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Abstract

We apply a recently developed framework for analyzing the convergence of stochastic algorithms to
the general problem of large-scale nonconvex composite optimization more generally, and nonconvex
likelihood maximization in particular. Our theory is demonstrated on a stochastic gradient descent
algorithm for determining the electron density of a molecule from random samples of its scattering
amplitude. Numerical results on an idealized synthetic example provide a proof of concept. This opens
the door to a broad range of algorithmic possibilities and provides a basis for evaluating and comparing
different strategies. While this case study is very specific, it shares a structure that transfers easily to
many problems of current interest, particularly in machine learning.
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1 Introduction

We study randomized algorithms for large-scale composite optimization models of the form

min
x∈Rn

M∑
j=0

gj(x). (P)

This problem format is the starting point for most applications in machine learning, but our particular
interest in this model comes from electronic strucure determination in X-ray imaging. The majority of the
functions gj are assumed to be smooth and nonconvex, though hard constraints and other sharp features
can be incorporated through reserving g0 and the lower registers for nonsmooth functions. The indicator
function of a closed set A ⊂ Rn, for instance, is defined by

g0(x) =

{
0 if x ∈ A

+∞ else.
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In the literature for this simple problem format, two main computational challenges are addressed: (a)
n is large, and (b) M is large. We will focus on the latter challenge, though the analytical framework
we apply is not limited to this situation alone. Of course issues like nonsmoothness and nonconvexity
of the functions gj are important considerations, but these are more consequential for the analysis than
the implementation. The challenge of having too many variables is mainly handled by coordinate descent
methods. For a demonstration of the application of our framework to stochastic coordinate descent see [21].
The main computational challenge for the application we have in mind is that the number of functions in
the sum is enormous, which these days means M ≈ 109. The standard numerical approach to handling this
situation is to apply an iterative scheme using only a subset of the functions gj at each iteration; randomized
algorithms select a subset at random.

In a series of papers [14–16] Luke and collaborators developed a general convergence theory for randomized
algorithms. The approach views such algorithms as Markov chains and convergence is in the sense of
distribution with respect to the Prokhorov-Lévy (weak) or Wasserstein (strong) metrics in the space of
probability distributions, depending on the assumptions. Verifying the assumptions of the theory boils down
to analyzing the properties of the randomly selected/generated operators at the heart of the randomized
algorithm. The application of this theory to single-shot X-FEL imaging was briefly described in [16]. In
this context, we present here a deep-dive into a randomized method for computing the maximum likelihood
estimator. We demonstrate the approach on simulated data for single-shot X-FEL imaging. While this
case study is very specific, it shares a structure that transfers easily to many problems of current interest,
particularly in machine learning. Beyond demonstrating the application of recent theory, one of the main
contributions of this work is to add a benchmark problem instance for testing randomized splitting algorithms.

For the specific application of single-shot X-FEL we present a gradient descent algorithm for minimizing
the negative log-likelihood of a given set of outcomes conditioned on a parameterization of a given stochastic
model. In section 4.1 we show how this is an instance of random function iterations studied in [14–16],
and present numerical results in section 4.2. Since our general approach reaches far beyond the specific
application, we begin in section 2 with a general presentation of random function iterations for composite
optimization.

2 Randomized composite optimization, stochastic feasibility, and
abstract convergence

The abstract algorithmic template is very simple. We consdier the collection of subsets of {0, 1, . . . ,M} with

cardinality m < M , I :=
{
I ∈ 2{0,1,...,M} | |I| = m

}
, indexed by i = 1, 2, . . . ,Mm :=

(
M
m

)
and construct

operators Ti : G → G for G ⊂ Rn, tailored to each of the subsets Ii ∈ I. To avoid some challenging
technicalities, we will assume that Ti is at least continuous on G for all i. For instance, in the simplest
incarnation of (P), all of the functions gi are smooth and Ti could be the steepest descent operator of the
partial sum,

Ti :=
1
m

∑
j∈Ii

T ′
j where T ′

j := (Id−tj∇jgj) . (1)

This is just one of many possibilities. The main thing to observe here is that the mapping Ti is built by
a convex combination of the elements T ′

j . The regularity of the mapping Ti is determined by the calculus
of almost α-firmly nonexpansive (aα-fne) mappings [25, Proposition 2.4] T ′

j whose regularity, in turn, is
determined by the regularity of the functions gj . The abstract randomized algorithm takes the form of
Algorithm 1. The notation N in the statement of Algorithm 1 denotes the natural numbers including 0.
The initialization of this algorithm is stochastic in that we choose a random variable X0 with distribution
µ0 ∈ P(Rn) where P(Rn) is the space of probability measures on Rn; practically, however, most algorithms
will be initialized with a single deterministic point x0, that is, the inital distribution is a delta distribution
µ0 = δx0

. Convergence of the iterates Xk+1 depends not only on the properties of the mappings Ti (quasi-
contractivity, for instance) but also on consistency of the fixed points of the individual mappings Ti. A
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Algorithm 1: Random Function Iteration (RFI)

Initialization: Select a random variable X0 with distribution µ0 ∈ P(Rn), and (ξk)k∈N an i.i.d.
sequence with values on {1, 2, . . . ,Mm}, where X0 and (ξk) are independently
distributed. Given Ti : Rn → Rn for i = 1, 2, . . . ,Mm.

for k = 0, 1, 2, . . . do

Xk+1 = Tξk(Xk) (2)

necessary condition for almost sure convergence of the sequence of random variables (Xk)k∈N is that the
mappings Ti have common fixed points, that is

⋂
i Fix Ti ̸= ∅ [15, Proposition 2.5]. This is a very strong

assumption that allows one to dispense with a stochastic analysis entirely, deriving convergence guarantees
from the available determnistic theory [14].

In the absense of common fixed points, the conventional approach is to examine the arithmetic mean of
the sequence Xk := 1

k

∑k
j Xk. The sequence of arithmetic means is referred to as the ergodic sequence in the

optimization literature, the limit of this sequence, when it exists, is the Cesàro sum. We take a more general
approach that can quantify not only convergence to the Cesàro sum, but also convergence of higher moments
of the law of the iterates. This is achieved by viewing Algorithm 1 as a Markov chain whose iterates converge
in distribution to an invariant measure of the corresponding Markov operator P.

2.1 Notation and Definitions

Our notation is standard. The measurable sets are given by the Borel sigma algebra on a subset G ⊂ Rn,
denoted by B(G). When the law of X, denoted L(X), satisfies L(X) = µ, we write X ∼ µ ∈ P(G). Where
convenient, we will also use the notation P(X ∈ ·) to denote the law of the random variable, where P is the
probability measure on some underlying probability space. The support of the probability measure µ is the
smallest closed set A, for which µ(A) = 1 and is denoted by suppµ.

