4.5.10) and (4.5.15) we thus obtain

⟨At(ρt − ⟨ρt⟩)⟩ = ⟨Atρt⟩ = (t∂t − 1)⟨ρt⟩ − ⟨ρ̃t⟩ , (4.5.18)
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and analogously to Eq. (4.5.11) the transient density-TUR

Σtvar(ρt) ≥ 2 [(t∂t − 1)⟨ρt⟩ − ⟨ρ̃t⟩]2 . (4.5.19)

Note that due to the absence of the J I
t term, the right-hand side vanishes in steady-state

systems. As in the discussion of Eq. (4.5.16) above, Eq. (4.5.19) is in some sense con-
tained in the results of [49]. However, Eq. (4.5.19) allows for multidimensional space and
multiplicative noise, and does not require a variation in protocol speed.

4.5.5 Improving TURs using correlations

It has been recently found [134] that the steady-state TUR can be eminently improved, and
even saturated arbitrarily far from equilibrium, by considering correlations between cur-
rents and densities as defined in Eq. (4.5.17). To rederive this sharper version, we rewrite
Eq. (4.5.11) for the observable Jt−cρt (the constant c is in fact technically redundant since
it can be absorbed in the definition of ρt)

Σt

2
var(Jt − cρt) ≥

[
⟨Jt⟩+ ⟨At(J

II
t − cρt)⟩

]2
. (4.5.20)

Note that var(Jt− cρt) = var(Jt)+ c
2var(ρt)− 2c cov(Jt, ρt), where cov denotes the covari-

ance. Using the optimal choice c = cov(Jt, ρt)/var(ρt) and recalling that for steady-state
systems ⟨At(J

II
t − cρt)⟩ = 0, Eq. (4.5.20) becomes the NESS correlation TUR in [134]

Σt var(Jt)
[
1− χ2

Jρ

]
≥ 2⟨Jt⟩2,

χ2
Jρ ≡ cov2(Jt, ρt)

var(Jt)var(ρt)
. (4.5.21)

Since χ2
Jρ ∈ [0, 1], Eq. (4.5.21) is sharper than Eq. (4.5.1) and, as proven in [134] and

discussed below, for any steady-state system there exist Jt, ρt that saturate this inequality.

Our approach allows to generalize this result to transient dynamics by computing ⟨At(J
II
t −

cρt)⟩ as in Eq. (4.5.15) to obtain from Eq. (4.5.20) the generalized correlation TUR

Σt var(Jt − cρt) ≥ 2
(
t∂t⟨Jt⟩ − ⟨J̃t⟩ − c [(t∂t − 1)⟨ρt⟩ − ⟨ρ̃t⟩]

)2
. (4.5.22)

One could again optimize the left-hand side over c to obtain var(Jt − cρt) =

var(Jt)
[
1− χ2

Jρ

]
. However, since here the right-hand side also involves c, this may not

be the optimal choice. Thus, it is instead practical to keep c general (or absorb it into ρt).
The generalized correlation TUR (4.5.22) represents a novel result that sharpens the tran-
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sient TUR in Eq. (4.5.16), and, as we show below and illustrate in Fig. 4.5.1, even allows
us to generally saturate the TUR arbitrarily far from equilibrium.

4.5.6 Saturation of TURs

For any choice U in the definition of Jt in Eq. (4.5.6), the TUR allows to infer a lower
bound on the time-accumulated dissipation Σt from ⟨Jt⟩ and var(Jt) [67, 68, 83, 84, 132,
153,154,201,241]. The tighter the inequality, the more precise is the lower bound onΣt. It
is therefore important to understand when the inequality becomes tight or even saturates,
i.e., gives equality.

Because of the simplicity and directness of our proof, we can very well discuss the
tightness of the bound based on the single application of the Cauchy-Schwarz inequality.
As elaborated in the Appendix 4.5.11, this approach reproduces, and extends beyond,
numerous existing results on asymptotic and exact saturation of TURs. Most importantly,
choosing U(x, τ) = c′[j(xτ , τ)/P (xτ , τ)] · [2D(xτ )]

−1 with arbitrary c′ and cρt = J II
t [see

Eq. (4.5.7)] gives Jt − cρt = J I
t = c′At which in turn implies equality in the Cauchy-

Schwarz argument leading to the correlation TURs Eqs. (4.5.21) and (4.5.22). This
directly implies exact saturation of the correlation TURs which was so far achieved only in
the steady-state case [134]. Our generalization of the correlation TUR in Eq. (4.5.22) for
transient systems therefore allows to saturate a TUR arbitrarily far from equilibrium for any
t and for general initial conditions and general time-homogeneous dynamics in Eq. (4.5.2).

4.5.7 Example

To illustrate the novel results in Eqs. (4.5.16), (4.5.19) and (4.5.22) and the new insight
into the saturation, we provide an explicit example of transient dynamics in Fig. 4.5.1, that
of a Brownian particle in a one-dimensional harmonic potential φ(x, t) = a(x − x0t )

2/2D

displaced from x0τ<0 = z to x0τ≥0 = 0, see Fig. 4.5.1a. This setting, illustrated by the color
gradient in Fig. 4.5.1a, can easily be realized experimentally using optical tweezers [244–
246]. The process features a Gaussian probability density P (x, τ) with constant variance
D/a that moves with a space-independent velocity ν(τ) = j(x, τ)/P (x, τ) = −az exp(−aτ)
towards the equilibrium ∝ exp(−ax2/2D), see Fig. 4.5.1b.

To quantify the tightness of the respective TURs we inspect quality factors – the ratio
of the right- and left-hand side of the TUR – shown in Fig. 4.5.1c as a function of the
dimensionless quantity at. The blue line represents the transient TUR (4.5.16) for the
current Jt = xt − x0 where U(x, τ) = 1. Since this U does not feature explicit time
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dependence, the correction term J̃t does not contribute and the transient TUR from the
existing literature [126] applies. The existing (as well as our) results allow to vary the
spatial dependence of U but we refrain from considering this for simplicity and since it
is not necessary for saturation (i.e., ν,D have no spatial dependence in our example).
Due to the novel correction term in Eq. (4.5.16) we may choose a time-dependent U , and
following our discussion of the saturation we choose for all following examples Jt with
U(τ) = c′ν(τ)/2D = ν(τ) (the prefactor c′ is arbitrary as it cancels in quality factor) and
the corresponding ρt = JII

t , i.e., with V (x, τ) = U(x, τ) = −axU(τ), see Eq. (4.5.7).
For this choice, we evaluate the transient current [Eq. (4.5.16)] and density-TUR
[Eq. (4.5.19)], see light gray and orange line in Fig. 4.5.1c. Moreover, we evaluate the
novel generalized correlation TUR (4.5.22) for c = 0.2 (dark gray line), where we find
that the current TUR is improved by considering correlations with a density, and for c = 1

(black line), where we find the expected saturation. This saturation means that the lower
bound obtained for Σt from this TUR is exactly Σt. Note that this exact saturation requires
the knowledge of the details of the dynamics for the choice of U, V . However, even with
very limited knowledge one can simply consider different guesses or approximations
of the optimal U, V and each guess will give a valid lower bound (given sufficient statistics).

4.5.8 Direct route for Markov jump processes

Beyond overdamped dynamics, one may employ the above direct approach for deriving
TURs to Markov jump dynamics on a discrete state-space N with jump-rates (rxy)x,y∈N

and steady-state distribution (px)x∈N . To illustrate this generalization, we here provide
the proof of the steady-state TUR (4.5.1). Let τ̂x denote the (random) time spent in state
x and n̂xy the (random) number of jumps from x to y in the time interval [0, t]. A general
time-accumulated current in a jump process is defined with antisymmetric prefactors dxy =

−dyx as the double sum J ≡
∑

x ̸=y dxyn̂xy. The steady-state dissipation in turn reads
Σ ≡ t

∑
x ̸=y pxrxy ln[pxrxy/pyryx]. Analogously to At in Eq. (4.5.9) define

A ≡
∑
x ̸=y

pxrxy − pyryx
pxrxy + pyryx

(n̂xy − τ̂xrxy) . (4.5.23)

For this choice of A one can check that ⟨A⟩ = 0, ⟨A2⟩ ≤ Σ/2, and ⟨AJ⟩ = ⟨J⟩ (a “direct”
proof as above follows by analogy of covariance properties of ∂t(n̂xy−τ̂xrxy) andσ(xt)dWt,
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see Subsec. 4.5.12 for details) which imply, via the Cauchy-Schwarz inequality, equivalently
to Eqs. (4.5.10) and (4.5.11) the steady-state TUR for Markov jump processes

⟨A(J − ⟨J⟩)⟩ = ⟨J⟩ ⇒ Σ

2
var(J) ≥ ⟨J⟩2 . (4.5.24)

A discussion of possible generalizations of this proof beyond steady-state dynamics is given
in Subsec. 4.5.12.

4.5.9 Conclusion

Using only stochastic calculus and the well known Cauchy-Schwarz inequality, we proved
various existing TURs directly from the Langevin equation. This underscores the TUR
as an inherent property of overdamped stochastic equations of motion, analogous to
quantum-mechanical uncertainty relations. Moreover, by including current-density corre-
lations, we derived a new sharpened TUR for transient dynamics. Based on our simple and
more direct proof, we were able to systematically explore conditions under which TURs
saturate. The new equality (4.5.10) is mathematically even stronger than TUR (4.5.11).
Therefore, it allows us to derive further bounds, e.g., by applying Hölder’s instead of
the Cauchy-Schwarz inequality which, however, may not yield operationally accessible
quantities. Our approach may allow for generalizations to systems with time-dependent
driving (see, e.g., [49]) which, however, are not expected to follow anymore directly from
a single equation of motion. The novel correction term for currents with explicit time
dependence as well as the new transient correlation TUR and its saturation are expected
to equally apply to Markov jump processes by generalizing the approach illustrated in
Eqs. (4.5.23) and (4.5.24).
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4.5.11 Appendix: Saturation of TURs

Thanks to the directness of our proof, we only need to discuss the tightness based on the
step from Eq. (4.5.10) to Eq. (4.5.11) where we applied the Cauchy-Schwarz inequality
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⟨At(Jt − ⟨Jt⟩)⟩2 ≤ ⟨A2
t ⟩var(Jt) to the exact Eq. (4.5.10). Thus, the closer At and Jt − ⟨Jt⟩

are to being linearly dependent (recall that the Cauchy-Schwarz inequality measures the
angle φ between two vectors (x⃗ · y⃗)2 = x⃗ 2y⃗ 2 cos2(φ) ≤ x⃗ 2y⃗ 2), the tighter the TUR, with
saturation for Jt − ⟨Jt⟩ = c′At for some constant c′. Therefore, the TUR is expected to
be tightest for the choice U(x, τ) = c′[j(xτ , τ)/P (xτ , τ)] · [2D(xτ )]

−1 for which J I
t = c′At

(see Eq. (4.5.7)). Note that for NESS this U becomes time independent with js(x)/Ps(x).
This choice is known to saturate the original TUR in Eq. (4.5.1) in the near-equilibrium
limit [104]. However, since the full Jt = J I

t +J
II
t current cannot be chosen to exactly agree

with c′At, equality is generally not reached.

The original TUR (4.5.1) with this choice of U(x, τ) was also found to saturate in the
short-time limit t → 0 [153, 154]. This result is in turn reproduced with our approach by
noting that J I

t = c′At and ⟨AtJ
II
t ⟩ = 0 give ⟨At(Jt − ⟨Jt⟩)⟩2 = ⟨AtJ

I
t ⟩2 = ⟨A2

t ⟩⟨J I
t
2⟩, and

in the limit t → 0 the integrals in Eq. (4.5.7) asymptotically scale like a single time step,
such that ⟨J I

t
2⟩ ∼ (Wt −W0)

2 ∼ t dominates all ∼ t3/2, ∼ t2 contributions in var(Jt). In
turn, ⟨J I

t
2⟩ t→0→ var(Jt) which yields ⟨At(Jt − ⟨Jt⟩)⟩2

t→0→ ⟨A2
t ⟩var(Jt). Thus, the Cauchy-

Schwarz step from the equality (4.5.10) to the inequality (4.5.11) saturates as t → 0, in
turn implying that the TUR saturates.

More recently, it was also found that including correlations [see Eq. (4.5.21) and Ref. [134]]
allows us to saturate a sharpened TUR for steady-state systems arbitrarily far from equi-
librium for any t, again for the same choice U(x, τ) as above. Since our rederivation of
the NESS correlation TUR in Eq. (4.5.21) applied the Cauchy-Schwarz inequality to At

and Jt − cρt we see that choosing cρt = J II
t yields Jt − cρt = J I

t = c′At, such that the
application of the Cauchy-Schwarz inequality becomes an equality. That is, the correlation
TUR (4.5.21) for this choice of Jt and ρt is generally saturated. Notably, this powerful result
follows very naturally from the direct proof presented here.

Our generalization of the correlation TUR in Eq. (4.5.22) for transient systems even al-
lows to saturate a TUR (arbitrarily far from equilibrium for any t and) for general initial
conditions and general time-homogeneous dynamics in Eq. (4.5.2). This result is strong
but obvious, since as for the NESS correlation TUR we can choose Jt and ρt such that
Jt− cρt = c′At. Note that it is here crucial that we allowed for an explicit time dependence
in U and V , i.e., that we found new correction terms [terms with tilde in Eqs. (4.5.16),
(4.5.19), and (4.5.22)].
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4 Direct route to thermodynamic uncertainty relations and their saturation

4.5.12 Supplemental Material

In this Supplemental Material, we provide a detailed analysis of the quality (i.e., sharp-
ness) of the distinct versions of thermodynamic uncertainty relation (TUR) applied to the
transient example shown above as well as counterexamples underscoring the necessity of
the novel versions of the TUR. Moreover, we provide technical details on the direct proof
of the TUR as well as a perspective on the extension of the direct proof to Markov-jump
processes.

Quality of TURs for displaced harmonic trap

In the following, we derive the quality factors (i.e., the sharpness of the various TURs)
shown in Fig. 4.5.1. Consider one-dimensional Brownian motion in a parabolic po-
tential (i.e., a Langevin equation with linear force; known as the Ornstein-Uhlenbeck
process) [6] with a Gaussian initial condition x0 [we denote a normal distribution by
N (mean, variance)],

dxτ = −axτdτ +
√
2DdWτ , x0 ∼ N (z, σ20) . (4.5.25)

Even though this process approaches an equilibrium steady state, for finite times it features
transient dynamics if x0 is not sampled from the steady-state distribution. For any Gaus-
sian initial condition, this process is Gaussian [6]. Therefore, the mean and the variance
completely determine the distribution of xτ . The harmonic potential and the Gaussian ini-
tial condition can be realized experimentally by optical tweezers. The mean, variance and
covariance are simply obtained as (see, e.g., Appendix F in Ref. [90])

⟨xτ ⟩ = ze−aτ ,

var(xτ ) ≡ ⟨x2τ ⟩ − ⟨xτ ⟩2 =
D

a

(
1− e−2aτ

)
+ σ20e

−2aτ ,

For τ ≥ τ ′ : cov(xτ , xτ ′) ≡ ⟨xτxτ ′⟩ − ⟨xτ ⟩⟨xτ ′⟩ = e−a(τ−τ ′)var(xτ ′) . (4.5.26)

The Gaussian probability density P (x, τ) given the initial condition in Eq. (4.5.25) accord-
ingly reads

P (x, τ) =

√
1

2πvar(xτ )
exp

[
−(x− ze−aτ )2

2var(xτ )

]
. (4.5.27)

176



Phys.Rev.Lett.130,087101
(2023)

Direct route to thermodynamic uncertainty relations and their saturation 4

The local mean velocity ν(x, τ) ≡ j(x, τ)/P (x, τ) with current j(x, τ) ≡ (−ax −
D∂x)P (x, τ) reads

ν(x, τ) = −ax+D(x− ze−aτ )/var(xτ ) . (4.5.28)

For this example we consider the simple case σ20 = D/a, i.e., we start in the steady-state
variance (but as long as z ̸= 0 not in the steady-state distribution; can be realized by
equilibration with optical tweezers at x = z at times τ < 0 and an equally stiff optical trap
at position x = 0 at times τ ≥ 0), for which we obtain the simplified expressions

var(xτ ) = D/a ,

For τ ≥ τ ′ : cov(xτ , xτ ′) = e−a(τ−τ ′)D/a ,

ν(x, τ) = −aze−aτ . (4.5.29)

For this initial condition, P (x, τ) corresponds to a Gaussian distribution of constant vari-
ance with mean value ze−aτ drifting from z to 0. Since only the mean changes (but the
distribution around the mean remains invariant), the local mean velocity ν(x, τ) is inde-
pendent of x [and in fact given by the velocity of the mean ν(x, τ) = ∂τ ⟨xτ ⟩]. This easily
allows to compute the time-accumulated dissipation

Σt = D−1

∫ t

0
dτ

∫
dx⟨ν(xτ , τ)⟩2 =

a2z2

D

∫ t

0
dτe−2aτ =

az2

2D
(1− e−2at) . (4.5.30)

Apart from Σt the TURs contain first and second moments of (generalized) currents and
densities that we derive for some examples below. Recall the definition of a generalized
current (here in one-dimensional space)

Jt ≡
∫ τ=t

τ=0
U(xτ , τ) ◦ dxτ . (4.5.31)

For simplicity (and since in our example the mean velocity ν(τ) is space-independent) we
consider only currents without explicit space dependence, i.e., only U(xτ , τ) = U(τ). In
this case, there is no difference between the Stratonovich and Itô interpretation of the
integral, i.e., Jt =

∫ τ=t
τ=0 U(τ)dxτ .
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Current without explicit time dependence

For the simplest case of U(x, τ) = 1 we have the displacement current (denote this choice
of current by Jx

t )

Jx
t ≡

∫ τ=t

τ=0
1 ◦ dxτ = xt − x0 . (4.5.32)

From Eq. (4.5.29) we obtain

⟨Jt⟩ = −z(1− e−at) , t∂t⟨Jt⟩ = −zate−at ,

var(Jt) = var(xt) + var(x0)− 2cov(xt, x0) =
2D

a
(1− e−at) . (4.5.33)

Recalling the expression for the dissipation Eq. (4.5.30) the transient TUR Σtvar(Jt) ≥
2[t∂t⟨Jt⟩]2 in this example reads az2

2D (1 − e−2at)2Da (1 − e−at) ≥ 2(zat)2e−2at such that the
quality factor Qx ∈ [0, 1] (ratio of right-hand side and left-hand side; measures sharpness
of the inequality) in this example becomes

Qx ≡ 2[t∂t⟨Jt⟩]2

Σtvar(Jt)
=

2(at)2e−2at

(1− e−2at) (1− e−at)
. (4.5.34)

Note that Qx is independent of z and D and only depends on the dimensionless quantity
at. For large values, at→ ∞ we have Qx → 0, see also Fig. 4.5.1.

Currents with explicit time dependence

Saturating a TUR (i.e., obtaining the true dissipation as the lower bound inferred by
the TUR) can be achieved for the transient correlation-TUR [Eq. (4.5.22)] by choos-
ing U(x, τ) = c′[j(xτ , τ)/P (xτ , τ)] · [2D(xτ )]

−1, and the corresponding density ρt =∫ t
0

[
U(xτ , τ) · F(xτ ) + ∇ · [D(xτ )U(xτ , τ)]

]
dτ . For this example, the respective current

and density (denote this choice by superscript ν) read (Stratonovich convention irrelevant
since ∂xU(x, τ) = 0 here)

Jν
t ≡ c′

2D

∫ τ=t

τ=0
ν(τ)dxτ , ρνt ≡ −ac′

2D

∫ t

0
xτν(τ)dτ , (4.5.35)

with ν(τ) = −aze−aτ , see Eq. (4.5.29). The prefactor c′ will equally appear on both sides
of the TURs and therefore not change the quality factors. One may set c′ = 2D as done
above, but here we keep it general. Plugging in dxτ from Eq. (4.5.25) we calculate

⟨Jν
t ⟩ =

c′

2D

∫ t

0
ν(τ)⟨−axτ ⟩dτ =

−azc′

2D

∫ t

0
ν(τ)e−aτdτ =

(az)2c′

2D

∫ t

0
e−2aτdτ

178



Phys.Rev.Lett.130,087101
(2023)

Direct route to thermodynamic uncertainty relations and their saturation 4

=
az2c′

4D
(1− e−2at) ,

t∂t⟨Jν
t ⟩ = t

(az)2c′

2D
e−2at , ⟨ρνt ⟩ = ⟨Jν

t ⟩ , t∂t⟨ρνt ⟩ = t∂t⟨Jν
t ⟩ . (4.5.36)

The auxiliary current J̃t ≡
∫ τ=t
τ=0 τ∂τU(xτ , τ) ◦ dxτ and density ρ̃t have due to τ∂τν(τ) =

−aτν(τ) the mean

⟨ρ̃νt ⟩ = ⟨J̃ν
t ⟩ =

−a(az)2c′

2D

∫ t

0
τe−2aτdτ =

−a(az)2c′

2D

1− e−2at(1 + 2at)

4a2

=
−az2c′

8D
[1− (1 + 2at)e−2at] . (4.5.37)

For the variance split Jν
t = J I

t + J II
t with

J I
t =

c′

2D

∫ τ=t

τ=0
ν(τ)

√
2DdWτ , J II

t = ρνt , (4.5.38)

and compute

var(ρνt ) = var(J II
t ) =

a2c′2

4D2

〈(∫ t

0
ν(τ)(xτ − ⟨xτ ⟩)dτ

)2
〉

=
a2c′2

4D2
2

∫ t

0
dτ

∫ τ

0
dτ ′ ν(τ)ν(τ ′)cov(xτ , xτ ′)

=
a3z2c′2

2D

∫ t

0
dτ

∫ τ

0
dτ ′e−a(τ+τ ′)e−a(τ−τ ′)

=
a3z2c′2

2D

∫ t

0
dττe−2aτ

=
c′2az2

8D

[
1− (1 + 2at)e−2at

]
. (4.5.39)

The cross terms are given by the non-trivial correlations of dWτ and dτ ′ integrals exactly
as Eq. (4.5.13), in this example with U(x′, τ ′) = −ax′ν(τ ′)c′/(2D), such that

⟨J I
tJ

II
t ⟩ = −

∫ t

0
dτ ′
∫

dx′U(x′, τ ′)
∫ t

0
dτ1τ<τ ′

∫
dxP (x′, τ ′|x, τ)∂xc′ν(τ)P (x, τ)

=
c′2a

2D

∫ t

0
dτ ′
∫ τ ′

0
dτν(τ)ν(τ ′)

∫
dx′x′P (x′, τ ′|x, τ)∂xP (x, τ) . (4.5.40)

From Eq. (4.5.27) we get

∂xP (x, τ) = −(x− ze−aτ )P (x, τ)/var(xτ ) = − a

D
(x− ze−aτ )P (x, τ) . (4.5.41)
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Hence using ze−aτ = ⟨xτ ⟩ and ⟨⟨xτ ′⟩(xτ − ⟨xτ ⟩)⟩ = 0 we obtain

⟨J I
tJ

II
t ⟩ = −c

′2a2

2D2

∫ t

0
dτ ′
∫ τ ′

0
dτν(τ)ν(τ ′)

∫
dx′(x− ze−aτ )x′P (x′, τ ′;x, τ)

= −c
′2a2

2D2

∫ t

0
dτ ′
∫ τ ′

0
dτν(τ)ν(τ ′)⟨xτ ′(xτ − ⟨xτ ⟩)⟩

= −c
′2a2

2D2

∫ t

0
dτ ′
∫ τ ′

0
dτν(τ)ν(τ ′)cov(xτ , xτ ′) . (4.5.42)

Comparison with the third line in Eq. (4.5.39) yields

⟨J I
tJ

II
t ⟩ = −var(ρνt ) . (4.5.43)

Therefore from Jν
t = J I

t + J II
t with ⟨J I

t ⟩ = 0 we obtain

var(Jν
t ) = ⟨J I

t
2⟩+ var(J II

t ) + 2⟨J I
tJ

II
t ⟩ = c′2

2
Σt − var(ρνt )

Eqs. (4.5.30),(4.5.39)
=

c′2az2

8D

[
1 + (2at− 1)e−2at

]
. (4.5.44)

Since ρνt = J II
t and ⟨J I

t ⟩ = 0, Eq. (4.5.43) implies

cov(Jν
t , ρ

ν
t ) = cov(J I

t + J II
t , J

II
t ) = ⟨J I

tJ
II
t ⟩+ var(J II

t ) = 0 , (4.5.45)

which gives

var(Jν
t − cρνt ) = var(Jν

t ) + c2var(ρνt )

=
c′2az2

8D

(
1 + (2at− 1)e−2at + c2

[
1− (1 + 2at)e−2at

] )
. (4.5.46)

We now have evaluated all expressions entering the various transient TURs for the current
Jν
t and density ρνt . The quality factors (ratios of right- and left-hand side) QJ for the

transient TUR Σtvar(Jt) ≥ 2[t∂t⟨Jt⟩ − ⟨J̃t⟩]2 [Eq. (4.5.16)], Qρ for the transient density-
TUR Σtvar(ρt) ≥ 2[(t∂t − 1)⟨ρt⟩ − ⟨ρ̃t⟩]2 [Eq. (4.5.19)], and QC(c) (function of c) for the
transient correlation-TUR Σtvar(Jt − cρt) ≥ 2(t∂t⟨Jt⟩ − ⟨J̃t⟩ − c[(t∂t − 1)⟨ρt⟩ − ⟨ρ̃t⟩])2

[Eq. (4.5.22)] after straightforward simplifications read

QJ =
1− (1− 2at)e−2at

2(1− e−2at)
,

Qρ =
1− (1 + 2at)e−2at

2(1− e−2at)
,
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QC(c) =

[
(1 + c)(1− e−2at) + (1− c)2ate−2at

]2
2(1− e−2at) [(1 + c2)(1− e−2at) + (1− c2)2ate−2at]

,

QC(1) = 1 . (4.5.47)

These quality factors along with Qx in Eq. (4.5.34) are depicted in Fig. 4.5.1. They only
depend on the dimensionless quantity at but not on other parameters of the process.

Opposed to Qx in Eq. (4.5.34) these quality factors approach non-zero values as at →
∞, namely QJ → 1/2, Qρ → 1/2, QC(c) → (1 + c)2/2(1 + c2). Interestingly, for this
special case, the current and density quality factors add up to one, QJ + Qρ = 1. While
limat→0QJ = 1 [as expected in general for such choice of current (see Sec. 4.5.6)], we
have limat→0Qρ = 0. This is because at → 0 corresponds to the steady-state limit, where
the density-TUR becomes the trivial Σtvar(ρt) ≥ 0.

Recall that cov(Jν
t , ρ

ν
t ) = 0 [see Eq. (4.5.45)]. We now see that the choice c =

cov(Jt, ρt)/var(ρt), that is optimal in steady-state dynamics (see Subsec. 4.5.5), here gives
c = 0 although c = 1 is optimal, see Eq. (4.5.47). As mentioned in Sec. 4.5.5, this arises
because c = 0 only optimizes the left-hand side of the corelation-TUR [also seen from
Eq. (4.5.45)] but in the generalized (i.e., transient) correlation-TUR the right-hand side
also depends on c.

Counterexamples

We showed that the TUR for transient dynamics [Eq. (4.5.16)] readsΣtvar(Jt) ≥ 2[t∂t⟨Jt⟩−
⟨J̃t⟩]2 and thus contains the correction term −⟨J̃t⟩ which contributes if U(x, τ) in the cur-
rent Jt ≡

∫ τ=t
τ=0 U(xτ , τ)◦dxτ depends on time τ . Based on the setting in the previous section

(and Fig. 4.5.1) we here give an explicit counterexample for the TURwithout the correction
term, i.e., an example where Σtvar(Jt) < 2 [t∂t⟨Jt⟩]2. This shows that the correction term
−⟨J̃t⟩ is indeed necessary, and that the result in Eq. (4.5.16) is valid for a broader class of
systems than existing literature [126] by allowing explicit time dependence inU(xτ , τ). In
addition, we also provide a counterexample to show that the NESS TUR Σvar(Jt) ≥ 2⟨Jt⟩2

does not hold in this transient system. Both counterexamples are shown in Fig. 4.5.2 and
the derivations of the respective terms are shown below.

To find an example for which 2 [t∂t⟨Jt⟩]2 > Σtvar(Jt), we note [recalling Eq. (4.5.8), ⟨Jt⟩ =∫ t
0 dτ

∫
dxU(x, τ)·j(x, τ)] that the term t∂t⟨Jt⟩ = t

∫
dxU(x, t)·j(x, t) only involvesU(x, t)

at the final time but not at any τ < t. In contrast, Σt is independent of the choice of U and
var(Jt) involves U(x, τ) at all times. Therefore, examples for 2 [t∂t⟨Jt⟩]2 > Σtvar(Jt) can
be found by making U(x, t) large compared to U(x, τ) at τ < t.
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Figure 4.5.2: Quality factors for the displaced harmonic trap for currents Jx
t ≡

∫ τ=t
τ=0 1 ◦

dxτ = xt − x0 (black) and Jτ
t ≡

∫ τ=t
τ=0 τ ◦ dxτ (blue). Quality factors Qx,τ ≡

2[t∂t⟨Jx,τ
t ⟩−⟨J̃x,τ

t ⟩]2/Σtvar(J
x,τ
t ) ≤ 1, see Eqs. (4.5.34) and (4.5.52), for the transient TUR

[Eq. (4.5.16)] are shown by solid lines. The dashed black line QNESS
x ≡ 2⟨Jx

t ⟩2/Σtvar(J
x
t ),

see Eq. (4.5.53), and dashed blue line Q?
τ ≡ 2[t∂t⟨Jτ

t ⟩]2/Σtvar(J
τ
t ), see Eq. (4.5.51), inter-

sect the forbidden region Q > 1 (red background) which shows that the NESS TUR and
the transient TUR without the correction −⟨J̃t⟩ term are not generally valid for transient
systems.

We now give an explicit example by choosing a current Jτ
t with linear time dependence in

U(x, τ) = τ (here one-dimensional),

Jτ
t ≡

∫ τ=t

τ=0
τ ◦ dxτ . (4.5.48)

Note that due to ∂xU(x, τ) = 0 there is no difference between Stratonovich and Itô inte-
gration. We calculate

⟨Jτ
t ⟩ =

∫ t

0
τ⟨−axτ ⟩dτ = −az

∫ t

0
τe−aτdτ = −z

a

[
1− e−at(1 + at)

]
,

t∂t⟨Jτ
t ⟩ =

zt

a
[−a(1 + at) + a] e−at = −zat2e−at . (4.5.49)

For the variance compute analogously to the lines leading to Eq. (4.5.44) [with cov from
Eq. (4.5.29)]

var(Jτ
t ) = 2D

∫ t

0
dτ τ2 − a2

∫ t

0
dτ

∫ t

0
dτ ′ ττ ′cov(xτ , xτ ′)

= 2
D

a3

(
a3t3

3
− 1

6

[
a2t2(2at− 3)− 6e−at(1 + at) + 6

])
=
D

a3
[
a2t2 + 2e−at(1 + at)− 2

]
. (4.5.50)
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Since the dissipation Σt does not depend on the choice of Jt, U , it is still given by
Eq. (4.5.30). The quality factor Q?

τ for the TUR Σtvar(Jt) ≥ 2 [t∂t⟨Jt⟩]2 that would hold in
the absence of explicit time dependence in U [Eq. (4.5.16) for ⟨J̃t⟩ = 0; see also Ref. [126]]
reads

Q?
τ =

4a4t4e−2at

(1− e−2at) [a2t2 + 2e−at(1 + at)− 2]
. (4.5.51)

Thus we see that as the other quality factors in Eqs. (4.5.34) and (4.5.47),Q?
τ only depends

on the quantity at. In Fig. 4.5.2 we see that Q?
τ > 1 for small values of at which breaks

the TUR Σtvar(Jt) ≥ 2 [t∂t⟨Jt⟩]2, i.e., this example shows that the correction term −⟨J̃t⟩ in
the TUR Σtvar(Jt) ≥ 2[t∂t⟨Jt⟩ − ⟨J̃t⟩]2 [Eq. (4.5.16)] is necessary for general validity for
currents with explicitly time-dependent U.

For comparison, we also give the correct quality factor Qτ for the transient TUR
[Eq. (4.5.16)] including the correction term −⟨J̃t⟩. Since τ∂ττ = τ we have J̃t = Jt

such that the correct quality factor using Eq. (4.5.49) reads

Qτ =
2
(
−zat2e−at + z

a

[
1− e−at(1 + at)

])2
az2

2D (1− e−2at)D
a3

[a2t2 + 2e−at(1 + at)− 2]

=
4
[
1− e−at(1 + at+ a2t2)

]2
(1− e−2at) [a2t2 + 2e−at(1 + at)− 2]

. (4.5.52)

To give a counterexample that shows that NESS TUR Σtvar(Jt) ≥ 2⟨Jt⟩2 breaks down for
this transient system, consider the current Jx

t = xt − x0 as in Eq. (4.5.32). The quality
factor for this example follows from Eq. (4.5.33),

QNESS
x =

2z2(1− e−at)2

az2

2D (1− e−2at)2Da (1− e−at)
=

2(1− e−at)

1− e−2at
. (4.5.53)

Note that for any y ∈ [0, 1) the inequality (1 − y)2 > 0 implies 2(1 − y) > 1 − y2. Thus,
we have for any value at > 0 that QNESS

x > 1, see also Fig. 4.5.2. This provides (for any
at > 0) a counterexample against the NESS TUR, i.e., as expected the NESS TUR does not
hold for transient dynamics.

