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Adaptive anisotropic kernels for nonparametric estimation of absolute configurational entropies
in high-dimensional configuration spaces
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The quasiharmonic approximation is the most widely used estimate for the configurational entropy of
macromolecules from configurational ensembles generated from atomistic simulations. This method, however,
rests on two assumptions that severely limit its applicability, (i) that a principal component analysis yields
sufficiently uncorrelated modes and (ii) that configurational densities can be well approximated by Gaussian
functions. In this paper we introduce a nonparametric density estimation method which rests on adaptive
anisotropic kernels. It is shown that this method provides accurate configurational entropies for up to 45
dimensions thus improving on the quasiharmonic approximation. When embedded in the minimally coupled
subspace framework, large macromolecules of biological interest become accessible, as demonstrated for the

67-residue coldshock protein.
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I. INTRODUCTION

Entropies are key quantities in physics, chemistry, and
biology. While free energy changes govern the direction of
all chemical processes including reaction equilibria, entropy
changes are the underlying driving forces of ligand binding,
protein folding or other phenomena driven by hydrophobic
forces. Atomistic simulations, e.g., molecular dynamics, in
principle provide all the information needed for calculating
both, free energies and entropies.

Generally, one can distinguish three types of approaches
to obtain these quantities from computer simulations. One
type of methods evaluates the partition sum directly to obtain
absolute values. The second type of methods obtains differ-
ences by special purpose perturbation simulation techniques.
Third, scanning procedures, introduced by Meirovitch [1,2],
aim at reconstructing molecular probability distributions in a
step-wise fashion.

For free-energy differences, methods of the perturbation
type are commonly used, e.g., free-energy perturbation or
thermodynamic integration which allow to exploit cancella-
tion of terms in the difference of the partition sums of the
two states. Thus, it suffices to sample those degrees of free-
dom which are affected by the perturbation which are usually
few (e.g., regions around binding sites). If the two states
differ substantially, however, sampling suffers from slow
convergence.

For entropy differences, however, the full Hamiltonian
contributes to the result, such that here complete sampling of
the full phase space is indeed required [3,4]. Thus, perturba-
tion approaches do not share the same fundamental advan-
tage over a direct evaluation of the partition sum to obtain
entropies as they do for free-energy differences.

Direct approaches have additional advantages. First, such
methods are independent from finding suitable perturbation
pathways between the states of interest and/or analytical trac-
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table reference states. Furthermore, to gain a detailed under-
standing of the molecular mechanisms, one would like to
separate various contributions to the entropy (changes), e.g.,
side-chain, backbone or ligands. Using a direct method, all
these analyses can be carried out on the same computational
ensembles.

However, it remains notoriously difficult to directly obtain
accurate entropies even from well-sampled computational
ensembles [3,5-8]. The difficulty arises from the necessary
evaluation of the integral for the configurational part of the
entropy,

S~ - f p(x)In p(x)dx, (1)

in the 3N-dimensional configurational space of the system,
where N is the number of atoms. Since N is usually large,
e.g., on the order of several hundred or thousands for pro-
teins, this integral cannot be evaluated directly.

Thus, for larger molecules one usually has to resort to a
harmonic or quasiharmonic (QH) approximation of the sys-
tem [9,10], which renders the integral Eq. (1) separable. Ac-
cordingly, the (quasi) harmonic entropy S pum=2:"S.(i) is
given as a sum of entropies S.(i) of the individual (quasi)
harmonic modes. Using the partition sum of the quantum-
mechanical oscillator for the entropies S.(i) of individual
modes, this estimate has been shown to provide a rigorous
upper limit of the true entropy [9,10]. However, for macro-
molecules the true configurational entropy is typically con-
siderably smaller due to coupling of the principal compo-
nents and anharmonicity, i.e., multimodality. Although this
problem has already been pointed out quite early [9,10], little
is known about how large the overestimation actually is. In-
deed, model calculations on systems as the ideal gas [7],
Lennard-Jones fluids [7], small linear alkane molecules [11],
or small peptides [12,13], however, reveal drastic differences
between the quasiharmonic entropy estimates and the actual
entropy. For complex macromolecules, the extent of this ef-
fect is unknown.
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By construction, methods based on nonparametric density
estimation include couplings, anharmonicities as well as
multimodalities and should therefore be capable of providing
accurate results. However, in the high-dimensional spaces of
macromolecules the “curse of dimensionality” [14] prevents
density estimation. In order to render density estimation ap-
plicable in the context of macromolecular entropies, none-
theless, we recently suggested [15] a novel hierarchical ap-
proach consisting of three components; first, full correlation
analysis (FCA) to find an orthogonal coordinate transforma-
tion that optimally decouples the configurational space into
lower dimensional subspaces that have negligible coupling
between them. The configurational entropy of the overall
system is thus well approximated by the sum of the contri-
butions from these subspaces. The contributions of each of
these subspaces are obtained by, second, suitable density es-
timation with non-neglegible couplings, third, taken into ac-
count via a mutual information expansion (MIE) [16,17],
which bears close resemblance to the inclusion-exclusion
principle/sieve formula known from set theory [18].