The distance of a point x ∈ Rn to a set A ⊂ Rn in the metric d is denoted by d(x,A) := infw∈A d(x,w).
The projector onto a set A is denoted by PA and PA(x) is the set of all points where d(x,A) is attained.
This is empty if A is open, and a singleton if A is closed and convex; generically, PA is a (possibly empty)
set-valued mapping, for which we use the notation PA : Rn ⇒ Rn .

The following assumptions hold throughout.

Assumption 1. (a) ξ and ξ0, ξ1, . . . , ξk are i.i.d random variables for all k ∈ N on a probability space with
values on {1, 2, . . . ,Mm}. The variable X0 is an random variable with values on Rn, independent from
ξk.

(b) The function Φ : Rn × {1, 2, . . . ,Mm} → Rn , (x, i) 7→ Tix is measurable.

Let (Xk)k∈N be a sequence of random variables with values on G ⊂ Rn. In [15] it is shown that the
sequence of random variables (Xk) generated by Algorithm 1 is a Markov chain with transition kernel p
given by

(x ∈ G)(A ∈ B(G)) p(x,A) := P(Tξx ∈ A) (3)

for the measurable update function Φ : G × {1, 2, · · ·Mm} → G given by Φ(x, i) := Tix. Recall that a
Markov chain with transition kernel p satisfies

(i) P (Xk+1 ∈ A |X0, X1, . . . , Xk) = P (Xk+1 ∈ A |Xk);

(ii) P (Xk+1 ∈ A |Xk) = p(Xk, A)

for all k ∈ N and A ∈ B(G) almost surely in probability, P-a.s. The Markov operator P associated with this
Markov chain is defined pointwise for a measurable function f : G→ R via

(x ∈ G) Pf(x) :=
∫
G

f(y)p(x, d y),
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when the integral exists. With the transition kernel defined above, we have

Pf(x) =
∫
Ω

f(Tξ(ω)x)P(dω).

The dual Markov operator acting on a measure µ ∈ P(G) is indicated by action on the right by P:

(A ∈ B(G)) (P∗µ)(A) := (µP)(A) :=

∫
G

P(Tξx ∈ A)µ(dx).

The distribution of the k’th iterate of the Markov chain generated by Algorithm 1 is therefore easily repre-
sented as L(Xk) = µ0Pk.

An invariant measure of the Markov operator P is any distribution π ∈ P that satisfies πP = π. The
set of all invariant probability measures is denoted by invP. Of course in general random variables do
not converge, but distributions associated with the sequence of random variables (Xk) of Algorithm 1, if
they converge to anything, do so to invariant measures of the associated Markov operator. The stochastic
algorithm (1) then solves the following stochastic fixed point problem [15, 16]:

Find π ∈ invP. (4)

When the mappings Ti have common fixed points (almost surely), the problem reduces to the stochastic
feasibility problem studied in [8, 9, 14]:

Find x∗ ∈ C := {x ∈ G |P(x = Tξx) = 1} . (5)

We use the Wasserstein metric for the space of measures to metrize convergence of the laws of the iterates
of the Markov chain. Let

P2(G) =

{
µ ∈ P(G)

∣∣∣∣∃x ∈ G :

∫
∥x− y∥2µ(d y) <∞

}
(6)

where ∥ · ∥ is the Euclidean norm. The Wasserstein 2-metric on P2(G), with respect to the Euclidean norm
∥ · ∥ denoted dW2 , is defined by

dW2(µ, ν) :=

(
inf

γ∈C(µ,ν)

∫
G×G

∥x− y∥2γ(dx, dy)
)1/2

(7)

where C(µ, ν) is the set of couplings of µ and ν:

C(µ, ν) := {γ ∈ P(G×G) | γ(A×G) = µ(A), γ(G×A) = ν(A) ∀A ∈ B(G)} . (8)

Since we are considering the Wasserstein 2-metric, convergence in this metric implies that also the second
moments converge in this metric. For more background on the analysis of sequences of measures we refer
interested readers to [4, 13,37–39].

The Markov operator P is Feller if Pf ∈ Cb(G) whenever f ∈ Cb(G), where Cb(G) is the set of bounded
and continuous functions fromG to R. Although this property is central to the theory of existence of invariant
measures, we will assume existence of invariant measures. For us, the Feller property comes into play in
characterizing the stationary points of Algorithm 1. It is a short exercise to show that if Ti is continuous
for all i ∈ {1, 2, . . . ,Mm} then the Markov operator P is Feller (see [12, Theorem 4.22]). An elementary
fact from the theory of Markov chains is that, if the Markov operator P is Feller and π is a cluster point of
the sequence of measures (µk) := (µ0Pk) with respect to convergence in distribution then π is an invariant
probability measure [13, Theorem 1.10]. Moreover, the set of invariant measures of a Feller Markov operator
is closed with respect to the topology of convergence in distribution [12, Section 5]. For more on this theory
readers are referred to the cited works of Hairer and also [4].
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2.2 Abstract Quantitative Convergence

We can now state the main theorem concerning Markov operators P with transition kernel p given by (3)
for self mappings Ti : G→ G . For any µ0 ∈ P2(G), we denote the distributions of the iterates of Algorithm
1 by µk = µ0Pk = L(Xk). It will be assumed that invP ≠ ∅.

Convergence is quantified by an implicitly defined gauge function. Recall that G : [0,∞) → [0,∞) is a
gauge function if G is continuous, strictly increasing with G(0) = 0, and limt→∞ G(t) = ∞. The gauge G is
constructed implicitly from another nonnegative function θτ,ϵ : [0,∞) → [0,∞) with parameters τ > 0 and
ϵ ≥ 0 satisfying

(i) θτ,ϵ(0) = 0; (ii) 0 < θτ,ϵ(t) < t ∀t ∈ (0, t] for some t > 0 (9)

and

G

( (1 + ϵ)t2 − (θτ,ϵ(t))
2

τ

)1/2
 = t ⇐⇒ θτ,ϵ(t) =

(
(1 + ϵ)t2 − τ

(
G−1(t)

)2)1/2
(10)

for τ > 0 fixed. In the next theorem the parameter ϵ quantifies the regularity of the generating mappings
Ti; the parameter τ is directly computed from the another constant α used to characterize the regularity of
Ti.

In preparation for the results that follow, we will require at least one of the additional assumptions on
θτ,ϵ.

Assumption 2. At least one of the following holds.