Detailed derivation of ⟨A2
t ⟩ = Σt/2

Recall the “educated guess” [Eq. (4.5.9)]

At ≡
∫ τ=t

τ=0
a(xτ , τ)

TdWτ ,
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a(xτ , τ)
T ≡ j(xτ , τ)

T

P (xτ , τ)
[2D(xτ )]

−1σ(xτ ) ,

a(xτ , τ) = σ(xτ )
T [2D(xτ )]

−1 j(xτ , τ)

P (xτ , τ)
, (4.5.54)

where At and P (xτ , τ) are scalars, a(x, τ), j(xτ , τ) and dWτ are vectors, and 2D(xτ ) =

2D(xτ )
T = σ(xτ )σ(xτ )

T are matrices (note that ([2D(xτ )]
−1)T = [2D(xτ )]

−1). Due to
the “delta-correlated” noise property ⟨dWτ,idWτ ′,j⟩ = δ(τ − τ ′)δijdτdτ

′ the expectation of
the square of the noise-integral At is given by [6,16]

〈
A2

t

〉
=

∫ t

0

〈
a(xτ , τ)

Ta(xτ , τ)
〉
dτ

=

∫ t

0

〈
j(xτ , τ)

T

P (xτ , τ)
[2D(xτ )]

−1 j(xτ , τ)

P (xτ , τ)

〉
dτ. (4.5.55)

Using that ⟨f(xτ , τ)⟩ =
∫
dxP (x, τ)f(x, τ) and comparing to the definition of Σt

[Eq. (4.5.5)],

Σt =

∫
dx

∫ t

0

j(x, τ)TD−1(x)j(x, τ)

P (x, τ)
dτ , (4.5.56)

we immediately obtain ⟨A2
t ⟩ = Σt/2.

Detailed derivation of Eq. (4.5.13)

From the inequality Σtvar(Jt) ≥ 2
[
⟨Jt⟩+ ⟨AtJ

II
t ⟩
]2 [Eq. (4.5.11)] we derive TURs by eval-

uating the expectation value (define notation g(xτ , τ) ≡ j(xτ ,τ)
P (xτ ,τ)

[2D(xτ )]
−1)

〈
AtJ

II
t

〉
≡
〈∫ τ=t

τ=0
g(xτ , τ) · σ(xτ )dWτ

∫ t

0
U(xτ ′ , τ

′)dτ ′
〉

=

∫ t

0
dτ ′
∫ τ=t

τ=0

〈
g(xτ , τ) · σ(xτ )dWτU(xτ ′ , τ

′)
〉
. (4.5.57)

We use an approach from Refs. [84,85] to evaluate this expectation value. For convenience
of the reader, we recall this approach here and apply it to this special case.

First, note that for times τ ≥ τ ′ this expectation value vanishes due to the independence
property of the Wiener process. However, non-trivial contributions occur for τ < τ ′ be-
cause the probability density of xτ ′ depends on dWτ . We want to express ⟨AtJ

II
t ⟩ in terms

of integrals over the probability density P (x, τ) [that contains the information on the initial
condition P (x, 0)] and the conditional density P (x′, τ ′|x, τ). This would be trivial in the
absence of the noise increment σ(xτ )dWτ by using ⟨

∫ t
0 V1(xτ , τ

′)dτ
∫ t
τ V2(xτ ′ , τ

′)dτ ′⟩ =
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∫
dx
∫
dx′ ∫ t

0 dτ
∫ t
τ dτ

′V1(x, τ)V2(x
′, τ ′)P (x′, τ ′|x, τ)P (x, τ). The critical task is generaliz-

ing this to integration involving the noise increment.

For a given point xτ = xwe set ε ≡ σ(x)dWτ = O(
√
dτ)which has a Gaussian probability

distribution P (ε) with zero mean and covariance matrix 2D(x)dτ . For a given ε, the equa-
tion of motion in Itô form implies a position increment dxτ (x, τ, ε) = [F(x)+∇·D(x)]dτ+ε.
We now write the average in Eq. (4.5.57) as integrals over the probability density to be at
points x,x+ dxτ ,x

′ at times τ < τ + dτ < τ ′, respectively, i.e., for τ < τ ′

〈
g(xτ , τ) · σ(xτ )dWτU(xτ ′ , τ

′)
〉

=

∫
dx

∫
dx′g(x, τ) · εU(x′, τ ′)P (ε)P (x′, τ ′|x+ dxτ (x, τ, ε), τ + dτ)P (x, τ) . (4.5.58)

Expanding in small dτ gives

P (x′, τ ′|x+ dxτ (x, τ, ε), τ + dτ)

= P (x′, τ ′|x, τ) + dxτ (x, τ, ε) · ∇xP (x
′, τ ′|x, τ) +O(dτ) . (4.5.59)

By symmetry only the term of even power ∼ ε2 in ε[dxτ (x, τ, ε) · ∇xP (x
′, τ ′|x, τ)] survives

the integration over P (ε) and contributes according to the covariance matrix 2D(x)dτ .
Therefore, we arrive at (where 1τ<τ ′ = 1 if τ < τ ′ and 0 otherwise)

⟨g(xτ , τ) · σ(xτ )dWτU(xτ ′ , τ
′)⟩

= 1τ<τ ′dτ

∫
dx

∫
dx′U(x′, τ ′)g(x, τ)2D(x)P (x, τ) · ∇xP (x

′, τ ′|x, τ) . (4.5.60)

Now we perform an integration by parts in x. The boundary terms vanish in infinite space
due to the vanishing of the probability density at ||x|| → ∞, in finite space with reflecting
(i.e., zero-flux) boundary conditions they vanish by the divergence theorem, and in a finite
system with periodic boundary conditions the boundary terms cancel. Note that finite
spatial domains with reflecting boundary conditions are in essence already contained in
the infinite-space-case as the limit of a strongly confining potential. Using the symmetry
DT (x) = D(x) we arrive at

⟨g(xτ , τ) · σ(xτ )dWτU(xτ ′ , τ
′)⟩

= −1τ<τ ′dτ

∫
dx

∫
dx′U(x′, τ ′)P (x′, τ ′|x, τ)∇x · [2D(x)g(x, τ)P (x, τ)] . (4.5.61)
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Plugging in the explicit form of g(x, τ) we finally obtain

⟨AtJ
II
t ⟩ = −

∫ t

0
dτ ′
∫

dx′U(x′, τ ′)

∫ t

0
dτ1τ<τ ′

∫
dxP (x′, τ ′|x, τ)∇x · j(x, τ)

= −
∫ t

0
dτ ′
∫

dx′U(x′, τ ′)

∫ τ ′

0
dτ

∫
dxP (x′, τ ′|x, τ)∇x · j(x, τ) . (4.5.62)

Derivation of Eq. (4.5.15)

We here simplify Eq. (4.5.62) for the case of transient dynamics, i.e., where ∇ · j(x, τ) =
−∂τP (x, τ) does not vanish. An integration by parts in τ with the boundary term
−
∫
dxP (x′, τ ′|x, 0)P (x, 0) = −P (x′, τ ′) yields

⟨AtJ
II
t ⟩ (4.5.63)

=

∫ t

0
dτ ′
∫

dx′U(x′, τ ′)

(
−P (x′, τ ′)−

∫
dx

∫ t

0
dτP (x, τ)∂τ

[
1τ<τ ′P (x

′, τ ′|x, τ)
])

.

Note that the first term is −⟨J II
t ⟩. Since we consider Markovian systems without explicit

time dependence of F and σ, we have ∂τP (x′, τ ′|x, τ) = ∂τP (x
′, τ ′−τ |x) = −∂τ ′P (x′, τ ′−

τ |x) = −∂τ ′P (x′, τ ′|x, τ). Using moreover ∫ dxP (x′, τ ′|x, τ)P (x, τ) = P (x′, τ ′) and∫ t
0 dτ1τ<τ ′ = τ ′ we obtain, upon integrating by parts with the boundary term entering
at τ ′ = t, and recalling ⟨J II

t ⟩ = ⟨Jt⟩,

⟨AtJ
II
t ⟩ = −⟨J II

t ⟩+
∫

dx′
∫ t

0
dτ ′U(x′, τ ′)∂τ ′

[
τ ′P (x′, τ ′)

]
= (t∂t − 1)⟨Jt⟩ −

∫
dx′

∫ t

0
dτ ′P (x′, τ ′)τ ′∂τ ′U(x′, τ ′) . (4.5.64)

In order to make Eq. (4.5.64) operationally accessible we define a second current

J̃t ≡
∫ τ=t

τ=0
τ∂τU(xτ , τ) · ◦dxτ , (4.5.65)

where ⟨J̃t⟩ is analogously to Eqs. (4.5.7) and (4.5.8) obtained via τ∂τU such that from
Eq. (4.5.64) we obtain Eq. (4.5.15), i.e.,

⟨AtJ
II
t ⟩ = (t∂t − 1)⟨Jt⟩ − ⟨J̃t⟩ . (4.5.66)
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Extension to Markov jump processes

We consider steady-state Markov jump dynamics. Recall from Subsec. 4.5.8 that currents
are defined with antisymmetric prefactors dxy = −dyx as the double sum J ≡

∑
x ̸=y dxyn̂xy,

and that the dissipation reads Σ ≡ t
∑

x̸=y pxrxy ln[pxrxy/pyryx]. Moreover, recall the defi-
nition [Eq. (4.5.23)]

A ≡
∑
x ̸=y

Zxy(n̂xy − τ̂xrxy)

Zxy ≡ pxrxy − pyryx
pxrxy + pyryx

. (4.5.67)

To complete the proof of the steady-state TUR as outlined in Sec. 4.5.8 we need to show
⟨A⟩ = 0, ⟨A2⟩ ≤ Σ/2 and ⟨AJ⟩ = ⟨J⟩. Proving these statements can be performed in
complete analogy to the Cramér-Rao proof of the steady-state TUR (the latter can e.g., be
found in Ref. [233]) by tilting the rates rxy(θ) = rxye

θZxy and identifying A = ∂θ
∣∣
θ=0

lnPθ

where Pθ is the tilted path measure. Note that ⟨∂θ lnPθ⟩ =
∫
∂θPθ = ∂θ1 = 0 implies

⟨A⟩ = 0. Using explicit properties of Zxy we have ∂θ⟨J⟩θ = ⟨J⟩θ [233] which implies
⟨J∂θ lnPθ⟩θ = ∂θ

∫
JPθ = ∂θ⟨J⟩θ = ⟨J⟩θ. Setting θ = 0 implies ⟨AJ⟩ = ⟨J⟩. Evaluating the

Fisher information I(θ) at θ = 0 yields I(θ = 0) =
∑

x ̸=y(pxrxy−pyryx)2/2(pxrxy+pyryx) ≤
Σ/2 [233] which due to ⟨A2⟩ = ⟨(∂θ

∣∣
θ=0

lnPθ)
2⟩ = I(θ = 0) concludes the proof.

Although we have completed the proof of the NESS TUR, this is by no means a “direct”
proof, and it does not directly generalize in analogy to the generalizations performed
above in continuous space. In order to give a genuinely “direct” proof in the sense that
it completely follows from the equation of motion (i.e., from the properties of Markovian
jumps and from the master equation), to generalize to arbitrary initial conditions, and
to incorporate correlations of currents and densities, we consider a direct analogy to the
continuous space approach presented above. We now give an outlook on this direct ap-
proach. Define ĉxy(τ) as the random variable representing a jump x → y at time τ such
that n̂xy =

∫ t
0 dτ ĉxy(τ) and 1̂x(τ) as the random variable yielding 1 if the state x is occupied

at τ (and 0 otherwise) such that τ̂x =
∫ t
0 dτ 1̂x(τ). Then define

A ≡
∑
x ̸=y

∫ t

0
dτ
px(τ)rxy − py(τ)ryx
px(τ)rxy + py(τ)ryx

[
ĉxy(τ)− rxy1̂x(τ)

]
, (4.5.68)

and split a current J =
∑

i ̸=j dijn̂ij =
∑

i ̸=j dij
∫ t
0 dτ ĉij(τ) (where dij = −dji) into

J = J I + J II ,
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J I =
∑
i ̸=j

dij(n̂ij − rij τ̂i) =
∑
i ̸=j

dij

∫ t

0
dτ
[
ĉij(τ)− rij1̂i(τ)

]
,

J II =
∑
i ̸=j

dijrij τ̂i =
∑
i ̸=j

dijrij

∫ t

0
dτ 1̂i(τ) . (4.5.69)

Using this notation, one can directly show that ⟨A⟩ = 0, ⟨A2⟩ ≤ Σ/2, ⟨AJ I⟩ = ⟨J⟩
(analogous to the proof above in continuous space but instead of ⟨σ(x)dWτ ⟩ = 0 and
⟨[σ(x)dWτ ]

2⟩ = 2D(x)dτ use that given 1̂x(τ) = 1 the term [ĉxy(τ) − rxy]dτ has zero
mean and variance rxydτ). Thus, as in Eq. (4.5.11) we have Σvar(J) ≥ 2

[
⟨J⟩+ ⟨AJ II⟩

]2.
Deriving the different TURs then follows in analogy to Subsecs. 4.5.3-4.5.5 by evaluating
⟨AJ II⟩ and accordingly introducing densities. All results, including the discussion of the
saturation, would then equally apply to Markov jump processes, which will be addressed
in the future.
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Chapter 5

Thermal relaxation asymmetry

The largest part of the thesis, namely the topic of time-integrated densities and currents,
is now behind us. In this chapter, we address the topic of thermal relaxation, in particular,
the comparison of heating and cooling processes. After introducing and specifying the
question, we will reproduce two publications in Secs. 5.4 and 5.5.

5.1 Introduction to thermal relaxation

If we place a system at a certain temperature in an environment with a different tempera-
ture, the system will approach the environment’s temperature in a process called thermal
relaxation. The conventional tools to analyze this process are Fourier’s law, stating that the
transferred heat is proportional to the temperature difference, or the framework of linear
irreversible thermodynamics [25–27] based on the work of Lars Onsager which was awarded
the Nobel Prize in Chemistry in 1968 [247]. Both approaches, however, are inherently lin-
ear and do not hold far from thermal equilibrium. Therefore, they are unable to address
thermal relaxation beyond the linear regime of small temperature differences.

To go beyond the linear regime, we recall that, in contrast to the conventional approaches,
the Langevin equation and the framework of stochastic thermodynamics are valid arbi-
trarily far from equilibrium. This opens the door to many questions that could not have
been studied before. In particular, we want to compare heating and cooling processes to
investigate whether (unlike in the linear regime) the sign of the temperature differences
matters. The setup to this problem, based on the methods developed in Ch. 2, was first
studied in [73]. Consider a Langevin dynamics that tends to equilibrium for long times,
and study the relaxation for different initial conditions, reflecting different initial temper-
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5 Thermal relaxation asymmetry

atures. Specifically, the initial condition will be chosen from the Boltzmann distribution
p(x, t = 0) ∝ exp[−ϕ(x)/kBTi] of the process at an initial temperature Ti.

One important aspect, however, is not a priori clear: How do we quantify the process in
time? The problem is that far from equilibrium, there is no reason to assume that the
process passes through local equilibrium states at intermediate temperatures, i.e., we will
not have that p(x, t) ∝ exp[−ϕ(x)/kBT (t)] with temperature T (t). Such an intermediate
temperature simply does not exist, which raises the question of how to quantify the time-
evolution of the process instead. Of course, the probability density p(x, t) contains the full
information on the time evolution, but it does not directly relate to a thermodynamical
distance to the target temperature. One could come up with several notions of such dis-
tances, but the thermodynamically most natural quantification appears to be in terms of an
excess free energy, i.e., the free energy of the current state p(x, t) compared to the target
equilibrium ps(x) [73].

5.2 Quantifying thermal relaxation
This section addresses the quantification of relaxation processes far from equilibrium, in
particular, thermal relaxation processes. We introduce the excess free energy in Sub-
sec. 5.2.1, and relate it to the concept of non-adiabatic entropy production in Subsec. 5.2.2.
Finally, we mention an alternative quantification in Subsec. 5.2.3.

5.2.1 Excess free energy

Consider Langevin dynamics at temperature T in a potential ϕ(x) that for long times ap-
proaches a Boltzmann-Gibbs equilibrium density ps(x) = exp[−ϕ(x)/kBT ]/Z, see Sub-
sec. 2.7.1. The equilibrium free energy of such a system reads F = −kBT lnZ [28].
Equivalently, we can use the internal energy U = ⟨ϕ(xt)⟩s and the Gibbs-Shannon en-
tropy of the system (see Sec. 2.9) to compute the (Helmholtz) free energy of the sys-
tem from F = U − TSsys, which, by rewriting the Boltzmann-Gibbs form of ps(x) as
ϕ(x) = −kBT (ln[ps(x)] + lnZ), consistently gives in the equilibrium state for any t

F = ⟨ϕ(xt)⟩s − TSsys

=

∫
dx ps(x)ϕ(x)− T

(
−kB

∫
dx ps(x) ln[ps(x)]

)
= −kBT

∫
dx ps(x)(ln[ps(x)] + lnZ) + kBT

∫
dx ps(x) ln[ps(x)]

= −kBT lnZ . (5.2.1)
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To quantify a free energy for the same dynamics but with different initial condition p(x, 0),
we follow the ansatz from Eq. (5.2.1) but with an arbitrary p(x, t),

F (t) = ⟨ϕ(xt)⟩ − TSsys(t)

=

∫
dx p(x, t)ϕ(x) + kBT

∫
dx p(x, t) ln[p(x, t)]

= −kBT
∫

dx p(x, t)(ln[ps(x)] + lnZ) + kBT

∫
dx p(x, t) ln[p(x, t)]

= F + kBT

∫
dx p(x, t) ln

[
p(x, t)

ps(x)

]
. (5.2.2)

Based on this we define the excess free energy as

D(t) ≡ F (t)− F = kBT

∫
dx p(x, t) ln

[
p(x, t)

ps(x)

]
. (5.2.3)

The integral on the right-hand side is known as the relative entropy or Kullback-Leibler
divergence of the probability densities p(x, t) and ps(x), and is an established tool in proba-
bility and information theory to quantify differences between probability densities [248].
The Kullback-Leibler divergence is not a metric (i.e., does not give a well-defined notion
of geometric distance) since it is not symmetric and does not satisfy the triangle inequal-
ity. However, as desired, it is zero if p(x, t) = ps(x) and positive otherwise. This reflects
that ps(x) minimizes the free energy for Langevin dynamics at temperature T . Indeed,
the Fokker-Planck dynamics of p(x, t) can also be understood as a particular minimization
process of the free energy1, which gives some geometrical interpretation to the relaxation
dynamics in the space of probability distributions.

Note that the reasoning in this section remains useful even for relaxation to non-equilibrium
steady states (NESS), where ps(x) is not a genuine Boltzmann-Gibbs density but we never-
theless define an effective potential ϕ(x) ≡ −kBT ln ps(x), see Subsec. 2.7.2. We will refer
to Eq. (5.2.3) as a generalized excess free energy in the case of relaxation towards a NESS.

Following the arguing above, we will use Eq. (5.2.3) to quantify a thermodynamic distance
of p(x, t) to the steady-state density ps(x), for both, equilibrium and NESS. Besides the in-
terpretation as a free energy difference as derived above, there is another strong motivation
to use exactly this quantification, namely its connection to the entropy production. This is
particularly useful to strengthen the thermodynamic justification of Eq. (5.2.3) for NESS,
where the interpretation as free energy is not as intuitive as in the equilibrium case.

1More precisely, the Fokker-Planck dynamics can be shown to emerge from a gradient flow in the
Wasserstein metric minimizing the free energy functional F [p(·)] [249].
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5.2.2 Connection of excess free energy and entropy production

Relaxation towards equilibrium

We here establish a connection between the excess free energy at time t and the entropy
∆S([t,∞)) produced in the time-interval [t,∞), i.e., in the time interval where p(x, t) re-
laxes towards ps(x). From the first line of Eq. (5.2.2), and using Eq. (2.9.3) for the entropy
production in the medium for reversible dynamics, we see that for relaxation towards equi-
librium

F (t)− F (∞) = ⟨ϕ(xt)− ϕ(x∞)⟩ − T [Ssys(t)− Ssys(∞)]

=

〈∫ τ=∞

τ=t
−∇ϕ(xτ ) ◦ dxτ

〉
+ T∆Ssys([t,∞))

= T∆Smed([t,∞)) + T∆Ssys([t,∞)) . (5.2.4)

The definition (5.2.3) and Eq. (5.2.4) thus yield for reversible systems

D(t) = T∆Stot([t,∞)) . (5.2.5)

Relaxation towards NESS

For relaxation towards a NESS Eq. (5.2.5) no longer holds. However, for NESS there exists
another useful splitting of the total entropy production (i.e., not only the splitting into
∆Smed and∆Ssys), namely into adiabatic and non-adiabatic contributions [188] (where we
define νs(x) ≡ js(x)/ps(x) and ν(x, t) ≡ j(x, t)/p(x, t) with j(x, t) ≡ [a(x) − D∇]p(x, t),
see Eq. (2.6.5)),

∆Stot([t1, t2]) = ∆Snon−adiabatic([t1, t2]) + ∆Sadiabatic([t1, t2])

∆Sadiabatic([t1, t2]) ≡ kB

∫ t2

t1

dτ
〈
νT
s (xτ )D

−1νs(xτ )
〉
≥ 0 (5.2.6)

∆Snon-adiabatic([t1, t2]) ≡ kB

∫ t2

t1

dτ
〈
[ν(xτ , τ)− νs(xτ )]

TD−1[ν(xτ , τ)− νs(xτ )]
〉
≥ 0 .

Here, most of the time dependence of the process is contained in the non-adiabatic part,
while the adiabatic part only features time dependence through the average ⟨· · · ⟩ taken
over p(x, t). Note that, unlike the splitting into system and medium entropy production,
here, not only the total entropy production but also both individual contributions are always
non-negative.
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To derive Eq. (5.2.6), note that

ν(x, τ)− νs(x) =
[a(x)−D∇]p(x, τ)

p(x, τ)
− [a(x)−D∇]ps(x)

ps(x)

= −D∇ ln

[
p(x, τ)

ps(x)

]
. (5.2.7)

Recall that∆Stot([t1, t2]) = kB
∫ t2
t1

dτ⟨νT (xτ , τ)D
−1ν(xτ , τ)⟩, see Eq. (2.9.8), and useD =

DT , Eq. (5.2.7) and ∇ · js = 0 to write

∂τ
[
∆Stot([t1, τ ])−∆Sadiabatic([t1, τ ])−∆Snon-adiabatic([t1, τ ])

]
= 2kB

〈
[ν(xτ , τ)− νs(xτ )]

TD−1νs(xτ )
〉

= −2kB

∫
dx p(x, τ)νs(x) · ∇ ln

[
p(x, τ)

ps(x)

]
= −2kB

∫
dx ps(x)νs(x) · ∇

[
p(x, τ)

ps(x)

]
= 2kB

∫
dx

p(x, τ)

ps(x)
∇ · js(x)

= 0 . (5.2.8)

This proves the decomposition in Eq. (5.2.6).

For equilibrium states, we have νs(x) = 0 for all x, such that ∆Sadiabatic([t,∞)) = 0 and
D(t)/T = ∆Stot([t,∞)) = ∆Snon-adiabatic([t,∞)). For NESS we have ∆Sadiabatic([t,∞)) ̸= 0

such that ∆Stot([t,∞)) ̸= ∆Snon-adiabatic([t,∞)) but one can show that

D(t) = T∆Snon-adiabatic([t,∞)) . (5.2.9)

To derive Eq. (5.2.9), i.e., to see that ∆Snon-adiabatic([t,∞)) as defined in Eq. (5.2.6) agrees
with the Kullback-Leibler divergence in Eq. (5.2.3), we write (see also Ref. [188]; in
the last step we use ⟨∂τ ln[p(x, τ)/ps(x)]⟩ = ⟨{∂τp(x, τ)}/p(x, τ)⟩ =

∫
dx∂τp(x, τ) =

∂τ
∫
dxp(x, τ) = ∂τ1 = 0)

∂τ∆Snon-adiabatic([τ,∞))/kB
Eq. (5.2.6)

= −
〈
[ν(xτ , τ)− νs(xτ )]

TD−1[ν(xτ , τ)− νs(xτ )]
〉

Eq. (5.2.8)
= −

〈
ν(xτ , τ)

TD−1[ν(xτ , τ)− νs(xτ )]
〉

Eq. (5.2.7)
= −

∫
dx p(x, τ)ν(x, τ) · ∇ ln

[
p(x, τ)

ps(x)

]
Eq. (2.6.5)

=

∫
dx {∂τp(x, τ)} ln

[
p(x, τ)

ps(x)

]
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= ∂τ

∫
dx p(x, τ) ln

[
p(x, τ)

ps(x)

]
. (5.2.10)

Using that both, ∆Snon-adiabatic([τ,∞)) and D(τ), vanish as τ → ∞, Eq. (5.2.10) implies
Eq. (5.2.9) by integrating over τ .

In summary, we see that while D(t) = T∆Stot([t,∞)) only holds for relaxation towards
equilibrium, D(t) = T∆Snon-adiabatic([t,∞)) also holds for relaxation towards NESS. This
result strengthens the interpretation of D(t) as a useful observable to quantify the thermo-
dynamics of relaxation since ∆Snon-adiabatic([t,∞)) is known to be exactly the part of the
entropy production relevant to relaxation processes, while ∆Sadiabatic([t,∞)) merely con-
stitutes the cost of maintaining the NESS [28,188]. Therefore, we will henceforth use D(t)

to quantify relaxation in both, equilibrium and non-equilibrium steady states.

5.2.3 Thermal kinematics

Above we gave strong arguments for using the (generalized) excess free energy in
Eq. (5.2.3) to quantify relaxation, and we do so in the publications reproduced in Secs. 5.4
and 5.5. However, there is one disadvantage of this approach. The Kullback-Leibler di-
vergence is not a true metric since it is not symmetric and does not satisfy the triangle
inequality, i.e., it does not represent a geometrical notion of distance. In particular, this
has the disadvantage that the initial (t = 0) excess free energy of a system at temperature
T1 relaxing towards T2 is not the same as in the scenario with T1 and T2 interchanged
(note in particular that this initial excess free energy is not the difference in equilibrium
free energies, since only the equilibrium free energy at the target temperature appears in
Eq. (5.2.3)). This complicates (although not at all prevents) the comparison of heating and
cooling processes, see Ref. [73] and following sections. To go beyond the quantification via
D(t), we use information theoretic concepts to develop in Sec. 5.4 an additional, alternative
framework, which we call thermal kinetmatics, that remedies these shortcomings, though
this happens at the cost of losing the thermodynamic notion presented in the preceding
paragraphs.

5.3 Summary of results
Before we present the two publications in detail in Secs. 5.4 and 5.5, we briefly outline the
results of these publications, and put them into the context of the previous two sections.

Both works are based on Ref. [73], where thermal relaxation towards an equilibrium state
was studied. Starting from two different initial temperatures, one hotter and one colder
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than the equilibrium temperature, it was found that, beyond the linear regime, heating
and cooling become asymmetric and, in particular, heating is always faster than cooling
for several systems, including in particular Langevin motion in a harmonic potential.

In the publication reproduced in Sec. 5.4 we experimentally confirm this result. From a
theoretical perspective, we also go beyond Ref. [73] by showing that heating is also faster
than cooling in the reversed protocol, i.e., when letting the system relax back towards the
initial hot and cold temperature. More importantly, we develop the framework of ther-
mal kinematics, see Subsec. 5.2.3, and use it to show that in one-dimensional harmonic
potentials, heating is also faster than cooling between any two temperatures. The new
theoretical results are also experimentally confirmed.

In the publication reproduced in Sec. 5.5, we study thermal relaxation towards NESS, again
for harmonic potentials. We find that in terms of the excess free energy in Eq. (5.2.3), heat-
ing is still faster than cooling, i.e., the thermal relaxation asymmetry remains unchanged
under non-equilibrium driving. We moreover study several interesting features induced by
the non-equilibrium driving, in particular the phenomenon of accelerated relaxation and the
emergence of counterintuitive rotational motions opposite to the direction of the rotational
driving.

5.4 Heating and cooling are fundamentally asym-
metric and evolve along distinct pathways (Nat. Phys.

2024)

This section is a slightly adapted version of the publicationM. Ibáñez, C. Dieball, A. Lasanta,
A. Godec and R. Rica, “Heating and cooling are fundamentally asymmetric and evolve along
distinct pathways”, Nat. Phys. (2024), available under the doi 10.1038/s41567-023-02269-
z.

Unlike all other publications included in this thesis, I was not the first author for the
manuscript reproduced in this section. My contribution to this manuscript was in devel-
oping the theoretical framework, carrying out the proofs, discussing the results, and co-
writing the manuscript. I did not perform any measurements on the experiment, and did
not contribute significantly to the second ‘Supplementary Material’ and to the ‘Materials
and Methods’-section reproduced in Subsecs. 5.4.8 and 5.4.9, respectively.
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Heating and Cooling are Fundamentally Asymmetric
and Evolve Along Distinct Pathways

Miguel Ibáñez1,2, Cai Dieball3, Antonio Lasanta2,4,5, Aljaž Godec3 and Raúl A. Rica1,2

Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am
Faßberg 11, 37077 Göttingen, Germany

1Universidad de Granada, Department of Applied Physics and Research Unit ’Modeling
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2Nanoparticles Trapping Laboratory, Universidad de Granada, 18071 Granada, Spain
3Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am
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4Universidad de Granada, Department of Algebra, Facultad de Educación, Economía y
Tecnología de Ceuta, Universidad de Granada, Cortadura del Valle, s/n, 51001 Ceuta,
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Abstract

According to conventional wisdom, a system placed in an environment with
a different temperature tends to relax to the temperature of the latter, medi-
ated by the flows of heat and/or matter that are set solely by the temperature
difference. It is becoming clear, however, that thermal relaxation is much more
intricate when temperature changes push the system far from thermodynamic
equilibrium. Here, we ask whether microscale systems under such conditions
heat up faster than they cool down. Using an optically trapped colloidal par-
ticle, we experimentally confirm this is indeed generally true. Strikingly, we
show with both experiments and theory that between any pair of tempera-
tures, heating is not only faster than cooling, but the respective processes in
fact evolve along fundamentally distinct pathways, which we explain with a
new theoretical framework we coin “thermal kinematics”. Our results pro-
foundly change the view on thermalization at the microscale, and will have a
strong impact on energy-conversion applications and thermal management of
microscopic devices, in particular in the operation of Brownian heat engines.
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5.4.1 Introduction

The basic laws of thermodynamics dictate that any system in contact with an environment
eventually relaxes to the temperature of its surroundings as a result of irreversible flows that
drive the system to thermodynamic equilibrium. If the difference between the initial tem-
perature of the system and that of the surroundings is small, i.e., the system is initially “close
to equilibrium” [25], the relaxation is typically assumed to evolve quasi-statically through
local equilibrium states—an assumption that is justifiable only a posteriori [25,250]. How-
ever, if the temperature contrast is such that it pushes the system far from equilibrium, the
assumption breaks down and the relaxation path is no longer unique, but depends strongly
on the initial condition. This gives rise to counterintuitive phenomena, such as anoma-
lous relaxation (also known as the Mpemba effect) [251–257] where, a system reaches
equilibrium faster upon a stronger temperature quench, and the so-called Kovacs memory
effect [258–262] which features a non-monotonic evolution towards equilibrium.

Intriguingly, thermal relaxation was recently predicted to depend also on the sign of
the temperature change. Namely, considering two thermodynamically equidistant (TE)
temperatures—one higher and the other lower than an intermediate one selected such that
the initial free energy difference with the equilibrium state is the same—heating from the
colder temperature was predicted to be faster than cooling from the hotter one [73, 75].
This prediction challenges our understanding of non-equilibrium thermodynamics, as it
compares reciprocal relaxation processes elusive to classical thermodynamics. The initially
hotter system must dissipate into the environment an excess of both, energy and entropy,
whereas in the colder system energy and entropy must increase [73, 74]. Moreover, the
comparison of heating and cooling provokes an even more fundamental question, namely
that of reciprocal relaxation processes between two fixed temperatures. According to the
“local equilibrium” paradigm [25] the system relaxes quasi-statically and thus traces the
same path along reciprocal processes. We show, however, that this is not the case: heating
and cooling are inherently asymmetric and evolve along distinct pathways.

