
Performance tuning of molecular dynamics simulations using PME

Carsten Kutzner1, Berk Hess2 and 1Helmut Grubmüller

1Dep. of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
2Dep. of Biochemistry and Biophysics, Stockholm Center for Biomembrane Research, Stockholm University, Sweden

Parallel molecular dynamics simulations with PME(1,2) electrostatics en-

joy a considerable performance increase in Gromacs 4.5(3) compared to

older versions. Part of that increase results from the fact that a subgroup

of the processes is assigned exclusively for the reciprocal part of the PME

calculation in a multiple-data, multiple-program (MPMD) approach. The

reciprocal part requires a Fourier transformation of the charge grid and

thus needs all-to-all communication among the participating processors.

This communication pattern is a major scaling bottleneck for PME cal-

culations in parallel(4) since on N processors, N*N messages have to

be delivered. With separate PME processors, N is typically reduced by

a factor of 2–4.

For optimum parallel performance, it is essential that every processor

gets assigned an equal amount of work. Most critical for the MPMD ap-

proach is that the reciprocal processors complete their time step si-

multaneously with the real space processors such that waiting time is

minimized. This is achieved by carefully balancing the ratio of real to

reciprocal space processors and workload.

Gromacs predicts this ratio based upon hard-wired reference numbers.

However, it does not know about the underlying network or processor

clock rates, facts that infl uence the optimum ratio. Consequently, we

directly seek the actual optimum with the help of short test runs. For a

given number of processors, the adjustable parameters are the number

of reciprocal processors and also the workload distribution between real

and reciprocal space part of the Ewald sum. At high parallelization, the

scaling usually benefi ts from shifting work to real space such that the

fraction of reciprocal processors can be kept between a quarter and a

half of the total available processors.

Abstract

(1) T. Darden, D. York, L. Pedersen, 1993. Particle mesh Ewald: An N*log(N) method for Ewald sums in large

systems, J. Chem. Phys. 98 (12), 10089-10092

(2) U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, G. Pedersen, 1995. A smooth particle mesh

Ewald method, J. Chem. Phys. 103 (19), 8577-8593

(3) B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, 2008. GROMACS 4: algorithms for highly effi cient, load-

balanced, and scalable molecular simulation. JCTC 4 (3), 435-447

(4) C. Kutzner, D. van der Spoel, M. Fechner, E. Lindahl, U. Schmitt, B. de Groot and H. Grubmüler, 2007.

Speeding up parallel GROMACS on high-latency networks. J. Comp. Chem. 28 (12), 2075-2084

(5) H. Wang, F. Dommert and C. Holm, 2010. Optimizing working parameters of the smooth particle mesh

Ewald algorithm in terms of accuracy and effi ciency. J. Chem. Phys. 133,

References

Example benchmark

Summary
In most cases, performance can be improved notably. For the presented

benchmark, the performance could be raised by a factor of 1.2 on aver-

age for 16–48 processors.

As a typical example, we chose the DPPC membrane system from the

Gromacs benchmark suite. The system contains 1024 DPPC lipids plus

23,552 SPC water molecules and thus altogether 121,856 particles.

For the benchmark, we used cutoffs of 1.0 nm and a reciprocal grid

spacing of 0.135 nm yielding a PME grid of 132*140*48 points. For a

scaling factor of 1.1 (1.2) for cutoffs and grid spacing the resulting PME

grid is 120*125*42 points (110*117*39 points).

The benchmarks were performed on a cluster of 8 processor Intel

L5430@2.66 GHz (Harpertown) nodes connected by 4xDDR Infi niband

(20 Gbit/s).

g_tune_pme

Fig. 1: Red bars (left scale) depict the DPPC performance [ns/day] at a 2 fs time step when the number of PME

processors is estimated by mdrun. The green bars show the gain after tuning. The grey line (right scale) shows

the wall clock time needed for the tuning.

Performance with and without tuning

8 16 32 48 64 96
0

5

10

15

20

25

processors (8 share a node)

pe
rfo

rm
an

ce
 [n

s/
da

y]

0

10

20

30

40

op
tim

iz
at

io
n

tim
e

[m
in

ut
es

]

time needed for tuning [min]

3.
2

4.7

5.7 6.9

8.1 9.0

10.1 11.0

13.0 12.9

15.3

19.1

21.8

ns/day with g_tune_pme

ns/day without g_tune_pme

23.0

Fig. 2: Squares (left scale) show the scaling that is the execution time on a single node divided by n times the

execution time on n nodes.

Plus signs (right scale) show the number of PME processors. Up to 48 processors the tpr fi le was left untouched,

whereas from 56 processors on a slight shift (factor 1.1) of work from reciprocal to real space came out to be

advantageous for the performance. For 88 and 96 processors, the scaling factor 1.2 was applied. Between 48

and 96 processors the required number of PME processors could not be estimated by mdrun.

8 16 24 32 48 64 96
0

0.2

0.4

0.6

0.8

1

processors

0

10

20

30

40

sc
al

in
g

(

)

PM
E

pr
oc

es
so

rs
 (+

)

standard scaling

scaling with g_tune_pme

PME processors

PME processors with
g_tune_pme

The Gromacs 4.5 tool reads in a simulation tpr fi le and writes several benchmark tpr fi les where a) the number

of steps is set to the benchmark value – typically 1000 plus 100 equilibration steps – and b) computational load

is shifted between real and reciprocal part of the Ewald sum. This is achieved by multiplying both the direct-

space cutoff as well as the PME grid spacing by a small factor, typically 1.0, 1.1 and 1.2. The higher the factor,

the more work is shifted from the PME to the direct-space processors. This is done because the reciprocal space

calculations are most effi cient on a small number of processors. Subsequently, the newly created tpr fi les are

benchmarked with variable number of PME processors. The time counters are reset after 100 steps when the

dynamic load balancing is equilibrated.

export MPIRUN=”/usr/bin/mpiexec -hostfi le=./hosts”

g_tune_pme -np 128 -s ./protein.tpr -launch

Performance tuning of molecular dynamics simulations using PME

The MPMD PME approach

Outlook
Incorporate the Wang et al. PME error estimate(5) into the g_tune_pme

tool so that load can be shifted between real and reciprocal space at a

constant absolute error.