(a) θτ,ϵ satisfies

θ(k)τ,ϵ (t) → 0 as k → ∞ ∀t ∈ (0, t), (11)

and the sequence (µk) is Fejér monotone with respect to invP ∩ P2(G), i.e.

dW2,p (µk+1, π) ≤ dW2,p(µk, π) ∀k ∈ N,∀π ∈ invP ∩ P2(G); (12)

(b) θτ,ϵ satisfies
∞∑
j=1

θ(j)τ,ϵ(t) <∞ ∀t ∈ (0, t) (13)

where θ
(j)
τ,ϵ denotes the j-times composition of θτ,ϵ.

When G is simply a linear gauge this becomes

G(t) = κt ⇐⇒ θτ,ϵ(t) =
(
(1 + ϵ)− τ

κ2

)1/2
t (κ ≥

√
τ

(1+ϵ) ).

The conditions in (9) in this case simplify to θτ,ϵ(t) = γt where

0 < γ := 1 + ϵ− τ

κ2
< 1 ⇐⇒

√
τ

(1+ϵ) ≤ κ ≤
√

τ
ϵ . (14)

In other words, θτ,ϵ(t) = γt for γ < 1 satisfies Assumption 2(b). The weaker Assumption 2(a) is used to
characterize sublinear convergence.

Proposition 1 (convergence rates, Theorem 2.6, [16]). Let G ⊂ Rn be compact, let Ti : G → G be
continuous for all i ∈ {1, 2, . . . ,Mm}, and let ξ and ξk (k ∈ N) be i.i.d. random variables taking values on
{1, 2, . . . ,Mm}. Define the Markov transport discrepancy Ψ : P2(G) → R+ ∪ {+∞} by

Ψ(µ) := inf
π∈invP

inf
γ∈C∗(µ,π)

(∫
G×G

E
[
∥(x− Tξx)− (y − Tξy)∥2

]
γ(dx, dy)

)1/2

. (15)

Assume furthermore:
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(a) There is at least one π ∈ invP ∩ P2(G) where P is the Markov operator generated by Tix (see (3));

(b) Ti satisfies

∃ϵ ∈ [0, 1), α ∈ (0, 1) : ∀x ∈ G,∀y ∈
⋃

π∈invP
supp(π) (16)

E
[
∥Tξx− Tξy∥2

]
≤ (1 + ϵ)d2(x, y)− 1−α

α E
[
∥(x− Tξx)− (y − Tξy)∥2

]
;

(c) Ψ(π) = 0 ⇐⇒ π ∈ invP, and for all µ ∈ P2(G)

dW2
(µ, invP) ≤ G (dR(0,Ψ(µ))) = G(Ψ(µ)) (17)

with gauge G given implicitly by (10) with τ = (1 − α)/α and the function θτ,ϵ satisfying (9) where
t0 := dW2 (µ0, invP ∩ P2(G)) < t for all µ0 ∈ P2(G).

Then for any µ0 ∈ P2(G) the distributions (µk) of the iterates of Algorithm 1 satisfy

dW2 (µk+1, invP) ≤ θτ,ϵ (dW2 (µk, invP)) ∀k ∈ N. (18)

If in addition θτ,ϵ satisfies either one of the conditions in Assumption 2, then µk → πµ0 ∈ invP ∩P2(G) as
k → ∞ in the W2 metric with rate O (θτ,ϵ(k)) in the case of Assumption 2(a) and in the case of Assumption

2(b) with rate O(sk(t0)) where sk(t0) := limN→∞
∑N

j=k θ
(j)
τ,ϵ(t0).

Condition (16) is a slight relaxation of the condition given in Theorem 2.6 of [16] (they have the inequality
holding for all y ∈ G, not just y on the supports of the invariant measures) but their proof also holds for
this more general statement. Both assumptions (c) and (a) of Proposition 1 have deep roots in fixed point
theory and variational analysis. The context is explained in more detail in the next section.

Recall that a sequence (µk) on the metric space (P2(G), dW2) is said to converge R-linearly to π with
rate c ∈ [0, 1) when there exists a β > 0 such that dW2

(µk, π) ≤ βck ∀k ∈ N. The sequence (µk) is said
to converge Q-linearly to π with rate c ∈ [0, 1) if there is a constant c ∈ [0, 1) such that dW2

(µk+1, π) ≤
cdW2

(µk, π) ∀k ∈ N. Q-linear convergence is encountered with contractive fixed point mappings, and this
leads to a priori and a posteriori error estimates on the sequence [28, Chapter 9].

Corollary 2 (Corollary 2.7, [16]). Under the same assumptions as in Proposition 1, if Ψ satisfies (c) with

gauge G(t) = r · t and constant r satisfying
√

1−α
α(1+ϵ) ≤ r <

√
1−α
αϵ , then the sequence of iterates (µk)

converges R-linearly to some πµ0 ∈ invP ∩ P2(G):

dW2 (µk+1, invP) ≤ c dW2 (µk, invP) (19)

where c :=
√
1 + ϵ−

(
1−α
r2α

)
< 1 and r ≥ r′ satisfies r ≥

√
(1− α)/α(1 + ϵ). If invP consists of a single

point then convergence is Q-linear.

It is important to emphasize that R-linear convergence permits neither a priori nor a posteriori error esti-
mates.

In the remainder of this study we determine the classes of functions gj in (P) that satisfy the assumptions
of Proposition 1 for a number of possible candidates for the mappings Ti. The concrete application of negative
log-likelihood minimization in the context of X-FEL imaging falls into the identified function classes.

3 Regularity

Our main results concern convergence of Markov chains under regularity assumptions that are lifted from
the generating mappings Ti. In [25] a framework was developed for a quantitative convergence analysis of
set-valued mappings Ti that are one-sided Lipschitz continuous in the sense of set-valued-mappings with
Lipschitz constant slightly greater than 1. We begin with the regularity of Ti and follow this through to the
regularity of the resulting Markov operator.
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3.1 Almost α-firmly nonexpansive mappings

Let G ⊂ Rn and let F : G → Rn . The mapping F is said to be pointwise almost α-firmly nonexpansive at
x0 ∈ G on G, abbreviated pointwise aα-fne whenever

∃ϵ ∈ [0, 1) and α ∈ (0, 1) :

∥Fx− Fx0∥2 ≤ (1 + ϵ)∥x− x0∥2 − 1−α
α ψ(x, x0, Fx, Fx0) ∀x ∈ G, (20)

where the transport discrepancy ψ of F at x and x0 is defined by

ψ(x, x0, Fx, Fx0) :=

∥Fx− x∥2 + ∥Fx0 − x0∥2 + ∥Fx− Fx0∥2 + ∥x− x0∥2 − ∥Fx− x0∥2 − ∥x− Fx0∥2. (21)

When the above inequality holds for all x0 ∈ G then F is said to be aα-fne on G. The violation is the
constant ϵ for which (20) holds. When ϵ = 0 the mapping F is said to be (pointwise) α-firmly nonexpansive,
abbreviated (pointwise) α-fne.