In this work, we use colloidal particles in temperature-modulated optical traps to inter-
rogate relaxation kinetics upon temperature quenches (see Fig. 5.4.1), and unveil three
fundamental asymmetries between heating and cooling. We experimentally confirm the
prediction that heating is faster than cooling in three complementary situations, precisely
(i) that heating from a colder temperature towards an intermediate target temperature is
faster than cooling from the corresponding TE hotter temperature [73]. Unexpectedly, we
also show (ii) that the reverse process, i.e., heating from the intermediate temperature to
a hotter temperature is faster than cooling to the corresponding TE colder temperature.
Most surprisingly, we show (iii) that between a fixed pair of temperatures, heating is faster
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5 Thermal relaxation asymmetry

than the reciprocal cooling. In all cases, we provide mathematical proofs that establish
these asymmetries as a general feature of systems with (at least locally) quadratic energy
landscapes.

A key result is that the production of entropy within the system during heating is more effi-
cient than heat dissipation during cooling. Asymmetries (ii) and (iii) further imply that the
microscopic relaxation paths during heating and cooling are distinct. Moreover, whereas a
system prepared at TE temperatures is by construction equally far from equilibrium in terms
of free energy, we show that the colder system is in fact statistically farther from equilib-
rium and yet heating from said colder temperature is faster. Developing a new framework
we coin “thermal kinematics” we explain the asymmetry by means of the propagation in
the space of probability distributions, which is intrinsically faster during heating.

5.4.2 Heating and cooling at thermodynamically equidistant
conditions

Thermal relaxation kinetics beyond the “local equilibrium” regime can be quantified within
the framework of Stochastic Thermodynamics [28, 53, 69] which requires the knowledge
of statistics of all slow, mesoscopic degrees of freedom. In the present work, where we use
a colloidal particle with a diameter of 1 µm in a tightly focused laser (see Fig. 5.4.1), the
overdamped regime ensures that only the position has to be analyzed [28,263,264]. Due to
the symmetry of the tweezers setup, it suffices to follow a single coordinate of the particle
as a function of time, which we denote by xt. We consider two different initial conditions.
By the nature of the setup (see Fig. 5.4.1) xt is initially in equilibrium in the optical poten-
tial U(x) at either the “hot”, Th, or “cold”, Tc, temperature, respectively, with a probability
density P j

eq(x) = e(Fj−U(x))/kBTj where Fj ≡ −kBTj ln
∫∞
−∞ e−U(x)/kBTjdx is the equilib-

rium free energy at temperature Tj . In the following, equilibrium probability densities are
denoted by P j

eq(x), where j = h,w, c refers to the bath temperature Tj . Observables with
both, subscript and superscript i, f = h,w, c, e.g., Af

i , denote transient observables where
the subscript refers to the initial and the superscript to the target state. The state of the
system at any time is fully specified by, P f

i (x, t), the probability density of the particle’s
position at time t.

We first focus on the forward protocol, where the relaxation occurs at the “warm” tem-
perature Tw and i = h, c. The dynamics is ergodic and therefore Pw

i (x, t) relaxes to-
wards Pw

eq(x). We use ⟨. . .⟩wi to denote averages over Pw
i (x, t) and quantify the instan-

taneous displacement from the equilibrium distribution Pw
eq(x) by means of the gener-

alized excess free energy given by [73, 120, 265] Dw
i (t) = ⟨U(xt)⟩wi −TwSw

i (t) − Fw =
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Figure 5.4.1: Setup for probing the heating-cooling asymmetry. a. Schematic represen-
tation of the experiment. A charged dielectric microparticle dispersed in water is confined
in a parabolic trap generated by a tightly focused infrared laser. Its effective temperature
is controlled by an electric field that shakes the particle, mimicking a thermal bath at a
higher temperature than the water. An arbitrary signal generator feeds a noisy signal with
a Gaussian-white spectrum into a pair of gold microelectrodes immersed in the liquid, thus
producing the required electric field. Therefore, the particle exhibits Brownian motion
inside the trap, featuring a Gaussian distribution whose variance is determined by the ef-
fective temperature. b. In experiments, we track the evolution of the position distribution
upon quenches of the effective thermal bath during heating (red arrows) and cooling (blue
arrows). c. Schematic representation of the respective protocols: in the forward protocol,
the system is initially prepared at equilibrium with the thermal bath with a temperature
higher (Th) or lower (Tc) than the target (Tw) temperature. Th and Tc are chosen to be
thermodynamically equidistant from Tw with Th > Tw > Tc. During the backward proto-
col, the system relaxes at the respective thermodynamically equidistant temperatures Th
and Tc, starting from a common initial condition that is the equilibrium at Tw. In a third
situation, only two temperatures are compared, considering the evolution of the system
upon heating and cooling between them. In b and c solid and dashed arrows stand for the
forward and backward process, respectively, and thick lines indicate faster evolution than
thin ones.
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5 Thermal relaxation asymmetry

kBTwD[Pw
i (x, t)||Pw

eq(x)] for i = h, c, where Sw
i (t) = −kB⟨lnPw

i (xt, t)⟩wi is the Gibbs en-
tropy and D[P ||Q] =

∫
P ln(P/Q)dx is the relative entropy between the probability dis-

tributions P and Q. This generalizes the notion of the canonical free energy F = U − TS

to instantaneous non-equilibrium configurations with a probability density P (x, t). Tem-
peratures Th and Tc are said to be TE from Tw when the initial excess free energies are
equal, i.e., Dw

h (0) = Dw
c (0) [73]. The unexpected prediction was made in Ref. [73] that

Dw
c (t) < Dw

h (t) at all times t > 0. That is, the system heats up to the temperature of its sur-
roundings faster than it cools down. Albeit an asymmetric relaxation is counter-intuitive,
our experiments quantitatively corroborate this prediction to be true, see Fig. 5.4.2.

What may be even more surprising is, heating also turns out to be faster along the reversed,
backward protocol. That is, we prepare the system to be in equilibrium at the “warm”
temperature Tw and track the relaxations at Th and Tc, respectively. Likewise, we quantify
the kinetics via the relative entropy Di

w(t) ≡ kBTwD[P i
w(x, t)||Pw

eq(x)], such that Dh
w(t)

and Dc
w(t) evolve from zero and asymptotically converge to Dh/c

w (∞) = Dw
h/c(0). Although

Di
w(t) sensibly quantifies the departure from Pw

eq(x), it is strictly speaking not an excess
free energy, in contrast to Dw

i (t) defined above, because Tw and Pw
eq(x) no longer refer to

the target equilibrium, i.e., because Dw
i (t) = ⟨U⟩iw −TwSi

w(t)−Fw ̸= ⟨U⟩iw −TiSi
w(t)−Fw

where the latter would correspond to an excess free energy. We observe in Fig. 5.4.2 that
Dh

w(t) > Dc
w(t) for all times t > 0, i.e., the system heats up to the new equilibrium at Th

faster than it cools back to Tc. This observation is remarkable as it shows that heating is
inherently faster than cooling at TE conditions.

To confirm these observations theoretically, we assume that the particle’s dynamics evolve
in a parabolic potential with stiffness κ, U(x) = κx2/2, according to the overdamped
Langevin equation dxt = −(κ/γ)xtdt + dξit with friction constant γ given by the Stokes’
law γ = 6πrη where η is the viscosity of water. The thermal noise dξit, where i = h,w, c

denotes the temperature of the reservoir, vanishes on average and obeys the fluctuation-
dissipation theorem ⟨dξitdξit′⟩ = 2(kBTi/γ)δ(t− t′)dtdt′. Under these assumptions we deter-
mine TE temperatures Th and Tc(Th), i.e., we calculate Tc after we arbitrarily set Th, (see
Eq. (5.4.12) in the Supplemental Material in Subsec. 5.4.7) and Dw/i

i/w(t) reads

Dw/i
i/w(t) =

kBTw
2

[Λ
w/i
i/w(t)− 1− ln Λ

w/i
i/w(t)], (5.4.1)

where Λw
i (t) = 1 + (Ti/Tw − 1)e−2(κ/γ)t and Λi

w(t) = Ti/Tw + (1 − Ti/Tw)e
−2(κ/γ)t. We

consider Dw
i (t) during the forward and Di

w(t) during the backward protocol. According to
Eq. (5.4.1), by plotting Dw/i

i/w(t)/kBTw as a function of ρ = Λ
w/i
i/w(t) all data should collapse

onto the master curve f(ρ) = (ρ−1−ln ρ)/2, which is indeed what we observe in Fig. 5.4.2.
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Figure 5.4.2: Experimental evolution of the generalized excess free energy during
heating and cooling at thermodynamically equidistant conditions. Panels a and c cor-
respond to the forward protocol and b and d to the backward counterpart. Thick, red
arrows stand for heating, while blue, thin arrows represent cooling. a., b. Time evolution
of the generalized excess free energy for a characteristic time τ = γ/κ = 0.1844(3) ms,
Tc/Tw = 0.11(1), Th/Tw = 3.56(1). Red circles stand for heating and blue squares stand
for cooling. Solid lines correspond to the theoretical predictions without fitting parameters.
Insets represent the initial value of the relative entropy Dw

i (0)/kBTw (y-axis) as a function
of the temperature (x-axis) on the logarithmic scale. The arrows represent the evolution
direction along the master curve f(ρ) = (ρ−1− ln ρ)/2. The confidence regions have been
estimated by quadratic uncertainty propagation from the standard deviation of the exper-
imental histograms. c., d. Generalized excess free energy Dw/i

i/w(t)/kBTw as a function of
Λ
w/i
i/w(t), along the master curve f(ρ), for several different TE conditions. The correspond-

ing time series are included in the Supplemental Material (Fig. S5).
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5 Thermal relaxation asymmetry

Having established the validity of the model, we prove (see Theorem 1 in Subsec. 5.4.7)
that our observations hold for all TE temperatures and for any κ and γ, i.e.,

Dw
c (t) < Dw

h (t) and Dh
w(t) > Dc

w(t), for all 0 < t <∞. (5.4.2)

Our observations in Fig. 5.4.2 and the inequalities (5.4.2) establish rigorously that at TE
conditions, heating is faster than cooling.

Notwithstanding, these results are still unsatisfactory for two reasons. First, Di
w(t), un-

like Dw
i (t), lacks a consistent thermodynamic interpretation and, in particular, is not an

excess free energy. Second, neither the relative entropy D[P ||Q] nor
√
D[P ||Q] are a true

metric; they are not symmetric, D[P ||Q] ̸= D[Q||P ], and do not satisfy triangle inequali-
ties. The latter in particular implies that while a Pythagorean theorem holds (see [124],
and Fig. 5.4.10 in Subsec. 5.4.7 for an experimental validation), D[P i

eq(x)||Pw
eq(x)] ≥

D[P i
eq(x)||P i

w(x, t)] + D[P i
w(x, t)||Pw

eq(x)], where we used P i
w(x, 0) = P i

eq(x), the triangle
inequality does not, i.e., in general√
D[P i

eq(x)||Pw
eq(x)] ̸≤

√
D[P i

eq(x)||P i
w(x, t)] +

√
D[P i

w(x, t)||Pw
eq(x)]. As a result, Dw/i

i/w(t)

does not measure “distance” from equilibrium and ∂tDw/i
i/w(t) is therefore not a “velocity”,

which seems to preclude a kinematic description of relaxation. In the following sections, we
show that combining stochastic thermodynamics with information geometry [266] makes
it possible to formulate a thermal kinematics.

5.4.3 Towards thermal kinematics

Immense progress has been made in recent years in understanding non-equilibrium sys-
tems. The discovery of thermodynamic uncertainty relations [47,48,87,134], and “speed
limits” [124, 266–268] revealed that the entropy production rate, which quantifies irre-
versible local flows in the system, universally bounds fluctuations and the rate of change,
respectively, in a non-equilibrium system. Closely related is the so-called Fisher informa-
tion known from information geometry, which quantifies how local flows change in time
and allows for defining a statistical distance [266,269–271].

In our context of thermal relaxation, an infinitesimal statistical line element may be de-
fined as follows. Since D[P f

i (x, t + dt)||P f
i (x, t)] = Ifi (t)dt

2 + O(dt3) (see Eq. (5.4.22) in
Subsec. 5.4.7), where we introduced the Fisher information Ifi (t) ≡ ⟨(∂t lnP f

i (x, t))
2⟩fi ,

we can define the line element as dl ≡
√
D[P f

i (x, t+ dt)||P f
i (x, t)] =

√
Ifi (t)dt and thus

vfi (t) ≡
√
Ifi (t) is the instantaneous statistical velocity of the system [266] relaxing from

P i
eq(x) at temperature Tf towards P f

eq(x). The statistical length traced by P f
i (x, τ) until
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time t is Lf
i (t) =

∫ t
0 v

f
i (τ)dτ and the distance between initial and final states is thus given

by Lf
i (∞) and does not depend on the direction, i.e., Lb

a(∞) = La
b (∞), for two different

temperatures Ta and Tb. To establish a kinematic basis for quantifying thermal relaxation
kinetics, we define the degree of completion φ

w/i
i/w(t) ≡ Lw/i

i/w(t)/L
w
i (∞), which increases

monotonically between 0 and 1.

Assuming that the system evolves according to overdamped Langevin dynamics in a
parabolic potential, we find (see Eqs. (5.4.27) and (5.4.28) in Subsec. 5.4.7) Lw

i (∞) =

| ln(Ti/Tw)|/
√
2 and

φ
w/i
i/w(t) = 1−

ln(1 + (Ti/w/Tw/i − 1)e−2(κ/γ)t)

ln(Ti/w/Tw/i)
. (5.4.3)

Moreover, we prove (see Theorem 2 in Subsec. 5.4.7) for any pair of TE temperatures Th, Tc
that Lw

c (∞) > Lw
h (∞) and yet

φw
c (t) > φw

h (t) and φh
w(t) > φc

w(t) for all 0 < t <∞. (5.4.4)

That is, the colder system is statistically farther from equilibrium than the hotter system,
but nevertheless, heating is faster than cooling. On the one hand, Eq. (5.4.4) confirms the
asymmetry (5.4.2) from a kinematic point of view. On the other hand, it reveals something
more striking; during heating in the forward protocol, the system traces a longer path in the
space of probability distributions, but it does so faster. The reason lies in the propagation
speed vi/ww/i(t) at short times that is intrinsically larger during heating than during cooling.
This speed-up is due to the entropy production in the system during heating, being more
efficient than heat flow from the system to the environment during cooling (see also [73]).
These predictions are fully confirmed by experiments (see Fig. 5.4.3). The results show
that an initial overshoot in vwc (t) and vhw(t) ensures that under TE conditions heating is, in
both protocols, at all times faster than cooling according to the inequalities (5.4.4). Since
both processes relax to the same equilibrium, vwc (t) and vhw(t) eventually must cross.

5.4.4 Heating between any pair of temperatures is faster than
cooling

We now take our thermal kinematics approach one step further and consider two arbitrary
fixed temperatures T1 < T2 and observe heating, i.e., relaxation at T2 in a temperature
quench from an equilibrium prepared at T1, and the reverse cooling, i.e., relaxation at
T1 in a temperature quench from the equilibrium at T2. By construction, the distance
between initial and final states along the reciprocal processes is the same, L1

2(∞) = L2
1(∞).
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5 Thermal relaxation asymmetry

Figure 5.4.3: Thermal kinematics of heating and cooling processes at thermodynam-
ically equidistant conditions. All data corresponds to the series shown in Fig. 5.4.2.
As in previous figures, red arrows stand for heating while blue ones represent cooling,
solid and dashed arrows refer to forward and backward protocol, respectively, and thicker
lines indicate a faster evolution than thin ones. a. Initial value of the relative entropy
Dw

i (0)/kBTw as a function of the temperature. b. Total traversed statistical distance
Lw
i (∞) = Li

w(∞) = L(∞) as a function of the temperature. c-f Temporal evolution of
the instantaneous statistical velocity vwi (t) (c and e) and the degree of completion φw

i (t)
(d and f) during the forward (c and d) and backward (e and f) protocol. Red circles stand
for heating, while blue squares correspond to cooling. Solid lines are theoretical predictions
without fitting parameters. Confidence regions have been estimated by quadratic uncer-
tainty propagation from the standard deviation of the experimental histograms.
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Nevertheless, according to our model, in particular Eqs. (5.4.3), we have for any T1 < T2

(see Theorem 3 in Subsec. 5.4.7) that

φ2
1(t) > φ1

2(t) for all 0 < t <∞. (5.4.5)

That is, between any pair of temperatures heating is faster than cooling, which is a much
stronger statement. Notice that it was not possible to make such a statement based on
the generalized excess free energy, since in this case, the description of the backward pro-
cess lacked physical consistency. This result highlights that heating and cooling are inher-
ently asymmetric processes, and that this is neither limited to the TE setting nor to strong
quenches. The asymmetry (5.4.5) is fully corroborated by experiments (see Fig. 5.4.4). As
before, it emerges due to an initial overshoot in v21(t). However, in this case, the difference
in velocities implies that the pathway taken during heating is fundamentally different from
the pathway followed during the reciprocal cooling process. Note that this goes beyond
“hysteresis”-type asymmetries that occur during the heating and cooling of macroscopic
systems through phase or glass transitions.

5.4.5 Near equilibrium, heating and cooling become symmetric

Finally, we show that for quenches near equilibrium heating and cooling are indeed al-
most symmetric, in agreement with linear non-equilibrium thermodynamics [25]. First,
for Th = (1 + ε)Tw with 0 < ε ≪ 1, we find that Tc(Th) = (1 − ε + O(ε2))Tw

(see Eq. (5.4.39) in Subsec. 5.4.7), i.e., near equilibrium, TE temperatures are approxi-
mately equidistant from the ambient temperature Tw. Second, ∂tDw

i |t=0 = [2 − Ti/Tw −
Tw/Ti]kBTwκ/γ (see Eq. (5.4.40) in Subsec. 5.4.7) from which for small ε we obtain
(∂tDw

c |t=0 − ∂tDw
h |t=0)γ/κkBTw = O(ε3), such that heating and cooling in terms of Dw

i

become symmetric. Third, we find in this limit (see Corollary 4 in Subsec. 5.4.7) that
φi
w(t) = φw

i (t) = 1− e−2(κ/γ)t +O(ε) and

φc
w(t) = φh

w(t) +O(ε) and φw
h (t) = φw

c (t) +O(ε). (5.4.6)

That is, for near-equilibrium quenches, i.e., for Th,c−Tw ≪ Tw, heating and cooling in terms
of both D and φ are approximately symmetric, and the asymmetry is thus a genuinely far-
from-equilibrium phenomenon, as claimed. Actually, even for values of (Th,c − Tw)/Tw on
the order of 1, heating and cooling are virtually symmetric within the experimental error
(see Fig. 5.4.6, lower row, and Fig. 5.4.9 in Subsec. 5.4.8).
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5 Thermal relaxation asymmetry

Figure 5.4.4: Thermal kinematics of heating and cooling between any pair of tem-
peratures. The data shown corresponds to T1 = 302(3) K and T2 = 2753(7) K, and a
characteristic time τ = γ/κ = 0.1844(3) ms. a. Instantaneous statistical velocity v(t) as a
function of time. b. Degree of completion φ(t) as a function of time. Red circles stand for
heating, while blue squares correspond to cooling. Solid lines are theoretical predictions
without fitting parameters. The confidence regions have been estimated by quadratic un-
certainty propagation from the standard deviation of the experimental histograms.
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5.4.6 Discussion

Detailed experiments on colloidal particles corroborated by analytical theory revealed a
fundamental asymmetry in thermal relaxation upon a rapid change of temperature; for
thermodynamically equidistant temperature quenches as well as between two fixed tem-
peratures, heating is always faster than cooling. Moreover, the microscopic pathways fol-
lowed by a system during heating and cooling, respectively, are fundamentally different.
Therefore, except very near to thermodynamic equilibrium, thermal relaxation, in general,
does not evolve quasistatically through quasi-equilibria even for systems with a single en-
ergy minimum. We, therefore, witness a breakdown of the “near equilibrium” paradigm of
classical non-equilibrium thermodynamics [25].

Namely, when the system is brought rapidly out of equilibrium, such as upon a temperature
quench, the probability density of the system cannot follow the temperature change quasi-
statically and a lag develops between the instantaneous Pw

i (x, t) and the new equilibrium
Pw
eq(x) [120]. This lag, which here corresponds toD[Pw

i (x, t)||Pw
eq(x)], is nominally smaller

during heating than during cooling. This is so because for short times, heating essentially
corresponds to a free expansion [73], which is materialized as an overshoot of statistical
velocity and is characterized by a smaller dissipated work. The latter in turn bounds from
above the maximal lag that can develop [120]. Initial free expansion during heating also
explains the faster departure from the initial equilibrium within the backward protocol, as
well as for heating and cooling between any two fixed temperatures.

During heating, this initial free expansion leads to a rapid increase in system entropy and
therefore, to a decrease in generalized excess free energy D(t) = ⟨U⟩(t) − TwS(t) − Fw.
Cooling is dominated by the decrease in ⟨U⟩which is, however, less efficient than the decay
of system entropy during cooling. In turn, this causes the asymmetry for thermodynam-
ically equidistant quenches [73]. Another intuitive argument for faster heating follows
from spectral theory. Namely, the spectral representation of localized initial distributions
nominally requires more eigenfunctions, in turn implying, since the initial distribution is
normalized, a larger weight on the higher, faster-decaying modes [272, 273]. Since the
colder system is more localized, one expects a faster relaxation during heating. The faster
heating between any two temperatures, established here for the first time, may further
be rationalized as follows. Microscopically, diffusion is driven by the collisions with the
molecules in the medium. Since heating evolves at a higher temperature of the medium,
collisions occur at a higher rate, in turn facilitating faster relaxation [274].

Our work further underscores that there is a fundamental difference between equidistant
temperatures, thermodynamically equidistant temperatures, and kinematically equidis-
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5 Thermal relaxation asymmetry

tant temperatures. The existence of a zero temperature and the e−1/T -dependence of
Boltzmann-Gibbs equilibrium statistics readily imply that raising and lowering the tem-
perature by the same amount pushes the system differently far from equilibrium. However,
even when temperatures are chosen to be thermodynamically equidistant, the colder sys-
tem is kinematically farther from equilibrium than the hotter one, yet it reaches equilibrium
faster.

Thermal relaxation, therefore, seems to be much more complex than originally thought,
and our results only scratch at the surface. Relaxation in systems with multiple energy
minima [73, 75, 251, 256], time-dependent potentials [49, 263, 264, 275–277], driven re-
laxation processes [278, 279], and in the presence of time-irreversible, detailed-balance
violating dynamics [87,121,147,280] remains poorly understood, and calls for a system-
atic analysis through the lens of thermal kinematics.
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5.4.7 Supplemental Material: Theoretical framework

In this section, we provide all the mathematical proofs referred to in the main text, as well
as the general theoretical concepts to fully understand all the phenomena we present in
our work.

Fokker-Planck equation for an optically-trapped Brownian particle

A colloidal particle trapped by a highly collimated laser beam is subjected to a three-
dimensional quadratic potential, which in the x direction reads U(x) = 1

2κ(x−xtr)
2. Here,

xtr denotes the trap center, in which we set the origin of coordinates in the following. The
Brownian character of the particle under study makes it necessary to model the multiple
collisions of the fluid molecules with it from a stochastic perspective. In the overdamped
regime, the differential equation that rules its dynamics is of Langevin type,

dxt = −(κ/γ)xtdt+ dξt, (5.4.7)

with friction constant γ given by the Stokes’ law γ = 6πrη, where η is the viscosity of
water and r the particle radius. The thermal noise dξet vanishes on average and obeys the
fluctuation-dissipation theorem ⟨dξet dξet′⟩ = 2(kBT/γ)δ(t− t′)dtdt′.

A stochastic process solution of a Langevin equation can alternatively be studied from its
associated probability density function P (x, t) for each time instant t ≥ 0 [6]. In this
case, it verifies the Fokker-Planck equation, which for a Langevin dynamic such as the one
described by Eq. (5.4.7) takes the form

∂P (x, t)

∂t
=

∂

∂x

(
κ

γ
xP (x, t)

)
+
kBT

γ

P2P (x, t)

∂x2
. (5.4.8)

P (x, t) relaxes towards an equilibrium distribution of Boltzmann type, Peq(x) =

e(FT−U(x))/kBT , where FT ≡ −kBT ln
∫∞
−∞ e−U(x)/kBTdx is the equilibrium free energy at

temperature T . In our case, the parabolic form of the potential gives Peq(x) the Gaussian
character.

The probability density is specified (for a given initial condition) by a single parameter,
time t. In our case, the initial distribution is Gaussian and is associated with a different
environmental temperature T0, P (x, 0) = e(FT0

− 1
2
κx2)/kBT0 . The parameters that charac-
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5 Thermal relaxation asymmetry

terize it, the average position ⟨xt⟩ and variance (∆xt)
2 ≡ ⟨(xt − ⟨xt⟩)2⟩, then depend on

time and satisfy the pair of differential equations
d
dt⟨xt⟩ = −κ

γ
⟨xt⟩,

d
dt(∆xt)

2 = −2
κ

γ
(∆xt)

2 +
2kBT

γ
,

(5.4.9)

with the corresponding initial conditions ⟨x0⟩ = 0 and (∆x0)
2 = ⟨x20⟩ = kBT0/κ. The

average position therefore remains constantly zero, and its variance results in

(∆xt)
2 = ⟨x2t ⟩ = ⟨x20⟩e−2(κ/γ)t +

∫ t

0

2kBT

γ
e−2(κ/γ)(t−s) ds

=
kBT

κ

[
1 + (T0/T − 1)e−2(κ/γ)t

]
. (5.4.10)

Figure 5.4.5: Histograms of the particle position for hot (green) and cold (blue) temper-
atures.

As the statistics is at all times a zero-mean Gaussian and its variance may be fully specified
by some instantaneous temperature T̃ ≡ T/Tw we may, without loss of generality, consider
a “quasi temperature” θ as parameterizing the distribution in all physical and abstract,
information-geometric situations, i.e., P (x, θ). In the physical evolution of the system we
have θ ≡ t which we will write simply as P (x, t). In the general and all other parametriza-
tions we will use P (x, θ).
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The relative entropy between two normal, univariate probability distributions P and Q of
zero mean and variances (∆x)2P and (∆x)2Q takes the form

D[P ||Q] =

∫
dxP (x) ln

P (x)

Q(x)
=

1

2

(
(∆x)2P
(∆x)2Q

− 1− ln
(∆x)2P
(∆x)2Q

)
=

1

2
(Λ− 1− ln Λ) .

(5.4.11)
When considering D[P (x, t)||Peq(x)] then Λ = Λ(t) = 1 + (T0/T − 1)e−2(κ/γ)t, while for
D[P (x, t)||P (x, 0)] we have Λ(t) = T/T0 + (1 − T/T0)e

−2(κ/γ)t. The excess of generalized
free energy is thus defined as Dw

i (t) ≡ kBTwD[P (x, t)||Peq(x)] in the forward protocol,
where Ti = Tc,h denotes the initial temperatures and Tw the target one.

Conversely, Di
w(t) ≡ kBTwD[P (x, t)||P (x, 0)] in the backward protocol, which does not

correspond to a free energy since Tw and P (x, 0) no longer refer to the target equilibrium.

Thermodynamically equidistant temperature quenches

A pair of temperatures Th and Tc are said to be thermodynamically equidistant from Tw

when the the initial excess free energies are equal, i.e., Dw
h (0) = Dw

c (0). Under the as-
sumptions on the equations of motion specified in the manuscript, the thermodynamically
equidistant temperatures are given by Th and Tc(Th) [73]

Tc(Th) = −TwW0

(
−Th
Tw

e−Th/Tw

)
, (5.4.12)

whereW0(z) is the principal branch of the Lambert-W function [281].

Relaxation asymmetry in the backward protocol

The thermal relaxation asymmetry in the forward protocol is proven in [73]. We now
prove the thermal asymmetry in the backward protocol.

Theorem 1: For any pair TE temperatures Tc and Th relative to Tw and for all times
t > 0 we have

∆D(t) ≡ 1

kBTw
(Dh

w(t)−Dc
w(t)) > 0. (5.4.13)

That is, during the backward protocol heating is faster than cooling.

Proof: We define

ϕ ≡ e−2(κ/γ)t ∈ (0, 1], (5.4.14)
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5 Thermal relaxation asymmetry

such that Λ(t) = Λc,h
w (t) takes the expression previously introduced,

Λc,h
w (t) ≡ T̃c,h(1− ϕ) + ϕ, (5.4.15)

where here and in the following we denote T̃i ≡ Ti/Tw. We now show Eq. (5.4.13), i.e.,
that for all ϕ ∈ (0, 1] we have

2∆D(t) = Λh
w − Λc

w + ln

(
Λc
w

Λh
w

)
0. (5.4.16)

First we rewrite this as

2∆D(ϕ) = (T̃h − T̃c)(1− ϕ) + ln

(
Λc
w

Λh
w

)
= (T̃h − T̃c)(1− ϕ) + ln

(
T̃c

T̃h

)
+ ln

(
Λc
w/T̃c

Λh
w/T̃h

)
. (5.4.17)

Note that for equidistant temperature quenches ln(T̃c/T̃h) = T̃c− T̃h which upon introduc-
ing further notation gives

C ≡ 1− T̃c

T̃c
> 0, H ≡ T̃h − 1

T̃h
> 0, H < 1,

2∆D(ϕ) = ln

(
Λc
w/T̃c

Λh
w/T̃h

)
− ϕ(T̃h − T̃c) = ln

(
1 + Cϕ

1−Hϕ

)
− ϕ

(
1

1−H
− 1

1 + C

)
.

(5.4.18)

Now let us take the derivative:

d

dϕ
2∆D(ϕ) =

(
C

1−Hϕ + H(Cϕ+1)

(1−Hϕ)2

)
(1−Hϕ)

Cϕ+ 1
+

1

C + 1
− 1

1−H

=
(C +H) (ϕ− 1) (CHϕ+ CH − C +H)

(C + 1) (H − 1) (Cϕ+ 1) (Hϕ− 1)
. (5.4.19)

Note that for ϕ ∈ (0, 1) this expression will be 0 if and only if CHϕ + CH − C +H = 0.
Since this is a linear equation, we conclude that there is at most one ϕ ∈ (0, 1) such that
d
dϕ∆D(ϕ) = 0. This means that there is at most one local extremum of ∆D(ϕ) for ϕ ∈ (0, 1).

Note also that T̃hT̃c < 1, which follows from the fact that T̃c = −W0(−T̃he−T̃h) with
W0(z) ∈ [−1, 0] defined for z ∈ (−e−1, 0) is the principal branch of the Lambert-W func-
tion [73], and from Lemma 3.4 in [282].
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We thus obtain

2∆D(ϕ→ 0)
Eq. (5.4.18)

= ln(1)− 0(T̃h − T̃c) = 0,

2∆D(ϕ→ 1)
Eq. (5.4.16)

= 1− 1 + ln(1) = 0

d

dϕ
2∆D(ϕ→ 0)

Eq. (5.4.19)
= H + C +

1

1 + C
− 1

1−H
=
T̃h − 1

T̃h
+

1− T̃c

T̃c
+ T̃c − T̃h

=
(T̃h − T̃c)(1− T̃cT̃h)

T̃hT̃c
> 0. (5.4.20)

This implies that ∆D(ϕ) for ϕ ∈ [0, 1] starts at ∆D(0) = 0, initially increases, and ends at
∆D(1) = 0. The fact that there is at most one local extremum of ∆D(ϕ) for ϕ ∈ (0, 1) (as
noted above from Eq. (5.4.19)), implies that ∆D(ϕ) never crosses 0. Hence, ∆D(ϕ) > 0

for all ϕ ∈ [0, 1], i.e., we have proven the relaxation asymmetry in the backward protocol,
Eq. (5.4.13).

Information geometry and thermal kinematics

To provide intuition about, and to generally formulate the question of, the heating-cooling
asymmetry in the three addressed situations, we now turn to the thermal kinematics of the
relaxation process. For this we need to define distance, speed, and progression during the
respective relaxation processes.

We now introduce the Fisher information I(θ) [266,270] in our (physical) case defined as

I(θ) ≡
∫ ∞

−∞
dx

(∂θP (x, θ))
2

P (x, θ)
. (5.4.21)

The geometric interpretation of the Fisher information follows from defining a statistical
line element ds as ds2 ≡ I(θ)dθ2, hence ds may be considered as a dimensionless distance
between probability densities P (x, θ) and P (x, θ + dθ). To understand this, we note that

D(P (x, θ + dθ)||P (x, θ)) =
∫
dxP (x, θ + dθ) ln

P (x, θ + dθ)

P (x, θ)

=

∫
dx[P (x, θ) + ∂θP (x, θ)dθ +O(dθ2)] ln

(
1 +

∂θP (x, θ)

P (x, θ)
dθ +O(dθ2)

)
= ∂θ

∫
dxP (x, θ)dθ +

∫
dx

(∂θP (x, θ))
2

P (x, θ)
dθ2 +O(dθ3)

= 0 + I(θ)dθ2 +O(dθ3), (5.4.22)
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5 Thermal relaxation asymmetry

where in the third line we used ln(1 + x) = x+O(x2) and in the fourth that the first term
in the third line vanishes because ∫ dxP (x, θ) = 1, ∀θ. The statistical length may thus be
defined as

L(θi, θf) =
∫ θf

θi

d|θ|
√
I(θ) ≡

∫ θf

θi

d|θ|v(θ), (5.4.23)

where in the last step we introduced the local speed v(θ). The expression L(θi, θf)measures
the length of the path traced by the probability density under a change of the parameter
from θi to θf . Note that L(θi, θf) has, in contrast to the relative entropy that measures the
thermodynamic displacement, all the properties of a path length: it satisfies the triangle
inequality and is invariant under monotonic path reparametrizations.