For biological macromolecules, it must be expected that
this hierarchical approach requires accurate density estimates
for increasingly high-dimensional spaces. Already for the
relatively small protein calmodulin [15], the minimally
coupled subspaces derived from FCA are up to 100 dimen-
sional and, therefore, roughly 50-dimensional density esti-
mates are required to keep the number of terms for MIE
sufficiently small. However, current density estimators have
been shown to yield accurate results for only up to 10 inter-
nal degrees of freedom, whereas failure was reported for a
molecular system with 23 internal degrees of freedom [19].
In this study, we therefore develop a density estimator which
can be used in our hierarchical approach. Full correlation
analysis as applied here has been reported elsewhere [20].
The full approach has been benchmarked on a variety of test
systems [15], and has been applied to calmodulin [15] and
insulin [21].

To derive our density estimator, note that the intricate mix
of stiff and soft degrees of freedom [22] typically found in
macromolecules such as proteins yields a configurational
density that is threaded, i.e., the density is extended in spatial
directions that correspond to “soft” degrees of freedom,
whereas it is confined to thin regions of space in the “stiff”
directions. Accordingly, the established methods which aver-
age over isotropic regions in space will considerably blur
such density threads locally perpendicular to the thread.

As an alternative, estimates in dihedral space have been
considered [9,23] to ease the problem with stiff and soft
degrees of freedom. These however suffer from a number of
complications such as very large gradients in the energy
landscape, complex topology of the dihedral variables or
metric tensor effects due to necessarily approximate Jacobi-
ans [12]. Due to these severe drawbacks of dihedral coordi-
nates we abandoned this approach in favor of Cartesian
space.

We show here that nonparametric entropy estimates in
Cartesian space are considerably improved by using aniso-
tropic kernels which are locally adapted to the threads in the
configurational density. The increase of entropy due to regu-
larization employed during the estimation process is cor-
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rected for by an empirical term parameterized by the average
volume of the used regularization kernel. Finally, generaliz-
ing the quasiharmonic Schlitter formula [10], we account for
the quantum mechanical nature of the stiffest degrees of free-
dom. To this aim, we employ here a size limit to each prin-
cipal axis of the elliptic averaging kernel to prohibit negative
entropy contributions from the stiffest degrees of freedom.

II. THEORY
A. Thermodynamic entropy

We first sketch the conceptual framework to clarify nota-
tion. The molecular dynamics of an isolated macromolecule
with N atoms is described by the Hamiltonian

3N

1
H(x.p) =53 pl+ V),
i=1

where x and p, are the mass-weighted 3N-dimensional posi-
tion and momentum vectors, respectively. Their Cartesian
components x; and p; are related to the non-mass-weighted
components X; and p; by x,-=mi1/25c“,- and p,-=mi_1/2[7,», respec-
tively, where m; denotes the mass of the respective atom. The
entropy of the system is given by

(H)
S=-L+kyInZ,
T

where the angular brackets (.) denote an ensemble average,
T the temperature, and Z is the classical partition function

1
7 =—

= P e_ﬁHdpdx,

with & being Planck’s constant, and S=1/kpT.
For conservative systems, Z separates into
dimensionless factors, =7, with

1 2 3N/2
Zp= KTI\,(E) and

two-

Here, we have defined a convenient characteristic length €
=1 nm u'? and, similarly, k=h/€. Accordingly, the entropy
of the system falls into a kinetic and a configurational part,

S=5,+5,,

with

3 2
S,= ENkB 1 +lnzg and

SC:@MB InZ,. )

Using the configurational probability density function, p(x)
=exp[—-BV(x)]/Z,, we express the configurational entropy as
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k
S, =- eTl;’ f p(x)In p(x)dx, (3)
which closely resembles Shannon’s information entropy.

