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Experiments often probe observables that correspond to low-dimensional projections of high-
dimensional dynamics. In such situations distinct microscopic configurations become lumped into the
same observable state. It is well known that correlations between the observable and the hidden degrees of
freedom give rise to memory effects. However, how and under which conditions these correlations emerge
remain poorly understood. Here we shed light on two fundamentally different scenarios of the emergence
of memory in minimal stationary systems, where observed and hidden degrees of freedom either evolve
cooperatively or are coupled by a hidden nonequilibrium current. In the reversible setting the strongest
memory manifests when the timescales of hidden and observed dynamics overlap, whereas, strikingly, in
the driven setting maximal memory emerges under a clear timescale separation. Our results hint at the
possibility of fundamental differences in the way memory emerges in equilibrium versus driven systems
that may be utilized as a “diagnostic” of the underlying hidden transport mechanism.
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Observables coupled to hidden degrees of freedom that do
not relax sufficiently fast [1] or selected reaction coordinates
that do not locally equilibrate in mesostates [2] generically
displaymemory. In fact, this holds formost high-dimensional
dynamics probed on a coarse-grained level [3–14]. Tremend-
ous progress has been made over the years in describing and
understanding kinetic aspects of non-Markovian dynamics
[1,12,15–37]. More recently, coarse-grained, partially ob-
served dynamics have become of great interest from the point
of view of thermodynamic inference [2,37–52]. Namely,
while there are efficient methods to detect [53–55] and
quantify [55] the existence of memory, it conversely turns
out to be quite challenging to quantify [2,42,44,56] or even
infer [37,50,51,57] irreversibility from lower-dimensional,
projected dynamics. Thus, understanding potential diffe-
rences in the emergence of memory in equilibrium and
nonequilibrium systems is a difficult task.
When one considers, in particular, ergodic dynamics in

the sense that the probability distribution to be found in a
given microscopic state at long times relaxes to a unique
stationary equilibrium or nonequilibrium steady state from
any initial condition, the extent of memory is necessarily
finite and is more prominent if the hidden degrees of
freedom are slow [1,2,58]. Yet, even in this “well behaved,”
thermodynamically consistent [59] setting quite little is

known about the possible ways in which the dynamics of
observables can become correlated with that of hidden
degrees of freedom on different timescales. A particularly
intriguing question is whether there are any characteristic
differences between how memory emerges in reversible
versus irreversible driven systems when the observed
dynamics is much faster than the hidden one.
Addressing this problem in full generality is a daunting

task. Here we focus on the minimal “cooperative” setting
[60–63], where the microscopic dynamics is a Markov
process on a planar network and we observe only the
vertical coordinate, whereas the horizontal transitions are
hidden (see Fig. 1). This setting is important for under-
standing “active secondary transport”—transporter proteins
exploiting the energy stored in the transmembrane gradient

FIG. 1. (a) Schematics of the full Markov network for the
respective models. The upper green states are lumped to the
observed “ON” state and the lower orange ones to the observed
“OFF” state. To separate the time scale of horizontal and vertical
dynamics, we choose the rates (in arbitrary units) a ¼ 0.5 and
b ¼ 25 to make the vertical process always much faster than the
horizontal one. In the driven model (see Fig. 2) we set γ1 > 1 and
γ2 ¼ 1, whereas in the reversible “allosteric” model (Fig. 3) we
chose γ1 ¼ γ2 ≡ γ ≥ 1. (b) Trajectory of the full dynamics (blue)
and its corresponding projection (gray).
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of one type of molecules to transport another type against
their gradients [64–66]. Moreover, it is also relevant as the
physical basis of the sensitivity of the flagellar motor in E.
coli in sensing concentrations of its regulator [60–62,67],
where two fundamentally different explanations were
proposed to explain the “ultrasensitivity” of the motor’s
response, an equilibrium allosteric and a dissipative non-
equilibrium model [61,67,68].
We are not interested in the biophysical implications of