In addition, to quantify the progression along the path {θs}i≤s≤f we further introduce the
degree of completion as

φ(s) ≡ L(θi, θs)
L(θi, θf)

∈ [0, 1]. (5.4.24)

Thermal kinematics along thermodynamically equidistant quenches

In the case of the physical time evolution, an elementary calculation shows that

IF(t; T̃ ) =
1

2

(
d
dt⟨x

2(t)⟩F
⟨x2(t)⟩F

)2

=
2

[1 + e2t/(T̃ − 1)]2
,

IB(t; T̃ ) =
1

2

(
d
dt⟨x

2(t)⟩B
⟨x2(t)⟩B

)2

=
2

[1 + e2tT̃ /(1− T̃ )]2
, (5.4.25)

where time is measured in units of γ/κ and the superscripts F and B denote the forward
(T̃ → 1) and backward (1 → T̃ ) quench protocols. This implies the respective local speeds

vF(t; T̃ ) =

√
2

|1 + e2t/(T̃ − 1)|
, vB(t; T̃ ) =

√
2

|1 + e2tT̃ /(1− T̃ )|
, (5.4.26)

and distances traversed until time t

LF(t; T̃ ) = sign(ln(T̃ ))
√
2[ln T̃ − ln(1 + (T̃ − 1)e−2t)],

LF(∞) = L(T̃ , 1) = sign(ln(T̃ ))
√
2 ln T̃ ,

LB(t; T̃ ) = sign(ln(T̃ ))
√
2 ln(e−2t + T̃ (1− e−2t)),

LB(∞) = L(1, T̃ ) = sign(ln(T̃ ))
√
2 ln T̃ , (5.4.27)
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finally yielding also the degrees of completion

φF(t; T̃ ) = 1− ln(1 + (T̃ − 1)e−2t)

ln T̃
,

φB(t; T̃ ) =
ln(e−2t + T̃ (1− e−2t))

ln T̃
= 1 +

ln(1− (T̃ − 1)e−2t/T̃ )

ln T̃
. (5.4.28)

At this point we make the interesting observation:

Theorem 2: (i) For any pair of thermodynamically equidistant temperatures T̃+ > 1 > T̃−,
the total distance L(0, T̃ ) defined in Eq. (5.4.27) obeys L(1, T̃−) > L(1, T̃+). Moreover, (ii)
for any pair of thermodynamically equidistant temperatures T̃+ > T̃− we have that during
the forward protocol

φF(t; T̃−) > φF(t; T̃+) ∀t ∈ (0,∞), (5.4.29)

and during the backward protocol

φB(t; T̃+) > φB(t; T̃−) ∀t ∈ (0,∞). (5.4.30)

That is, the progress during both forward and backward processes is faster during heating for
all times and thermodynamically equidistant quenches.

Remark: Theorem 2 implies that whereas the hot and cold system are initially thermody-
namically equidistant from the equilibrium, the colder system is initially statistically farther
away from equilibrium than the hotter system.

Moreover, the fact that the colder system is statistically farther from equilibrium than
the corresponding thermodynamically equidistant hotter system shows that the statistical
length of the path to equilibrium does not play an important role in the relaxation asym-
metry. Namely, in the forward protocol heating is faster despite the longer path taken,
whereas in the backward protocol heating is faster while the path taken is shorter. Con-
versely, the local speed v(t) =

√
I(t), which initially is always faster during heating than

during cooling, ensures that heating is, at all times, faster than cooling. This provides a
kinematic explanation of the fact that the entropy production in the system during heating
initially evolves as essentially “free diffusion” (and is not hampered by the drift imposed
by the potential), whereas the heat flow during cooling is always (including at short times)
opposed by the reduction of entropy in the system [73].
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Proof: Part (i): By the definition in Eq. (5.4.27) we have for t = 0

L(1, T̃−)− L(1, T̃+) = −
√
2 ln T̃−T̃+ > −

√
2 ln 1 > 0, ∀T̃+, T̃−(T̃+), (5.4.31)

where in the second step we used T̃−T̃+ ≤ 1 (equality holding only when T̃− = T̃+ = 1)
(see Lemma 3.4. in [281] and recall that T̃− = −W0(−T̃+e−T̃+

) in terms of the principal
branch of the Lambert-W functionW0(z)).

Part (ii): We set∆φF(t) ≡ φF(t; T̃−)−φF(t; T̃+) and∆φB(t) ≡ φB(t; T̃+)−φB(t; T̃−). We
have trivially that∆φF,B(0) = ∆φF,B(∞) = 0. Let δ± ≡ T̃±−1 as well as 0 ≤ x ≡ e−2t ≤ 1.
For convenience and without any loss of generality, we consider φF,B as a function of x
rather than t since x(t) is monotone in t with x→ 0 ⇐⇒ t→ ∞ and x→ 1 ⇐⇒ t→ 0.
We first prove the statement for the forward and then for the backward protocol. Since
∆φF,B(x) is continuously differentiable, we only need to show that ∆φF,B(t) has a single
maximum and that it is positive somewhere on t ∈ (0,∞) (i.e., on x ∈ (0, 1)).

Forward protocol.—We first carry out the proof for the forward protocol. First, we show
that ∆φF(x) > 0 for x = ε ≪ 1. Expanding around x = 0, i.e., ∆φF(ε) = K†(δ+, δ−)ε +

O(ε2), we find

K†(δ+, δ−) =

(
δ+

ln(1 + δ+)
− δ−

ln(1 + δ−)

)
=

δ− ln(1 + δ+)− δ+ ln(1 + δ−)

ln(1 + δ+)[− ln(1 + δ−)]

> [− ln(1 + δ−)]
δ+ − ln(1 + δ+)

ln(1 + δ+)[− ln(1 + δ−)]
> 0, (5.4.32)

where in the second line we made the denominator positive and in the third line we used
twice the concavity of the logarithm implying ln(1 + x) ≤ x, ∀x > −1, i.e., first δ− >

ln(1 + δ−) and in the last step δ+ > ln(1 + δ+), which completely proves that ∆φF(ε) > 0.

The final step is to show that∆φF(x) has a single stationary point on x ∈ (0, 1). We do this
by direct computation, i.e., the only solution of d

dx∆φ
F(x) = 0 on the interval x ∈ (0, 1) is

x∗F =
1− C

Cδ+ − δ−
where C ≡ δ−

δ+
ln(1 + δ+)

ln(1 + δ−)
, (5.4.33)

which must be a maximum as ∆φF(ε) > 0 and ∆φF(1 − ε) > 0 and because ∆φF(x) is
continuously differentiable on x ∈ (0, 1). This proves the theorem for the forward protocol.
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Backward protocol.—Proceeding as above, we show that limε→0∆φ
B(1 − ε) > 0. First,

by Taylor expanding we find from the second line in Eq. (5.4.28)

∆φB(1− ε) = K†(δ+, δ−)ε+O(ε2), (5.4.34)

which already proves limε→0∆φ
B(1 − ε) > 0 because we showed in Eq. (5.4.32) that

K†(δ+, δ−) > 0.

The final step is to show that ∆φB(x) has a single stationary point on x ∈ (0, 1). We do
this by showing that the only solution of d

dx∆φ
B(x) = 0 on the interval x ∈ (0, 1) is

x∗B =
C(1 + δ+)− (1 + δ−)

Cδ+ − δ−
, (5.4.35)

with C defined in Eq. (5.4.33). x∗B must be a maximum as∆φB(ε) > 0 and∆φB(1−ε) > 0

and because ∆φB(x) is continuously differentiable on x ∈ (0, 1). This proves the theorem
also for the backward protocol.

Thermal kinematics in heating and cooling processes between a single pair of
temperatures

Finally, we prove that between any pair of temperatures T̃ and 1 heating is always faster.
In particular, we prove

Theorem 3: Given any pair of temperatures T̃ ̸= 1 and 1 (denote T̃ > 1 by T̃+ and
T̃ < 1 by T̃−), the heating process between the two temperatures is always faster than the
corresponding cooling processes. Precisely,

φF(t; T̃−) > φB(t; T̃−) ∀t ∈ (0,∞),

φF(t; T̃+) < φB(t; T̃+) ∀t ∈ (0,∞). (5.4.36)

Proof: Adopting the previous notation, we have

φF(x; T̃±)− φB(x; T̃±) ≡ ∆±(x) =
ln(1 + δ±)− ln(1 + δ±x)− ln(1 + δ± − δ±x)

ln(1 + δ±)

= − 1

ln(1 + δ±)
ln

(
(1 + δ± − δ±x)(1 + δ±x)

1 + δ±

)
≡ − ln Ξ±(x)

ln(1 + δ±)
, (5.4.37)
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5 Thermal relaxation asymmetry

where in the last line we defined Ξ±(x). We further have

Ξ±(x) = 1 +
x(1− x)(δ±)2

1 + δ±
> 1 ∀x ∈ (0, 1), (5.4.38)

and thus − ln Ξ±(x) < 0. Moreover, we have ln(1 + δ−) < 0 while ln(1 + δ+) > 0 and
therefore ∆−(x) > 0 while ∆+(x) < 0, which proves the theorem.

Heating and cooling near equilibrium

Near equilibrium, that is, for T+ = Tw(1 + ε) with 0 < ε≪ 1 we have, using Eq. (5.4.12)

T−((1 + ε)Tw) = −W0(−(1 + ε)e−(1+ε))Tw

= −W0(−e−1 + e−1ε2/2 +O(ε3))Tw

= −
(
−1 + ε+ ε2/3 +O(ε3)

)
Tw

= (1− ε[1− ε/3])Tw +O(ε3), (5.4.39)

as stated in Subsec. 5.4.5. In passing from the second to the third line, we used the Taylor
series ofW0(z) around the branch point at −e−1 (see Eq. (4.22) in [281]), i.e.,W0(−e−1+

z) = −1 +
√
2ez + O(z). Therefore, close to equilibrium thermodynamically equidistant

temperatures are to linear order in the deviation ε also equidistant.

For the Langevin dynamics Eqs. (5.4.7) we can write the mean energy as ⟨U(xt)⟩ =

κ(∆xt)
2/2 with variance (∆xt)

2 as in Eq. (5.4.10). Taking the time-derivative, we obtain
∂t⟨U(xt)⟩wi |t=0 = −kBTwκ(Ti/Tw − 1)/γ. For this Gaussian process, the time derivative
of the system entropy S(t) = −kB

∫
Pw
i (x, t) lnPw

i (x, t)dx is calculated as ∂tSw
i (t)|t=0 =

−kBκ(1− Tw/Ti)γ. Adding the two contributions, we obtain for the change in excess free
energy that

∂tDw
i (t)|t=0 = ∂t [⟨U(xt)⟩wi − TwS

w
i (t)] |t=0 = kBTw

κ

γ

[
2− Ti

Tw
− Tw
Ti

]
. (5.4.40)

Corollary 4: To linear order in ε heating and cooling between thermodynamically
equidistant as well as between any fixed pair of temperatures are symmetric. Precisely,

φF
w(t; 1− ε[1− ε/3]) = φF(t; 1 + ε) +O(ε),

φB(t; 1 + ε) = φB
w(t; 1− ε[1− ε/3]) +O(ε), (5.4.41)
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as well as

φB
w(t; 1 + ε) = φF

w(t; 1 + ε) +O(ε),

φF
w(t; 1− ε[1− ε/3]) = φB

w(t; 1− ε[1− ε/3]) +O(ε). (5.4.42)

Proof: Inserting T+ = Tw(1 + ε) and T− = Tw(1− ε[1− ε/3]) into Eqs. (5.4.28) and Taylor
expanding around ε = 0, we find

φF(t; 1 + ε) = 1− e−2(κ/γ)t − ε e−3(κ/γ)t sinh((κ/γ)t) +O(ε2),

φF(t; 1− ε[1− ε/3]) = 1− e−2(κ/γ)t + ε e−3(κ/γ)t sinh((κ/γ)t) +O(ε2),

φB(t; 1 + ε) = 1− e−2(κ/γ)t + ε e−3(κ/γ)t sinh((κ/γ)t) +O(ε2),

φB(t; 1− ε[1− ε/3]) = 1− e−2(κ/γ)t − ε e−3(κ/γ)t sinh((κ/γ)t) +O(ε2), (5.4.43)

which proves the corollary.

5.4.8 Supplemental Material: Further results

We include in this section a set of additional results that support the main findings pre-
sented in the core part of our work. They have been obtained from three distinct exper-
imental settings, which cover different stiffness coefficients (and, subsequently, different
characteristic times of the optical trap) and bath temperatures, see Figs. 5.4.6-5.4.9.

The first two series correspond to situations that are remarkably far from equilibrium,
where the asymmetric character is evident. The initial conditions associated with the third
one, however, are closer to equilibrium, and the quasi-symmetry involving heating and
cooling is also confirmed.

Experimental check of the Pythagorean inequality

As we mentioned in the main part and had been proven in Ref. [124], the relative entropy
satisfies what is called the Pythagorean inequality when it tracks a pure thermal relaxation
process, such as the ones covered throughout our work. More specifically, if a trapped,
Brownian particle suffers an instantaneous temperature quench that links an initial state
P (x, 0) with a target state P (x,∞) (reached when t→ ∞), then

D[P (x, 0)||P (x,∞)] ≥ D[P (x, 0)||P (x, t)] +D[P (x, t)||P (x,∞)]. (5.4.44)
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5 Thermal relaxation asymmetry

Figure 5.4.6: Temporal evolution of the generalized excess free energy as a function of
time during heating and cooling at thermodynamically equidistant conditions. Left
column corresponds to the forward protocol, while the right column corresponds to its
backward counterpart. Red circles stand for heating and blue squares stand for cooling.
Solid lines are theoretical predictions without fitting parameters. The confidence regions
have been estimated by quadratic uncertainty propagation from the standard deviation
of the experimental histograms. Upper row: time evolution for a characteristic time τ =
γ/κ = 0.099(1) ms, Tc/Tw = 0.09(1), Th/Tw = 3.78(1). Middle row: time evolution for
a characteristic time τ = γ/κ = 0.539(2) ms, Tc/Tw = 0.18(1), Th/Tw = 2.95(1). Lower
row: time evolution for a characteristic time τ = γ/κ = 0.099(1) ms, Tc/Tw = 0.32(1),
Th/Tw = 2.28(1).
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Figure 5.4.7: Temporal evolution of the statistical velocity (a., c., e.) and the degree
of completion (b., d., f.) along the three considered situations. All graphics corre-
spond to a characteristic time τ = γ/κ = 0.099(1) ms, Tc = 302(2) K, Tw = 3192(4) K,
Th = 12080(14) K. Red circles stand for heating, while blue squares correspond to cooling.
Solid lines are theoretical predictions without fitting parameters. The confidence regions
have been estimated by quadratic uncertainty propagation from the standard deviation
of the experimental histograms. a., b. Temporal evolution along the thermodynamically
equidistant situation, forward protocol. c., d. Temporal evolution along the thermodynam-
ically equidistant situation, backward protocol. e., f. Temporal evolution during heating
and cooling between temperatures Tc and Tw.
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5 Thermal relaxation asymmetry

Figure 5.4.8: Temporal evolution of the statistical velocity (a., c., e.) and the degree
of completion (b., d., f.) along the three considered situations. All graphics corre-
spond to a characteristic time τ = γ/κ = 0.539(2) ms, Tc = 302(2) K, Tw = 1639(1) K,
Th = 4828(6) K. Red circles stand for heating, while blue squares correspond to cooling.
Solid lines are theoretical predictions without fitting parameters. The confidence regions
have been estimated by quadratic uncertainty propagation from the standard deviation
of the experimental histograms. a., b. Temporal evolution along the thermodynamically
equidistant situation, forward protocol. c., d. Temporal evolution along the thermodynam-
ically equidistant situation, backward protocol. e., f. Temporal evolution during heating
and cooling between temperatures Tc and Tw.
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Figure 5.4.9: Temporal evolution of the statistical velocity (a., c., e.) and the degree
of completion (b., d., f.) along the three considered situations. All graphics corre-
spond to a characteristic time τ = γ/κ = 0.099(1) ms, Tc = 302(2) K, Tw = 935(5) K,
Th = 2131(7) K. Red circles stand for heating, while blue squares correspond to cooling.
Solid lines are theoretical predictions without fitting parameters. The confidence regions
have been estimated by quadratic uncertainty propagation from the standard deviation
of the experimental histograms. a., b. Temporal evolution along the thermodynamically
equidistant situation, forward protocol. c., d. Temporal evolution along the thermodynam-
ically equidistant situation, backward protocol. e., f. Temporal evolution during heating
and cooling between temperatures Tc and Tw.
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5 Thermal relaxation asymmetry

As it is stated in the reference cited above, it establishes a tighter bound to the entropy
production than the one imposed by the second law of thermodynamics, since s[0,t] ≡
D[P (x, 0)||P (x,∞)]−D[P (x, t)||P (x,∞)] is the entropy production until time t ≥ 0.

Furthermore, it trivially leads to a bound for the relaxation time: t ≥ D[P (x, 0)||P (x, t)]/s̄,
where s̄ ≡ s[0,t]/t is the average entropy production. Put in this way, the previous inequality
establishes that large entropy production rates are necessary for shorter relaxation times,
which cannot be arbitrarily small.

We address here the experimental check of the Pythagorean inequality, Eq. (5.4.44), by
studying two particular thermal relaxation processes, one corresponding to a heating pro-
cess and the other corresponding to a cooling one. As a matter of closure, we choose two
initial conditions for which their corresponding states are thermodynamically equidistant
with respect to the target, but the validity of the inequality (5.4.44) does not depend at
all on this fact. Fig. 5.4.10 shows the values ofD[P (x, 0)||P (x, t)], D[P (x, t)||P (x,∞)] and
the sum of both magnitudes. In order for the inequality to be fulfilled, the latter must be
below the value D[P (x, 0)||P (x,∞)] for all times, which has to coincide with the initial
value of D[P (x, t)||P (x,∞)] and the final value of D[P (x, 0)||P (x, t)].

Figure 5.4.10: Experimental check of the Pythagorean inequality. Each plot shows the
quantities D[P (x, t)||P (x,∞)] (cyan, circles), D[P (x, 0)||P (x, t)] (magenta, squares) and
the sum of both (green, diamonds). In order for the inequality to be fulfilled, the latter
must be below the orange, horizontal line D[P (x, 0)||P (x,∞)]. Solid lines are theoretical
predictions without fitting parameters. Both graphics correspond to a characteristic time
γ/κ = 0.96(3) ms and relative temperatures T0/Tf = 0.0841 (left panel, heating) and
T0/Tf = 4.1020 (right panel, cooling).

In view of the previous figure, it is noticeable that the magnitude D[P (x, 0)||P (x, t)] +
D[P (x, t)||P (x,∞)] reaches a minimum value which is higher (and closer to the limit value
D[P (x, 0)||P (x,∞)]) during the heating process than during its cooling counterpart when
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thermodynamically equidistant quenches are considered. We have checked that this is
actually the general case (though we do not include a mathematical proof here as it goes
far away from the main objectives of our work), a fact that may support the already proven
fact that heating is always faster than cooling.

5.4.9 Materials and methods

Experimental set-up

Silica microspheres of diameter d = 1 µm are dispersed in deionized and filtered water
at a concentration of a few spheres per ml. The dispersion is injected into a custom-made
electrophoretic fluid chamber where two parallel, gold-coated wires act as a pair of parallel
electrodes. A white, Gaussian noise signal composed of a sample of 500,000 independent
Gaussian values of zero mean and unit variance is generated by an arbitrary waveform gen-
erator (RSPro, RSDG2082X, 80MHz bandwidth), thus producing a voltage output signal
V (t) that is fed into the pair of electrodes. The repetition frequency of the cited signal is
chosen to minimize correlations and the time of noise persistence is just 0.04ms, which is
much shorter than any characteristic time of the studied processes (these cover a range
between 0.1 and 0.5 ms).

Our experiment uses an optical tweezers setup, which consists of a commercial device
from JPK-Bruker (NanoTracker 2). The optical potential is generated by a near-infrared
laser with a wavelength of 1064 nm, which is used for both trapping and detection. The
forward scattered light is analyzed using a quadrant position detector (QPD) at a rate of
50 kHz. The trap stiffness depends linearly on the laser power and can be adjusted by
controlling the latter with the software provided by the manufacturer.

The noisy signal is also modulated by a square signal with a period of 10 ms (see
Fig. 5.4.11). This period is chosen to be a multiple of the sampling time of 0.02 ms for
accurate data processing. The heights of the square signal are set to ensure equidistant
quenches between the heating and cooling processes. As only the ratio between initial and
final temperatures is important, it is not necessary to set the high level of the heating pro-
cess equal to the low level of the cooling process as long as the initial values of the relative
entropy coincide for both heating and cooling.

In Fig. 5.4.11, we show an example of the evolution in time of the variance of themodulated
noisy signal for both heating and cooling processes. There is a “ramp” of finite slope and
length tr = 0.10 ms linking its initial and final values, instead of an instantaneous change.
However, this does not prevent the studied phenomena from occurring, as our results seem
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5 Thermal relaxation asymmetry

Figure 5.4.11: White, Gaussian noise modulated by a square signal. Left panel: modu-
lated voltage output signal V (t) (solid line, left axis) and square signal Vsq(t) (dashed line,
right axis) as a function of time. Right panel: evolution of the modulated signal variance
⟨V (t)2⟩ as a function of time for heating (upper panel) and cooling (lower panel).

to corroborate despite the fact that the ramp time is, in some situations, of the order of the
characteristic time of the considered relaxation processes.

Effective heating by means of an external random force

The applied noisy electric field dξextt mimics an additional, independent source of thermal
fluctuations in the particle dynamics, due to the presence of electric charges all over its
surface [283]. When it is present, the position xt along the considered direction obeys the
Langevin equation γdxt = −κxtdt + dξtht + dξextt , where dξtht is of the same type as the
one introduced in Eq. (5.4.7). If the spectrum of the external noise is also white and of
amplitude σ2, then the particle is subjected to an effective white noise dξefft of zero mean
and autocorrelation ⟨dξefft dξefft′ ⟩ = 2γkBTeffδ(t− t′)dtdt′, where

Teff = T +
σ2

2kBγ
. (5.4.45)

Hence the position of the particle along the selected axis fluctuates corresponding to an
effective temperature Teff which is always higher than the temperature of the thermal bath
and without affecting dissipation at all.

In our case, σ2 = q2V 2
0 /d

2, with V 2
0 the variance of the noisy voltage output. The previous

expression shows that the effective temperature increases linearly with V 2
0 , whose slope
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can be estimated from several realizations of the particle position for different amplitudes.
Fig. 5.4.12 shows an example of two power spectral densities (PSDs) of the position of the
sphere, with and without the electric field, as well as an example of a calibration curve T
vs. V 2

0 .

Figure 5.4.12: Effective heating by means of a noisy electric field. Left panel: PSD of
the position of a trapped microparticle without (1) and with (2) the noisy electric field.
Solid, black lines correspond to the fitting curves. The PSD of the output voltage signal is
also included (3). Right panel: effective temperatures as a function of the squared voltage
amplitude. The solid line corresponds to the linear fitting, according to Eq. (5.4.45).

Data analysis

We measure a collection of M = 24, 000 trajectories, each one composed by values of the
position at N = 250 different time instants, x(k) = (x

(k)
1 , . . . , x

(k)
N ), k = 1, . . . ,M . From the

M trajectories, the N histograms (one for each time instant) are calculated and properly
normalized, {p(x, tj)}Nj=1. A total of Nb = 80 equidistantly distributed bins and separated
by a fixed length ∆x = (maxjk x

k
j −minjk x

k
j )/Nb have been chosen.

The values of the relative entropy calculated throughout our work are computed directly
from the definition,

D[P ||Q] =

∫
dx P log

P

Q
. (5.4.46)

The previous integral is discretized as usual from the histograms:

D[P ||Q] ≈ ∆x

Nb∑
k=1

P (xk) log
P (xk)

Q(xk)
. (5.4.47)

The convention 0 log 0 = 0 is properly employed. Finally, in order to smooth out the results,
the presented series are estimated from an average of ten different temporal series.
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5 Thermal relaxation asymmetry

The number of counts n each bin of the histogram contains are assumed to follow a Pois-
sonian distribution, since the spatial interval ∆x associated with each bin is small and the
total number N of measured values of the position is high enough. Consequently, the un-
certainty associated with each of the heights can be fairly well approximated by √

n, as
it corresponds to the standard deviation of the cited probability distribution. Subsequent
uncertainties are estimated by quadratic propagation.

With regard to Fisher information, we estimate it from its definition, which directly involves
the relative entropy: D[P (x, t +∆t)||P (x, t)] = I(t)∆t2 +O(∆t3). An appropriate choice
of ∆t must be made to reduce numerical noise and to smooth the resulting curves. In our
case, we choose ∆t = 0.04ms. We further take an average of ten different temporal series.

Finally, to calculate the statistical length L(t), we perform a first-order numerical algorithm
to calculate the corresponding integrals. If t = n∆t, n ≥ 0 is a multiple of the sampling
time and v(t) ≡

√
I(t) denotes the instantaneous velocity introduced in the main part,

L(t) ≈ ∆t
n−1∑
i=0

v(i∆t). (5.4.48)

Transient evolution during a ramp thermal protocol

As we showed earlier, the thermal quench our particle underwent was not completely in-
stantaneous. The noise variance (as shown in Fig. 5.4.11) exhibited a ramp connecting its
initial and final values. Although the time interval for this ramp is expected to be small
when compared to the relaxation time τ = γ/κ, this may not be the case for higher values
of the cut-off frequency.

We denote the time of the ramp as tr, and the parameter δ ≡ tr/τ determines the strength
of the driving protocol into the thermal relaxation processes being studied (see Fig. 5.4.13).
In this section, we will show that from the time instant in which the bath reaches its target
temperature, the evolution law for ⟨x2t ⟩ coincides in shape with that corresponding to an
instantaneous quench.

To this end, let us consider a non-instantaneous quench protocol determined by the bath
temperature profile

T (t) =

T0 + λt, 0 ≤ t ≤ tr;

Tf , t ≥ tr,
(5.4.49)
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Figure 5.4.13: Scheme of the thermal protocol specified in equation (5.4.49)

where λ ≡ (Tf − T0)/tr and T0,f the initial and final temperatures, respectively. If the
initial distribution follows a Gaussian profile

P (x, 0) =

√
κ

2πkBT0
e−κx2/2kBT0 , (5.4.50)

the solution of the Fokker-Planck equation

∂tP =
κ

γ
∂x(xP ) +

kBT (t)

γ
∂2xP (5.4.51)

also follows a Gaussian profile of zero mean and variance

⟨x2t ⟩ =
kBT0
κ

e−2(κ/γ)t + 2

∫ t

0
ds

kBT (t)

γ
e−2(κ/γ)(t−s). (5.4.52)

The preceding integral takes a different expression whether the considered time instant t
is greater or lower than tr. On the one hand, when 0 ≤ t ≤ tr it takes the form

⟨x2t ⟩ =
kBTf
2δκ

[(
1− T̃

)
e−2(κ/γ)t + T̃ − 1 + 2δT̃ + 2

κ

γ

(
1− T̃

)
t

]
. (5.4.53)

where we define T̃ ≡ T0/Tf . On the other hand, when t ≥ tr

⟨x2t ⟩ =
kBTf
κ

[
1 +

e2δ − 1

2δ

(
T̃ − 1

)
e−2(κ/γ)t

]
. (5.4.54)
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5 Thermal relaxation asymmetry

The previous expression thus takes the same form as the one corresponding to an instan-
taneous quench, but with a parameter that acts as a relative temperature,

T̃eff ≡ e2δ − 1

2δ
(T̃ − 1) + 1. (5.4.55)

All the theoretical curves plotted over the experimental data shown all over our work as-
sume the previous expression for ⟨x2t ⟩.

In order to accurately observe the phenomena addressed in our study, the closest situation
to ideality is to maintain the value of δ at or below one, as this aligns with the original the-
oretical model and ensures that the effects of the temperature ramp do not overpower the
observations. However, our findings indicate that the phenomenology studied is relatively
robust to the presence of a non-zero response time in the generator, and our theoretical pre-
dictions are undoubtedly substantiated by our experimental results even when δ exceeds
unity (see Subsec. 5.4.8). Further examination of all the phenomenology derived from the
protocol analyzed in this section would be necessary to fully understand the limits of the
validity of those predictions.
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5.5 Asymmetric thermal relaxation in driven sys-
tems: Rotations go opposite ways (Phys. Rev. Res. 2023)

This section is a slightly adapted version of the publication C. Dieball, G. Wellecke and
A. Godec, “Asymmetric thermal relaxation in driven systems: Rotations go opposite ways”,
Phys. Rev. Res. 5, L042030 (2023).

My personal contribution as first author of the publication was in performing calculations
and simulations, analyzing the results, and co-writing the manuscript.
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Asymmetric Thermal Relaxation in Driven Systems:
Rotations go Opposite Ways

Cai Dieball1, Gerrit Wellecke1,2 and Aljaž Godec1

1Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am
Faßberg 11, 37077 Göttingen, Germany

2Present address: Theory of Biological Fluids, Max Planck Institute for Dynamics and
Self-Organization, Göttingen 37077, Germany

Abstract

It was predicted and recently experimentally confirmed that systems with
microscopically reversible dynamics in locally quadratic potentials warm up
faster than they cool down. This thermal relaxation asymmetry challenged
the local-equilibrium paradigm valid near equilibrium. Because the intuition
and proof hinged on the dynamics obeying detailed balance, it was not clear
whether the asymmetry persists in systems with irreversible dynamics. To fill
this gap, we here prove the relaxation asymmetry for systems driven out of
equilibrium by a general linear drift. The asymmetry persists due to a non-
trivial isomorphism between driven and reversible processes. Moreover, ro-
tational motions emerge that, strikingly, occur in opposite directions during
heating and cooling. This highlights that noisy systems do not relax by pass-
ing through local equilibria.

5.5.1 Introduction

According to the laws of thermodynamics, systems in contact with a thermal environ-
ment evolve to the temperature of their surroundings in the process called thermal re-
laxation [25]. Relaxation close to equilibrium may be explained by linear response theory,
conceptually based on Onsager’s regression hypothesis [26, 27, 250]. That is, relaxation
from a temperature quench is indistinguishable from the decay of a spontaneous thermal
fluctuation at equilibrium [26, 27, 250]. Analogous results were meanwhile formulated
also for relaxation near non-equilibrium steady states [121, 280, 284]. Beyond the linear
regime, however, the regression hypothesis and perturbative arguments fail.

Important advances have been made in understanding relaxation beyond the linear
regime addressing hydrodynamic limits [173, 285], barrier crossing in driven systems
[286, 287], memory effects [288–297], far-from-equilibrium fluctuation-dissipation the-
orems [150, 298], optimal heating/cooling protocols [299], anomalous relaxation also
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known as the Mpemba effect [251–257, 300] and its isothermal analogue [301], the Ko-
vacs effect [260, 261], and dynamical phase transitions [302–310]. Important advances
further include transient thermodynamic uncertainty relations [49,71,87,126,210,211],
speed limits [124, 266, 268, 311, 312], and analyses of relaxation from the viewpoint of
information geometry [88,124,266].

A particularly striking feature of relaxation was unraveled with the discovery of the asym-
metry between heating and cooling from thermodynamically equidistant temperature
quenches [73]. That is, it was found that systems with locally quadratic energy landscapes
and microscopically reversible dynamics heat up faster than they cool down. Later works
expanded on this result [74–76]. The asymmetry was recently quantitatively confirmed by
experiments [88].

The asymmetry emerges because the entropy production within the system during heat-
ing is more efficient than heat dissipation into the environment during cooling [73]. In
turn, close to equilibrium they become equivalent and symmetry is restored [73, 88].
An even deeper understanding of the asymmetry was recently achieved by means of
“thermal kinematics” [88]. However, both the reasoning and the proof of the asymme-
try [73,88,313] seem to hinge on the reversibility of the dynamics. Therefore, the persis-
tence of the asymmetry in systems driven into non-equilibrium steady states (NESS) was
unexpected. In particular, a non-conservative force profoundly changes relaxation behav-
ior [164, 204, 314, 315] even near stable fixed points [122] and in systems with linear
drift [316], and may thus a priori also break the asymmetry.

