

Optimising GROMACS for parallel performance

C. Kutzner^a, D. van der Spoel^b, E. Lindahl^c, Berk Hess^d, Jakob Pichlmeier^e, B.L. de Groot^a, H. Grubmüller^a

^aDep. of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany ^bDepartment of Cell and Molecular Biology, Uppsala University, Sweden

^cStockholm Bioinformatics Center, Stockholm University, Stockholm, Sweden

^dMax-Planck-Institute for Polymer Research, Mainz, Germany

eIBM Munich, Germany

The need for speed

Simulation systems are getting larger and larger. Since we cannot wait years for the results, multiple processors have to work on it in parallel.

• The **GROMACS** molecular dynamics (MD) code has an extremely **high single-processor performance**

- However, large systems are feasible only with parallel processing
- The more processors take part in a simulation, the more the parallel efficiency is degraded by

network bottlenecks

- communication overheads
- uneven load balancing
- most of time is spent in calculation of non-bonded forces. Calculation is split into a short range (SR) and a long range (LR) part. GROMACS uses the efficient Particle-Mesh-Ewald (PME) method to evaluate the Coulomb forces.
- Long range part needs all-to-all communication for FFT transposes. In an all-to-all on N procs, N² messages are transferred!

Scaling improvements

Due to communication overheads and uneven loads the maximal speedup is limited. It can be raised by careful code optimisations.

Project overview

ecto

Drol

uture

Hide communication

- SR and LR Coulomb forces can be calculated independently
- LR part needs excessive communication (including 2x all-to-all), which can
 possibly be overlapped with SR calculation

Network optimisations

- flow control was found to be a prerequisite for good scaling on Ethernet
- GROMACS speedups with and without flow control, compared to high-performance interconnects:

- switch can become a bottleneck, too
- enlarge bandwidth by using multiple network interfaces per node, as we will see more and more processors on a node in the future
- reduce latency with a low-overhead protocol (GAMMA)

Node splitting

 do PME on a subgroup of all processors. All-to-all communication and the FFT is much more efficient on smaller number of CPUs. Also the grids have to be divisible by the number of nodes.

PME frequency reduction

- since the long-range part of the Coulomb potential anyway varies slowly, construction of the potential grid at every time step might be overkill
- if PME is only done every 2nd time step, the average time step length would be reduced by approx. 20%!
- of course, careful error estimations have to be performed

3d domain decomposition (is implemented by B. Hess)

- each processor gets assigned a part of the space, not a part of the atoms
- makes the number of communication steps for the short range part independent of the number of processes (N)

• N/2 systolic pulses -> only 3 pulses to transfer coordinate / force data

Ordered communication

- Problem: All-to-all communication on a large number of processors can easily overload the network
- our ordered all-to-all algorithm prevents that and thereby reduces communication time

PME 1d domain decomposition (was implemented by J. Pichlmeier)

- after sorting the charges in x-direction only the PME grid boundaries have to be communicated (instead of the whole grids)
- the boundaries can be transferred in just 2 communication steps, independent of the number of processes!
- $\ensuremath{\,\bullet\,}$ as a result the communication volume within the PME part is significantly reduced

ongoing projects

ast projects