B. Quasiharmonic approximation

To estimate S, from a given (finite) ensemble of structures
{x} obtained, e.g., from a molecular dynamics or Monte
Carlo simulation, the quasiharmonic approximation is com-
monly used with

plx) = ) = exp| — 5 (x~ () TAGx - () |,

with A=C~!, where C denotes the covariance matrix

C=((x~x)(x~x)").
In this approximation the configurational density factorizes,
3N

PQH(Y) = H piy:), (4)
i=1

with marginal densities p,(y;) <exp(—By?/2\,;), where y
=T(x—(x)) are the principal coordinates derived from diago-
nalization of C, i.e., T"CT=diag(\,,...,\;y). Using the or-
thonormality of T, and combining Egs. (2) and (3), the quasi-
harmonic entropy estimate,

Sou= kBE ln[ Bﬁg] (5)

i=1

is obtained.

We note that this estimate holds only for the molecular
frame, with rigid body motions properly removed. Equation
(5) has been elegantly generalized [10] to account for the
quantum mechanical nature of the vibration of stiff degrees
of freedom,

1 3N
qm harm_z BE 1Il<l + 2 ,8ﬁ2 ) (6)

This approximation, which will be used below, in particular
avoids divergencies for \;—0, which is an artifact of the
classical treatment, Eq. (5).

C. Locally adapted nonparametric entropy estimation

We will use this framework to develop a adaptive aniso-
tropic nonparametric density estimation based on the
k-nearest-neighbor (NN) density estimate of n sample points
{x} which we will apply to d=3N dimensions,

A kg . na 2rflk d
Si=" 2 (s 1)ed TN @)
Here, r;; is the Euklidean distance between the sample point
x; and its k nearest neighbors, and I' denotes the gamma
function.

The k-NN estimator rests on the straightforward assump-
tion of the local density at sample point x;
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FIG. 1.
Gaussian kernels. Other kernels were also tested. (a) The configu-
rational space density p(x) vs the local kernel approximation at

(Color) Principle of kernel density estimation with

sample points x;, indicated as black dots. (b) The configurational
space density is approximated as sum, p(x), of locally constant
densities of Voronoi cells, p(x;), around x;.

k€4
p(x;) = VL] (8)

where V,(r;;) denotes the volume of the d-dimensional
sphere with radius ri(k) which is chosen such that the
d-dimensional sphere centered at X; contains k sample points.

1. Soft degrees of freedom

A generalisation of Eq. (7) to arbitrary kernel functions K
for given k and for each point x; is obtained by requiring o
to be chosen such that

k= ZK( ,k) (9)

This yields a potentially improved local (smoothed) density
estimate at x;,

k4
no’;j,kzd ’

where Z,={~[K(x—x;)dx. The probability density distribu-
tion p(x) is then approximated as a sum of these local den-
sities [Fig. 1(b)],

p(x;) = pp(x;) = (10)

p(x) = H(x) = 2 B(x = x)py(x;),
i=1

where the Voronoi function 6 is unity for all x that are closer
to x; than to any other x;, i#j, and zero otherwise. This
approximation dissects the entropy integral, Eq. (3),

&z—@JmmmmmMz—@Emﬁmx
i=1

where the volume of the Voronoi cells was assumed to be
given by the inverse local density.

Accordingly, the entropy contribution from the d consid-
ered degrees of freedom is estimated by

011913-3



HENSEN, GRUBMULLER, AND LANGE

FIG. 2. (Color) Isotropic vs adaptive anisotropic kernels. For
threaded configurational space densities (sampled by the black
dots), isotropic kernels (a) fail to provide accurate density approxi-
mations. In contrast, adaptive anisotropic kernels (b) improve the
approximation particular perpendicular to the threads.

nZ,0 d
— ik ”‘+§Vsp, (11)

kBE

nio ktd

which generalizes Eq. (7) and, thus, may be denoted in the
following as g-NN. The k-NN formula is recovered by using
the rectangular and isotropic kernel function

K (x,‘—xi)_ 1 x-xj|=1
FNN O ~ |0 otherwise

and setting o;;=r;;, since for this kernel Z,=V,(1).