Figure 5.5.1: (a) Configuration of a harmonically confined (color gradient) Rouse polymer
with N = 20 beads in 3d with hydrodynamic interactions and internal friction subject to a
shear flow (arrows) in the x-y-plane drawn from the NESS with covariance Σs,w (see Sub-
sec. 5.5.8 for parameters); a projection onto the x-y-plane is shown. (b) The correspond-
ing free energy difference Di

t in Eq. (5.5.5) during heating from Tc (red) and cooling from
Th (blue) with (solid lines) and without (dashed lines) irreversible shear flow. The shear
changes Di

t, but the thermal relaxation asymmetry Dc
t < Dh

t for t > 0 remains valid. In-
set: Temperatures Ti before the quench are chosen thermodynamically equidistant, i.e.,
Dc

0 = Dh
0 .
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5 Thermal relaxation asymmetry

Here, we investigate the speed and asymmetry of thermal relaxation to an NESS. As a
paradigmatic example we first consider a harmonically confined Rouse polymer with hy-
drodynamic interactions and internal friction driven by shear flow (see Fig. 5.5.1), and
demonstrate that heating is faster than cooling. Next we provide a systematic analysis of
relaxation under broken detailed balance and explain under which conditions heating and
cooling both become faster. Finally, we prove that all ergodic systems with a linear drift,
including those driven arbitrarily far from equilibrium and displaying rotational motions,
heat up faster than they cool down. In this regime, the notion of a local effective non-
equilibrium temperature is nominally impossible. Our proof, which exploits dual-reversal
symmetry, unravels a non-trivial isomorphism between reversible and driven systems. Fi-
nally, we find a new unexpected facet of the relaxation asymmetry—rotational motions
occur in opposite directions during heating and cooling, respectively.

5.5.2 Setup and motivating example

The relaxation asymmetry was originally proven for reversible diffusions in locally
quadratic energy landscapes, as well as their low-dimensional projections [73, 313]. It
states that such systems, when quenched from thermodynamically equidistant (TED) tem-
peratures Th, Tc to an ambient temperature Tw with Tc < Tw < Th, heat up faster than
they cool down. In quantitative terms, the generalized excess free energy in units of
kBTw [120, 122, 265, 317] or non-adiabatic entropy production [188, 318] (i.e., the rela-
tive entropy in units of kB [248] between the instantaneous Pw

i (x, t) and stationary pws (x)
probability density at Tw with i = h, c)

Di
t≡DKL[P

w
i (x, t)||pws (x)]≡

∫
dxPw

i (x, t) ln
Pw
i (x, t)

pws (x)
, (5.5.1)

is always smaller during heating [73, 313]. That is, Dc
t < Dh

t for all t > 0 and all TED Th

and Tc.

In a strict sense, the asymmetry is to be understood as a statement about linearized drift
around a local minimum in some high-dimensional energy landscape [73]; counterexam-
ples for diffusion in rugged landscapes [73] and for small quenches also in sufficiently
anharmonic wells [74] are known. The generalization to driven systems therefore involves
a linear drift that, however, does not derive from a potential and breaks detailed balance.
Our main result is the discovery and proof (see last section) of the asymmetry Dc

t < Dh
t in

driven systems.
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Consider a d-dimensional system evolving according to the overdamped Langevin equation
[6,14]

dxt = −Axtdt+ σidWt, (5.5.2)

with square drift and noise-amplitude matrices, A and σi, respectively. In terms of
the friction matrix γ, given by Stokes’ law, the positive definite diffusion matrix
reads Di ≡ σiσ

T
i /2 = kBTiγ

−1 and thus depends linearly on temperature Ti. The
external force F(x) yields a Ti-independent drift −Ax = γ−1F(x), where A is
generally non-symmetric but confining, i.e., the eigenvalues of A have positive real
parts. Thus, xt is ergodic but irreversible with zero-mean Gaussian NESS density pis(x) =
(2π)−d/2 det[Σs,i]

−1/2 exp[−xTΣ−1
s,i x/2] where the covariance Σs,i obeys the Lyapunov

equation (see Supplemental Material in Subsec. 5.5.8)

AΣs,i +Σs,iA
T = 2Di = 2kBTiγ

−1, (5.5.3)

and thus depends linearly on the temperature Ti. Eq. (5.5.3) implies for all Ti

the decomposition into reversible −Arevx ≡ Di∇ ln pis(x) = −DiΣ
−1
s,i x and irreversible

−Airrx ≡ (−A+Arev)x = −αiΣ
−1
s,i x drift [84], whereαT

i = −αi is an antisymmetric ma-
trix2.

We focus on temperature quenches—instantaneous changes of the environmental temper-
ature at fixed drift. The thermodynamics of relaxation upon a quench Ti → Tw is fully spec-
ified by Di

t, as the adiabatic entropy production (housekeeping heat divided by Tw) [188]
merely embodies the cost of maintaining the NESS [28] and thus need not be consid-
ered. Therefore, TED temperatures Th,c correspond to Dh

0 = Dc
0 and are equal to those of

a reversible system at the same Tw [73].

Since the initial condition is a zero-mean Gaussian with Σw
i (0) = Σs,i, the probability

density is Gaussian for all times with Σw
i (t) ≡ ⟨xtx

T
t ⟩wi − ⟨xt⟩wi ⟨xT

t ⟩wi given by (see Sub-
sec. 5.5.8)

d

dt
Σw

i (t) = −AΣw
i (t)−Σw

i (t)A
T + 2Dw

⇒ Σw
i (t) = Σs,w + e−At [Σs,i −Σs,w] e

−AT t, (5.5.4)

2As Σs,i is invertible and symmetric Eq. (5.5.3) αi = (A−DiΣ
−1
s,i )Σs,i =

−Σs,i(A
T −Σ−1

s,i Di) = −αT
i . In fact Σ−1

s,i x and αiΣ
−1
s,i x are orthogonal since their scalar

product yields an antisymmetric quadratic form xTΣ−1
s,i αiΣ

−1
s,i x = 0 [122].
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5 Thermal relaxation asymmetry

where ⟨·⟩wi denotes the average over all paths xt at temperature Tw evolving from pis(x).
Note thatΣs,i = TiΣs,w/Tw [see Eq. (5.5.3)]. Introducing δT̃i ≡ Ti/Tw−1, the generalized
excess free energy reads (see Subsec. 5.5.8)

Di
t =

1

2
δT̃i trX(t)− 1

2
ln det

[
1+ δT̃iX(t)

]
, (5.5.5)

where we introduced the d× d matrix

X(t) ≡ e−AtΣs,we
−AT tΣ−1

s,w, (5.5.6)

which via Eq. (5.5.5) fully describes relaxation dynamics.

As a paradigmatic example for such processes, we consider a harmonically confined Rouse
polymer with N beads experiencing hydrodynamic interactions [319, 320] and internal
friction [321–324] subject to a shear flow, which was investigated experimentally in [189–
192, 325–329]. For a representative configuration of the NESS ensemble, see Fig. 5.5.1a.
One may also consider colloidal particles in the presence of non-conservative optical forces
[330]. The effect of these forces is included in the 3N × 3N drift matrix A and 3N × 3N

noise amplitude σi (see Subsec. 5.5.8). EvaluatingDi
t for the heating and cooling processes

upon quenches from TED temperatures Th and Tc we find Dc
t < Dh

t for all t > 0. That is,
heating is faster than cooling (the red line in Fig. 5.5.1b is at all times below the blue line).
This agrees with the relaxation asymmetry predicted [73] and experimentally verified [88]
in reversible systems, and provokes the question if this holds for any linear driving.

5.5.3 Systematics of breaking detailed balance

We now systematically assess the influence of non-equilibrium drifts on relaxation upon a
temperature quench. As shown above, any linear drift A for i = c, w, h decomposes as

A = (Di +αi)Σ
−1
s,i with αT

i = −αi. (5.5.7)

Thus, by choosing any antisymmetric matrix αi we alter the NESS current as well as X(t),
but neither Σs,i nor ps(x). We can thus directly compare an NESS with the corresponding
reversible system αi = 0 with the same steady state. Note that such a direct comparison
is not given in the example in Fig. 5.5.1, since the shear flow alters Σs,i as it is not of the
form αiΣ

−1
s,i with αT

i = −αi (see Subsec. 5.5.8 for details about the consistent comparison
of equilibrium versus non-equilibrium).

We now consider the influence of the non-equilibrium driving. For linear drift, the relax-
ation is governed by the eigenvalues ofA [331,332]. SinceΣs,i is, by definition, symmetric
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Figure 5.5.2: (a-c) Steady-state density pws (x) (color gradient) and streamlines of the drift
field −Ax for a 2d motion in Eq. (5.5.2) with σw =

√
21 and drift matrix A with ele-

ments Ajj = rj with r1 = 1, r2 = 3, Ajk = (−1)jωrk for j, k ∈ {1, 2}, with ω in units
of ωc ≡ |r2 − r1| /2

√
r1r2. Real eigendirections (yellow) only exist for ω ≤ ωc. (d) Real

and imaginary parts of eigenvalues of A as a function of ω. At ω = ωc the eigenvalues
coincide and eigendirections (yellow lines in b,c) merge, i.e., A is not diagonalizable. For
ω > ωc the eigenvalues are complex. (e) Angle between the covariance matricesΣw

i (t) and
Σs,w. (f) Explanation of the counter-intuitive opposing (effective) rotations at small times
during heating from Tc/Tw = 0.1. The change dΣ(t) in Eq. (5.5.4) starting from the ini-
tial Σs,i (black ellipse) for dt = 0.05 split into diffusive (yielding the blue ellipse) and drift
along the grey streamlines (yielding orange ellipse) contributions. (g-h)Di

t for heating and
cooling with and without driving on logarithmic-linear and linear-logarithmic scales. The
driven system relaxes faster at large t as predicted from the eigenvalues in (e). Grey lines
in (h) show the limiting relaxation rates for long times, e−4r1t (dashed line) and e−4ℜ(λ1)t

(solid line).

with positive eigenvalues, we can find a matrix β = βT such that3 β2 ≡ Σ−1
s,i . Thus, the

matrix βDiΣ
−1
s,i β

−1 = βDiβ = βσi(βσi)
T /2 is symmetric which alongside det(βσi) ̸= 0

implies that DiΣ
−1
s,i is diagonalizable with positive eigenvalues4. Therefore, in the absence

of driving,A = DiΣ
−1
s,i expectedly has strictly positive eigenvalues reflecting a monotonous

relaxation to equilibrium.

Once we include driving αw ̸= 0 in the steady-state-preserving form Eq. (5.5.7), the
spectrum may or may not become complex depending on the detailed form of αw, see
e.g., Fig. 5.5.2a-d. Complex eigenvectors imply that eigendirections where the drift points
“straight” towards 0 cease to exist, see Fig. 5.5.2a-c. This happens already at arbitrar-
ily small driving if level sets of ps(x) are (hyper)spherical. If some eigenvalues are on
the threshold of becoming complex (branching point ωc in Fig. 5.5.2d), A may become

3From the orthogonal diagonalization OΣ−1
s,i O

T = diag(sj), we define β ≡ OTdiag
√
sjO.

4Any matrix of the form MMT is symmetric, and therefore diagonalizable, with real non-
negative eigenvalues, since MMTv = λv implies λ = vTMMTv/vTv = (MTv)TMTv/vTv ≥ 0.
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5 Thermal relaxation asymmetry

non-diagonalizable. In terms of the minimal 2d example in Fig. 5.5.2 we have that A is
non-diagonalizable when ω = ±ωc (see Fig. 5.5.2d).

An interesting consequence of driving is that the different dimensions no longer decou-
ple as they do under detailed balance (see Fig. 5.5.2a). This means that the d-dimensional
Langevin equation (5.5.2) cannot be decomposed into 1d equations and that rotational dy-
namics may emerge. In the particular case of temperature quenches, we find that driving
causes a time-dependent rotation of the level sets of Pw

i (x, t), see Fig. 5.5.2e. In agreement
with the opposite sings of Ti − Tw in Eq. (5.5.4), these rotations occur in opposite direc-
tions during heating and cooling, which is a striking new feature of the relaxation asym-
metry. The asymmetry implies that thermal relaxation must not be understood as passing
through local equilibria at intermediate (effective) temperatures [25], since this would im-
ply a symmetric relaxation independent of the sign of the temperature quench. Moreover,
the rotation in opposite directions emphasizes that heating and cooling here evolve along
very distinct pathways in the space of probability distributions (see also [88]).

While the initial rotation during cooling follows the direction of driving, most surpris-
ingly the effective rotations during heating initially oppose the direction of the driving (see
Fig. 5.5.2e). This effect can be traced to the interplay of (“Trotterized” [333]) diffusion
and drift during individual small time increments, see Fig. 5.5.2f. During heating for an
increment dt diffusion alone propagates the black to the more circular blue ellipse. The
subsequent drift along the elliptical streamlines propagates this blue ellipse to the orange
ellipse that is, however, effectively rotated in the direction opposite to the drift (for further
details see Subsec. 5.5.8).

5.5.4 Accelerated relaxation

Before proving the relaxation asymmetry we discuss the acceleration of relaxation via driv-
ing [164,204,315,316,316]. We therefore focus on the real part of the eigenvalues, which
determines the relaxation time-scales. Upon a change of basis we find Ã ≡ βAβ−1 =

βDiβ + βαiβ where (βαiβ)
T = −βαiβ. Then, for any complex eigenvalue λ of Ã with

eigenvector v ̸= 0 we may write 2ℜ(λ)v†v = (λ + λ†)v†v = v†(Ã + Ã†)v = 2v†βDiβv,
where † denotes the Hermitian adjoint. Decomposing v, v† in the orthonormal eigenbasis
of βDiβ with eigenvalues 0 < µ1 ≤ · · · ≤ µd, we have with cj ∈ C

ℜ(λ) = v†βDiβv

v†v
=

∑d
j=1 c

†
jcjµj∑d

j=1 c
†
jcj

∈ [µ1, µd]. (5.5.8)
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This means that the real parts of the eigenvalues in the presence of driving remain not
only positive, as required for the existence of a steady state, but even remain in the interval
[µ1, µd]. Thus, Eq. (5.5.8) states that the smallest real part of eigenvalues ofA under driving
obeys ℜ(λ1) ≥ µ1. Note that ℜ(λ1) typically5 sets the slowest relaxation rate [331, 332].
Since ℜ(λ1) increases (or does not decrease) upon driving, the latter typically enhances
relaxation on long timescales, as already shown in [316].

Driving also affects the adiabatic entropy production. This effect, however, scales trivially, as
the adiabatic entropy production increases with increasing αi according to αT

i D
−1
i αi, see

Subsec. 5.5.8. Hence, there is no direct connection between faster relaxation and steady-
state dissipation, as the influence of driving on the eigenvalues is specific. For example, the
acceleration in d = 2 saturates [see ℜ(λ1) in Fig. 5.5.2d]. More drastically, multiplying αi

by a factor larger than 1 in d = 3 may decrease ℜ(λ1) [316].

We see from Eq. (5.5.6) that X(t) ∼ e−2ℜ(λ1)t for long times and therefore Di
t ∼ e−4ℜ(λ1)t

(see Subsec. 5.5.8 and Fig. 5.5.2g-h). The statement “accelerated relaxation”, ℜ(λ1) ≥ µ1,
means that both, heating and cooling will at long times be faster. In general the difference
between heating and cooling upon driving can become larger or smaller than for reversible
dynamics with the same Σs,i, but as we now prove heating is always faster than cooling.

5.5.5 Proof of relaxation asymmetry in driven systems

We now prove the relaxation asymmetry for the dynamics in Eq. (5.5.2), i.e., ∆Dt ≡ Dh
t −

Dc
t > 0 for all t > 0. By Eq. (5.5.6)

∆Dt =
δT̃h − δT̃c

2
trX(t)− 1

2
ln

det
[
1+ δT̃hX(t)

]
det
[
1+ δT̃cX(t)

] . (5.5.9)

To prove the asymmetry we must understand the properties of X(t), which is Ti-
independent. Using the steady-state Lyapunov equation (5.5.3) we can rewrite X(t) as

X(t) = e−Ate−A−αt, (5.5.10)

where A−α ≡ (Dw − αw)Σ
−1
s,w is the driving-reversed version of A as in Eq. (5.5.7). This

form is reminiscent of the dual-reversal symmetry [83, 84, 133, 176] stating that time-
reversal in non-equilibrium steady states requires concurrent current reversal. Eq. (5.5.10)
is illustrated in Fig. 5.5.3a. The proof again requires changing the basis via β as

5Unless the initial distribution has only a negligible projection onto the slowest modes.
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5 Thermal relaxation asymmetry

Figure 5.5.3: (a) Illustration of Eq. (5.5.10): Streamplot of the drift field −Ax (black) as
in blue frame in Fig. 5.5.2c, and inverted drift field−A−αx (white). The white line depicts
e−A−ατx0 for τ ∈ [0, t], the black line is e−Aτe−A−αtx0, and the blue line showsX(τ)x0. (b)
Effective stiffness r̂j(ω) ≡ − ln(xtj)/2t at t = 1 as a function of driving ω (see Subsec. 5.5.8).
For large driving the directions mix, such that the system effectively approaches a circular
parabola with stiffness (r1 + r2)/2, which is the real part of eigenvalues in Fig. 5.5.2d.

X̃(t) ≡ βX(t)β−1 = e−Ãt
(
e−Ãt

)T
, (5.5.11)

where we used βA−αβ
−1 = ÃT and e−ÃT t = (e−Ãt)T . Thus, X̃(t) is symmetric and

hence diagonalizable with real eigenvalues. Since, det e−Ãt = e−trÃt, we have det X̃(t) =

e−2trÃt ̸= 0. Therefore, X̃(t) and thusX(t) have positive eigenvalues6 xtj > 0, j = 1, . . . , d.
Although A may have complex eigenvalues or even be non-diagonalizable and exp(−At)

may be rotational (see Figs. 5.5.2c and 5.5.3a), X(t) has a real eigensystem since consec-
utive rotations in forward and current-reversed directions effectively cancel rotations, see
Eq. (5.5.10) and Fig. 5.5.3a.

Using the eigenvalues xtj > 0, we rewrite Eq. (5.5.9) as

∆Dt =
d∑

j=1

(
δT̃h − δT̃c

2
xtj −

1

2
ln

[
1 + δT̃hx

t
j

1 + δT̃cxtj

])
. (5.5.12)

If all xtj ∈ (0, 1), the proof for reversible systems [73, 313] asserts that ∆Dt > 0. It there-
fore suffices to show that xtj < 1 for all j, which is equivalent to ||X(t)|| < 1, where
||M|| ≡ supv∈Rd\0 ||Mv||2 / ||v||2 and ||v||2 =

√
vTv are the matrix and Euclidean norm,

respectively. Eq. (5.5.10) does not help in showing this7; although eigenvalues of A have
positive real parts [see Eq. (5.5.8)], it may be that

∣∣∣∣e−A±αt
∣∣∣∣ > 1 (e.g., the distance to 0

in Fig. 5.5.3a increases along the white line). This is possible because the eigenvectors of
A are not orthogonal.

6Any matrix of the form MMT is symmetric, and therefore diagonalizable, with real non-
negative eigenvalues, since MMTv = λv implies λ = vTMMTv/vTv = (MTv)TMTv/vTv ≥ 0.

7Eq. (5.5.10) suffices only at equilibrium A = A−α = DwΣ
−1
s,w where X(t) = exp(−2DwΣ

−1
s,wt)

decomposes into xtj = exp(−2µjt) < 1.
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We thus change the basis as in Eq. (5.5.11) and use the log-norm inequality ||exp(Mt)|| ≤
exp[µ(M)t] [334] with log norm µ(M) ≡ limh→0+ h

−1 (||1+ hM|| − 1) yielding µ(−Ã) ≡
µ(−βAβ−1) = µ(−βDwβ) = −µ1 determined by the symmetric part (Ã + ÃT )/2 =

βDwβ, see Subsec. 5.5.8. This basis is appropriate because βαwβ in Ã (unlike αwΣ
−1
s,w

in A) has no symmetric part, i.e., the driving only affects the rotational part. The log-
norm inequality thus implies

∣∣∣∣∣∣exp(−Ãt)
∣∣∣∣∣∣ ≤ exp[µ(−Ã)t] = exp(−µ1t) and similarly∣∣∣∣∣∣exp(−ÃT t)

∣∣∣∣∣∣ ≤ exp(−µ1t), and by the submultiplicative property of the matrix norm
we obtain from Eq. (5.5.11)∣∣∣∣∣∣X̃(t)

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣e−Ãt
∣∣∣∣∣∣ ∣∣∣∣∣∣ (e−Ãt

)T ∣∣∣∣∣∣ ≤ e−2µ1t < 1. (5.5.13)

Since
∣∣∣∣∣∣X̃(t)

∣∣∣∣∣∣ = ||X(t)|| this implies xtj < 1 and with Eq. (5.5.12) completes the proof of
∆Dt > 0 for all t > 0.

The proof provides important insight into the thermodynamics of the asymmetry in re-
versible versus driven systems. Namely, ∆Dt in Eq. (5.5.12) for a driven system at any t is
equal to that of any reversible system with drift matrix Â having eigenvalues µ̂i satisfying
e−2µ̂jt = xtj . Therefore, at each t the relaxation asymmetry of a driven system is isomor-
phic to that of an equilibrium system with different geometry (see Fig. 5.5.3b for effective
stiffness axes of the 2-dimensional parabolic potential), which implies the persistence of
the asymmetry. This provokes intriguing questions about the existence of the asymmetry in
the presence of time-dependent driving.

5.5.6 Conclusion

We have proven that overdamped ergodic systems driven by linear drift, conservative or
not, for any pair of thermodynamically equidistant temperature quenches warm up faster
than they cool down. The relaxation asymmetry [73], which was recently confirmed ex-
perimentally [88], therefore persists in driven systems. As the original proof hinged on
microscopic reversibility, this finding is surprising and is explained by a non-trivial isomor-
phism between driven and reversible processes. In the presence of driving, a striking new
feature of the relaxation asymmetry appears: rotational dynamics emerge with opposite di-
rections during heating and cooling, respectively. This further highlights that small, noisy
systems do not relax by passing through local equilibria [25]. Moreover, rotations in op-
posing directions emphasize that heating and cooling evolve along fundamentally distinct
pathways [88]. An analysis with the framework of “thermal kinematics” [88] will bring
even deeper insight. Our results motivate further studies on the existence of the relaxation
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5 Thermal relaxation asymmetry

asymmetry in temporally driven systems [49,263,264,275–277], systems with non-linear
drift [147,251,253,254,256], and in the presence of inertial effects [261].
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5.5.8 Supplementary Material

In this Supplementary Material we provide further details on model exam-
ples, arguments, and calculations presented above. Besides several technical
details, we give the equations and parameters describing the Rouse chain in
confined shear flow and derive and solve equations for the covariance. We
extensively elaborate on the rotations in different directions, and address the
consistent comparison of equilibrium and non-equilibrium steady states. We
conclude with a discussion of the log-norm inequality.

Rouse polymer with hydrodynamic interactions and internal friction in con-
fined shear flow

In Fig. 5.5.1 we consider the motivating example of a polymer chain with N = 20 beads in
3d space represented by the Rouse model with internal friction and hydrodynamic interac-
tions in shear flow. That is, we assume that the beads are connected by harmonic springs
with zero rest length [Eq. (5.5.14)] and additionally interact via hydrodynamic interac-
tions [Eq. (5.5.16)] and experience internal friction [Eq. (5.5.17)]. The chain is confined
in a parabolic potential and is subject to a shear flow [Eqs. (5.5.21)-(5.5.22)]. We now
describe the interactions and evolution equations individually, with increasing complexity.

In the classical Rouse model (i.e., without hydrodynamic interactions, internal friction,
confinement and shear), the time-dependent position of the beads xt is described by the
3N dimensional Langevin equation (denoting the spring stiffness by κ and solvent friction
by γ)

γdxt = −κkxtdt+
√
2DidWt, (5.5.14)
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where the connectivity matrix k is a 3N × 3N matrix that reads (13 is the 3d unit matrix
and all terms not shown are 0)

k =



13 −13
−13 213 −13 0

−13 213 −13
. . . . . .

. . . . . .

0 −13 213 −13
−13 13


. (5.5.15)

Note that the temperature dependence is contained in the diffusion constant Di ∝ Ti as
described Subsec. 5.5.2. Following Ref. [321], we introduce hydrodynamic interactions in
the pre-averaging approximation via the 3N × 3N matrix H with 3× 3 entries for m,n =

1, . . . , N

Hmn = γ−1
13 ×

1 if n = m

1

2π2γ|n−m|1/2
if n ̸= m

, (5.5.16)

and also include internal friction with friction parameter ξIF, such that the equation of
motion of the chain becomes

dxt = H
(
−κkxtdt− ξIFkdxt +

√
2DidWt

)
. (5.5.17)

We now introduce a spatial confinement via a 3d harmonic potential centered at x = 0 and
subject the confined chain to a shear flow in the x-y-plane. To account for the confinement,
we consider the three-dimensional matrix (ri > 0)

C = R(θ)


rx 0 0

0 ry 0

0 0 rz

R(θ)T , (5.5.18)

and for the shear flow in the x-y-plane

S =


0 ω 0

0 0 0

0 0 0

 . (5.5.19)
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5 Thermal relaxation asymmetry

Note that by introducing the shear flow S to the system, the microscopic reversibility is
lost, i.e., we have an example that is genuinely driven out of equilibrium.

To avoid the special case where shear and confinement are orthogonal, we introduce the
rotation matrix R(θ) to rotate the confinement by an angle θ within the x-y−plane,

R(θ) =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 . (5.5.20)

Now consider a 3N dimensional matrix M with R(θ)CRT (θ) +S on the N diagonal 3× 3

blocks to impose the confinement and shear on each bead. Then the equation of motion
for the confined polymer in shear flow reads

dxt = H
(
−(κk+M)xtdt− ξIFkdxt +

√
2DidWt

)
. (5.5.21)

This may now be rewritten as
(
H−1 + ξIFk

)
dxt = −(κk+M)xtdt+

√
2DidWt,

dxt = −
(
H−1 + ξIFk

)−1
(κk+M)xtdt+

√
2Di

(
H−1 + ξIFk

)−1
dWt.

(5.5.22)

Upon identifying

A =
(
H−1 + ξIFk

)−1
(κk+M), σi =

√
2Di

(
H−1 + ξIFk

)−1 (5.5.23)

we arrive at the desired form dxt = −Axtdt+ σidWt as described in Subsec. 5.5.2.

The parameters used in Fig. 5.5.1 are N = 20, rx = 0, ry = 0.1, rz = 1, θ = −10◦, γ = 1,
ξIF = 1, Dw = 1, κ = 1, Tc = 0.05Tw, Th = 4.56Tw. In Fig. 5.5.1a we choose ω = 3, while
in Fig. 5.5.1b we use ω = 20 to emphasize the differences between the curves. For the
chosen parameters, several eigenvalues of the matrix A become complex, thus confirming
that the Rouse model in the shear flow is an irreversible process.

Lyapunov equation and time-dependent covariance

Here we derive Eqs. (5.5.3) and (5.5.4). We consider dynamics governed by dxt =

−Axtdt+σdWt as in Eq. (5.5.2). Taking the mean value gives d
dt⟨xt⟩ = −A⟨xt⟩, which im-

plies ⟨xt⟩ = e−At⟨x0⟩. For the scope of this manuscript, we only consider initial conditions
with ⟨x0⟩ = 0 such that for all times ⟨xt⟩ = 0. The covariance Σ(t) ≡ ⟨xtx

T
t ⟩ − ⟨xt⟩⟨xT

t ⟩ =
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⟨xtx
T
t ⟩ is always symmetric Σ(t)T = Σ(t) with strictly positive eigenvalues. Using Itô’s

Lemma [6,14] we see that Σ(t) obeys the differential Lyapunov equation

d

dt
Σ(t) = ⟨dxtx

T
t ⟩+ ⟨xtdx

T
t ⟩+ ⟨dxtdx

T
t ⟩

= −A⟨xtx
T
t ⟩ − ⟨xtx

T
t ⟩AT + σσT

= −AΣ(t)−Σ(t)AT + 2D. (5.5.24)

In the steady state (i.e., for A originating from a confining potential and t → ∞) this
approaches the steady-state covariance Σs obeying the algebraic (i.e., non-differential)
Lyapunov equation (Eq. (5.5.3), see also Ref. [6])

AΣs +ΣsA
T = 2D. (5.5.25)

Given the solution Σs of Eq. (5.5.25), the solution for Eq. (5.5.24) for an initial condition
with covariance Σ(0) is obtained as

Σ(t) = Σs + e−At [Σ(0)−Σs] e
−AT t. (5.5.26)

This is proven by taking the derivative of the ansatz,

d

dt

(
Σs + e−At [Σ(0)−Σs] e

−AT t
)

= −A
(
e−At [Σ(0)−Σs] e

−AT t
)
−
(
e−At [Σ(0)−Σs] e

−AT t
)
AT

= −AΣ(t) +AΣs −Σ(t)AT +ΣsA
T

(5.5.25)
= −AΣ(t)−Σ(t)AT + 2D. (5.5.27)

Choosing Σ(0) = Σs,i = TiΣs,w/Tw yields Eq. (5.5.4).

Generalized excess free energy during heating and cooling

The Kullback-Leibler divergence in Eq. (5.5.1) can be computed for two d-dimensional
Gaussian densities P1,2 with mean zero as 2DKL (P1||P2) = − ln

(
det
[
Σ1Σ

−1
2

])
+

tr
(
Σ1Σ

−1
2 − 1

) where 1 is the d-dimensional unit matrix. Using Eq. (5.5.4) (i.e., Σw
i (t) =

Σs,w + e−At [Σs,i −Σs,w] e
−AT t) with the notations X(t) ≡ e−AtΣs,we

−AT tΣ−1
s,w and δT̃i ≡

Ti/Tw − 1 we obtain Eq. (5.5.5), i.e.,

Di
t =

1

2
δT̃i trX(t)− 1

2
ln det

[
1+ δT̃iX(t)

]
. (5.5.28)
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5 Thermal relaxation asymmetry

Effective rotations opposing the direction of drift

In Subsec. 5.5.3 (see Fig. 5.5.2e-f) we state that, and briefly explain why, rotations of
the probability density function (quantified via covariance ellipses) during heating emerge
in opposite directions. Mathematically opposing rotations can be seen from Eq. (5.5.4),
Σw

i (t) = Σs,w + e−At [Σs,i −Σs,w] e
−AT t, where Σs,i −Σs,w = (Ti/Tw − 1)Σs,w has oppos-

ing signs for Tc < Tw and Th > Tw. However, the physical or phenomenological under-
standing is more challenging. The most surprising aspect is that rotational motions occur
in directions that oppose the rotational driving (e.g., during heating). Since there are no
rotational motions in the absence of driving, clockwise rotational driving can in fact lead
to counterclockwise (effective) rotations.

First, note that the phenomenon has to be understood on the level of probability density
functions and not on the level of individual particles’ trajectories. In Fig. 5.5.4a,b we show
that the cloud of particles’ positions (representing the probability density) effectively ro-
tates in the counterclockwise direction while the individual particles on average follow the
rotational drift in the clockwise direction, see Fig. 5.5.4c.

Figure 5.5.4: (a,b) Simulation of 5000 particles’ trajectories evolving according to the
two-dimensional overdamped Langevin equation dxt = −Axtdt +

√
2dWt with A =[

r1 −r2ω
−r1ω r2

]
with r1 = 1, r2 = 3, ω = 8ωc and time-step dt = 0.001 starting from

an initial condition corresponding to Tc = 0.1 (in units of Tw). (c) Simulated trajectories
of 4 particles in time 0.0 (dark) to 0.1 (bright). Grey streamlines shows A(x, y)T , i.e., the
direction that particles’ trajectories follow on average.

The emergence of this counterintuitive opposing rotation is explained in Fig. 5.5.2f. To
repeat this, during a Trotterized time-increment the diffusion propagates the initial covari-
ance ellipse to a more circular (less eccentric) one. Next, note that the rotational drift
is not a perfect circulation, but instead driving along elliptical contour-lines plus the driv-
ing into the center due to the confining (conservative) potential. This clockwise elliptical
rotational driving applied to the ellipse (previously “rounded” during the diffusion Trotter-
increment) leads to the counter-clockwise rotation directly by following the streamlines of
the drift (see Fig. 5.5.2f).
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To elaborate on these rotations consider Fig. 5.5.5. Ellipses in Fig. 5.5.5 and those shown
below are the covariance ellipses, while ellipses in Fig. 5.5.4 and Fig. 5.5.2f correspond
to standard-deviation ellipses (i.e., square roots of covariance ellipses). In Fig. 5.5.5a we
recall the opposite rotation during heating and cooling. As in Fig. 5.5.4 we then focus on the
heating, where the initial rotation is in the counterintuitive direction; see Fig. 5.5.5b. To
illustrate the explanation given in Fig. 5.5.2f, we show that this rotation similarly emerges
if we start in a circular initial condition (see Fig. 5.5.5c).

If we instead consider a circular driving with circular steady-state density (see Fig. 5.5.5d)
all rotations emerge in the (intuitive) clockwise direction, which shows that the elliptical
(i.e., non-circular) component of the circular driving is a key factor in this phenomenon.

Figure 5.5.5: (a,b) Covariance ellipses from Eq. (5.5.26) for heating and cooling for the
process as in Fig. 5.5.4 and Fig. 5.5.2. (c) As in (b) but with initial condition with r1 =
r2 = 2. (d) As in (b) but with process (but not initial condition) defined with r1 = r2 = 2.