The transport discrepancy ψ ties the regularity of the mapping to the geometry of the space. A short
calculation shows that, in a Euclidean space, this has the representation

ψ(x, x0, Fx, Fx0) = ∥(x− Fx)− (x0 − Fx0)∥2. (22)

The definition of pointwise aα-fne mappings in Euclidean spaces appeared first in [25] where they are
called pointwise almost averaged mappings, following the historical development of these notions dating back
to Mann, Krasnoselskii, and others [7, 11, 19, 26]. The terminology of “averaged mappings” comes from
Baillon, Bruck and Reich [1]. We do not use this nomenclature because it does not accommodate nonlinear
spaces where addition is not defined.

Condition (16) of Proposition 1 is the pointwise aα-fne property in expectation at points in the support of
invariant measures. On a closed subset G ⊂ Rn for a general self-mapping Ti : G→ G for i ∈ {1, 2, . . . ,Mm},
the mapping Φ : G× {1, 2, . . . ,Mm} → G be given by Φ(x, i) = Tix is said to be pointwise almost α-firmly
nonexpansive in expectation at x0 ∈ G on G, abbreviated pointwise aα-fne in expectation, whenever

∃ϵ ∈ [0, 1), α ∈ (0, 1) : ∀x ∈ G, (23)

E
[
∥Φ(x, ξ)− Φ(x0, ξ)∥2

]
≤ (1 + ϵ)∥x− x0∥2 − 1−α

α E [ψ(x, x0,Φ(x, ξ),Φ(x0, ξ))] .

When the above inequality holds for all x0 ∈ G then Φ is said to be almost α-firmly nonexpansive (aα-fne)
in expectation on G. The expected violation is a value of ϵ for which (23) holds. When the violation is 0,
the qualifier “almost” is dropped and the abbreviation α-fne in expectation is used.

Example 1 (steepest descent mappings of smooth functions are aα-fne). Let g : Rn → R be continuously
differentiable with Lipschitz, hypomonotone gradient, that is g satisfies

∃L > 0 : ∥∇g(x)−∇g(y)∥2 ≤ L2∥x− y∥2 ∀x, y ∈ Rn, (24a)

and

∃τ ≥ 0 : −τ ∥x− y∥2 ≤ ⟨∇g(x)−∇g(y), x− y⟩ ∀x, y ∈ Rn. (24b)

Then a specialization of [21, Proposition 13] to just a single block mapping establishes that the gradient
descent mapping defined by TGD := Id−t∇g is aα-fne on Rn with violation at most

ϵGD =
{
2tτ + t2L2

α

}
< 1, with constant α (25a)

whenever the steps t satisfy

t ∈

(
0,
α
√
τ2 + L2 − ατ

L2

)
. (25b)
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If g is convex then, with step size t < 2α
L for α ∈ (0, 1), the gradient descent mapping TGD is α-fne with

constant α (no violation).
Notice the interdependence of the step t on the constant α: if one is willing to tolerate a larger α, then

a larger step t is possible; this is at the cost, however, of increasing the violation. Also, the closer α is to 1,
the more expansive the steepest descent operator is, as seen by (20). On the other hand, short steps mean
slow progress.

Now, using the calculus of aα-fne mappings [25, Proposition 2.4] this yields immediately the regularity
of the steepest descent mapping of the partial sum in (1). Indeed, TGDi

:= 1
m

∑
j∈Ii

Id−tj∇gj for Ii ∈ I :={
I ∈ 2{0,1,...,M} | |I| = m

}
is aα-fne on Rn with violation at most

ϵGDi =
1
m

∑
j∈Ii

{
2tjτj +

t2jL
2
j

αi

}
< 1, with constant αi := max

j∈Ii
αj (26a)

whenever the steps tj satisfy

tj ∈

0,
αi

√
τ2j + L2

j − αiτj

L2
j

 . (26b)

Here Lj and τj are the respective Lipschitz and hypomonotonicity constants of the individual functions gj
defined in (24).

In practice, it can also be expensive to draw a new sample Ii ∈ I because this involves moving data into
and out of memory on a computer. We therefore extend the basic partial gradient descent approach above to
allow the option of taking several steepest descent steps on each single sample Ii. Here we have

Ti := T q
GDi

=

 1
m

∑
j∈Ii

Id−tj∇gj

q

(27)

where q ≥ 1 is some fixed number of times the steepest descent operator TGDi is applied. Again using the
calculus of aα-fne mappings [25, Proposition 2.4] yields the regularity estimate that Ti is aα-fne on Rn with
violation at most

ϵi = (1 + ϵGDi)
q − 1, with constant at most αi :=

q

q − 1 + 1/αi
(28)

whenever the steps tj satisfy (26b).

Example 2 (incorporating nonsmooth functions). We mentioned that the first functions in the sum (P) are
reserved for constraints and other nonsmooth functions. Suppose, that these are at least lower semicontinuous
(lsc) and prox-friendly, meaning that the resolvent of the subdifferential has a closed form. By subdifferential,
denoted ∂gj, we mean the collection of all general/limiting subgradients [33, Definition 8.3]. Then one would

use the resolvents of the subdifferentials of these functions: T ′
j = J∂gj ,tj := (Id+tj∂gj)

−1
. For gj convex this

is α-fne with α = 1/2 [27]. More generally, we will assume that gj is subdifferentially regular (the limiting
subdifferential is nonempty on dom gj) with subdifferentials satisfying

∃τj ≥ 0 : ∀x, u, v ∈ G ⊂ Rn, ∀z ∈ tj∂gj(u;x), w ∈ tj∂gj(v;x),

− τj
2 ∥(u+ z)− (v + w)∥2 ≤ ⟨z − w, u− v⟩ . (29)

Then by [25, Proposition 2.3] the resolvent J∂gj ,tj is aα-fne with constant αj = 1/2 and violation τj on G.
The regularity characterized by (29) was introduced in [25] and was shown in [23] to be a generalization

of hypomonotonicity [30, 31,36]; in particular, weakly convex functions (functions that, upon addition by a
quadratic, can be made convex) satisfy (29), but the converse does not hold.
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There are a number of ways to combine steepest descent steps with resolvents; we focus on the following
generalized forward-backward mapping. Let gj : Rn → R ∪ {+∞} be lsc, prox-friendly and satisfy (29) for
j = 0, 1, 2, . . . , s and satisfy (24) for j = s+ 1, . . . ,M . Then