The Gaussian function framework underlying the quasi-
harmonic approach sketched above suggests to use instead a
Gaussian kernel [24]

K(x) = exp(-[x?])). (12)

However, as illustrated in Fig. 2, for such isotropic kernels,
the approximation Eq. (11) tends to fail for the thin “threads”
typically encountered for the configurational density of bio-
logical macromolecules, i.e., where the width of the “thread”
is smaller than the average distance between adjacent sample
points (A). To address this issue, we propose to locally adapt
the kernel function to the stiff degrees of freedom using for
each x; an anisotropic Gaussian kernel (B),

1
Kloc,gauss(x) =exp| — E(X - Xi)TAloc(X -x) | (13)

with

Ap=Cloc= E(x x)(x - x;)7,

given by the k-local covariance matrix C and the sum runs
over the k nearest neighbors of x;. Elliptic hard kernels are
obtained analogously

1 x-x)"Ax-x)| =1
Kloc,ell(x) = 0 otherwise . (14)
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2. Stiff degrees of freedom—quantum correction

The adaptive anisotropic Gaussian kernels naturally de-
fine stiff degrees of freedom in a canonical way, and, for
those, it is possible to obtain physically appropriate quantum
corrections. The classical treatment of those stiff degrees of
freedom yields unphysical entropies by allowing unlimited
sharpness of the “threads.” In contrast, the Schlitter formula,
Eq. (6), effectively requires stiff degrees of freedom to as-
sume density distributions of a minimal width oy, =Bh%/ e
Schlitter’s treatment can be generalized to arbltrary densities
by computing the entropy from

po’(x) = f P(X)K(y - X/O-qm)dy9 (1 5)

rather than from the true density p(x), where K(y) denotes a
d variate smoothing kernel of unit width. Applying this con-
volution to the quasiharmonic density Eq. (4) with a Gauss-
ian smoothing kernel K (Eq. (12)) of width oy, yields a
smeared out multivariate Gaussian density whose widths are
given by \;+ 0. Accordingly, one retrieves Schlitter’s for-
mula, Eq. (6).

In contrast to Schlitter’s original treatment, our generali-
sation also holds for arbitrary densities. As an illustration
consider, e.g., a bimodal density of two nonoverlapping
Gaussian functions,

1 1 (x = x)* (x +x0)°
=5 om0 2 [P e )

with x,>e. Convolution according to Eq. (15) yields the
entropy S(g)=kg In 2 for e — 0, demonstrating that this gen-
eralisation yields meaningful results beyond the quasihar-
monic approximation.

The smoothing inherent to the locally adapted kernel den-
sity estimation, therefore, simultaneously provides an ap-
proximate and canonical treatment of the stiff degrees of

freedom. Accordingly, we restrict the width o;; of the g-NN
smoothing kernel i in the local direction j to m DY O qm
=max(o, 00, m) where the minimal width is set to
27h*B
Oqm = ez’

such that if o; =0y
n
A kB n
Sg-NN = _2 ln_.
nio, k

Thus, S‘g_NNHO for k— n, in the special case that the density
is concentrated within a single region below the quantum

resolution limit and S'g_NN:kB log M if the density is distrib-
uted equally between M nonoverlapping areas in phase space
that are all narrower than the quantum resolution limit.

3. Empirical smoothing correction

A correction for the smoothing of the configurational den-
sity implied by the convolution with the g-NN smoothing
kernel functions within our nearest-neighbor approximation
was derived from Eq. (5). Inverting Eq. (5) yields an effec-
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tive width A, of a hypothetical isotropic d-dimensional
Gaussian density function that would correspond to a given
entropy S,

ool )
)\eff,qh - 62 exXp dkBS ’
A deviation of the entropy estimated by the g-NN method
Sy.nn from the true entropy S can thus be expressed as AN
=Nefigh— Nefr,g-nn- Convolution of a Gaussian density with a
kernel function of width o results in a density of width
Aegrgnt 0. We therefore assume a functional relationship of
AN with the average kernel width &. To test this hypothesis
in high-dimensional space, we generated multivariate Gauss-
ian densities with varying widths. The corresponding entropy
was computed analytically and compared to S, xn. We found
that for the used set of test functions a good approximation to
AN is given by the linear relationship AN=m max(0,d
—0gm)+b, where

m=-1.015 X 1073d +0.079

b=-54x10"d+85x 107,
Thus, a corrected entropy is given by

dkg | €
Scorr = 71n|: %(Aeff,g—NN + A)\):| .

Because of all functions with given variance, the Gauss func-

tion has the largest entropy, S, is guaranteed to provide an

upper bound for the true entropy.

1. METHODS
A. Simulation setup

The test systems that were compared with a thermody-
namic integration reference (butane to decane and dialanine,
see below) were set up as follows. Force field parameteriza-
tions were obtained from the Dundee Prodrug server [25]
based on the GROMOS united-atom force field [26]. Sto-
chastic dynamics simulations were performed using the mo-
lecular simulations package GROMACS [27] in vacuo at
400 K (alkanes and dialanine) and respectively 300 K (diala-
nine only) with friction constant 7y set to 10, dielectric con-
stant e=1, integration step size of 0.0005 ps and no bond
constraints. Positional restraints were applied to three adja-
cent terminal heavy atoms.