In Fig. 5.5.6 we further illustrate the relation between the direction of rotation and the
shape of covariance ellipses. As explained above and in Fig. 5.5.2f, a more circular
(less eccentric) ellipse [sign(3−ratio)=1] leads to a surprising counter-clockwise rotation
[sign(angle-change)=1]. The overlap of the curves in Fig. 5.5.6c,d corroborates this expla-
nation. Small deviations between the curves emerge, since the heuristic explanation only
applies to ellipses with angle(t) = 0.

In Fig. 5.5.7 we repeat the presentation of Fig. 5.5.6 for a case where the eigenvalues of
the drift matrix are real (see Fig. 5.5.2d for ω < ωc). We observe that (opposite) rota-
tional motions also occur for the case of real eigenvalues, which illustrates that (effective)
rotational motions do not only emerge for complex eigenvalues. A difference with respect
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5 Thermal relaxation asymmetry

Figure 5.5.6: (a) Same as in 5.5.2e. (b) Ratio of the axes of the covariance ellipse. Values
below 3 reflect more circular (less eccentric) ellipses compared to the initial condition and
the steady state. (c,d) Direction of rotation (clockwise rotation is+1) and indicator of shape
(±1 means more/less round, i.e., less/more eccentric) for heating (c) and cooling (d).

to Fig. 5.5.6 is that the angles do not cross 0, such that the explanation for the overlaps in
Fig. 5.5.7c,d only applies at t = 0.

Figure 5.5.7: As in Fig. 5.5.6 but for ω = 0.9ωc, i.e., eigenvalues of the drift matrix A are
real (see Fig. 5.5.2d).

Relevance and generality of the observation of counterintuitive rotations:
So far, we only investigated the origin of the counterintuitive rotations in the two-
dimensional example. However, since such counterintuitive rotations already occur in this
linear, low-dimensional example, it is to be expected that such motions also occur for more
general driven systems. In particular, if two-dimensional subspaces are described by the
example above, one immediately has this rotation in the subspace of the more general dy-
namics. Generally, one expects opposite rotations during heating and cooling (and there-
fore one of the two has to rotate opposite to the driving) due to the difference in sign of
Σs,i − Σs,w = (Ti/Tw − 1)Σs,w for i = h, c in Eq. (5.5.26) [Eq. (5.5.4)] as pointed out
above.

The relevance of this observation is twofold. On the one hand, it further emphasizes the
asymmetry between heating and cooling, and that the process does not pass through locally
equilibrated states (i.e., the system cannot be described by a time-dependent temperature).
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On the other hand, it is also relevant for general relaxation phenomena, i.e., beyond ther-
mal relaxation. For example, imagine one observes the part of the relaxation process in
Fig. 5.5.4a,b for t ∈ [0, 0.1]. If one only observes the apparent counterclockwise rotation
of the probability density, one would never guess that the underlying driving is actually in
the clockwise direction. Therefore, awareness of this counterintuitive phenomenon might
prove useful to avoid false conclusions; and a deep understanding of this phenomenon
helps to arrive at correct conclusions.

Consistent comparison of equilibrium and non-equilibrium steady states

We here discuss under which circumstances we consider a comparison of equilibrium (EQ)
and non-equilibrium steady states (NESS), or of different NESS, to be consistent.

In short, we consider a comparison to be consistent if tuning the driving strength does not
change the steady-state density. Before we explain this in detail, we want to stress that a
consistent comparison is by no means required for the statement of the thermal relaxation
asymmetry to be valid, since this statement is proven for any NESS with linear drift in Sub-
sec. 5.5.5. Therefore, we were able to choose the physical example of a Rouse chain in a
shear flow to illustrate the relaxation asymmetry in Fig. 5.5.1 (which in fact does not rep-
resent a consistent comparison). The consistent comparison is, however, necessary for the
statement of “accelerated relaxation” since this statement compares the relaxation speed
towards an NESS with the relaxation speed in the corresponding passive system relaxing
into an equilibrium steady state.

In Subsec. 5.5.3, we use Eq. (5.5.3), i.e., Eq. (5.5.25), to obtain the decomposition A =

(Di + αi)Σ
−1
s,i , see Eq. (5.5.7), with αT

i = −αi for the linear drift matrix A. Note that
here Di,αi,Σs,i ∝ Ti all increase linearly with temperature, but the product A involving
Σ−1

s,i ∝ T−1
i is temperature independent. AnyA from this decomposition fulfills Eq. (5.5.3),

i.e., Eq. (5.5.25), with the givenΣs,i, and in turn anyA implying a steady-state covariance
Σs,i via Eq. (5.5.3) can be decomposed with this Σs,i according to A = (Di + αi)Σ

−1
s,i .

The advantage of the latter form is that it allows to systematically compare NESS dynamics
(or in the special case reversible dynamics) dxt = −Axtdt + σdWt with different A that
possess different driving strengths but the same steady-state density. This comparison is
performed by tuning the parameter αi (reversible systems are obtained by setting αi = 0)
for a given Σs,i, which then yields A via A = (Di +αi)Σ

−1
s,i , see Eq. (5.5.7). We consider

such a comparison to be consistent, in contrast to a comparisonwhere tuning the irreversible
driving alters Σs,i and thus the steady-state density.
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5 Thermal relaxation asymmetry

An example of a driving that does not yield a consistent comparison is the shear flow in
Fig. 5.5.1 and in Eqs. (5.5.14)-(5.5.22). We discuss this comparison in detail now. For
simplicity, we consider a single particle N = 1 in the x-y plane subject to the confining
potential and shear flow [see Eqs. (5.5.18)-(5.5.20)] described by the equation of motion
dxt = −Axtdt+

√
2dWt with drift matrix

A =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

][
rx 0

0 ry

][
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
+

[
0 ω

0 0

]
. (5.5.29)

This drift originates from a (rotated) confining potential with confinement strength quan-
tified by rx, ry > 0, plus a shear flow of strength ω (both exactly as shown in Fig. 5.5.1a).
The drift without the shear flow ω = 0 is symmetric and therefore gives rise to reversible
dynamics with steady-state covariance [see Eqs. (5.5.3) or (5.5.7) for D = 1]

Σs =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

][
1/rx 0

0 1/ry

][
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
. (5.5.30)

The shear flow ω ̸= 0 renders the dynamics irreversible. However, since now it is not of the
form αΣ−1

s with αT = −α as in Eq. (5.5.7), the steady-state covariance for ω ̸= 0 will no
longer be given by Eq. (5.5.30), i.e., the steady-state Lyapunov equation [see Eq. (5.5.3)
or Eq. (5.5.25)] for A with ω ̸= 0 will give rise to another steady-state different from
Eq. (5.5.30) which corresponds to ω = 0. Therefore, comparing systems with differ-
ent ω will generally not be consistent [opposed a comparing systems with different αi in
Eq. (5.5.7)].

We illustrate this inconsistent comparison by three different examples. Choosing the pa-
rameters rx = 1, ry = 0.1, ω = 3, θ = −10◦ as in Fig. 5.5.1a, the eigenvalues of A are
0.55±0.51i, i.e., compared to ω = 0with eigenvalues rx,y the statement of faster relaxation
as quantified in Eq. (5.5.8) does still hold true, even though the proof does not apply here
(see also Fig. 5.5.1b where the curves with the shear flow decay faster at long times). How-
ever, if one instead takes ω = 0.5, θ = 10◦ the eigenvalues of A are 1.08 and 0.02 i.e., the
limiting relaxation is slower compared to the reversible system since 0.02 < rx,y. Thus, the
statement of faster relaxation does not apply since the effect of the shear flow on the steady
state is too large. Even more extreme is the case ω = 3, θ = 10◦ where the eigenvalues are
1.365 and −0.265 where the negative eigenvalue implies that the shear flow destroyed the
confining potential in the sense that the resulting drift no longer corresponds to a confined
process. This means that this process no longer relaxes into an NESS. This can, of course, not
happen for a consistent comparison, since changing only αi in Eq. (5.5.7) does not change
the confinement.
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Adiabatic entropy production

The adiabatic entropy production is the housekeeping heat divided by the reservoir tem-
perature and is given by [188]

Ṡa(t) =

∫
dxP (x, t)airr(x)

TD−1
i airr(x), (5.5.31)

where the irreversible drift in the linear case considered reads airr(x) = −Airrx =

−αiΣ
−1
s,i x. Thus, we see that the adiabatic entropy production term scales linearly with

αT
i D

−1
i αi as mentioned in Subsec. 5.5.4, i.e., it scales quadratically in the driving strength.

Long-time scaling of the Kullback-Leibler divergence

In terms of the eigenvalue λ1 of A that has the smallest real part, we know that asymp-
totically for large t the magnitude of e−At is determined by e−ℜ(λ1)t [there may still
be oscillations (see Fig. 5.5.2h) and if A is not diagonalizable there may also be terms
tke−ℜ(λ1)t with k ∈ N entering, which nonetheless are dominated by e−ℜ(λ1)t for suffi-
ciently large t]. Note that e−At ∼ e−ℜ(λ1)t implies, via Eq. (5.5.6), that X(t) ∼ e−2ℜ(λ1)t

for t → ∞. Recall Eq. (5.5.5), i.e., 2Di
t = tr[δT̃iX(t)] − ln det[1 + δT̃iX(t)]. Consider-

ing δT̃iX(t) = e−2ℜ(λ1)tM for some matrix M for large enough t and using that around
e−2ℜ(λ1)t → 0, we have that det[1 + e−2ℜ(λ1)tM] = 1 + tr[e−2ℜ(λ1)tM] +O[e−4ℜ(λ1)t], and
we obtain Di

t = O[e−4ℜ(λ1)t] as illustrated in Fig. 5.5.2h. This confirms that the limiting
relaxation speed is dictated by ℜ(λ1), i.e., by the smallest real part of eigenvalues of A. In
the reversible case we have ℜ(λ1) = µ1 with the notation in Subsec. 5.5.4, and µ1 = r1 for
the example considered in Fig. 5.5.2.

Note that we did not formally exclude the case that the order e−4ℜ(λ1)t also vanishes; in
this situation we would need to consider even higher orders. It is likely that this case can
be generally excluded, however, since no results hinge on the specific scaling, we do not go
into more detail here.

Effective stiffness

The effective stiffness r̂j(ω) ≡ − ln(xtj)/2t [such that xtj = e−2r̂j(ω)t] is defined as the
stiffness of the confining potential of a reversible system that has the same thermal relax-
ation properties as the considered system, where xtj for j = 1, . . . , d are the eigenvalues of
the matrix X(t) ≡ e−AtΣs,we

−AT tΣ−1
s,w = e−Ate−A−αt [see Eqs. (5.5.6) and (5.5.10)]. In

Fig. 5.5.3b we show r̂j(ω) for j = 1, 2 for the two-dimensional system as shown in Fig. 5.5.2
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5 Thermal relaxation asymmetry

with driving strength ω. The eigenvalues xt1,2 at Tw = 1 (i.e., Ti are measured in units of
Tw) for this example are computed from

A ≡

[
r1 −r2ω
r1ω r2

]
, σ =

√
21, Σs =

[
1/r1 0

0 1/r2

]
,

M ≡
√

(r1 − r2)2 − 4r1r2ω2 ∈ C,

exp(−At) =
exp[−(r1 + r2)t/2]

M
×[

M cosh
(
Mt
2

)
− |r1 − r2| sinh

(
Mt
2

)
2ωr2 sinh

(
Mt
2

)
−2ωr1 sinh

(
Mt
2

)
M cosh

(
Mt
2

)
+ |r1 − r2| sinh

(
Mt
2

)] ,
xt1x

t
2 = det[X(t)] = exp[−2(r1 + r2)t],

xt1 + xt2 = tr[X(t)] = 2 exp[−(r1 + r2)t]

[
1 + 2

(r1 − r2)
2

M2
sinh2

(
Mt

2

)]
xt1,2 =

tr(X(t))

2
±
√

tr2(X(t))

4
− det(X(t)). (5.5.32)

Log-norm inequality

In Subsec. 5.5.5 we use the log-norm inequality ||exp(Mt)|| ≤ exp[µ(M)t] [334] where
the log norm is defined via the matrix norm ||M|| ≡ supv∈Rd\0 ||Mv||2 / ||v||2 (also known
as operator norm) where ||v||2 =

√
vTv as

µ(M) ≡ lim
h→0+

||1+ hM|| − 1

h
. (5.5.33)

Writing the matrix norm ||M|| in the form ||Mv||2 / ||v||2 =
√

vTMTMv/vTv one sees
that ||M|| is given by the square root of the largest eigenvalue of the symmetric matrix
MTM. SplittingM = Ms+Ma withMs ≡ (M+MT )/2 = MT

s andMa ≡ (M−MT )/2 =

−MT
a we find that

(1+ hM)T (1+ hM) = (1+ hMs − hMa)(1+ hMs + hMa) = 1 + 2hMs +O(h2)

= (1+ hMs)
T (1+ hMs) +O(h2). (5.5.34)

This implies that ||1+ hM|| = ||1+ hMs|| and via Eq. (5.5.33) that the log norm is solely
determined by the symmetric part µ(M) = µ(Ms). Intuitively, this states that asymmetric
contributions (which account for rotations after exponentiation) do not enter the absolute
value in the exponential bound ||exp(Mt)|| ≤ exp[µ(M)t], which makes the log norm very
useful for our theory.
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From this insight, we immediately compute the result used in Subsec. 5.5.5, i.e., we use
that −βDwβ with eigenvalues −µ1 > −µ2 > . . . is the symmetric part of −βAβ−1 to
obtain

µ(−Ã) ≡ µ(−βAβ−1) = µ(−βDwβ) = −µ1. (5.5.35)
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Chapter 6

Scattering fingerprints of two-state
dynamics

We now come to the last chapter before the Conclusion. This chapter goes beyond the
previous content in the sense that it no longer deals with Markov dynamics described by
an overdamped Langevin equation. We introduce the considered dynamics in Sec. 6.1. In
Sec. 6.2, we summarize the results of a publication that is reproduced in Sec. 6.3. Since this
publication is rather self-contained and requires little previous knowledge, we only give a
short introduction, focusing on putting the work into the context of the thesis.

6.1 Introduction to two-state dynamics and anoma-
lous diffusion

In this section, we introduce two-state dynamics in Subsec. 6.1.1, anomalous diffusion in
Subsec. 6.1.2, and the intermediate scattering function in Subsec. 6.1.3.

6.1.1 Two-state dynamics

In this chapter, we consider a new type of dynamics, namely two-state dynamics. To this
end, we consider a process that randomly switches between two different states of motion,
e.g., between diffusive motions with diffusion constants D1 and D2, respectively, or be-
tween two different conformations of a macromolecule. The switching is assumed to occur
randomly, e.g., with waiting times drawn from an exponential distribution. Similar to the
example of the different species in Subsec. 4.1.4, we assume that only the time-dependent
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position is observed (or fingerprints of the position in related observables) without knowing
at what time which state of motion determines the dynamics. In contrast to the example
in Subsec. 4.1.4, the different motions are no longer independently coexisting, but instead
stochastically convert between each other.

Often, we consider both, the dynamics in the individual states and the switching between
them, to be Markovian, i.e., memoryless, see Subsec. 2.3.1. However, not resolving for
the state of motion, but only for the time-dependent position, may generally give rise to
memory if internal degrees of freedom evolve differently in the different state. This fur-
ther distinguishes this chapter from the preceding parts of the thesis, where we almost
exclusively considered Makovian dynamics.

6.1.2 Anomalous diffusion

In one part of the publication in Sec. 6.3, see Fig. 6.3.2, we go beyond the previously con-
sidered Langevin dynamics even in the individual states of motion. Instead, the individual
states are assumed to follow a non-Markovian, anomalous diffusion [81, 82], that is often
found in transport in complex, viscoelastic, or heterogeneous media [82,203,335,336]. For
a one-dimensional position coordinate xt, anomalous diffusion is characterized by a mean-
squared displacement ⟨(xt − x0)

2⟩ = 2Ctα with exponent α > 0, where C is a generalized
diffusion coefficient with units of m2s−α. Processes with α > 1 are called superdiffusion,
while processes with α < 1 are called subdiffusion. There are different mathematical mod-
els for anomalous diffusion. We here consider fractional Brownian motion, which is the
Gaussian process, see Subsec. 2.3.2, fulfilling the scaling relation ⟨(xt − x0)

2⟩ = 2Ctα for
self-similar and stationary increments (for details, see [337, Proposition 3.8]).

Recall from the assumptions necessary for the emergence of Langevin dynamics in Sub-
sec. 1.2 that we assumed that the medium relaxes much faster than the system. Though
this is a reasonable assumption for Brownian particles in water, we run into problems if
we consider more complex media, such as the interior of a biological cell. Though the re-
quired timescale separation may hold between a considered particle and water, the cytosol
(cell fluid) contains a high concentration of particles such as proteins that are much larger
than water molecules. Therefore, memory effects emerge since the medium does not relax
fast. Often, this complex medium slows down the diffusion and leads to anti-persistent,
subdiffusive motion.

In particular, it was recently found that tracer particle motion in living cells can be described
by a two-state dynamics switching between two different subdiffusive motions [91]. We
revisit this particular process in Fig. 6.3.2 in the publication reproduced in Sec. 6.3.
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6.1.3 Considered observable

As in the previous chapter, the question arises how to appropriately quantify the considered
process. An observable that is both, mathematically and experimentally, appropriate for the
dynamics considered here is the intermediate scattering function F (q, t) that is the moment
generating function, see Eq. (2.2.4), of the time-dependent displacement vector

F (q, t) ≡
〈
e−iq·(xt−x0)

〉
. (6.1.1)

Mathematically, this observable has the advantage that (similar to the Feynman-Kac ap-
proach in Subsec. 3.2.2) the moment generating function is more easily accessible than
p(x, t). From an experimental point of view, note that F (q, t) is directly probed in mod-
ern experimental techniques such as neutron spin echo spectroscopy [338–341], dif-
ferential dynamic microscopy [342–344], or Fourier imaging correlation spectroscopy
[345–347]. Moreover, it is directly related to the dynamic structure factor S(q, ω) =∫∞
−∞ dt eiωtF (q, |t|)/2π, which is measured in inelastic scattering experiments [348] (giving
rise to the name “intermediate scattering function”). Alternatively, the intermediate scat-
tering function in Eq. (6.1.1) may also be obtained from measured trajectories, as shown
in Fig. 6.3.2 for particle tracking data recorded in living cells [91].

6.2 Summary of results
The publication in Sec. 6.3 investigates the intermediate scattering function and dynamic
structure factor for two-state dynamics. We solve and discuss simple model systems, includ-
ing a minimal model for protein (un)folding. We fit some results to experimental data, and
thereby support the hypothesis from Ref. [91] of two-state dynamics switching between
anomalous diffusions.

6.3 Scattering fingerprints of two-state dynamics
(New J. Phys. 2022)

This section is a slightly modified version of the publication C. Dieball, D. Krapf, M. Weiss
and A. Godec, “Scattering fingerprints of two-state dynamics”, New J. Phys. 24, 023004
(2022).

My personal contribution as first author of the publication was in performing calculations
and simulations, analyzing the results, and co-writing the manuscript.
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Scattering fingerprints of two-state dynamics
Cai Dieball1, Diego Krapf2, Matthias Weiss3 and Aljaž Godec1

1Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am
Faßberg 11, 37077 Göttingen, Germany

2Electrical and Computer Engineering and School of Biomedical Engineering, Colorado
State University, Fort Collins, Colorado, USA

3Experimental Physics I, University of Bayreuth, Bayreuth, Germany

Abstract

Particle transport in complex environments such as the interior of living
cells is often (transiently) non-Fickian or anomalous, that is, it deviates from
the laws of Brownian motion. Such anomalies may be the result of small-scale
spatio-temporal heterogeneities in, or viscoelastic properties of, the medium,
molecular crowding, etc. Often the observed dynamics displays multi-state
characteristics, i.e., distinct modes of transport dynamically interconverting
between each other in a stochastic manner. Reliably distinguishing between
single- and multi-state dynamics is challenging and requires a combination of
distinct approaches. To complement the existing methods relying on the anal-
ysis of the particle’s mean squared displacement, position- or displacement-
autocorrelation function, and propagators, we here focus on “scattering fin-
gerprints” of multi-state dynamics. We develop a theoretical framework for
two-state scattering signatures – the intermediate scattering function and dy-
namic structure factor – and apply it to the analysis of simple model systems as
well as particle-tracking experiments in living cells. We consider inert tracer-
particlemotion as well as systemswith an internal structure and dynamics. Our
results may generally be relevant for the interpretation of state-of-the-art dif-
ferential dynamic microscopy experiments on complex particulate systems, as
well as inelastic or quasielastic neutron (including spin-echo) and X-ray scatter-
ing scattering probing structural and dynamical properties of macromolecules,
when the underlying dynamics displays two-state transport.

6.3.1 Introduction

Transport in complex systems, such as disordered media [349], biological cells [82, 335],
and cell membranes [350, 351], frequently deviates from the laws of Brownian motion
that govern the dynamics of particles in simple media and at high dilution. The reason
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for the deviation from the paradigmatic Brownian behavior may be sought in spatial ob-
struction and/or macromolecular crowding [82, 335, 351], viscoelastic properties of the
medium [352–356], and spatial heterogeneities [357, 358], to name but a few. Over the
years a multitude of approaches have emerged to characterize anomalous diffusion from
different perspectives, and in particular to distinguish between different modes of anoma-
lous diffusion (for excellent reviews see, e.g., [82,203,350,359,360]).

An important class of anomalous diffusion processes are multi-state dynamics – dynamics
that depend on the instantaneous value of an internal state. Examples of multi-state dy-
namics include stochastically gated diffusion-controlled reactions [361–365], intermittent
molecular search processes underlying cellular gene regulation [366–368], or the center
of mass diffusion of (un)folding proteins [369] or growing polymers [370], the anoma-
lous diffusion of membrane proteins [371], as well as tracer diffusion in heterogeneous
environments [372,373], and most recently also in mammalian cells [91,202].

Notwithstanding all progress in the development of analytical tools [82,203,335,360,374]
it often remains challenging to conclusively distinguish between different modes of mo-
tion observed in experiments [375], and in particular to conclusively identify multi-state
transport [376–378]. To this end, we focus on scattering fingerprints of multi-state dy-
namics, that is, on the intermediate scattering function (ISF) and dynamic structure factor
(DSF), observables that are typically monitored in neutron and X-ray scattering experi-
ments (for applications in the context of biophysical systems see, e.g., [379–382]). The ISF
and the DSF were originally identified as key observables in scattering experiments by van
Hove [348]. While the ISF was initially introduced as an auxiliary observable in the study of
the DSF, more recent methods, such as neutron spin echo (NSE) spectroscopy [338–341],
as well as modern (colloidal) particle-tracking techniques, such as differential dynamic mi-
croscopy (DDM) [342–344] or Fourier imaging correlation spectroscopy (FICS) [345–347],
probe the ISF directly.

Motivated by recent experimental observations (see, e.g., [91,202,383]) our aim is to em-
ploy the ISF and DSF in the analysis of multi-state transport, more precisely, of two-state
dynamics. By combining theory and particle-tracking experiments in living cells we con-
sider inert tracer-particle dynamics as well as systems with internal degrees of freedom.
Our results may be relevant for the interpretation of DDM experiments on complex par-
ticulate systems, as well as neutron and X-ray scattering scattering, when the underlying
dynamics displays two-state transport.
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6 Scattering fingerprints of two-state dynamics

6.3.2 Theory

Intermediate scattering function and the dynamic structure factor

The fundamental quantities, the ISF and DSF, are calculated from the so-called van Hove
function G(r⃗, t), which is a generalized pair distribution function [348, 384]. In the ab-
sence of quantum effects G(r⃗, t) is the density-density time-correlation function that may
be interpreted as the average number of particles (scatterers) β in a region dr⃗ around a
point r⃗+ r⃗ ′ at time t given that there was a particle (scatterer) α at a point r⃗ ′ at time t = 0

(whereby the initial condition r⃗ ′ is averaged out),

Gαβ(r⃗, t) = ⟨δ(r⃗β(t)− r⃗α(0)− r⃗)⟩. (6.3.1)

The brackets denote the average over an appropriate ensemble that we will specify below.
For the sake of simplicity, we here focus exclusively on systems of non-interactingmolecules,
which, however, may possess internal degrees of freedom. Depending on whether α = β or
not (i.e., whether we consider scattering events at an individual or two distinct scatterers)
the van Hove function splits into an incoherent part (self-part, α = β) that probes single-
scatterer motions, and a coherent part (sum of distinct-part, α ̸= β, and self-part) probing
collective motions [384]. More precisely,

Ginc(r⃗, t) =
1

N

N∑
α=1

Gαα(r⃗, t), (6.3.2)

Gcoh(r⃗, t) =
1

N

N∑
α,β=1

Gαβ(r⃗, t), (6.3.3)

where the sum runs over all N scattering centers within a molecule and we will in addi-
tion average over an ensemble of statistically independent trajectories of the molecule (in
fact over an ensemble of many such molecules) that we denote by ⟨·⟩. Depending on the
experimental setupGinc(r⃗, t) andGcoh(r⃗, t)may [385] or may not be monitored separately.

The intermediate scattering function (ISF; mathematically the characteristic function of dis-
placements1) measured in NSE, DDM and FICS is the spatial Fourier transform ofGαβ(r⃗, t),

Fαβ(q⃗, t) =

∫
d3r Gαβ(r⃗, t)e−iq⃗·r⃗ = ⟨e−iq⃗·(r⃗β(t)−r⃗α(0))⟩, (6.3.4)

1If moments of the displacement are finite, the ISF as a function of q contains the complete
information about the statistics of the displacements.
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while the dynamic structure factor (DSF) that is measured in inelastic/quasielastic scatter-
ing experiments is the space-and-time Fourier transform of Gαβ(r⃗, t), i.e.,

Sαβ(q⃗, ω) =
1

2π

∫ ∞

−∞
dt eiωtFαβ(q⃗, |t|) = 1

π

∫ ∞

0
dt cos(ωt)Fαβ(q⃗, t), (6.3.5)

or alternatively defined via the Laplace transform f̂(s) ≡
∫∞
0 e−stf(t)dt as Sαβ(q⃗, ω) =

π−1Re[F̂αβ(q⃗, s = −iω)], where Re denotes the real part.

In scattering experiments the arguments q⃗ and ω correspond to the momentum and energy
transfer and the DSF is proportional to the measured intensity [348]. In the next step we
develop results for Fαβ(q⃗, t) and Sαβ(q⃗, ω) for systems displaying two-state dynamics.

Two-state Dynamics

Assuming two distinct dynamic “states” interconverting in continuous time in a Markovian
manner with rates k1, k2 > 0, that is, according to the master equation ˙⃗p(t) = Kp⃗(t) with
transition rate matrix

K =

[
−k1 k2

k1 −k2

]
. (6.3.6)

Using

peq1 ≡ k2
k1 + k2

, peq2 ≡ k1
k1 + k2

, (6.3.7)

the jump-propagator is diagonalized as

exp(Kt) =

(
peq1
peq2

)
(1, 1) + e−(k1+k2)t

(
1

−1

)
(peq2 ,−p

eq
1 ) . (6.3.8)

We now assumeN = 1 and drop the indices α, β; the case N > 1 is discussed in Sec. 6.3.5.
Let Gj(r⃗, t)ψj(t) denote the joint density to observe a displacement r⃗ in a time t in dynam-
ical state j without changing the state, where Gj(r⃗, t) denotes the van Hove function for
the dynamics in a single state j. Its Fourier-Laplace transform will be denoted by

(̂Fψ)j ≡ (̂Fψ)j(q⃗, s) ≡
∫

d3r

∫ ∞

0
dt e−st−iq⃗·r⃗Gj(r⃗, t)ψj(t). (6.3.9)

Often the change of state erases all memory in the sense that the propagation within each
sojourn can be assumed to be independent of the configuration just before the switch [386],
as in the case e.g., when the dynamics in both states is translation invariant. In this case
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6 Scattering fingerprints of two-state dynamics

the DSF and ISF of the complete two-state dynamics can be obtained following Ref. [386]
by a direct summation over all possible realizations of sojourns until time t (for the deriva-
tion, see Sec. 6.3.5). The Fourier-Laplace transform of the complete two-state propagator,
G(r⃗, t), in this case reads

F̂ (q⃗, s) =
p1(̂Fψ)1

[
1 + k1(̂Fψ)2

]
+ p2(̂Fψ)2

[
1 + k2(̂Fψ)1

]
1− k1k2(̂Fψ)1(̂Fψ)2

, (6.3.10)

where p1,2 denote the initial occupation of states. The DSF henceforth follows immediately
using

S(q⃗, ω) =
1

π
ℜ[F̂ (q⃗,−iω)]. (6.3.11)

The problem of determining the ISF and DSF for two-state dynamics with “complete mem-
ory erasure” upon each change of state thus boils down to determining (̂Fψ)1,2(q⃗, s) in
Eq. (6.3.9) for the specific example under consideration. In case there is no complete
memory erasure (see protein (un)folding example Sec. 6.3.3) one must solve the specific
model at hand using a dedicated method or resort to approximations. In the following, we
address a set of insightful and experimentally relevant scenarios of two-state diffusion.

6.3.3 Results

Two-state diffusion

In the first example, we assume that the molecule/tracer particle undergoes free Brownian
motion with a diffusion coefficient that randomly switches between values D1 and D2 in a
Markovian fashion with rates k1 and k2, implying the distribution ψj(t) = e−kjt of sojourn
times in the respective states. This situation arises in the context of tracer diffusion in
heterogeneous media (see, e.g., [365,372,373]). Note that assuming sojourn times to be
independent of the dynamics within the individual states is not always justified. In partic-
ular, we here assume an “annealed heterogeneity” (see, e.g., [358]). This may occur when
the medium is translationally invariant, such as in the case of a state change triggered by
the reversible binding to a homogeneously distributed mobile species. In general, this does
not apply to quenched heterogeneous media, except in cases where a system is observed
under equilibrated conditions [387].

The Fourier-Laplace transform of Gj(r⃗, t)ψj(t) defined in Eq. (6.3.9) reads

(̂Fψ)j(q⃗, s) = (̂Fψ)j(q, s) =
1

s+ q2Dj + kj
, (6.3.12)
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where q2 ≡ q⃗ · q⃗. Plugging Eq. (6.3.12) into Eq. (6.3.10) the Fourier-Laplace image of the
complete propagator for two-state diffusion can be written as

F̂ (q, s) =
s+ q2(p1D2 + p2D1) + k1 + k2

(s+ q2D1 + k1)(s+ q2D2 + k2)− k1k2
, (6.3.13)

with a general initial condition p1,2. Defining

µ±(q) =
q2(D1 +D2) + k1 + k2

2
±
√

[q2(D1 −D2) + k1 − k2]2

4
+ k1k2 , (6.3.14)

introducing the auxiliary function

φ(q) ≡ q2(p1D2 + p2D1) + k1 + k2 − µ−(q)

µ+(q)− µ−(q)
, (6.3.15)

and inverting into the time domain we finally obtain

F (q, t) = [1− φ(q)]e−µ+(q)t + φ(q)e−µ−(q)t, (6.3.16)

S(q, ω) =
1

π
ℜ[F̂ (q,−iω)] = 1

π

[1− φ(q)]µ+(q)

ω2 + µ2+(q)
+

1

π

φ(q)µ−(q)

ω2 + µ2−(q)
. (6.3.17)

In contrast, in the case when the two states co-evolve as a “frozen mixture”—an ensemble
consisting of two types of molecules that do not interconvert between each other2—with
the state occupations p1,2 we have Fmix(q, t) = p1e

−q2D1t + p2e
−q2D2t. This frozen mixture

will throughout be denoted by the subscript “mix”, and is the limit of Eq. (6.3.16) in the
case of slow switching rates k1 + k2 ≪ q2D1,2, see Sec. 6.3.5.

It is also instructive to inspect the fast-switching limit, k1 + k2 ≫ q2D1,2, where we find
(for details see Sec. 6.3.5) µ+(q) ≃ q2Deff ≡ peq1 D1+p

eq
2 D2 and µ−(q) ≃ k1+k2 ≫ q2D1,2,

which implies simple diffusion with an effective diffusion coefficient in agreement with
intuition.

Our aim here is to demonstrate that the analysis allows to distinguish between single-state
dynamics, two-state switching diffusion and the “frozen mixture” with the same station-
ary probabilities as long as the switching rates are not too fast or too slow, which would
give rise to the aforementioned (fast-switching) effective diffusion and “frozen mixture”,
respectively.