the model. Instead, we use the above two distinct settings
merely as a minimal model of non-Markovian two-state
dynamics, where we can “turn on” memory in a controlled
manner via an equilibrium versus nonequilibrium mecha-
nism. We consider the scenario where the observed
dynamics is faster than the hidden one [see Fig. 1(a)]
but there is not necessarily a large timescale separation
present. Interestingly, in the driven setting we only change

the fastest timescales, whereas in the reversible cooperative
model we alter all timescales. In both cases we find a
maximal capacity for memory; i.e., the maximal magnitude
of memory saturates at a finite coupling and nonequili-
brium driving, respectively. Interestingly, in the reversible
setting the memory manifests strongest when the timescale
separation between the hidden and observed transitions
becomes partially lifted and the hidden and observable
timescales overlap, whereas in the driven setting maximal
memory occurs in the presence of a timescale separation.
Our results provide deeper insight into the emergence of
memory in the distinct situations when observed and
hidden dynamics either evolve cooperatively or become
coupled to a hidden nonequilibrium current.
Setup.—We consider a six-state continuous-time Markov

process [see Fig. 1(a)] with generator L, whose elements
Ln;m are transition rates between states m → n given by

L ¼

0
BBBBBBBBB@

−bγ1 − 2a b a 0 0 0

bγ1 −b − 2a 0 aγ2 0 0

2a 0 −b − 2a b 2a 0

0 2a b −b − a − aγ2 0 2aγ2
0 0 a 0 −b − 2a bγ1
0 0 0 a b −bγ1 − 2aγ2

1
CCCCCCCCCA

; ð1Þ

where we choose a ¼ 1=2 and b ¼ 25 such that in the
“baseline” model horizontal transitions are slower than
vertical ones; i.e., the hidden dynamics relaxes slower than
the observable ON ⇄ OFF transitions. We adopt the Dirac
bra-ket notation and denote the transition probability from
microscopic state i to microscopic state j in time t as
Gðj; tjiÞ≡ hjjeLtjii and the stationary probability of state j
as PsðjÞ ¼ limt→∞Gðj; tjiÞ. In the baseline model with
γ1 ¼ γ2 ¼ 1 the dynamics is reversible and the ON-OFF
states are equiprobable in the steady state. The parameters
γ1 and γ2 are acceleration factors when they are larger than
1. In the cooperative allosteric regime with γ1¼γ2≡γ>1
the dynamics obeys detailed balance, i.e., PsðiÞLj;i ¼
PsðjÞLi;j, ∀ i; j. Conversely, in the driven model we set
γ1 > 1, γ2 ¼ 1; here detailed balance is violated, i.e., ∃ i; j
for which PsðiÞLj;i ≠ PsðjÞLi;j (that is, the model is
irreversible yet thermodynamically consistent [59]).
It turns out that L defined this way is diagonalizable, i.e.,

we can find a biorthonormal basis fhψL
k j; jψR

k ig of left hψL
k j

and right jψR
k i eigenvectors with eigenvalue −λk and k ¼

0;…; 5 and hψL
k jψR

l i ¼ δkl. Thus, we have L ¼ P
k −

λkjψR
k ihψL

k j, and in turn we can expand Gðj; tjiÞ ¼P
5
k¼0hjjψR

k ihψL
k jiie−λkt. In this notation the steady-state

probability of state i is given by PsðiÞ ¼ hijψR
0 i.

The eigenvalues of thebaselinemodel are λ0 ¼ 0, λ1 ¼ 2a,
λ2 ¼ 4a, λ3 ¼ 2b, λ4 ¼ 2ðaþ bÞ, and λ5 ¼ 2ð2aþ bÞ. We
can also determine the eigenspectrum analytically for the

driven model, which has eigenvalues λγ10 ¼ 0, λγ11 ¼ 2a,
λγ12 ¼4a, λγ13 ¼ 1

2
½4aþðγ1þ3Þb−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16a2þðγ1−1Þ2b2

p
�,

λγ14 ¼ 2aþ ðγ1 þ 1Þb, and λγ15 ¼ 1
2
½4aþ ðγ1 þ 3Þbþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16a2 þ ðγ1 − 1Þ2b2
p