The coldshock protein (protein database entry 1CSP) was
simulated using the OPLS all atom force field [23] in explicit
TIP4P solvent [28] and periodic boundary conditions. NpT
ensembles were simulated, with the protein and solvent
coupled separately to a 300 K heat bath (7=0.1 ps) [29]. The
systems were isotropically coupled to a pressure bath at 1 bar
(7=1.0 ps) [29]. Application of the Lincs [30] and Settle
[31] algorithms allowed for an integration time step of 2 fs.
Short-range electrostatics and Lennard-Jones interactions
were calculated within a cutoff of 1.0 nm, and the neighbor
list was updated every 10 steps. The particle mesh Ewald
(PME) method was used for the long-range electrostatic in-
teractions [32], with a grid spacing of 0.12 nm.
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Oﬁ%@b Particles with interactions
+ AA

U dy Yy

o0

A

Particles with interactions
in harmonic restraints

N

FIG. 3. Thermodynamic integration scheme used for obtaining
reference entropies. Grey circles depict interacting particles, white
circles noninteracting particles, zigzags represent chemical bonds,
and local harmonic potentials are sketched as parabolas. Partial

charges were removed in a separate step not illustrated here. A
similar scheme has been used by Tyka et al. [33].

Particles without interactions
in harmonic restraints: A,

OC 4

B. Reference entropies by Thermodynamic Integration

Absolute free energies for the test systems butane to dec-
ane and dialanin were calculated by thermodynamic integra-
tion (TI). No reference values were obtained for the CSP,
because the system is too large for the TI to converge. Simu-
lation parameters cf. above. The TI scheme we have chosen
to obtain the Helmholtz free energy A of the fully interacting
particles consists of two phases (also shown in Fig. 3). Har-
monic position restraints with a force constant k
=25000 kJ/(mol nm?) were slowly switched on for each
atom in the first phase, and in the second phase all force field
components were gradually switched off. The system then
consisted of noninteracting dummy particles with mass m
oscillating in their respective harmonic position restraint po-
tentials, i.e.,

N
1
2 °
J=1

The free energy of this harmonic system can be obtained
analytically,

3 I
e 5t
0="F 2].221 \r2g%,

where kj:l;j/ m; denotes the mass-weighted force constant.
Hence, the thermodynamic integration yields the absolute
free energy

A=A0—AA2—AA1

and the entropy by S=(A—(V))/T, where (V) denotes the
ensemble average of the potential energy.
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(@) (b)

0.04

p(X,y)

FIG. 4. (a) Synthetic test two-dimensional density whose en-
tropy, 97.8 J K~! mol™!, was computed numerically by integrating
on a grid. (b) 5000 points drawn according to this density function
were used to estimate an entropy of 97.2 J K~ mol™.

For the TI between the systems given by V| (start) and V
(end), 18 intermediate steps VA=AV +(1-N)V}, i
=1,...,18 were used, and the intermediate values of \;=0,
le-6, 5e-6, le-5, S5e-4, le-4, le-3, le-2, 2e-2, 3e-2, 5e-2,
7e-2, 9e-2, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 were
distributed unevenly to obtain approximately balanced AA;
values. For each value of A a trajectory of 12.5 ns (alkanes)
or 100 ns (dialanine), respectively, was generated.

C. Efficient implementation

To compute the entropy via g-NN (Eq. (11)) as described
is computationally more expensive than for k-NN (Eq. (7)),
because to solve Eq. (9) until convergence requires a large
number of iterations. Note, however, that the density esti-
mate Eq. (10) is for all practical purposes invariant for small
changes of k, because both k and o appear in Eq. (10) and
scale similarly. Accordingly, convergence of k to 10% was
considered sufficient to achieve accurate results, thus drasti-
cally reducing computational cost to a level similar to k-NN.

The kd-tree implementation of the nearest-neighbor li-
brary ANN [34] has been used for fast look-up of the k
neighboring sample points.

IV. RESULTS AND DISCUSSION
A. Example: Simple density distributions

In a first step, our nonparametric entropy estimation was
tested with synthetic probability density distributions whose
entropy is accessible either analytically (e.g., Gaussians) or
through grid-based numerical approximation (e.g., densities
in two- and three-dimensional space). Figure 4 shows one of
several test densities which were designed to exhibit typical
features, e.g., a curved “thread,” also seen in the configura-
tional densities of macromolecules. All reference entropies
were reproduced by the estimator to within 1 J K=! mol~! or
better (results not shown). A similar test density was studied
in three dimensions, as well as 42-dimensional checker-
boardlike densities.