For such moderate switching rates, the ISF shown in Fig. 6.3.1a and the DSF in Fig. 6.3.1b
indeed reveal distinctive characteristics of two-state diffusion (dashed lines) when com-

2This “frozen mixture” is the same as the non-interacting species considered in Subsec. 4.1.4.
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6 Scattering fingerprints of two-state dynamics

Figure 6.3.1: (a) ISF F (q, t) for free diffusion switching between diffusion constants D1

and D2 = 10D1 with switching rates k1 = k2 = k evolving from an initial equilibrium
occupation peq1 = peq2 = 0.5 and time t measured in units of t0 = 1/D1q

2. The ISF for
different switching rates are shown along with the limits of the frozen mix (k → 0, black
curve) and the effective diffusion (k → ∞, yellow curve). (b) Dynamical structure factor
corresponding to the ISF in (a). (c) Half width at half maximum (HWHM) of the DSF
from (b) are shown along with the HWHMs of the blue, green and yellow curves in (b)
(dashed lines). To compare with a non-equilibrium initial occupation, the HWHM for initial
occupation p1 = 0 and p1 = 1 are also shown (green and blue lines, respectively).
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pared to the “frozen mixture” (black full line) as well as the two individual diffusive states
(blue and green full lines, respectively). To reduce these differences to a single observ-
able we inspect the half width at half the maximum (HWHM) of the quasielastic peak as
a function of the switching rate (that for simplicity we set to be symmetric, k1 = k2 ≡ k)
for different initial conditions. The HWHM is determined from Eq. (6.3.17) by setting
S(q, ωHWHM) = S(q, 0)/2 and solving the corresponding bi-quadratic equation for ωHWHM.
The results for ωHWHM are shown in Fig. 6.3.1c and together with Fig. 6.3.1a-b confirm
that the DSF and ISF can reliably distinguish between a “non-communicating”, frozen su-
perposition of dynamic modes and two-state diffusion as long as the switching rates are
not too fast or too slow.

Note that for an isotropic Gaussian process we have F (q, t) = e−q2⟨[r⃗(t)−r⃗(0)]2⟩/2d and
hence ISF contains exactly the same information as the mean squared displacement (MSD)
⟨[r⃗(t) − r⃗(0)]2⟩. For the individual states as well as for effective diffusion, the dynamics is
Gaussian. However, two-state dynamics is typically non-Gaussian [91] and the ISF provides
more information about the dynamics. Note, moreover, that the MSD of the two-state pro-
cess reflects (normal) diffusion with effective diffusivity Deff for all switching rates and
thus alone cannot reveal underlying two-state dynamics. In the next example, we turn to
the switching between two subdiffusive states.

Two-state Fractional Brownian Motion

Tracer transport in complex, dynamic and/or heterogeneous media such as living cells is of-
ten found to be anomalous [82,203,335,336]. Particularly interesting are situations with
stochastically interconverting anomalous diffusion processes such as the two-state anti-
persistent (i.e., subdiffusive) fractional Brownian motion observed in recent experiments
on mammalian cells [91, 202]. To be more precise, a systematic analysis of the motion
of quantum dots immersed in the cytoplasm of living mammalian cells revealed two-state
subdiffusive fractional Brownian motion with exponent α < 1 but with a stochastically
switching anomalous diffusion coefficient C1,2 [91]. Here we determine the DSF and ISF
for the process as complementary observables and apply them to the analysis of data ob-
tained in [91] focusing on latrunculin-treated cells. Untreated cells had been seen to fea-
ture the same dynamics [91]. Note that here a Markov switching between the two states
coexists with non-Markovian subdiffusion in each of the two states, respectively, with a
mean squared displacement ⟨[r⃗(t) − r⃗(0)]2⟩j = 2dCjt

αj where d (here equal two) is the
dimensionality of the system, and ⟨·⟩j denotes the average over an ensemble of fractional
Brownian motions (FBMs) with exponent αj and coefficient Cj . Thus, there is an inher-
ent ambiguity in how to treat memory upon each jump. Here, in contrast to the original
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6 Scattering fingerprints of two-state dynamics

publication [91], we assume for convenience that the memory in r⃗(t) is erased upon each
change of state, which allows us to use the result in Eq. (6.3.10). Notably, this choice does
not affect the inferred two-state FBM, which further substantiates the robustness of the
proposed model.

We first treat the problem theoretically. The d-dimensional fractional Brownianmotion is an
isotropic and translationally invariant Gaussian process. Thus, the ISF of FBM is the char-
acteristic function of a Gaussian process Fj(q, t) = exp(−q2⟨[r⃗(t) − r⃗(0)]2⟩j/2d). Within
a sojourn in state j = 1, 2, the characteristic function of the displacement r⃗ in a time t
without changing the state is Fj(q, t)ψj(t) = exp(−[q2Cjt

αj + kj ]t). Its Laplace transform
(̂Fψ)j(q, s) may be written in terms of Meijer G-functions in Sec. 6.3.5 (see Eq. (6.3.36)).
Plugging the result for (̂Fψ)j(q, s) into Eq. (6.3.10) yields the Laplace-transformed ISF,
which we invert numerically into the time domain. The DSF is in turn obtained fully ana-
lytically by setting s = −iω and taking the real part as in Eq. (6.3.11).

The model contains six parameters C1, C2, k1, k2, α1, α2 to be determined. To minimize
overfitting, we fix three parameters by considering the short-time behavior of the MSD, see
dashed line in Fig. 6.3.2a. We see that the short time MSD (i.e., prior to any change of
state) is well described by simple subdiffusion with α = 0.5, and we thus fit at the first 10
seconds yielding Cshort = 0.0083 µm2/

√
s. To reduce the number of free parameters, we

constrain ourselves to exactly reproduce this short-time behavior at times sufficiently short
to not be influenced by transitions, i.e., we fix α1 = α2 = 0.5 and peq1 C1 + peq2 C2 = Cshort

(recall peq1 = k2/(k1 + k2) from Eq. (6.3.7)). This leaves three free parameters, which we
determine by a least-squares fit simultaneously at q = 3 µm−1 and q = 7 µm−1. The fitting
yields C1 = 0.002 µm2/

√
s, C2 = 0.052 µm2/

√
s, k1 = 0.009 s−1, k2 = 0.063 s−1.

For the case αj = 1/2 the Fourier-Laplace transform of the joint density to observe a dis-
placement r⃗ in a time t without changing the state reads (see Sec. 6.3.5)

(̂Fψ)j(q, s) =
1

s+ kj
−

√
πq2Cj

2(s+ kj)3/2
erfcx

(
q2Cj

2
√
s+ kj

)
, (6.3.18)

where erfcx(x) ≡ exp(x2)(1− erf(x)) and erf denotes the error function. Via Eq. (6.3.10)
and numerical Laplace inversion, this yields the two-state ISF. The theoretical ISF (blue
lines) alongside the statistical uncertainty expected from a set of 400 realizations (shaded
area) and the ISF determined directly from the experimental trajectories is shown in
Fig. 6.3.2b for several values of q. The comparison between the corresponding mean
squared displacements is shown in Fig. 6.3.2a. The theoretical fit and experimental re-
sults display a good agreement. In particular, the analysis of the ISF not only confirms the

266



New
J.Phys.24

023004
(2022)

Scattering fingerprints of two-state dynamics 6

Figure 6.3.2: (a) Mean-squared displacement (MSD) derived from the experiment (or-
ange curve) and MSD simulated with fit parameters from (b) (blue curve with blue shaded
standard deviation). The gray dashed line shows a simple subdiffusive √

t-fit to the first
10 seconds, yielding C = 0.0083 µm2/

√
s. (b) ISF F (q, t) for (from top to bottom)

q = 3, 5, 8, 12, 20 µm−1 from experiment (orange curve) and theory (blue curve) with stan-
dard deviation (blue shaded) obtained from simulations (experimental and simulation de-
tails are given in Sec. 6.3.5); the fitting procedure and parameters are given in the text;
the range of q values was selected to capture the spatio-temporal scales in the relaxation
observed experimentally, i.e., such that F (q, t) spans the full range of values.

findings in Ref. [91] but also demonstrates the two-state FBM to be an appropriate model
for the observed dynamics over a broad range of spatial and temporal scales. Notably, this
spatio-temporally resolved information is inherently coarse-grained out in the analysis of
the mean squared displacement. Recall that because the process is not Gaussian [91] the
ISF and DSF, but not theMSD, contain the full information about the dynamics. The scatter-
ing fingerprints proposed here are thus well suited for a deeper analysis of particle-tracking
experiments displaying multi-state anomalous diffusion.

Reversible dimerization with an internal mode

So far we have only considered two-state dynamics without any internal degrees of free-
dom. To go beyond this limitation, we consider diffusion in the presence of reversible
dimerization (see Fig. 6.3.3a) captured in the mean field limit – two particles are assumed
to associate with an effective rate that is independent of the particles’ instantaneous posi-
tion in the spirit of Smoluchowski [388,389]. To be concrete, we consider non-interacting
particles diffusing freely with a diffusion coefficient D1 = D and forming a dimer with a
center-of-mass diffusion coefficient D2 = D/2 and an internal harmonic vibrational relax-
ation mode with rate a (i.e., the internal coordinate – the distance between the associated
particles – evolves as an Ornstein-Uhlenbeck process [102] or Rouse model with N = 2).
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6 Scattering fingerprints of two-state dynamics

Note that since N > 1 in contrast to the previous examples we here need to distinguish
between coherent (i.e., Eq. (6.3.3)) and incoherent (i.e., Eq. (6.3.2)) contributions. We
focus on the incoherent part (i.e., we set α = β in Eq. (6.3.1)) and note that the beads are
equal and thus the beads α = 1 and α = 2 give an identical scattering contribution.

The association and dissociation rates are denoted by k1 and k2 respectively. Since the in-
ternal dynamics does not depend on the absolute position in space and each change of state
erases all memory, we can employ the result in Sec. 6.3.2. In particular, this assumption
neglects a possibly enhanced probability for re-association of the same pair of molecules im-
mediately upon dissociation, which is expected to be a good approximation in well-mixed
(i.e., “stirred”) systems and/or at high monomer concentrations. The opposite case, when
re-association is more likely, introduces at least one more timescale into the kinetics of as-
sociation, thus rendering the two-state switching process non-Markovian. For the sake of
simplicity, we stick to the Markovian scenario.

The Fourier-Laplace transforms of the joint density to observe a displacement r⃗ in a time
t in the respective state 1 prior to switching, (̂Fψ)1(q, s), is given by Eq. (6.3.12) with
D1 = D. Conversely, introducing s′ = s + q2D/2 + k2 (note that s′ = s′(q) depends on q)
we can write (̂Fψ)2(q, s) as (for a derivation see Sec. 6.3.5)

(̂Fψ)2(q, s
′) =

1

s′
e−q2D/2a

(
q4D2/4a2

)s′/a
M

(
s′

a
,
s′ + 1

a
,
q2D

2a

)
= e−q2D/2a

∞∑
n=0

(q2D/2a)n

n!

1

s′ + na
, (6.3.19)

where M(a, b, z) denotes Kummer’s confluent hypergeometric function [390]. Using
(̂Fψ)1(q⃗, s) and (̂Fψ)2(q⃗, s

′) in Eq. (6.3.10) we find the Laplace image of the incoherent
ISF and, via Eq. (6.3.11), also the incoherent DSF, where we recall that here the coherent
and incoherent contribution do not coincide. The ISF may in principle be obtained by an-
alytical inversion of the Laplace transform. For the sake of simplicity, we here perform the
inversion numerically with the fixed Talbot method.

The results for the incoherent ISF for the two-state dynamics with k1 = k2 = k along-
side the frozen mixture and dynamics in the individual pure states, all evolving from an
equilibrium initial condition, are shown in Fig. 6.3.3b. The corresponding DSF is depicted
in Fig. 6.3.3c and the comparison is further clarified by means of the HWHM shown in
Fig. 6.3.3d. Altogether, one can distinguish between the different situations as long as k is
not too small or too large. These results demonstrate that the scattering fingerprints pro-
posed here may be a valuable tool for analyzing two-state dynamics also in the presence of
internal motions.
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Figure 6.3.3: (a) Schematic of the dimerization process. (b) Incoherent ISF Finc(q, t) for
reversible dimerization of a two-bead (Rouse) dimer with k = k1 = k2 evolving from an
equilibrium occupation p1 = p2 = 0.5 and time t measured in units of t0 = 1/Dq2. The
limit for k → 0 is the frozen mix (black curve) and for k → ∞ the ISF approaches the ISF
of a monomer without dimerization (yellow curve) since the unbinding occurs before the
internal mode enters the dynamics. For the explicit derivation of this limit see Sec. 6.3.5.
(c) DSFs corresponding to (a). (d) HWHMs of the DSF from (c) are shown along with
the HWHMs of the blue and yellow curves in (c) (dashed lines). The HWHMs for initial
occupation p1 = 0 and p1 = 1 are also shown (blue and yellow lines).
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6 Scattering fingerprints of two-state dynamics

Two-state dynamics with internal structural motions – protein (un)folding

A generalization of the preceding results to two-state dynamics in the presence of some
general internal structural relaxation, such as, for example, in the case of cyclization of
polymers, and the reversible (un)folding or association of proteins, to name but a few, is
much more difficult. In particular, when the change of state does not erase all memory such
that the propagation within each sojourn depends on the internal configuration just before
the switch, the results of Sec. 6.3.2 cannot be applied. Such a situation naturally arises in
systems with internal (e.g., conformational) dynamics in absence of a complete timescale
separation, i.e., when at the time of the jump the internal degrees of freedom have not yet
completely relaxed from their initial condition or the condition immediately after the pre-
ceding change of channel, respectively. If one is to nevertheless apply a version of the theory
developed here, additional simplifying assumptions are required. In particular, we must as-
sume that the switching rate is independent of the instantaneous structural state in either
dynamical state. Even in this case, the switching between states at any instance occurs
from a distribution of structures that set the initial conditions for the relaxation following
the jump. Further, as long as the dynamical states have substantially different equilibrium
structures, the ISF is expected to depend qualitatively on q (i.e., large and intermediate
scale motions are expected to differ in contrast to individual bond vibrations at large q).
In full generality, this corresponds to a highly non-trivial problem. To render the general
problem analytically tractable, one may, for example, inspect the limit of slow jumps that
corresponds to the switching between two equilibrium populations of internal structures.
However, this limit is rather uninteresting as the state switching is too slow to mix the dy-
namics of the individual states, i.e., deviations from a “frozen mix” are small. However,
it is easy to instead look at the two-state dynamics with unidirectional/irreversible jumps
evolving from a pure state (i.e., from either of the states). A neat and experimentally inter-
esting problem is the denaturant-driven unfolding [391,392] or folding [393] of proteins.
To this end, we analyze the irreversible unfolding/folding of the small 20-residue Trp-Cage
protein construct TC5b into/from a Rouse chain (N = 20). That is, we consider a sample
initially prepared in the folded state that unfolds with rate ku (Fig. 6.3.4a), and an initially
unfolded (Rouse chain) state folding with a rate kf , respectively (Fig. 6.3.4d).

A Gaussian elastic network model [394, 395] of TCPb in the folded state was constructed
from the Protein Data Bank (PDB entry: 1L2Y) using the ProDy software [396], yielding
a Kirchoff matrix Af with dimensional non-zero entries that are integer multiples of k/ξ
where k and ξ are the spring and friction constant, respectively. Conversely, Rouse chain
dynamics with connectivity matrix Au [397] were assumed in the unfolded state. Af and
Au are given explicitly in Sec. 6.3.5. For simplicity, in both cases the diffusion matrix is
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Figure 6.3.4: (a) Schematic of the Gaussian network model for the Trp-Cage Miniprotein
Construct TC5b (PDB: 1L2Y) and its unfolding to a Rouse chain (N = 20). (b) Incoherent
ISF Finc(q, t) for the (non-reversible) unfolding process, with time measured in units of
t0 = 1/Dq2 and a ratio of spring and friction constant of k/ξ = t−1

0 . The dashed lines
denote various unfolding rates ku, and the yellow curve, the "immediate unfolding" limit,
is obtained by setting τ = 0 in Eq. (6.3.22). Also depicted are the Finc(q, t) of the respective
relaxation processes of the folded protein (black line) and the Rouse chain (blue line). Time
is expressed in standard dimensionless Rouse units (see, e.g., [394]). (c) Comparison of the
unfolding process (dashed line) with the time-dependent "mix" (dash-dotted line) which
corresponds to the superposition of the ISF of the Rouse chain and the protein weighted by
the respective time-dependent occupation of the state. (d-f) As in (a-c) but for the converse
folding process.
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6 Scattering fingerprints of two-state dynamics

supposed to be equal and diagonal (isotropic) with diffusion coefficient D = kBT/ξ for
each individual bead. A schematic of the bead-spring model is shown in Fig. 6.3.4a and d.

Introducing the 3N-dimensional vector of beads’ positions R ≡ {R⃗α}α=1,...,N the equa-
tions of motion in each state follow a 3N-dimensional Ornstein-Uhlenbeck process with
positive semi-definite drift matrix Af/u, i.e., dRt = −Af/uRtdt +

√
2DdWt in the respec-

tive state f and u, where W denotes a 3N dimensional vector whose entries are statis-
tically independent Wiener processes Wt. This process describes the overdamped ther-
mal motion of beads connected by Hookean springs with zero rest length. The analysis
is most easily carried out in the respective normal coordinates Xf/u = (Qf/u)TR with
(Qf/u)TAf/uQf/u = diag(a

f/u
α )α=1,...,N . For details, see Sec. 6.3.5. We choose α = 1 to

represent the centre-of-mass mode. The center-of-mass diffusion coefficient is given by
DCOM = D/N , and within this model does not depend on the conformation of the pro-
tein. For all but the center-of-mass mode, the equilibrium probability density function is
Gaussian with zero mean and variance V α

f/u.

To illustrate the theory, it suffices to consider the folding-process alone. Let us consider
the propagation in the unfolded state u evolving from the Rouse chain equilibrium distri-
bution. We are interested in the αβ-component of the ISF of the folding process, Fαβ(q⃗, t),
assuming no or a single jump occurring at time τ with 0 < τ < t, where τ is exponen-
tially distributed with rate k. Let Fαβ

u (q⃗, t) be the ISF of the pure unfolded state (Rouse)
dynamics. As we have excluded jumps back to the folded state, it is obvious that Fαβ(q⃗, t)

corresponds to Fαβ
u (q⃗, t) weighted by the probability e−kt that no jump has occurred until

time t, and a contribution of the folding. The latter corresponds to the dynamics in the
folded state starting with a jump at the time τ and evolving from the equilibrium distri-
bution of the unfolded (Rouse chain) state, Fαβ

u→f(q⃗, t; τ), averaged over the exponentially
distributed jumping times3, i.e.,

Fαβ(q⃗, t) = e−ktFαβ
u (q⃗, t) +

∫ t

0
dτke−kτFαβ

u→f(q⃗, t; τ). (6.3.20)

Since the Ornstein-Uhlenbeck process with a Gaussian initial condition is a Gaussian pro-
cess, Fαβ

u (q⃗, t) and Fαβ
u→f(q⃗, t; τ) are characteristic functions (see, e.g., Eq. (6.3.4)) of zero

mean Gaussian displacements and thus simply equal to exp[−q2⟨(R⃗α
t − R⃗β

0 )
2⟩

u/u
τ→f
/6], see

3It is straightforward to include non-exponential jumping-time distributions.
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Sec. 6.3.5. Via normal mode analysis (see, e.g., [320]) we show in Sec. 6.3.5 that the
displacement vectors ⟨(R⃗α

t − R⃗β
0 )

2⟩
u/u

τ→f
obey

〈(
R⃗α

t − R⃗β
0

)2〉
u

= 6DCOMt+

N∑
γ=2

V γ
u

[
(Qu

αγ)
2 + (Qu

βγ)
2 − 2Qu

αγQ
u
βγe

−auγt
]
, (6.3.21)

when the Rouse polymer does not fold until t, whereas in the case that folding occurs at
a fixed time τ we find, introducing the notation Qu→f = (Qf)TQu (such that analogous to
Rt = Qf/uX

f/u
t we have Xf

t = Qu→fXu
t ),〈(

R⃗α
t − R⃗β

0

)2〉
u

τ→f

= 6DCOMt+
N∑

γ=2

(Qu
βγ)

2V γ
u +

N∑
γ=2

(Qf
αγ)

2V γ
f

[
1− e−2afγ(t−τ)

]

+

N∑
ω=2

V ω
u

 N∑
γ=2

Qf
αγQ

u→f
γω e−afγ(t−τ)

2

− 2

N∑
ω,γ=2

Qf
αωQ

u→f
ωγ Qu

βγV
γ
u e

−afω(t−τ)−auγτ . (6.3.22)

The converse unfolding process is obtained by interchanging u ↔ f. Plugging Eqs. (6.3.21)-
(6.3.22) into Eq. (6.3.20) and performing a numerical integration over τ yields the result
for Fαβ(q⃗, t). Summations over α, β deliver the (in)coherent ISF, see Eqs. (6.3.2)-(6.3.3).

In Figs. 6.3.4b-c and Fig. 6.3.4e-f we show, respectively, the incoherent part of the ISF for
various unfolding and folding rates. The limit of large (un)folding rates is given by setting
τ = 0 in the Gaussian ISF for the displacement vector from Eq. (6.3.22). The discrepancy
between the immediate (un)folding limit and dynamics in the target (un)folded structure
(yellow and blue curves in Fig. 6.3.4b,e, respectively) is solely caused by the different
initial conditions whereas the propagator is in both cases identical. Notably, this difference
is small in the unfolding process but substantial during folding. Several additional remarks
are in order. The ISF reflects dynamics on a given spatial (i.e., q-value) scale, and thus
the projections onto different relaxation eigenmodes play an important role (see also, e.g.,
[73]). The aforementioned discrepancies are a result of initial conditions (and starting
conditions upon a jump) that put more weight onto faster relaxation modes, rendering
the decay of the ISF faster (this idea is corroborated in Fig. 6.3.4e). Note that relaxation
in the folded state is faster than in the unfolded, and yet the ISF in the folded state in
Fig. 6.3.4b decays the slowest. This means that said differences are not only caused by a
shorter relaxation time (i.e., larger principal eigenvalue of the underlying generator).

For a comparison, in Fig. 6.3.4c,f we also show the incoherent ISF for the time-dependent
mix, Fmix

u/f (q⃗, t) ≡ e−ku/f t
∑

α F
αα
f/u(q⃗, t) + (1 − e−ku/f t)

∑
α F

αα
u/f (q⃗, t), which represents the

trivial time-dependent approximation of the ISF for the unfolding and folding processes,
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6 Scattering fingerprints of two-state dynamics

respectively. In the case of unfolding, the (trivial) mix displays qualitative differences with
respect to exact the two-state (single jump) solution, but the quantitative differences are
rather small (see Fig. 6.3.4c). Conversely, in the case of folding, the mix-approximation
Fmix
f fails completely (see Fig. 6.3.4f) due to the striking dependence on the initial con-

dition that is not included in the (trivial) mix. This clearly illustrates the importance of
considering jump dynamics explicitly.

Overall, our results suggest that scattering fingerprints may be a useful observable to probe
two-state dynamics even in the presence of non-trivial internal structural relaxation, such
as, e.g., probed in Ref. [391–393]. A systematic study of the relaxation at various val-
ues of the dimensionless quantities ku,f t0 and t0k/ξ may provide further details, which is,
however, beyond the scope of the present proof-of-principle investigation. Moreover, one
can easily generalize the model to include internal friction [321] or hydrodynamic inter-
actions in the spirit of the Zimm model [319]. Finally, one may also consider springs with
a non-zero rest length in the context of so-called Gaussian models (see, e.g., [394]).

6.3.4 Conclusion

Scattering experiments on polymerizing chains revealed pronounced signatures of multi-
state dynamics [383]. Moreover, observations of particle transport in complex environ-
ments such as the interior of living cells often reveal a non-Fickian (or non-Brownian)
character that may also display multi-state characteristics [91, 361–369, 372, 373]. Re-
liably distinguishing between single- and multi-state dynamics remains challenging. To
complement the existing approaches, we addressed scattering fingerprints of two-state dy-
namics – the intermediate scattering function and structure factor. A combination of theory,
analysis of simple model systems and of experiments in living cells revealed the potential
usefulness of these scattering fingerprints.

We addressed both, inert tracer-particle dynamics and dynamics in systems with an internal
structure and dynamics. In all examples, the ISF decays faster for increasing switching
rates, which is consistent with the idea of an additional relaxation channel enabling a
faster decay [398,399]. However, this view contradicts the multi-state dynamics in [383],
where an empirical ansatz assumed a mode-scission that leads to a slower decay of the ISF.

The present results can be extended to incorporate non-Markovian (i.e., non-exponential)
waiting time statistics in the respective states (see, e.g., [169, 400, 401]), and may be
relevant and useful for digital Fourier microscopy (differential dynamic microscopy and
Fourier imaging correlation spectroscopy) experiments on complex particulate systems, as
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well as neutron (including spin-echo) and X-ray scattering probing structural and dynamical
properties of macromolecules, as soon as the dynamics displays two-state transport.
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6.3.5 Appendix

Derivation of Eq. (6.3.10)

Here, we derive Eq. (6.3.10) for the Laplace-transformed intermediate scattering func-
tion (ISF) of the two-state dynamics following the Ref. [386]. For this approach to hold,
memory in the process has to be erased at the instance of the jump and the instantaneous
position at the jump must not influence the probability of subsequent displacements. These
assumptions can arise as a consequence of translation invariance of the dynamics in single
dynamical states, as in the examples of two-state diffusion and FBM. However, translation
invariance is not a necessary condition, as e.g., in the case of the process studied in [386].

For a Markov jump process, the probability to remain in a state for a time t is given by
ψj(t) = e−kjt. Recall that the van Hove functions Gj(r⃗, t) = ⟨δ(r⃗(t) − r⃗(0) − r⃗)⟩j in the
two individual states j = 1, 2 give the probability of performing a displacement r⃗ in time
t. We now set N = 1 and omit the indices α, β compared to Eq. (6.3.1). For N > 1, the
assumption of memory erasure is rarely satisfied as a result of internal dynamics (see, e.g.,
Sec. 6.3.3). If it is satisfied also for N > 1, as e.g., in Sec. 6.3.3 where N = 2, then for
α = β the approach does not change and Eq. (6.3.10) gives an equation for F̂αα(q⃗, s) that
can subsequently be summed over α. For α ̸= β only the displacement probability prior
to the first memory erasure is different, and the approach below may applied with slight
modifications.

Following [386], we write down the probability Pn(r⃗, t) of a displacement r⃗ in time t con-
ditioned on a fixed number of n jumps for n = 0, 1, 2, given that we start in state 1 at t = 0,
and adopting the notation Gj(r⃗, t)ψj(t) ≡ (Gψ)j(r⃗, t),

P0(r⃗, t) = (Gψ)1(r⃗, t)
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6 Scattering fingerprints of two-state dynamics

P1(r⃗, t) =

∫
d3r1

∫ t

0
dt1k1(Gψ)1(r⃗1, t1)(Gψ)2(r⃗ − r⃗1, t− t1)

P2(r⃗, t) =

∫
d3r1

∫
d3r2

∫ t

0
dt2

∫ t2

0
dt1k1(Gψ)1(r⃗1, t1)k2(Gψ)2(r⃗2 − r⃗1, t2 − t1)×

(Gψ)1(r⃗ − r⃗2, t− t2). (6.3.23)

By the assumption of independence of the position at the time of the jump, this has a
convolution structure in space and we Fourier transform r⃗ → q⃗, P → P̃ to obtain, e.g., for
n = 2,

P̃2(q⃗, t) =

∫ t

0
dt2

∫ t2

0
dt1k1(̃Gψ)1(q⃗, t1)k2(̃Gψ)2(q⃗, t2 − t1)(̃Gψ)1(q⃗, t− t2). (6.3.24)

Recalling that the intermediate scattering function (ISF) F (q⃗, t) is the Fourier transform of
the van Hove function G(r⃗, t), and noting the convolution structure (defined as [f ∗ g](t) ≡∫ t
0 dt

′f(t′)g(t− t′)) in time, we have

P̃2(q⃗, t) =

∫ t

0
dt2

∫ t2

0
dt1k1(Fψ)1(q⃗, t1)k2(Fψ)2(q⃗, t2 − t1)(Fψ)1(q⃗, t− t2)

= k1k2

∫ t

0
dt2(Fψ)1(q⃗, t− t2) [(Fψ)1(q⃗, ·) ∗ (Fψ)2(q⃗, ·)] (t2)

= k1k2 [(Fψ)1 ∗ (Fψ)1 ∗ (Fψ)2] (q⃗, t). (6.3.25)

Taking the Laplace transform t→ s gives

P̂2(q⃗, s) = k1k2

[
(̂Fψ)1(q⃗, s)

]2
(̂Fψ)2(q⃗, s). (6.3.26)

This generalizes to all even n = 2m and odd n = 2m+ 1 terms as

P̂2m+1(q⃗, s) = km+1
1 km2

[
(̂Fψ)1(q⃗, s)

]m+1 [
(̂Fψ)2(q⃗, s)

]m+1
,

P̂2m(q⃗, s) = km1 k
m
2

[
(̂Fψ)1(q⃗, s)

]m+1 [
(̂Fψ)2(q⃗, s)

]m
. (6.3.27)

The Fourier-Laplace transform of the probability of a displacement in the two-state dy-
namics that by the assumption of memory erasure and independence of the jump position
is the Laplace-transformed intermediate scattering function F̂ (q⃗, s), is then given by the
geometric series

F̂ (q⃗, s) =
∞∑
n=0

P̂n(q⃗, s)
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=
∞∑

m=0

[
P̂2m(q⃗, s) + P̂2m+1(q⃗, s)

]
= (̂Fψ)1(q⃗, s)

[
1 + k1(̂Fψ)2(q⃗, s)

] ∞∑
m=0

[
k1k2(̂Fψ)1(q⃗, s)(̂Fψ)2(q⃗, s)

]m
= (̂Fψ)1(q⃗, s)

1 + k1(̂Fψ)2(q⃗, s)

1− k1k2(̂Fψ)1(q⃗, s)(̂Fψ)2(q⃗, s)
. (6.3.28)

Assuming initial occupations pj of the two states (not necessarily pj = peqj ), and repeating
the same treatment for starting conditions in state 2 yields the result Eq. (6.3.10),

F̂ (q⃗, s) =
p1(̂Fψ)1

[
1 + k1(̂Fψ)2

]
+ p2(̂Fψ)2

[
1 + k2(̂Fψ)1

]
1− k1k2(̂Fψ)1(̂Fψ)2

. (6.3.29)

Two-state diffusion in the slow- and fast-switching limit

Here we consider the slow-switching limit of two-state diffusion in Sec. 6.3.3, that is, the
limit of small switching rates, k1+k2 ≪ q2D1,2. In this limit, Eq. (6.3.14) gives µ+ ≈ q2D1

and µ− ≈ q2D2. Since p2 = 1 − p1 we obtain ϕ(q) ≈ p2 and thus Eq. (6.3.16) in the
slow-switching limit results in the frozen mixture,

F (q, t) ≈ p1e
−q2D1t + p2e

−q2D2t = Fmix(q, t). (6.3.30)

Now consider the fast-switching limit, k1 + k2 ≫ q2D1,2 with a finite ratio k1/k2 = peq2 /p
eq
1

(when this ratio is zero or infinite, we recover single-state dynamics). We introduce the
notation k ≡ (k1 + k2)/2, κ ≡ (k1 − k2)/2, d̄ ≡ q2(D1 + D2)/2 and ∆ ≡ q2(D2 − D1)/2.
Then Eq. (6.3.14) reads

µ1,2 = d̄+ k ±
√

(∆ + κ)2 + k2 − κ2

= d̄+ k ±
√
∆2 + 2∆κ+ k2. (6.3.31)

In the limit of fast jumps k ≫ d̄ > |∆| we have

µ1,2 = d̄+ k ± k

√
1 +

2∆κ+∆2

k2
≈ d̄+ k

[
1±

(
1 +

2∆κ+∆2

2k2

)]
,

µ1 ≈ d̄− 2∆κ+∆2

2k
≈ d̄− κ

k
∆, µ2 ≈ d̄+ 2k +

2∆κ+∆2

2k
≈ 2k

k→∞−→ ∞. (6.3.32)
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6 Scattering fingerprints of two-state dynamics

Using Eq. (6.3.7), we have k1 = 2peq2 k and k2 = 2peq1 k and arrive at

µ1 ≈ d̄− κ

k
∆ = d̄+∆

peq2 − peq1
peq2 + peq1

= q2(peq1 D1 + peq2 D2). (6.3.33)

Thus, the exponential with rate µ1 in Eq. (6.3.16) gives an exponential with effective dif-
fusion constant Deff ≡ peq1 D1 + peq2 D2, while the second exponential with rate µ2 ≈ 2k

immediately decays in the limit of large k. This proves that for large k, the ISF of two-state
diffusion approaches effective diffusion, i.e., in Fig. 6.3.1a the dashed lines approach the
yellow line.