Ti :=

 ∏
j∈Ii,j≤s

J∂gj ,tj

 ◦

 1
m

∑
j∈Ii,j>s

Id−tj∇gj

qr

(30)

where q, r ≥ 1 allow for repeated application of the resepctive operators, and the product
∏

j∈Ii,j≤s J∂gj ,tj = 1
when there are no indexes j ∈ Ii with j ≤ s. Application of the calculus of aα-fne mappings establishes that
Ti given by (30) is aα-fne on G with violation

ϵi =

 ∏
j∈Ii,j≤s

(1 + τj)

 (1 + ϵGDi)
q

r

− 1, (31a)

and with constant at most

α̂i :=
r

r − 1 + 1/α̃i
where α̃i :=

|Ii \ {j > s}|+ 1

|Ii \ {j > s}|+max{1/2, αi}
(31b)

for αi given by (28) for the steps tj with j > s satisfying (26b). Note that the steps tj for the nonsmooth
function are only implicity involved here through the constant τj in (29). Here too, the larger the step tj, the
larger the constant τj, which leads to a greater violation in (31a).

3.2 Metric subregularity of the invariant Markov transport discrepancy

Recall the inverse mapping Ψ−1(y) := {µ |Ψ(µ) = y }, which clearly can be set-valued. It is important to
keep in mind that an invariant measure need not correspond to a fixed point of any individual mapping Ti,
unless these have common fixed points. See [15,16] instances of this. Condition (17) together with positivity
of Ψ, that is Ψ takes the value 0 at µ if and only if µ ∈ invP, is the assumption that Ψ is gauge metrically
subregular for 0 relative to P2(G) on P2(G) [17]:

dW2
(µ, invP) = dW2

(µ,Ψ−1(0)) ≤ G(Ψ(µ)) ∀µ ∈ P2(G). (32)

The gauge of metric subregularity G is constructed implicitly from θτ,ϵ : [0,∞) → [0,∞) with parameters
τ > 0 and ϵ ≥ 0 satisfying (9) and (10) for τ > 0 fixed. In Proposition 1 the parameter ϵ is exactly the
expected violation in the update mappings Φ(x, i) = Ti(x) which, as in Example 1 and 2, are aα-fne (see
(23) and (16)); the parameter τ is directly computed from the expected constant α via τ = (1− α)/α.

When the mappings Ti have at least one common fixed point, then the feasible set is nonempty:

C := {x ∈ G |P (x ∈ Tξx) = 1} =
⋂

i∈{1,2,...,Mm}

Fix Ti ∩G ̸= ∅. (33)

Moreover, the set of measures supported on the feasible set is also nonempty, that is

C := {π ∈ invP | supp(π) ⊂ C } ≠ ∅ (34)

since the delta distribution centered at a point x∗ ∈ C is in C . The stochastic fixed point problem in this
case is a consistent stochastic feasibility problem. Here the Markov transport discrepancy Ψ defined by (15)
simplifies considerably. Indeed, take any π ∈ C . Then for y ∈ suppπ we have y = Tξy (almost surely) and
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(15) becomes

Ψ(µ) := inf
π∈invP

inf
γ∈C∗(µ,π)

(∫
G×G

E
[
∥(x− Tξx)− (y − Tξy)∥2

]
γ(dx, dy)

)1/2

= inf
γ∈C∗(µ,δy)

(∫
G×G

E
[
∥x− Tξx∥2

]
γ(dx, dy)

)1/2

=

(∫
G

E
[
∥x− Tξx∥2

]
µ(dx)

)1/2

. (35)

Clearly µ ∈ C implies that Ψ(µ) = 0. Condition (17) then reduces to

dW2
(µ, invP) ≤ G

((∫
G

E
[
∥x− Tξx∥2

]
µ(dx)

)1/2
)
. (36)

Suppose now that µ is such that dW2
(µ, invP) is attained at some π ∈ C . Then

dW2
(µ,C ) = dW2

(µ, invP) ≤ G

((∫
G

E
[
∥x− Tξx∥2

]
µ(dx)

)1/2
)
. (37)

Writing this pointwise (i.e., for µ = δx) reduces (17) to a recognizable (nonlinear) error bound, albeit in
expectation:

d(x,C) = inf
z∈C

∥x− z∥ ≤ G (E [∥x− Tξx∥]) ∀x ∈ G. (38)

4 Case Study: likelihood maximization and X-FEL imaging

We specialize the composite minimization model to minimizing the negative log-likelihood function:

minimize
x∈C0

E(x) :=

M∑
j=1

− log (f (yj ; ϕ(x))) . (39)

Here ϕ : Rn → Rm is a nonlinear but smooth map modelling a proposed probability distribution param-
eterized by x ∈ Rn, C0 ⊂ Rn is an abstract constraint set, yj ∈ Rm (j = 1, 2, . . . ,M) is an outcome, and
f (yj ; ϕ(x)) is the likelihood of observing the outcome yj with the probability distribution ϕ(x),

f (yj ; ϕ(x)) := Pϕ(x) (Yj = yj) . (40)

The constraint x ∈ C0 is formally handled by adding to the sum (39) the indicator function

g0(x) := ιC0(x); (41)

the other functions in the objective (P) are apparently

gj(x) := − log(f(yj ;ϕ(x))). (42)

The random variable Yj has some unknown true probability distribution. The outcome yj is the result
of a sample from the probability distribution. We do not presume to approximate the true probability
distribution, although, obviously this is the whole point of problem (39). Instead, we focus on numerical
methods for solving (39) when the collection of outcomes {y1, y2, . . . , yM} is too large to be handled all at
once. Interpretation of solutions to (39) as well as the limit of these solutions as M → ∞ is a topic for
mathematical statistics.