In Sec. II C 3, we derived an empirical relationship of the
entropy overestimation due to the smoothing of the soft de-
grees and the average width of the estimation kernel. Here
we show that this can exploited to correct for excess smooth-
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1:ﬁ—¢b———-—-—- ]
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dimension
FIG. 5. Effect of the empirical smoothing correction described
in the text. (a) Systematic overestimation seen as deviations from
the diagonal. Black crosses: uncorrected values; gray circles: cor-
rected values. (b) The same data as a function of dimensionality.

ing in more challenging high-dimensional cases, where this
effect is aggravated due to increased surface effects. We con-
sidered Gaussian densities ranging from 12 to 42 dimen-
sions. Figure 5(a) shows analytically computed reference en-
tropies S,,, versus values obtained from our density
estimator, both with (gray circles) and without (black
crosses) empirical smoothing correction. Figure 5(b) shows
the same data as a function of dimensionality. As can be
seen, the correction improves the obtained entropy values
considerably and provides accurate values independent of di-
mensionality. In contrast, the uncorrected values systemati-
cally overestimate the entropy with increasing dimension.
Note, that this correction is different from the QM correction
described in Sec. II C 2. The empirical smoothing correction
accounts for an excess of smoothing of the soft degrees of
freedom, whereas the QM correction enforces a minimum
of smoothing for the otherwise unphysical sharp stiff degrees
of freedom.

B. Example: Alkanes

We next applied our estimation method to a number of
more realistic molecular test systems. Here, the accuracy of
the estimate may be affected by two sampling effects; first,
insufficient simulation sampling due to unvisited configura-
tional space regions, second, locally too sparse sampling,
which affects the accuracy of the NN density estimates.
These two sampling effects are largely independent; whereas
the sparse sampling problem, also called the ‘“curse of di-
mensionality” [14], aggravates with increasing dimensional-
ity and is largely independent of the particular system stud-
ied, the simulation sampling problem will depend on the size
of the accessible configurational space as well as the slowest
relaxation times of that system. Consider, for example, a
single harmonic well. Whereas there is no simulation sam-
pling problem for high-dimensional wells, NN-density esti-
mations will inevitably suffer from sparse sampling for high-
dimensional wells—a problem which, due to the
regularization assumptions, is much less pronounced for the
quasiharmonic approximation.

As test systems we chose (i) n-alkanes ranging from bu-
tane to decane, as a model of protein sidechain behavior, and
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-e-pentane
-&-hexane
-7-heptane
—-octane

-e-nonane | ,,
—~-decane

800F 13

700t

//

600 10° 10° 100w
no. of sample points

300y

200/

no. of atoms

FIG. 6. Entropies for the n-alcanes from butane (N=4) to dec-
ane (N=10). Sy, direct adaptive kernel density estimation without
any subspace clustering; S,.: such as Sy, but without empirical
smoothing correction (Sec. II C 3); S;q,: direct isotropic kernel den-
sity estimation without any subspace clustering; Syicsa: sum of den-
sity estimates after subspace clustering; clust: size of largest cluster;
Sou: entropy estimate according to quasiharmonic approximation.
The errors of respectively Sy, Spes Siso» and Sycsa Were below
0.23 Jmol™' K~! in all cases and not shown in the figure, since
they are smaller than the symbols. The inset shows the same data as
the relative derivation to the reference TI value, indicating conver-
gence behavior.

(ii) dialanine, as a minimal model for a protein backbone.
The flexible wormlike shape of alkanes is likely to aggravate
the two sampling problems discussed above sufficiently to
explore the limits of our density estimator.

To obtain reference entropy values for these systems, a
thermodynamic integration scheme was used which gradu-
ally perturbed the systems toward an analytically tractable
state consisting of noninteracting particles in harmonic wells,
as described in methods, Sec. III B. In each case, conver-
gence was reached (data not shown).

The seven n-alkanes ranging from butane to decane were
described by a united-atom force field, such that the systems
comprised four to ten atoms, respectively. Figure 6 shows the
entropies obtained with density estimation for these systems
[35] as well as the reference obtained by thermodynamic
integration and the QH entropy for comparison. Each of the
listed density estimates has been obtained by averaging five
independent trajectories. As can be seen, the QH entropy
(dashed line) overestimates the configurational entropy by a
wide margin for all systems (15-50%). The adaptive kernel
density estimation, in contrast, yielded considerably im-
proved results. For butane to octane, a deviation below 3%
deviation from reference was achieved. For the largest al-
kanes considered, nonane and decane, a slightly reduced ac-
curacy of 5 and 10%, respectively, was obtained.