Laplace transforms for fractional Brownian motion

We consider fractional Brownian motion (FBM) in d dimensions with mean squared dis-
placement

〈
[r⃗(t)− r⃗(0)]2

〉
= 2dCjt

αj . (6.3.34)

Here, the two different states are characterized by different generalized diffusion constants
C1 and C2 and/or different “anomalous” exponents α1 and α2. We still consider Markov
jumps and by Gaussianity we have the Fourier-transformed displacement probabilities in a
state

Fj(q⃗, t)ψj(t) = exp(−[q2Cjt
αj + kj ] t). (6.3.35)

Assuming that each jump (i.e., change of state) erases memory the structure factor for the
two-state dynamics follows from Eq. (6.3.10) which requires taking the Laplace transform
of Eq. (6.3.35). For our purposes we consider subdiffusive FBM with α ∈ (0, 1) (for α =

1 see Eq. (6.3.12)). The Laplace transform of Eq. (6.3.35) can of course be performed
numerically [402], and for any rational α ∈ (0, 1) it can be expressed in terms of Meijer
G-functions, using that for two positive integers l < m [403]

̂[e−atl/m ](s) =

√
ml

s(2π)(m+l)/2−1
Gm,l

l,m

(
amll

mmpl

∣∣∣∣ ∆(l, 0)

∆(m, 0)

)
. (6.3.36)

For the special case α = 0.5 the Laplace transform of Eq. (6.3.35) follows from [403]

̂[e−a
√
t](s) =

1

s
− a

2

√
π

s3
erfcx

(
a

2
√
s

)
, (6.3.37)
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where erfcx(x) = exp(x2)(1− erf(x)) and erf denotes the error function, and therefore

(̂Fψ)j(q⃗, s) =
1

s+ kj
−

√
πq2Cj

2(s+ kj)3/2
erfcx

(
q2Cj

2
√
s+ kj

)
. (6.3.38)

Inserting s = −iω and taking the real part as in Eq. (6.3.17), we obtain the DSF. Numeri-
cally transforming back to the time-domain in turn yields the ISF.

For α ̸= 0.5, instead of using Meijer-G-functions or numerical solutions, we can perform a
series expansion [402]. We expand e−ctα around t = 0

∫ ∞

0
e−ste−ctαdt =

∞∑
n=0

(−1)ncn

n!

∫ ∞

0
e−sttnαdt

=

∞∑
n=0

(−1)nΓ(αn+ 1)

n!
cns−(αn+1), (6.3.39)

where the sum and integral commute since the sum is bounded by e−ctα , c > 0 which
is integrable for α < 1. A series for the Laplace transform of Eq. (6.3.35) is obtained by
shifting s 7→ s+ kj and using c = q2Cj . This approximation works particularly well for or
small q, not too small s, k and α < 1 not too close to 1.

The complementary expansion for small s reads

∫ ∞

0
e−ste−ctαdt ≈

N∑
n=0

(−1)nsn

n!

∫ ∞

0
tne−ctαdt

=
1

α

N∑
n=0

(−1)n

n!
Γ

(
n+ 1

α

)
c−

n+1
α sn. (6.3.40)

However, note that for α < 1 this series is only asymptotically convergent [402], and there-
fore has to be truncated at some finiteN to be able to swap the integration and summation.
We use this expansion in the very small s regime in cases where the expansion (6.3.39) does
not suffice.

The two asymptotic results combined yield a very good approximation as illustrated for
the DSF of a FBM in Fig. 6.3.5 (recall that the DSF follows from the Laplace transform of
Eq. (6.3.35) for kj = 0 by setting s = −iω and taking the real part as in Eq. (6.3.11)).
Combining the two expansions allows for efficient computation of (F̂ψ)(q, s) and S(q, ω)
over the whole ω regime for general α ∈ (0, 1), which in turn allows via Eq. (6.3.10) to
deduce the two-state ISF.
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6 Scattering fingerprints of two-state dynamics

Figure 6.3.5: Illustration of the asymptotics for the DSF as introduced in Eq. (6.3.11).
Time is measured in units of t0 = 1/(C2

1q
4). The large-ω series (6.3.39) and the small-

ω expansion (6.3.40) together give a very good approximation to the exact DSF, i.e., the
Fourier transform of Eq. (6.3.35) with k = 0.

Simulation details

The experimental data shown in Fig. 6.3.2 consists of 200 two-dimensional trajectories
which by assuming isotropy are treated as 400 one-dimensional realizations of the two-
state FBM. The experimental ISF is obtained by averaging e−iq[r(t)−r(0)] over the 400 re-
alizations. Although the ISF of the model is deterministic, the experimental ISF obtained
from a finite number of realizations fluctuates around the deterministic ISF. To estimate
these fluctuations we performed simulations of 20, 000 = 500 × 400 two-state FBM trajec-
tories with the parameters obtained by the fit. The standard deviation in each point of the
ISF averaged over sets of 400 trajectories is shown in Fig. 6.3.2. Moreover, the MSD and its
fluctuations upon averaging over 400 realizations are obtained from the simulations and
shown in Fig. 6.3.2.

Simulations were performed by drawing exponentially distributed waiting times for the
state switching and simulating FBM trajectories between the switching times. The FBM sim-
ulations were performed using the Davies-Harte-algorithm [404] using the "fbm" python
package available on PyPI.
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Details on dimerization with an internal mode

The ISF of the dimer is the characteristic function of a Gaussian with displacement given
by Eq. (6.3.21) for N = 2 for which

A =

[
1 −1

−1 1

]
, Q =

1√
2

[
1 −1

1 1

]
. (6.3.41)

With DCOM = D2 = D/2, V (∞) = 3D/a and ψ2(t) = e−k2t we obtain

(Fψ)2(q, t) = exp

[
−q2D2t− k2t−

q2D

2a

(
1− e−at

)]
= e−

q2D
2a e−(q2D2+k2)t exp

(
q2D

2a
e−at

)
, (6.3.42)

where for convenience we have assumed equilibrium initial conditions of the dimer.

The Laplace transform can be conveniently carried out via a series expansion (the order of
summation and integration can be interchanged due to dominated convergence, i.e., since
the series is bounded from above by the full expression),

(̂Fψ)2(q, s) = e−
q2D
2a

∫ ∞

0
dt e−(s+q2D2+k2)t exp

(
q2D

2a
e−at

)
= e−

q2D
2a

∞∑
n=0

( q
2D
2a )n

n!

∫ ∞

0
dt e−(s+q2D2+k2+na)t

= e−
q2D
2a

∞∑
n=0

( q
2D
2a )n

n!

1

s+ q2D2 + k2 + na
. (6.3.43)

The series expansion converges very well, especially for small q and large t (or small ω).
Note that there exists a closed form expression of (̂Fψ)2(q, s) in terms Kummer’s hyper-
geometric function [403] (or in terms of the incomplete Gamma function [380]) as in
Eq. (6.3.19).

In the limit of fast jumps k1, k2 ≫ q2D the time spent in a single state prior to a jump
becomes very small, at≪ 1, for which we expand

(Fψ)2(q⃗, t) = e−
q2D
2a e−(q2D2+k2)t exp

(
q2D

2a
e−at

)
t→0
≈ e−

q2D
2a e−(q2D2+k2)te

q2D
2a

(1−at)

= e−(q2D+k2)t

= F1(q⃗, t)ψ2(t). (6.3.44)
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6 Scattering fingerprints of two-state dynamics

Therefore, for k1, k2 ≫ q2D the two-state ISF converges to the simple monomer diffusion,
i.e., the dashed lines approach the yellow line in Fig. 6.3.3b.

Two-state dynamics with internal structure/dynamics – irreversible protein
(un)folding

Here we derive Eqs. (6.3.21)-(6.3.22) using normal mode analysis as introduced in
Sec. 6.3.3, i.e., in the normal coordinates Xf/u = (Qf/u)TR with (Qf/u)TAf/uQf/u =

diag(a
f/u
α )α=1,...,N . The drift matrix Af/u can be considered asN×N -dimensional since the

model assumes isotropy in all three dimensions and thus each eigenspace of the 3N × 3N

drift matrix is threefold degenerate. Note that (Qf/u)−1 = (Qf/u)T , and in normal coordi-
nates (omitting index f/u) we have dX⃗α

t = −aαX⃗α
t dt+

√
2DdW⃗α

t .

We choose the first mode α = 1 to correspond to the zero eigenvalue, i.e., a1 = 0 and thus
X⃗1

t evolves as a free diffusion, capturing to the center-of-mass motion with Qf/u
α1 = N−1/2

and DCOM = D/N . The position at time t = 0 of the center of mass cancels out in all
displacements and only differences between time 0 and t enter. Thus, whenever we speak
of the equilibrium initial conditions we refer to the equilibrium of modes X⃗α, α > 1, and
the initial condition of the X⃗1-mode is irrelevant.

The X⃗α modes with α > 1 have aα > 0 and are thus described by an Ornstein-Uhlenbeck
process [102], for which we obtain from the stochastic differential equation that for any
τ ∈ [0, t]

d
〈
X⃗α

t′ · X⃗
β
0

〉
= −aα

〈
X⃗α

t′ · X⃗
β
0

〉
dt′ ⇒

〈
X⃗α

t · X⃗β
0

〉
= e−aα(t−τ)

〈
X⃗α

τ · X⃗β
0

〉
,

(6.3.45)

and using Itô’s lemma as well as the shorthand notation V α(t) = 3D
aα

(1− e−2aαt),

d
〈
X⃗α

t′ · X⃗
β
t′

〉
=
〈
dX⃗α

t′ · X⃗
β
t′

〉
+
〈
X⃗α

t′ · dX⃗
β
t′

〉
+

1

2

〈
dX⃗α

t′ · dX⃗
β
t′

〉
= −(aα + aβ)

〈
X⃗α

t′ · X⃗
β
t′

〉
dt′ + 3Dδαβdt

′

⇒
〈
X⃗α

t · X⃗β
t

〉
=
〈
X⃗α

τ · X⃗β
τ

〉
e−(aα+aβ)(t−τ) + δαβV

α(t− τ), (6.3.46)

and thus for equilibrium initial conditions
〈
X⃗α

t · X⃗β
t

〉
eq

= δαβV
α(∞) ≡ δαβV

α.

Since the Ornstein-Uhlenbeck process with a Gaussian initial condition is a Gaussian pro-
cess, Fαβ

u (q⃗, t) and Fαβ
u→f(q⃗, t; τ) are characteristic functions, of zero mean Gaussian dis-

placement vectors. For any real Gaussian stochastic process Yt, 0 ≤ t ≤ T , the character-
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istic function of the joint probability distribution of the random variables Yt1 . . . Ytn with
0 ≤ t1 . . . tn ≤ T (n < ∞) is given by ϕ(q1 . . . qn) = exp(i

∑n
k=1⟨Ytk⟩qk −

∑n
k,l=1⟨[Ytk −

⟨Ytk⟩][Ytl − ⟨Ytl⟩]⟩qkql/2), which naturally generalizes to d-dimensional Gaussian stochas-
tic process with vector values Y⃗t = (Y 1

t , . . . , Y
d
t ) (d < ∞) [405]. In our case we have

Y⃗tk = R⃗α
tk

− R⃗β
tk−1

, n = 1, and ⟨Y⃗tk⟩ = 0, ∀tk because all involved Gaussian distributions
are centered at zero, and the additional factor of 1/3 in q2/6 is due to isotropy. Therefore,
Fαβ

u/u
τ→f
(q⃗, t) = exp[−q2⟨(R⃗α

t − R⃗β
0 )

2⟩
u/u

τ→f
/6] and we only need to compute the squared

displacements ⟨(R⃗α
t − R⃗β

0 )
2⟩

u/u
τ→f

to obtain the ISFs.

We first consider the single-state process, say in the unfolded state u, with equilibrium
initial conditions and now derive the result Eq. (6.3.21). Using normal coordinates R =

QuXu (from now on omit index u in Xu), the independence of modes, and that the mean
value vanishes, we obtain

〈[
R⃗α

t − R⃗β
0

]2〉
u

=

〈 N∑
γ=1

(
Qu

αγX⃗
γ
t −Qu

βγX⃗
γ
0

)2〉
u

=

N∑
γ=1

〈(
Qu

αγX⃗
γ
t −Qu

βγX⃗
γ
0

)2〉
u

. (6.3.47)

The center-of-mass motion with DCOM = D/N is obtained from Qu
α1 = Qu

β1 = N−1/2.
Using Eqs. (6.3.45)-(6.3.46) we directly obtain the result Eq. (6.3.21),
〈(

R⃗α
t − R⃗β

0

)2〉
u

= 6DCOMt+

N∑
γ=2

V γ
u

[
(Qu

αγ)
2 + (Qu

βγ)
2 − 2Qu

αγQ
u
βγe

−auγt
]
. (6.3.48)

We now consider the process with a single jump at a fixed time τ < t, i.e., we start in the
equilibrium of the unfolded u-state and propagate in the u-state from time 0 to τ and in
the folded f-state from time τ to t. Averages with respect to this process will be denoted by
⟨·⟩

u
τ→f

. Within the Gaussian network model the center-of-mass motion is independent of
the network structure, and we obtain similar to above (but now the modes are mixed due
to Qu ̸= Qf and thus no longer decouple),

〈(
R⃗α

t − R⃗β
0

)2〉
u

τ→f

= 6DCOMt+
N∑

γ,ν=2

[
Qu

αγQ
u
αν

〈
(Xf

t)γ · (Xf
t)ν

〉
u

τ→f

+Qu
βγQ

u
βν

〈
(Xf

0)γ · (Xf
0)ν

〉
u

τ→f
− 2Qu

αγQ
u
βν

〈
(Xf

t)γ · (Xf
0)ν

〉
u

τ→f

]
. (6.3.49)
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6 Scattering fingerprints of two-state dynamics

Now we determine the three terms 〈
(Xf

t)γ · (Xf
t)ν
〉
u

τ→f
, 〈

(Xf
0)γ · (Xf

0)ν
〉
u

τ→f
and〈

(Xf
t)γ · (Xf

0)ν
〉
u

τ→f
. The first term resembles 〈(Xf

t)γ(X
f
t)ν
〉
f
= δγνV

γ
f , with the difference

that we do not start in the f-equilibrium but propagate the f-process from the u-equilibrium
from time τ to t. In particular, modes are mixed since correlations at time τ are only diag-
onal in u-normal modes Xu but not in Xf . Using Eq. (6.3.46) we have〈

(Xf
t)γ · (Xf

t)ν

〉
u

τ→f
=
〈
(Xf

τ )γ · (Xf
τ )ν

〉
u

τ→f
e−(aγ+aν)(t−τ) + δγνV

γ(t− τ). (6.3.50)

Since we start in u-equilibrium and propagate in the u-process until time τ , we complete
the calculation of the first term by calculating the second term, by expressing f-modes in
terms of u-modes. Using the notationQu→f ≡ (Qf)TQu (such that as inR = QuXu = QfXf

we have Xf = Qu→fXu),〈
(Xf

τ )γ · (Xf
τ )ν

〉
u

τ→f
=
〈
(Xf

0)γ · (Xf
0)ν

〉
u

τ→f
=
〈
(Xf

0)γ · (Xf
0)ν

〉
u

=

N∑
ω=2

Qu→f
γω Qu→f

νω V ω
u . (6.3.51)

For the third term we employ Eq. (6.3.45) for the f-process from time τ to t and for the
u-process from 0 to τ ,〈

(Xf
t)γ · (Xf

0)ν

〉
u

τ→f
= e−afγ(t−τ)

〈
(Xf

τ )γ · (Xf
0)ν

〉
u

τ→f

= e−afγ(t−τ)
N∑

ω,ω′=2

Qu→f
γω Qu→f

νω′ ⟨(Xu
τ )ω · (Xu

0)ω′⟩u

= e−afγ(t−τ)
N∑

ω=2

Qu→f
γω Qu→f

νω V ω
u e−auωτ . (6.3.52)

Combining Eqs. (6.3.49)-(6.3.52) and using∑γν CγCν = (
∑

γ Cγ)
2, and for the last term

QfQu→f = Qu, we arrive at the result Eq. (6.3.22),
〈(

R⃗α
t − R⃗β

0

)2〉
u

τ→f

= 6DCOMt+

N∑
γ=2

(Qu
βγ)

2V γ
u +

N∑
γ=2

(Qf
αγ)

2V γ
f (t− τ)

+

N∑
ω=2

V ω
u

 N∑
γ=2

Qf
αγQ

u→f
γω e−afγ(t−τ)

2

− 2

N∑
ω,γ=2

Qf
αωQ

u→f
ωγ Qu

βγV
γ
u e

−afω(t−τ)−auγτ . (6.3.53)
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Finally, for completeness we here show the Kirchoff matrix Af corresponding to the Trp-
Cage Miniprotein Construct TC5b (PDB: 1L2Y)

ξAf

k
=



6 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 9 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 −1 −1 −1

−1 −1 11 −1 −1 −1 −1 −1 0 0 −1 0 0 0 0 0 0 −1 −1 −1

−1 −1 −1 10 −1 −1 −1 −1 −1 0 −1 0 0 0 0 0 0 0 −1 0

−1 −1 −1 −1 11 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 −1 0

−1 −1 −1 −1 −1 16 −1 −1 −1 −1 −1 −1 0 −1 0 −1 −1 −1 −1 0

−1 −1 −1 −1 −1 −1 14 −1 −1 −1 −1 −1 −1 −1 0 0 0 −1 0 0

0 0 −1 −1 −1 −1 −1 9 −1 −1 −1 0 0 −1 0 0 0 0 0 0

0 0 0 −1 −1 −1 −1 −1 12 −1 −1 −1 −1 −1 −1 −1 0 0 0 0

0 0 0 0 −1 −1 −1 −1 −1 11 −1 −1 −1 −1 −1 −1 0 0 0 0

0 0 −1 −1 −1 −1 −1 −1 −1 −1 15 −1 −1 −1 −1 −1 −1 −1 0 0

0 0 0 0 0 −1 −1 0 −1 −1 −1 11 −1 −1 −1 −1 −1 −1 0 0

0 0 0 0 0 0 −1 0 −1 −1 −1 −1 9 −1 −1 −1 −1 0 0 0

0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 11 −1 −1 −1 0 0 0

0 0 0 0 0 0 0 0 −1 −1 −1 −1 −1 −1 8 −1 −1 0 0 0

0 0 0 0 0 −1 0 0 −1 −1 −1 −1 −1 −1 −1 11 −1 −1 −1 0

0 0 0 0 0 −1 0 0 0 0 −1 −1 −1 −1 −1 −1 10 −1 −1 −1

0 −1 −1 0 0 −1 −1 0 0 0 −1 −1 0 0 0 −1 −1 10 −1 −1

0 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 −1 −1 −1 9 −1

0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 5



,

(6.3.54)

and the 20× 20 tridiagonal Kirchoff matrix Au for the unfolded Rouse chain

Au =
k

ξ



1 −1

−1 2 −1 0

−1 2 −1

. . . . . .

. . . . . .

0 −1 2 −1

−1 1


. (6.3.55)
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Chapter 7

Conclusion

To conclude the thesis, we summarize all results and contributions to the literature pre-
sented in Chs. 3-6, and give an outlook for future research for each topic, respectively.

7.1 Time-integrated observables and necessity of
coarse graining

In Ch.3, we introduced different approaches to address the random fluctuations of time-
integrated observables, which are important observables for thermodynamic inference
from measurements of stochastic trajectories, especially, in non-equilibrium steady states
(NESS). Such trajectories are the result of, e.g., single-molecule or particle tracking experi-
ments. Using a stochastic-calculus approach based on the fundamental methods developed
in Ch. 2, we derived mathematical expressions for the (co)variances of, and correlations
between, time-integrated densities and currents. In Sec. 3.5, we interpreted the obtained
expressions using a generalized time-reversal symmetry, the dual-reversal symmetry, and in
Sec. 3.6 we generalized the results beyond steady-state dynamics. To make the connection
between the stochastic-calculus approach and existing methods like Feynman-Kac theory
and functional calculus, we re-derived the new results also from these established methods
in Sec. 3.7.

Most importantly, the results derived in Secs. 3.4-3.7 allowed to systematically investigate
the role of coarse graining in space. The coarse graining may account for a finite spatial
resolution (see, e.g., Fig. 3.5.2), but typically we refer to coarse graining as a means of
processing measured data on chosen length scales, such as choosing the width of bins in a
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histogram, see Fig. 3.5.1. In this sense, coarse graining can smoothen data by deliberately
decreasing the precision. Importantly, we find that this smoothening does not necessarily
result in mere loss of precision and inference quality. Instead, we found the opposite,
namely that it hasmany positive aspects. Furthermore, some aspects make it even necessary,
see Sec. 3.4. First, in multidimensional space, the coarse graining is strictly necessary to
obtain finite variances, i.e., inference without coarse graining would not even be possible
in the idealized case of unlimited statistics. Second, it is intuitively clear that for finite
statistics, some coarse graining is required to avoid or mitigate undersampling. These two
aspects give rise to an experimental necessity of coarse graining. Third, the coarse graining
appears to be mathematically necessary to obtain well-defined observables, and to pose
well-defined questions about their statistics, as stressed in Secs. 3.2-3.5. Finally, the coarse
graining was also found to be necessary for thermodynamic inference of entropy production
using the thermodynamic uncertainty relation (TUR), see Secs. 3.4 and 3.5.

We now give an outlook for future research based on the results summarized above. There
are two major open questions that directly come to mind.

First, we often motivated the considered observables and insight into coarse graining in
the sense that they are relevant for experimental inference. Though this seems to be well
justified in theory, it has yet to be proven for actual experiments. So far, we only demon-
strated the necessity of coarse graining for experimental data in Fig. 3.5.9, but have not
applied any of the results to inference in practice.

Second, we discussed on many occasions the mathematical necessity of coarse graining,
which means that mathematical problems occur if the empirical density and current are
defined with a delta function, see Eq. (3.2.18). In Appendix II in Sec. 3.4 and in Sub-
sec. 3.5.9, we stressed that the divergent variance in d ≥ 2-dimensional space in the ab-
sence of coarse graining prevents any large deviation principle that includes a central limit
regime with a finite variance. This raises one important question: How can our results
be reconciled with the celebrated Donsker-Varadhan rate functional, see Eq. (3.2.20), and
with level 2.5 large deviation theory, see Eq. (3.2.21)? Or, to put it plainly: Do our results
imply that the Donsker-Varadhan large deviation principle is wrong in d ≥ 2-dimensional
space?

The simple answer is that our results suggest that the empirical density and current do not
exist as well-defined random variables if d ≥ 2 when defined with a delta function as in
Eq. (3.2.18). Therefore, one cannot make any mathematical statement about them, which
renders the Donsker-Varadhan result as presented in Refs. [45, 204] an empty statement.
From a physical perspective, however, this simple answer is unsatisfying. The relevant ques-
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tion becomes, whether the rate functional correctly describes the dynamical fluctuations
when interpreted in some way that avoids the aforementioned mathematical problems. To
address this question, we now sketch some unpublished results that make a quantitative
connection between our results and the Donsker-Varadhan rate functional in Eq. (3.2.20).

Consider d-dimensional Brownian motion with diffusion constant D = 1 confined in a box
[0, 1]d such that ps(x) = 1 for all x ∈ [0, 1]d. The simplest observable to describe expected
fluctuations of the density field ρt(·), where ρt(x) ≡

∫ t
0 δ(xτ − x)dτ/t, is the integrated

squared deviation, or L2-variance, of the field ρt(·),

Vρ(t) ≡
〈∫

dx [ρt(x)− ps(x)]
2

〉
. (7.1.1)

By interchanging the order of integration and taking the average (for justification see Sub-
sec. 2.1.4), we see that Vρ(t) is the integral over individual-point variances, which diverge
for d ≥ 2, see first line of Eq. (3.4.6) for h = 0. Thus, our results predict Vρ(t) = ∞
for d ≥ 2. Before we discuss this result further, we also compute Vρ(t) from the Donsker-
Varadhan rate functional. For Brownian motion in a box, the rate functional (3.2.20) be-
comes I[ρ(·)] ∝ ∫

[0,1]d dx[∇ρ(x)]
2/ρ(x). To obtain the second cumulant in Eq. (7.1.1) it

suffices to consider a functional Taylor expansion up to second order around ρ = ps = 1,
which gives approximately I[ρ(·)] ∝ ∫[0,1]d dx[∇ρ(x)]2. By writing the average in Eq. (7.1.1)
as a functional integral weighted by this rate functional, and transforming to Fourier space,
one can show that Vρ(t) ∝

∑∞
k1,...,kd=1(

∑d
m=1 k

2
m)−1 = ∞ for1 d ≥ 2. Thus, our approach

and the Donsker-Varadhan rate functional consistently give the same result for Vρ(t). Based
on this preliminary result, there is no contradiction between our result and the Donsker-
Varadhan large deviation principle, i.e., possibly both theories can be reconciled by inter-
preting the latter in some well-defined sense (e.g., by coarse graining or by contracting (see
Subsec. 3.2.3) to one-dimensional variables).

However, we can already deduce from the preliminary result Vρ(t) = ∞ that the stan-
dard interpretation of the large deviation principle does not apply to the empirical density
defined with a delta function. This interpretation, in particular asserted to hold for time-
integrated observables [43], states that there is a single zero of the rate function(al), which
reflects the mean and the most likely point, and that the central-limit theorem is included
as the regime of small deviations around the mean, see Subsec. 3.2.3 and Refs. [43,110].
In the case Vρ(t) = ∞, however, already these small deviations diverge, and the central
limit theorem does not apply. Although the rate functional is non-negative with a single

1For d = 1, the sum converges, ∑∞
k=1 k

−2 = π2/6, and we obtain Vρ(t) = 1/3t for long times
from both, the Taylor expansion of the Donsker-Varadhan rate functional and integration over single-
point variances.
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zero for ρ = ps, this does not reflect the most likely point for d ≥ 2 since for any t < ∞,
the trajectory (xτ )0≤τ≤t cannot hit all points in the d-dimensional space, which would be
required for ρt = ps.

Future work will have to clarify if and how the, in principle, very powerful results of the
Donsker-Varadhan and level 2.5 large deviation principles, see Eqs. (3.2.20) and (3.2.21),
can be applied to multidimensional systems.

7.2 Thermodynamic uncertainty relations

While TURs are inequalities involving the current variance, see Ch. 4, we derived an ex-
plicit equality for the current variance in Ch. 3. Since the approach in Ch. 3 applies to
any time-integrated current for overdamped Langevin dynamics, we wondered how to ap-
proach the TUR from the developed methods in a more general sense, i.e., beyond the
notion of coarse graining. To this end, we rederived the TUR from the stochastic-calculus
approach developed in Chs. 2 and 3. The new derivation was very direct, and established
the TUR as an inherent property of Langevin dynamics, following immediately from an av-
erage over fluctuating trajectories, see Eqs. (4.5.10) and (4.5.11). Importantly, it allowed
us to find sharper versions of TURs, and in particular, to theoretically saturate a TUR for
time-homogeneous systems with arbitrary initial conditions, see Sec. 4.5 and Fig. 4.5.1.
This shows that, for fully observed dynamics starting from some initial condition, the gen-
eralized correlation TUR in Eq. (4.5.22) is a very suitable tool for inference of entropy
production.

As for the results for the time-integrated density and current, a direct objective of future
research is the application to experimental data to infer entropy production from observed
dynamics. There, it will be particularly interesting to which extent the time derivative
t∂t⟨Jt⟩, e.g., in Eq. (4.5.22), becomes problematic in regard to sufficient sampling, since
terms involving time derivatives are expected to require significantly more statistics than,
e.g., ⟨Jt⟩.

Apart from applications, also several possible generalizations come to mind. We mentioned
how to generalize the approach to Markov jump dynamics in Subsec. 4.5.12. Future work
could complete this approach to derive the results, such as the generalized transient TUR
(4.5.22), also for Markov-jump dynamics. Further generalizations could follow in a similar
direction as the TUR for indistinguishable species in Eq. (4.1.4). A promising strategy
for such generalizations is to consider the equality ⟨At(Jt − ⟨Jt⟩)⟩ = ⟨Jt⟩ + ⟨AtJ

II
t ⟩ in

Eq. (4.5.10), and to take another average (such as the one over the distinct species) over this
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equality before applying the Cauchy-Schwarz inequality. This not only gives an alternative
proof for the TUR for indistinguishable species in Eq. (4.1.4), but more importantly presents
a promising strategy to derive TURs for complex dynamics, such as multi-state dynamics
(see Ch. 6), or diffusing diffusivity systems [357,358], where the diffusion coefficient itself
is a stochastic quantity.

7.3 Thermal relaxation far from equilibrium
In Ch. 5, we shifted from the topic of time-integrated currents to thermal relaxation. As
described in detail in Secs. 5.1 and 5.2, it was known from the conventional framework
of linear irreversible thermodynamics, that thermal relaxation is symmetric in the sign of
the temperature change up to linear order, and recently, it was predicted that for paradig-
matic examples of overdamped motion beyond this linear regime, heating is always faster
than cooling [73]. Building on the framework and results of Ref. [73], we investigated
the asymmetry between heating and cooling in more detail. We experimentally confirmed
the predicted asymmetry using an optically trapped particle, see Sec. 5.4. Although the
quantification of thermal relaxation using the excess free energy has several advantages, in
particular its thermodynamic interpretation, it does not allow comparing the thermal re-
laxation between a pair of arbitrary temperatures, see Sec. 5.2. As a remedy to this short-
coming, we developed a framework that we called thermal kinematics. This framework,
unlike the approach using the excess free energy, allows to define distances and velocities
for relaxation, and in particular, it allows to consistently compare heating and cooling be-
tween any pair of temperatures. We predicted, and experimentally confirmed, that also in
this framework, heating is indeed faster than cooling, see Sec. 5.4.

To provide some intuition about the faster heating, we noted that heating starts from a
more localized initial condition than cooling, which in a spectral representation of the
process implies more weight on the higher, faster-decaying modes. For heating and cooling
between two arbitrary temperatures, we furthermore noted that the heating process occurs
at a higher temperature than the cooling process.

Another generalization of the thermal relaxation asymmetry was established in Sec. 5.5,
where we proved that, in terms of the (generalized) excess free energy, heating is also
faster than cooling for driven systems that relax into an NESS. The general insight into lin-
early driven diffusion gained in Sec. 5.5 also lead to observations relevant beyond thermal
relaxation, such as the role and geometrical intuition of complex eigenvectors and eigen-
values (see, e.g., Fig. 5.5.2), and in particular the phenomenon of effective rotations that
surprisingly oppose the direction of driving, see Figs. 5.5.2 and 5.5.4-5.5.7.
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We now come to an outlook for further research. While heating is always faster than cool-
ing in terms of the excess free energy in harmonic potentials, counterexamples to this
asymmetry are known, e.g., for multiwell potentials [73]. It would be interesting to study
these counterexamples through the lens of the thermal-kinematics framework developed in
Sec. 5.4. Moreover, connecting the relaxation asymmetry to time-dependent processes, in
the spirit of the Brownian Carnot cycle [275] and its optimization, represents an intriguing
question.

Very concrete objectives for future research based on Secs. 5.4 and 5.5 are the generaliza-
tion of the relaxation asymmetry to underdamped dynamics (i.e., in the presence of inertial
effects), to generalize the thermal-kinematics approach to relaxation towards NESS as con-
sidered in Sec. 5.5, and to experimentally confirm the relaxation asymmetry for relaxation
towards NESS as predicted in Sec. 5.5. These experiments are indeed planned.

Overall, we are really still at the beginning of understanding thermal relaxation, and relax-
ation in general, in systems far from equilibrium. The complexity of relaxation in Langevin
systems is highlighted by the opposing rotations observed in Sec. 5.5, that illustrate how
complicated and counterintuitive even the supposedly simple model of Langevin dynamics
with a linear drift can behave.

7.4 Two-state dynamics

In addition to the analysis of time-averaged observables and thermal relaxation of time-
homogeneous dynamics, we addressed time-heterogeneous2 two-state dynamics in Ch. 6.
For several physically relevant examples of two-state dynamics, we computed the inter-
mediate scattering function. Since it is accessible from different microscopy and scattering
experiments, or from measured trajectories, this observable is suitable to resolve for two-
state dynamics in experiments. To give a concrete example for the application of our results,
we fitted the results for two-state fractional Brownian motion to particle tracking data that
was recorded in living cells in Ref. [91]. We thereby provided further support to the in-
terpretation of complex intracellular motion as a nominally time-heterogeneous two-state
process [91].

In all examples, we found that the intermediate scattering function decays faster in time
for increasing switching rates, which is consistent with the idea of an additional relaxation

2Time-heterogeneous here refers to the fact that the equations of motion of the observable may
change in time because of an explicit dependence on the instantaneous state of a hidden degree of
freedom reflecting the dynamical state. The motion of all degrees of freedom, observed and hidden,
is still time-homogeneous.

292



Conclusion

channel enabling a faster decay [398, 399]. It would be interesting to see whether this is
a general feature of the intermediate scattering function for multi-state dynamics, which
appears to be likely, even though it directly contradicts the empirical ansatz in Ref. [383].

The theory developed in Sec. 6.3 can be extended to multi-state dynamics and to non-
Markovian waiting-time statistics in the respective states. Moreover, an objective for future
research is to apply the results to experimental data, either from microscopy or scatter-
ing experiments, or, as in Fig. 6.3.2, to Fourier transformed data from particle tracking
experiments.

7.5 Final remarks
Altogether, we addressed several aspects of non-equilibrium statistical mechanics, with par-
ticular emphasis on overdamped stochastic dynamics studied through the lens of stochastic
calculus. Our investigations encompassed analyses of time-integrated, coarse-grained den-
sities and currents, as well as the study of thermal relaxation in Langevin systems and of
optically trapped particles. Additionally, we delved into two-state dynamics, with an ap-
plication to random motion in living cells. While we obtained interesting results and new
insights, what remains striking is the vast number of remaining challenges and unresolved
questions in non-equilibrium physics, including very fundamental ones, that will undoubt-
edly captivate our attention for many more years to come.
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