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Parallel molecular dynamics simulations with PME(1,2) electrostatics en-

joy a considerable performance increase in Gromacs 4.5(3) compared to 

older versions. Part of that increase results from the fact that a subgroup 

of the processes is assigned exclusively for the reciprocal part of the PME 

calculation in a multiple-data, multiple-program (MPMD) approach. The 

reciprocal part requires a Fourier transformation of the charge grid and 

thus needs all-to-all communication among the participating processors. 

This communication pattern is a major scaling bottleneck for PME cal-

culations in parallel(4) since on N processors, N*N messages have to 

be delivered. With separate PME processors, N is typically reduced by 

a factor of 2–4. 

For optimum parallel performance, it is essential that every processor 

gets assigned an equal amount of work. Most critical for the MPMD ap-

proach is that the reciprocal processors complete their time step si-

multaneously with the real space processors such that waiting time is 

minimized. This is achieved by carefully balancing the ratio of real to 

reciprocal space processors and workload. 

Gromacs predicts this ratio based upon hard-wired reference numbers. 

However, it does not know about the underlying network or processor 

clock rates, facts that infl uence the optimum ratio. Consequently, we 

directly seek the actual optimum with the help of short test runs. For a 

given number of processors, the adjustable parameters are the number 

of reciprocal processors and also the workload distribution between real 

and reciprocal space part of the Ewald sum. At high parallelization, the 

scaling usually benefi ts from shifting work to real space such that the 

fraction of reciprocal processors can be kept between a quarter and a 

half of the total available processors. 
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Example benchmark

Summary
In most cases, performance can be improved notably. For the presented 

benchmark, the performance could be raised by a factor of 1.2 on aver-

age for 16–48 processors. 

As a typical example, we chose the DPPC membrane system from the 

Gromacs benchmark suite. The system contains 1024 DPPC lipids plus 

23,552 SPC water molecules and thus altogether 121,856 particles.

For the benchmark, we used cutoffs of 1.0 nm and a reciprocal grid 

spacing of 0.135 nm yielding a PME grid of 132*140*48 points. For a 

scaling factor of 1.1 (1.2) for cutoffs and grid spacing the resulting PME 

grid is 120*125*42 points (110*117*39 points).

The benchmarks were performed on a cluster of 8 processor Intel 

L5430@2.66 GHz (Harpertown) nodes connected by 4xDDR Infi niband 

(20 Gbit/s).
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Fig. 1: Red bars (left scale) depict the DPPC performance [ns/day] at a 2 fs time step when the number of PME 

processors is estimated by mdrun. The green bars show the gain after tuning. The grey line (right scale) shows 

the wall clock time needed for the tuning.
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Fig. 2: Squares (left scale) show the scaling that is the execution time on a single node divided by n times the 

execution time on n nodes.

Plus signs (right scale) show the number of PME processors. Up to 48 processors the tpr fi le was left untouched, 

whereas from 56 processors on a slight shift (factor 1.1) of work from reciprocal to real space came out to be 

advantageous for the performance. For 88 and 96 processors, the scaling factor 1.2 was applied. Between 48 

and 96 processors the required number of PME processors could not be estimated by mdrun.
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The Gromacs 4.5 tool reads in a simulation tpr fi le and writes several benchmark tpr fi les where a) the number 

of steps is set to the benchmark value – typically 1000 plus 100 equilibration steps – and b) computational load 

is shifted between real and reciprocal part of the Ewald sum. This is achieved by multiplying both the direct-

space cutoff as well as the PME grid spacing by a small factor, typically 1.0, 1.1 and 1.2. The higher the factor, 

the more work is shifted from the PME to the direct-space processors. This is done because the reciprocal space 

calculations are most effi cient on a small number of processors. Subsequently, the newly created tpr fi les are 

benchmarked with variable number of PME processors. The time counters are reset after 100 steps when the 

dynamic load balancing is equilibrated.  

export MPIRUN=”/usr/bin/mpiexec -hostfi le=./hosts”

g_tune_pme -np 128 -s ./protein.tpr -launch
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Outlook
Incorporate the Wang et al. PME error estimate(5) into the g_tune_pme 

tool so that load can be shifted between real and reciprocal space at a 

constant absolute error. 