It is instructive to consider the density estimation results
for the conventional isotropic kernels, S, also listed in the
supplementary material [35]. Here, apparently due to the
curse of dimensionality [14], drastic overestimates are seen
for all alkanes. For butane (12 degrees of freedom) the en-
tropy is overestimated by 9%, and for decane performs even
worse than the QH approximation.
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FIG. 7. Calculated dialanine entropies vs number of used
sample points. (a) Simulation at 400 K and, respectively, (b) at 300
K The entropy labels shown are those defined in the caption of Fig.
6.

This result shows that it is the adaptive anisotropic ker-
nels (ellipsoids rather than spheres, whose principal axes are
determined from the local density by a principal component
analysis, cf. methods), which provide the observed accuracy.
Anisotropic kernels according to Eq. (14) rather than accord-
ing to Eq. (13) turned out to yield more accurate results (data
for the latter not shown).

As can also be seen in the figure, the empirical smoothing
correction, which accounts for the inevitable blurring during
the averaging process of the density estimation (Sec. I C 3),
markedly improved the density estimates.

The inset of Fig. 6 highlights the convergence behavior of
the adaptive anisotropic kernel estimates for alkanes with
increasing simulation length. Clear convergence is seen for
all alkanes up to octane, i.e., up to 24-dimensional densities.
Whereas for these alkanes, 500.000 sample points sufficed
for an accurate density estimate, 5.000.000 were required for
nonane, and even more for decane, where sufficient sampling
was not reached. In all cases, four sample points per pico-
second simulation time were recorded. Although it is unclear
at this point whether this lack of convergence is due to in-
sufficient sampling of the simulation or the curse of dimen-
sionality due to sparse sampling described above, the high
flexibility of decane suggests the former. In the next section,
we will address this question by considering a less flexible,
but larger system.

C. Example: Dialanine

Dialanine, as a minimal model of a protein backbone
comprising 45 atoms, served as our largest test system. The
molecule was simulated with implicit solvent at temperatures
300 and 400 K using a united-atom force field. Figure 7
shows entropies Sg; and Sqy obtained for simulation lengths
ranging from 100 ps to 500 ns. The TI reference entropy is
shown as a horizontal line. Similarly as seen above for the
alkanes, the QH entropy Sqy overestimates the TI reference.
Interestingly, and in contrast to the other estimates, the QH-
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estimate error increases with the length of the simulation. As
a consequence, the longest, 500 ns, trajectory yields the most
inaccurate result with an error of 250%. We attribute this
peculiar behavior to a decreasing quality of the harmonic
approximation with increasing complexity of the sampled
configurational space. In contrast, the entropy obtained with
density estimation Sy, converges toward the correct value
with increasing simulation length. For the 500 ns simulation,
the TI reference is reached to within 4.0 and 18% for 400
and 300 K, respectively.

Again, density estimates from isotropic kernels yielded
even lower accuracy than the QH estimate in all cases. Fur-
ther, compared to the alkanes, the smoothing correction im-
proved density estimates to an even larger extent; the uncor-
rected estimates overestimated the reference by 16 and 33%
for 400 and 300 K, respectively.

This result corroborates the previous observation that the
achieved accuracy was mainly due to the adaptive aniso-
tropic kernels. Moreover, even though the dimension of the
configurational space of dialanine is almost twice as large as
that of nonane, the obtained accuracy is similar despite the
fact that ten times less sample points were used for dialanine.
Apparently, the curse of dimensionality is not yet severe
here, thus underscoring the robustness of the adaptive aniso-
tropic kernels even for high dimensionality. A second con-
clusion is that, as expected, lack of simulation sampling lim-
ited the accuracy of the decan entropy estimates. This
interpretation is further supported by the fact that more ac-
curate estimates are obtained for the high-temperature simu-
lations, which are likely to provide enhanced simulation
sampling, but sparser local sampling. In this sense, alkanes
proved to be particular hard test systems.