As long as f (yj ; ϕ(x)) is sufficiently smooth as a function of x and the constraint set C0 is sufficiently
regular (for instance, closed and convex), then the regularity assumption (16) of Proposition 1 holds by the
discussion in Examples 1 and 2; hence the random function iteration Algorithm 1 is a reasonable candidate
for mappings Ti given by (30). We will show this is indeed the case for the concrete application of X-FEL
imaging.
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4.1 Stochastic tomography and single-shot X-FEL imaging

The goal of single-shot X-FEL imaging is to determine the electron density of a molecule from experimental
samples of its scattering probability distribution (i.e. diffraction pattern) [6, 10, 41]. A two-dimensional
measurement device, partitioned into pixels, counts the occurrence of (coherently scattered) photons in a
three-dimensional domain in the far field of a molecule that has been illuminated by a short X-FEL pulse.
The molecule under observation is at a random and unobservable orientation relative to the measurement
device. The illuminating pulse is only long enough to cause a few (between 3 and 100) scattering events from
the interaction of the X-ray beam with the electrons of the molecule. The experiment is repeated about 109

times, each time with the molecule at a different random orientation.
Image reconstruction from single-shot X-FEL experiments is a stochastic tomography problem with

a nonlinear model for the data. The stochastic aspect comes not from the randomness of the molecule
orientations (although this makes the problem harder), but rather from the random samples of the scattered
field that constitute the data. The tomographic aspect comes from the challenge of reconstructing a three-
dimensional object from two-dimensional data. Computed tomography with random orientations is not
new (see [2] and [3]). When the orientations are not known, or in the case of single-shot X-FEL imaging
unobservable, some earlier successful approaches applied to Radon inversion (a linear imaging model) involved
estimating the orientation first, and then inverting the imaging model [29] and [35].

The problem investigated in [34] differs from [2,3,29,35] in three respects. First and foremost, the model
for the data in X-FEL imaging is nonlinear and nonconvex: Fraunhofer diffraction models the field propaga-
tion (mathematically equivalent to Fourier transformation, and thus linear), however the measurements are
only samples of the intensities of the (complex-valued) field [5] and [40]. This leads to the second, equally
important distinction, namely that the model data is truly a low-count sample from an unknown distribu-
tion (i.e. field intensities), which prohibits directly applying the already known techniques for phase retrieval
from coherent diffraction data, as is done in X-ray crystallography [32]. The third departure from previous
approaches is that the step of estimating the unknown orientation is avoided by computing the likelihood of
the observation at all combinations of orientations.

Considering only coherently scattered photons, the problem is to determine the true three-dimensional
electron density ρ∗ from a collection of two-dimensional images {ys1 , ys2 , . . . , ysM }, where each ysj is an
outcome, or sample from a two-dimensional cross section of the true three-dimensional probability distribu-
tion in the far field ϕ∗ at orientation sj ∈ SO(3), denoted ϕ

sj
∗ . The continuous model for the probability

distribution in the far field ϕ∗ : R3 → R+ is derived from the planar Fraunhofer scattering model [5]

ϕs∗(k) := | [F (ρ∗ ◦R(s))] (k)|2, k ∈ E . (43)

Here ρ∗ : R3 → R+ is the electron density, R(s) : R3 → R3 is a rotation operator that rotates the domain R3

by s ∈ SO(3), F : C3 → C2 is the Fraunhofer transform modelling the propagation of the electromagnetic
field to a two-dimensional surface in the far field, and, in a nod to the physicists, we denote by k ∈ R3|E a
point on a two-dimensional surface E (the Ewald sphere) in the far field. Up to scaling, F is just the Fourier
transform. The function ϕs∗(k) is the intensity of the field over long time spans and yields the probability of
observing a photon at position k when the electron density ρ∗ is rotated by s ∈ SO(3) and illuminated by
an X-ray.

We approximate the true electron density with a function ρ(·;x) parameterized by x ∈ C0 ⊂ Rn. The
parameters are chosen so as to maximize the likelihood that random variables Ysj drawn from the true
distribution ϕ∗ match the observed outcomes ysj , or equivalently, the optimal parameters x∗ minimize the
negative log-likelihood functional (39) over some constraint set C0. This yields the following discretized
model for the intensity

ϕs(k;x) := | [F (ρ(·;x) ◦R(s))] (k)|2, k ∈ R2, x ∈ Rn. (44)

In coherent diffraction imaging, the observations are over long time frames and the illuminating field
is assumed not to damage the object being observed (whether electron densities or cells is just a matter
of scale) [32]. In this scenario one simply takes the observations {ys1 , ys2 , . . . , ysM } to be identical to the
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probability ϕs(k;x) (when the rotation s is known). If enough photons are counted in each image, then
the problem reduces to the conventional optical phase retrieval problem for which successful numerical
algorithms abound [22]. In a sense, this is the situation when each image ysj is the true scattering density at
orientation sj , in which case expectation maximization really does find a best approximation of a reasonable
parameterization to the true probability distribution.

In X-FEL imaging, the illuminating pulse destroys the molecule under observation, and so the time is
kept very short so that one can record scattering events (anywhere from 3 to 100) from the molecule before it
disintegrates. The observations {y1, y2, . . . , yM} are therefore simply counts of photons in a plane, yj(k) ∈ N
for k ∈ R2. This is modeled as a Poisson point process:

f(yj(k);ϕ
s(k;x)) = Pϕs(k;x)

(
Y s
j (k) = yj(k)

)
:=

ϕs(k;x)yj(k) exp (−ϕs(k;x))
yj(k)!

(45a)

where f(yj(k);ϕ
s(k;x)) is the likelihood function in (39). We have removed the dependence of the observation

yj on the rotation s since this is unobservable. We will come to this in a moment. Before accounting for the
rotation, note that a single observation yj consists of all counts at locations k ∈ R2, so the likelihood of yj
with simultaneous counts at all locations, assuming independence, is

f(yj ;ϕ
s(·;x)) =

∏
k∈supp(yj)

ϕs(k;x)yj(k) exp (−ϕs(k;x))
yj(k)!

= exp

−
∑

k∈supp(yj)

ϕs(k;x)

 ∏
k∈supp(yj)

ϕs(k;x)yj(k)

yj(k)!
. (45b)

Remark 3 (modelling detector arrays). Our numerical simulation adds the discretization of the two-
dimensional detector in the Fourier domain (k-space, for the physicists) into pixels to the model (45b).
Within a single pixel the exact location of the photon cannot be determined. Mathematically, this is modelled
by partitioning each observation supp(yj) into a rectangular grid. To avoid clutter, we will not explicitly
represent this discretization in our derivation, but we will return to this source of error in our discussion of
the numerical results in Section 4.2.

Returning to the issue of the rotations, there are really only two possibilities: either one tries to maximize
the likelihood function with respect to x and s, or one maximizes the likelihood with respect to x, averaged
over all possible rotations. The approach taken in [34] is the latter, namely one considers

f(yj ;ϕ(·;x)) :=
∫
SO(3)

f(yj ;ϕ
s(·;x)) dµ(s). (45c)

Here we use the mean weighted by µ(s) to allow for the possibility of weighting the rotations. In the absence
of any knowledge about the scattering probability ϕs(·;x) one would choose a uniform distribution for the
rotations. But if one had a solution x∗ to (39), this could be folded back into (45c) to compute the average
over the likelihood of the rotations conditioned on x∗, effectively assigning a probability distribution to the
rotations for each outcome yj . Our demonstrations use only a uniform distribution of directions on SO(3).