�. The reversible allosteric model
(γ > 1) cannot be diagonalized analytically, and we therefore
provide numerical results instead.
We assume that the full system is prepared in a steady

state PsðjÞ and only vertical ON ⇄ OFF transitions are
observed with observable sets ON ¼ f2; 4; 6g and
OFF ¼ f1; 3; 5g. We determine the non-Markovian tran-
sition probability of the observed process k̂t, QPs

ðn̂; tjm̂Þ
with m̂; n̂∈ fON, OFF} as [1]

QPs
ðn̂; tjm̂Þ≡

P
6
j¼1 1n̂½j�

P
6
i¼1 1m̂½i�Gðj; tjiÞPsðiÞP

6
i¼1 1m̂½i�PsðiÞ

; ð2Þ

where 1Ω is the indicator function of the set Ω. The non-
Markovian transition probability between two fixed
observed states m̂ → n̂ as well as the observable return
probability m̂ → m̂ depends on the preparation of the full
system [69]. Moreover, in spite of the full system being
prepared in the stationary state Ps, by specifying the initial
observed state (here either ON or OFF) we “quench” the
full system out of the steady state by conditioning on the
state of the observable [1,69]. Without loss of generality we
will focus on the scenario where the observable is initially
in the ON state, i.e., k̂0 ¼ ON.
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To quantify the magnitude of memory in the projected
dynamics, we follow [55] and construct the auxiliary
Chapman-Kolmogorov (CK) transition density

QCKðn̂; t1 þ t2jm̂Þ≡X
k̂

QPs
ðn̂; t2jk̂ÞQPs

ðk̂; t1jm̂Þ: ð3Þ

Note that for a non-Markovian process QCK depends on
both t1 and t2. The Chapman-Kolmogorov construction
QCKðn̂; t1 þ t2jm̂Þ corresponds to a fictitious dynamics
where we force at time t1 all hidden degrees of freedom
to their stationary distribution and thereby erase all memory
of their initial condition. When the observed ON ⇄ OFF
dynamics is Markovian we have QCKðn̂; t1 þ t2jm̂Þ ¼
QPs

ðn̂; t1 þ t2jm̂Þ ∀ t1; t2 ≥ 0, but the converse is not true
in general [1,55]. As soon as QCKðn̂; t1 þ t2jm̂Þ ≠
QPs

ðn̂; t1 þ t2jm̂Þ for some n̂, the observable at time
t1 þ t2 “remembers” the state of hidden degrees of freedom
at time t1.
We use the Kullback-Leibler divergence Dk½pjjq�≡P
k pðkÞ ln½pðkÞ=qðkÞ� ≥ 0 to quantify the difference be-

tween QPs
and QCK [55]

DCK
m̂ ðt1;t2Þ≡Dn̂½QPs

ðn̂;t1þ t2jm̂ÞjjQCKðn̂;t1þ t2jm̂Þ�; ð4Þ
where the superscript k inDk½pjjq� denotes the independent
dummy variable of the measures p and q. In the absence of
memory DCK

m̂ ðt1; t2Þ ¼ 0 ∀ t1; t2. Conversely, as we are
interested in ergodic dynamics prepared in a steady state,
we have DCK

m̂ → 0 whenever t1 þ t2 → 0 or t1 þ t2 → ∞
[55]. Therefore, by the positivity of DCK

m̂ we will have at
least one maximum in the half-space to t1, t2 > 0. We
quantify the magnitude of memory in terms of the global
maximum on t1, t2 > 0 as

DCK
maxðm̂Þ≡ sup

t1;t2>0
DCK

m̂ ðt1; t2Þ: ð5Þ

In the baseline setting (γ1 ¼ γ2 ¼ 1) the observed and
hidden dynamics are decoupled (i.e., all microscopic
pathways are equivalent). As a result, the observed dynam-
ics is Markovian andDCK

maxðm̂Þ ¼ 0. We are interested in the
dependence of DCK

maxðm̂Þ as we couple the vertical and
horizontal dynamics cooperatively or by a dissipative
current, that is, on γ1 and γ in the driven and cooperative
models, respectively.
Driven setting.—We first consider the driven scenario

with γ1 > 1 and γ2 ¼ 1. Instead of γ1, we use the
steady-state entropy production rate of the microscopic
dynamics Ṡðγ1Þ ¼