D. Application: Coldshock protein

The previous sections established that adaptive aniso-
tropic kernel density estimation is very well feasible in con-
figurational space of up to 45 dimensions. Although this is
still far from the high dimensionality typically found for bio-
logical macromolecules, it holds the promise to provide the
missing building block for a reliable application of the mini-
mally coupled subspace framework (MCSA) derived in de-
tail in Ref. [15]. Briefly, full correlation analysis [20] (FCA)
is used to obtain nearly independent orthogonal configura-
tional subspaces, which allow to approximately factorize the
configurational space density. Subsequently, adaptive aniso-
tropic kernels are used to estimate the entropy contributions
for each of these subspaces.

To test the feasibility and accuracy of this approach, we
apply this framework to the coldshock protein, a 67-residue
soluble protein (protein database entry 1CSP) which was
simulated in explicit solvent, as described in methods. Of
particular interest was the question of how many (soft) de-
grees of freedom should be subjected to FCA and to the
adaptive anisotropic kernel density estimation, leaving the
remaining (stiff) degrees of freedom to the Schlitter QH ap-
proximation. For simplicity and computational efficiency,
only backbone contributions to the configurational entropy
were considered. FCA was carried out on the first
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FIG. 8. Estimated entropies for the coldshock protein (1CSP,
backbone only). The total estimate, S, as a function of MCSA
subspace size (100,...,500 modes), was calculated as sum of
Smcsa, the estimate obtained by application of adaptive anisotropic
kernels to minimally coupled subspaces obtained by FCA, and the
QH estimate for the remaining modes, as described in the text;
Spca: cumulative QH estimate; Sy on: global QH reference.

100,200, ...,500 modes of the configurational ensemble,
and nearly noncorrelated subspaces were defined as de-
scribed in Ref. [15]. Our adaptive anisotropic kernel estimate
was subsequently applied to each of the resulting minimally
coupled subspaces yielding an improved entropy estimate
Smcsa- The remaining modes were considered via the Schlit-
ter QH approximation, Eq. (6). The sum of these two yields
the desired entropy estimate S, also shown in Fig. 8. Due to
the large size of this protein no converged TI entropy refer-
ence could be obtained; hence, we here resort to comparison
with the QH estimate of the total configurational space den-
Sity Sior,QH-

Figure 8 shows that the combination of FCA and adaptive
anisotropic kernels improves on the QH estimate in all cases.
In particular, a marked improvement on the QH estimate is
seen for the adaptive anisotropic kernel estimate, which
shows that the neglect of nonlinear and higher-order correla-
tions, and of anharmonicities by the established QH method
implies an overestimation of the entropy by at least 14%
(QH: 3081 J K™ ' mol™! vs Sgca: 2710 J K~! mol™"). It turns
out that for the coldshock protein 400 modes need to be
subjected to the minimally coupled subspace approach for
converged results. Obviously only the 200 stiffest modest are
already sufficiently decoupled by PCA and can be well ap-
proximated by a quasiharmonic density.

This empirical distinction between stiff and soft modes is
nicely reflected in the eigenvalue spectrum shown in the in-
set of Fig. 8. Whereas eigenvalues of modes 1 to 400 de-
crease smoothly, an abrupt drop is seen at mode 400. Similar
observations for calmodulin [15] suggest that such abrupt
drop can be used to identify the stiff modes that can be
subjected to the QH approximation. Our results also suggest
that, generally, a large fraction of degrees of freedom needs
to be subjected to MCSA to obtain reliable estimates.
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V. CONCLUSIONS

We have introduced a kernel-based density estimation
method and showed that it provides accurate results in even
the high-dimensional and quite complex configurational
space density generated by the dynamics of biological mac-
romolecules. Whereas established k-nearest-neighbor estima-
tors have been reported to fail to converge for 23-
dimensional configurational space with 15 million sample
points, the adaptive anisotropic kernels developed here pro-
vide robust results in up to 45 dimensions with only 500.000
sample points. We attribute this improvement to the occur-
rence of typically sparsely sampled configurational density
“threads” ubiquitous in protein dynamics, to which, appar-
ently, our locally multivariate approach provides enhanced
approximation.

Used within the framework of the minimally coupled sub-
space approach [15], this density estimator serves to over-
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come the three limitations inherent in the conventional quasi-
harmonic approximation, i.e., neglect of nonlinear and
higher-order correlations, of anharmonicity, and of multimo-
dality. So far we have applied the method to the proteins
insulin (51 residues) and calmodulin (146 residues). In both
cases the method yielded significantly lower entropy than
QH and was able to reconcile experimental data previously
found to be inconsistent with the QH entropy. Although en-
couraging, further studies will have to corroborate these re-
sults, and investigate possible limitations in more detail.
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