An elementary calculation yields

∇f(yj ;ϕ(·;x)) =

(∫
SO(3)

∂

∂xi
f(yj ;ϕ

s(·;x)) ds

)
i=1,...,n

=

∫
SO(3)

f(yj ;ϕ
s(·;x))

∑
k∈supp(yj)

(
yj(k)

ϕs(k;x)
− 1

)
∂

∂xi
ϕs(k;x) ds


i=1,...,n

. (46a)

Another elementary formal manipulation shows that

∂
∂xi

ϕs(k;x) := 2Re
[
[F (ρ(·;x) ◦R(s))](k) · ∂

∂xi
(F (ρ(·;x) ◦R(s))) (k)

]
, k ∈ R2, x ∈ Rn. (46b)
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One last application of the chain rule yields

∂
∂xi

(F (ρ(·;x) ◦R(s))) (k) =
(
R(S)∗F∗ ∂

∂xi
ρ(·;x)

)
(k) k ∈ R2, x ∈ Rn. (46c)

The parameterization of the electron density ρ is specified in the next section.
We can now summarize the expression for the gradients of the smooth functions

gj(x) := − log (f (yj ; ϕ(x))):

∇gj(x) =
−1

f (yj ; ϕ(x))
∇f (yj ; ϕ(x)) (47)

where ∇f (yj ; ϕ(x)) is given by (46a) for ∂
∂xi

ϕs(k;x) given by (46b) and ∂
∂xi

(F (ρ(·;x) ◦R(s))) (k) given by
(46c). The resolvent of the subgradient of the constraint-written-as-indicator function g0 is just the projector
onto the set C0:

Jg0,1(x) := PC0
(x). (48)

This is all that is needed to implement Algorithm 1 with Ti defined by (30).

Remark 4 (convergence of Algorithm 1 for X-FEL imaging). Assumptions (a) and (b) of Proposition 1 are
easily seen to be satisfied for this application. Indeed, any twice continuously differentiable function satisfies
conditions (24) of Example 1. Moreover, if the constraint C0 is convex, then condition (29) is satisfied with
τ0 = 0. Hence the mappings Ti defined by (30) for the application of X-FEL imaging using model (39) with
a smooth parameterization of the electron density ρ are aα-fne with violation ϵi and constant αi given by
(31) for the steps tj with j > 0 satisfying (26b). If conditions (a) and (c) of Proposition 1 hold, then we
are assured that Algorithm (1) is locally convergent in distribution; if the gauge of metric subregularity is
linear, then by Corollary 2 we can expect local linear convergence in the Wasserstein metric. The numerical
experiments in Section 4.2 support this conclusion.

Characterization of the invariant distributions is a topic of future research, but intuitively it should be
clear that the more observations {y1, . . . , yM} and constraints that can be brought into the objective function
(39), the better chance that the set of fixed points of Algorithm 1 will contain only meaningful critical points
of (39). The reasoning is as follows: if there is no data, then any feasible parameters x ∈ C0 will solve (39).
As the number of observations grows, so too grow the number of functions gj in the log-likelihood objective,
and hence the set of critical points can only shrink. If the set of critical points of (39) consists only of
globally optimal solutions, the invariant measures of the randomized algorithm (1) should be supported on
these solutions. It is an open question to determine exactly when and in what way this holds.

4.2 A Numerical Study

A level surface of the electron density used to generate the data for our numerical experiment is shown in
Figure 1(a).

The parameterized model for this is simply 10 Gaussian balls where the parameters x are the centers of the
balls:

ρ(z;x) :=

10∑
i=1

B(z;xi), for B(z;xi) := σ ∗ exp
(
− 1

2∥z − xi∥2
)

(49)

where x = (x1, x2, . . . , x10) with each xi = (xi1, xi2, xi3) ∈ R3 and σ = 0.519. Since the density has the form
of Gaussians, the rotated field in the Fourier domain has the explicit formulation [18]

(F (ρ(·;x) ◦R(s))) (k) =

10∑
i=1

B̂(k; (R(s)x)i) (50a)

B̂(k; (R(s)x)i) =
√
2πσ exp

(
−2π2∥k∥2

)
exp (−2πik · (R(s)xi)) (50b)
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(a) (b)

(c)

Figure 1: Deterministic recovery. Algorithm 1 with m = M = 10, 000, t = 0.1. (a) The true electron
density. (b) The computed electron density at the last iterate using (a) as the starting point. (c) The iterate
differences.
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where i :=
√
−1. Just as a reminder, k ∈ R3 is a point in the Fourier domain restricted to a two-dimensional

surface E which for simplicity we take to be a plane through the origin with a fixed orientation. The gradient
(46c) then has the explicit representation

∂
∂xir

(F (ρ(·;x) ◦R(s))) (k) = ∂
∂xir

10∑
i′=1

B̂(k; (R(s)x)i′)

= −2πiσ (R(s)k)r B̂(k;R(s)xir) (r = 1, 2, 3). (51)

For this demonstration we do not introduce any constraints, so here C0 = Rn, and the forward-backward
operator (30) reduces to just gradient descent (27).

The numerical experiments were produced in the Julia programming language on 13th generation In-
tel™CORE®i9 CPUs together with Nividia GPUs. Scripts for generating the numerical experiments are
available at [20].

We generated M = 10, 000 images/outcomes yj so that, on average, each image contained 15 single
scattering events across the measurement plane E . Figure 1(b)-(c) shows the result of applying Algorithm
1 to the deterministic case: m = M = 10, 000 so that the index set I = {1, 2, . . . ,M}, the random variable
ξk takes only one value, and the Markov operator reduces to the deterministic fixed point mapping T :=
1
M

∑M
j=1 Id−t∇gj where ∇gj is given by (47), (46a), (46b) and (51). The mapping T has fixed points at the

critical points of the objective in (39) and these exist (assumption (a) of Proposition 1) by level-boundedness
of the objective. The invariant measures are supported exactly on these critical points: supp(π) ⊂ Fix T for
any π ∈ invP. Assumption (b) of Proposition 1 was shown to hold for all step sizes tj small enough by the
discussion in Remark 4. The Markov transport discrepancy Ψ defined by (15) reduces to (35). Convergence
in distribution is actually pointwise deterministic convergence, so from any initialization at a single point,
µ0 = δx0 , condition (17) in Proposition 1 reduces to (38) which, in this case, is the usual deterministic error
bound:

d(x,Fix T ) ≤ G (∥x− Tx∥) ∀x ∈ G. (52)

Under the assumption that this error bound holds for some gauge G, we expect, by Proposition 1 local
convergence to a critical point of (39) for all fixed step lengths t small enough. The step t = 0.1 for these
numerical experiments was found by trial-and-error.