P
i;j PsðjÞLi;j ln½PsðjÞLi;j=ðPsðiÞLj;iÞ�

to indicate how far the system is driven out of equilibrium,
and we change γ1 in equidistant units of the chemical
potential lnðγ1=γ2Þ ¼ ln γ1 that drives the system out of
equilibrium, i.e., γ1 increases exponentially. We first
provide some intuition about the microscopic dynamics.
Since λ1;2 are independent of γ1 and because λ3 ≃ 2ðaþ

bÞ for b ≫ a and γ1 ≥ 2, by increasing γ1 we only alter λ4;5
[see Fig. 2(a) and Appendix B]. That is, we are essentially

only tuning the fastest timescales, whereas the slow time-
scales remain unaffected by the driving. We also alter the
stationary distribution Psðm̂Þ. Because b ≫ a, the system
(even without driving) tends to first explore vertical paths to
reach a “quasisteady state” between observed ON-OFF
states within a timescale of approximately ∼1=b ¼ 0.04
[see Fig. 2(b)]. Afterward, the probability redistributes
horizontally within the observable states. However, because
the transition rates from states 1 to 2 and from 6 to 5 are
accelerated by a factor of γ1, transitions 2 → 1 and 6 → 5
will be instantly followed by the reverse transitions 1 → 2
and 5 → 6. Thus, the probability distribution dominantly
redistributes along the microscopic path 2 ↔ 4 ↔ 3 ↔ 5
and finally reaches a steady state “skewed” in the hidden
direction [see Fig. 2(b)].
We now address the magnitude of the emerging memory

via DCK
max in Eq. (5). We find that DCK

max monotonically
increases with γ1 (note that Ṡ is a monotonically increasing
function of γ1), and eventually at ≈ 0.02324, where the
location of the supremum approaches t1 ¼ t2 ≈ 0.08 as
γ1 → ∞. Note that the maximal memory is attained on a
timescale that is longer than the local vertical equilibration
time ≈1=b ¼ 0.04. The saturation may be explained by
noticing that as γ1 → ∞, only states 2–5 have a nonzero
probability and accelerated paths are almost never trav-
ersed. As a result, DCK

max no longer changes with γ1.
Note that in this driven setting vertical transitions are

always much faster than horizontal ones, which maintains a
separation of timescales between the observed and hidden

FIG. 2. Driven setting (γ1 > 1, γ2 ¼ 1). (a) Characteristic time-
scales 1=λγ1i , i ≥ 1 as a function of γ1 relative to the baseline
relaxation time 1=λ11. (b) Left sketch: microscopic transition
probability Gðj; tjONÞ for γ1 ¼ 22 at four different times.
Right sketch: corresponding observed transition probability
QPs

ðn̂; tjONÞ. (c) Relative entropy DCK
ONðt1; t2Þ in Eq. (4) for

γ1 ¼ 24. The triangle depicts DCK
maxðONÞ. (d) Magnitude of

memory DCK
maxðONÞ in Eq. (5) as a function of driving Ṡðγ1Þ.

The blue triangle denotes the position of the maximum in (c).
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dynamics. The memory that we observe is thus “only” a
manifestation of the relaxation of hidden degrees of freedom.
Reversible cooperative setting.—We now inspect the

reversible scenario where γ1 ¼ γ2 ≡ γ ≥ 1. As before,
we first give some insight into the microscopic dynamics.
As time evolves, in the first stage the system initially
populates microscopic states 2 and 4, where γ is large,
especially state 2. The accelerated transition paths do not
instantly play a role. Thus, as in the driven model, the
system tends to first explore vertical paths (paths 2 → 1 and
4 → 3) on a timescale of 1=b ∼ 0.04. In the second stage,
also as in the driven model, transitions 2 → 1 will instantly
go back to state 2. During this stage, the probability
redistributes in the horizontal direction. However, since
the transition rates inside the ON state (L2;4; L4;6) are also
accelerated by a factor of γ, the timescale of the horizontal
redistribution of probability is not necessarily larger than
that of vertical dynamics. Here the two main frequently
visited vertical paths are 2 → 1 and 4 → 3.
Note that when we increase γ in this reversible setting