The recovered image in Figure 1(b) was obtained from the initialization of the true electron density
shown in Figure 1(a). While it is difficult to see from the recovered object, the iterate steps shown in Figure
1(c) indicate that the numerical solution differs from the true object used to construct the model data.
There are several possibilities for this discrepancy which will require further study. One obvious source for
this difference is that the information about the true object is obtained only through finitely many random
samples, so problem (39) is itself a random instance, hence the recovered object, while obtained through
a deterministic algorithm, is itself a random variable. The theory presented here can be applied to the
limiting case of uncountably infinite collections, i.e. in the limit as the sum in (39) or (P) converges to
an integral. In fact, Assumption 1 and Proposition 1 are based on [16, Assumption 2.1 and Theorem 2.6]
which are formulated over possibly uncountably infinite index sets. Convergence of the laws of the iterates
of Algorithm 1 for fixed sample sizes m follows by [16, Theorem 2.6]. The question as to whether the
invariant distribution of the Markov operator in this case corresponds to the true distribution ρ∗ has not
been addressed here, but we think that this should be true. We will have more to say about this in the
concluding remarks. Another possible source of error is the operation of averaging over all possible rotations
in (45c). We do not compute the integral in (45c), but rather a discretized sum which introduces some
unavoidable error. An even more banal, but not uncommon source of error in practice is an incorrect value
for one of the many physical parameters used to construct the mapping F . We are confident that with this
synthetic example, all such trivial model errors have been eliminated.

Some or all of these sources of error could be at play in practice with real data, but for the present
demonstration, these are beside the point. We are focused only on finding solutions to model (39) regard-
less of the appropriateness of the chosen parameters, so long as bad parameter choices do not change the

15



mathematical properties of the objective (in particular smoothness). In this context, Figure 1(c) showing
the differences between successive iterates on a log-scale indicates local linear convergence to a critical point.
In the deterministic setting [24, Theorem 2] has established that metric subregularity of Id−T for 0 at fixed
points (that is, (52) in an appropriate form) is in fact necessary for local linear convergence. Figure 1(c)
does not contradict the hypothesis that, in the deterministic case, the transport discrepancy is metrically
subregular with a linear rate, in which case the observed local linear convergence in Figure 1(c) is guaranteed
by Corollary 2. If the fixed point is, up to rotations, unique, then we can use the iterate differences to obtain
an estimate of the distance to the limit at termination. Round-off error for these calculations starts to ap-
pear at about 10−5 since we are working on single-precision GPU’s. This deterministic calculation (10, 000
iterations) took several minutes (less than 5).

For the randomized algorithm we sample, respectively, 100, 500, 1000, and 5000 of the total 10, 000
images (m = 100, 500, 1000 and 5000) without replacement and run 10 iterations of gradient descent on each
batch (q = 10 in (27)). The recovered density ρ at the last (outer) iteration is shown in Figure 3. Each

Figure 2: Random initialization.

numerical experiment was initialized by a randomly generated density, an example of which is shown in
Figure 2, and ran the same number of inner and outer iterations, namely 1000×10; this was chosen to match
the 10, 000 iterations for the deterministic example shown in Figure 1. The compute times for these runs
were: 88 seconds for m = 100, 107 seconds for m = 500, 139 seconds for m = 1000, and 418 seconds for
m = 5000. In comparison, the deterministic example with 10, 000 iterations and no sampling required 494
seconds.

As Figure 3 demonstrates, the reconstructions at iteration 5000 are very similar, up to rotations and chirality,
to the deterministic reconstruction in Figure 1 at iteration 10, 000. The Cesàro sum of the iterates and the
variance of the iterate shown in Figure 4 was chosen to indicate convergence of the first two moments of the
laws of the iterates as predicted in Proposition 1 (or in the linear case 2) since those results provide guarantees
for convergence with respect to the Wasserstein-2 probability measure, which yields rates of convergence for
the first two moments of the distribution.
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(a) (b)

(c) (d)

Figure 3: Random recovery. Algorithm 1 with Ti given by (27) for q = 10 and tj = 0.1 for all j. The
M = 10, 000 images are sampled with |Ii| = m for (a) m = 100, (b) m = 500, (c) m = 1000, and (d)
m = 5000. Shown are the computed average electron densities at iteration k = 5000. The compute times for
the first 1000 iterations (1000 outer iterations with 10 inner iterations for each outer iteration) runs were:
88 seconds for m = 100, 107 seconds for m = 500, 139 seconds for m = 1000, and 418 seconds for m = 5000.
In comparison, the deterministic example with 10, 000 iterations and no sampling required 494 seconds
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(a) (b)

Figure 4: Convergence behavior of the mean (a) and variance (b) of the iterates. Algorithm 1 with Ti
given by (27) for q = 10 and tj = 0.1 for all j. The M = 10, 000 images are sampled with |Ii| = m for
m = 100, 500, 1000, and 5000.

5 Concluding remarks and open questions

Several issues and directions for future research were mentioned above. To conclude, we summarize these
and add to this list. In the context of X-FEL imaging, the directions for further study include: improving
the numerical model without increasing the computational complexity (too much); exploring more realistic
parameterizations of the electron density; including constraints into the model (39); and testing this approach
on experimental data. Regarding 45c, it was mentioned that a solution x∗ can be used to assign a probability
distribution to the rotations of each outcome yj , which can then be used for the weighted integral in (45c).
This is appealing both from the perspective of the application as well as posing interesting mathematical
challenges for the analysis of such an approach.

On the mathematical side, there are several difficult issues to tackle. First and foremost is either to
develop efficient methods for computing the Wasserstein metric in the convergence statement of Proposition
1, or to develop efficient approximations that can be used to monitor algorithm performance. Second but
just as important is to characterize the supports of the invariant measures of the Makov operator behind
Algorithm 1 in terms of the critical points of the determinisitc problem 39 or, more generally (P). This
also has bearing on the analysis of the solutions to (39) in a stochastic context, in other words, in the
limit as the sum converges to an integral: are the invariant measures of the Markov operator unique up to
rotation and do these correspond to the true probability distribution ρ∗? The dependence of the rates of
convergence predicted in Proposition 1 on the sample size m is also an important related issue. Third, and
more attainable in the near term is to verify the metric subregularity assumption of the Markov transport
discrepancy (17) by verifiable properties of its deterministic counterpart.
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