such that aγ > b, some of the horizontal transition rates
exceed the vertical ones, i.e., the timescales of the observ-
able dynamics and the hidden dynamics overlap and there
is no timescale separation. This overlapping (and “mixing”)
of the hidden and observable timescales may contribute to
the appearance of two shoulders in Fig. 3(d) at γ ≈ 38
and γ ≈ 443. The shoulders are a result of the shift in
position of the peak of DCK

m̂ ðt1; t2Þ (for details see Fig. 4 in
Appendix A). As γ tends to become very large, DCK

max

saturates to ≈0.084 71, and the location of peak approaches
t1 ¼ t2 ≈ 0.13.
Conclusion.—In this Letter we addressed the emergence

of memory in a minimal setting, where the microscopic
dynamics corresponds to a Markov process on a planar
network and we observed only the vertical ON ⇄ OFF
dynamics, whereby the horizontal dynamics are hidden.
Our aim was to gain insight into how correlations between
the hidden and observed dynamics emerge, in particular, if
and how the nature of these correlations depends on
whether the microscopic dynamics is reversible (i.e.,
whether it obeys detailed balance) or instead is driven.
In the former scenario, the observed and hidden degrees of
freedom are coupled cooperatively, whereas in the latter
scenario the coupling emerges due to a nonequilibrium
current. We focused on quantifying the magnitude of
memory while tuning cooperativity or irreversible driving.
Many features were found to be similar in the two settings.
However, in the reversible setting the strongest memory
was found in the expected situation, when the timescales of
the hidden and observed dynamics overlap. Conversely, in
the driven setting maximal memory is reached under a clear
timescale separation. Our Letter therefore unraveled quali-
tative differences in the way that memory can emerge in
equilibrium versus driven systems. While we focused on a
simple model, our findings pave the way for more sys-
tematic studies. From a practical, “diagnostic” perspective,
our results imply the possibility of gaining insight into the
dynamic coupling underlying active secondary transport
[64–66] from observations of memory in the transmem-
brane transport of either species.

Financial support from the Max Planck School Matter to
Life, supported by the German Federal Ministry of
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Appendix A: Peak position of DCK in the reversible
setting.—Let ðt�1; t�2Þ≡ argmaxt1;t2D

CK
m̂ ðt1; t2Þ be the

values of t1 and t2 when DCK
ON reaches its maximum at a

FIG. 3. Reversible setting (γ1 ¼ γ2 ¼ γ). (a) Characteristic
timescales 1=λγi , i ≥ 1 as a function of γ1 ¼ γ2 ¼ γ relative to
the baseline relaxation time 1=λ11. Inset: λ

1
1=λ

γ
1 on a linear scale.

(b) Left sketch: microscopic transition probability Gðj; tjONÞ for
γ ¼ 22 at four different times. Right sketch: corresponding
observed transition probabilityQPs

ðn̂; tjONÞ. (c) Relative entropy
DCK

ONðt1; t2Þ in Eq. (4) for γ ¼ 24 as a function of t1, t2. The
triangle denotesDCK

maxðONÞ. (d) Magnitude of memoryDCK
maxðONÞ

in Eq. (5) as a function of γ.

FIG. 4. Dependence of the peak position of DCK
ON ðt�1; t�2Þ on the

cooperativity parameter γ in the reversible model. Note the two
discontinuities.
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given γ in the reversible cooperative scenario [see
Fig. 3(c)]. As stated in the main text, the two shoulders
in Fig. 3(d) are the result of discontinuities in the shift
of peak position. To visualize this, we show in Fig. 4
the dependence of the peak position on γ. Note that GCK

in Eq. (3) is a symmetric function of t1 and t2, so the
peak of DCK

ON always occurs at t�1 ¼ t�2.

Appendix B: Table of characteristic timescales.—
Table I lists some of the characteristic timescales under
the driven and reversible settings shown in Figs. 2(a)
and 3(a), respectively.
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