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ABSTRACT
We investigate memory effects in barrier-crossing in the overdamped setting. We focus on the scenario where the hidden degrees of freedom
relax on exactly the same time scale as the observable. As a prototypical model, we analyze tagged-particle diffusion in a single file confined
to a bi-stable potential. We identify the signatures of memory and explain their origin. The emerging memory is a result of the projection
of collective many-body eigenmodes onto the motion of a tagged-particle. We are interested in the “confining” (all background particles
in front of the tagged-particle) and “pushing” (all background particles behind the tagged-particle) scenarios for which we find non-trivial
and qualitatively different relaxation behaviors. Notably and somewhat unexpectedly, at a fixed particle number, we find that the higher the
barrier, the stronger the memory effects are. The fact that the external potential alters the memory is important more generally and should
be taken into account in applications of generalized Langevin equations. Our results can readily be tested experimentally and may be relevant
for understanding transport in biological ion-channels.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0025785., s

I. INTRODUCTION

Non-linear stochastic flows are at the heart of thermally driven
processes in systems whose potential energy surfaces are character-
ized by multiple local energy minima. Pioneered by the seminal work
of Kramers,1 the concept of thermally activated barrier-crossing has
ever since been applied to diverse phenomena, including chemical
reactions,2–4 tunnel diodes,5 laser-pumping,6 magnetic resonance,7

conformational dynamics and folding of proteins8–16 and nucleic
acids,17,18 and receptor–ligand binding19 to name but a few.

From a theoretical point of view, the most detailed and precise
results were obtained in the context of relaxation phenomena20–26

and first passage time statistics27–34 in Markovian (i.e., memory-
less) systems. However, physical observables typically correspond
to lower-dimensional projections, and the observed dynamics is
Markovian only under quite restrictive conditions on the nature of
the projection.35 Quoting van Kampen: “Non-Markov is the rule,
Markov is the exception.”36

Over the years, the non-Markovian barrier-crossing has there-
fore received special attention. Most approaches considered a gen-
eralized Langevin equation in the underdamped regime with diverse
phenomenological memory kernels for the velocity in the high37–39

and low40,41 viscosity limits. In the case of diffusion in double-well
potentials, unified solutions have been obtained.42 Seminal results
on non-Markovian effects in the crossing of high energy barri-
ers have been obtained by Mel’nikov and Meshkov43 and were
later extended to low barriers by Kalmykov, Coffey, and Titov.44

Important results on the non-Markovian barrier-crossing have been
obtained in the context of condensed-phase dynamics.45–47 More
recent studies of memory effects in bi-stable potentials have been
carried out in the context of conformational dynamics of macro-
molecules16,48–50 and the role of hydrodynamic memory in sur-
mounting energy barriers,51 while recent applications involve the
interpretation of experiments on the folding of a DNA hairpin.52

Quite detailed analytical results have also been obtained for
overdamped non-Markovian stochastic flows in bi-stable potentials,
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in particular for exponentially correlated noise.53–57 Characteristic
of these studies is that the memory is introduced phenomenologi-
cally and/or the systems typically possess slow and fast degrees of
freedom. Thereby, integrating out of fast degrees of freedom leads
to memory, and timescales similar to, or longer than, the correlation
time are of interest.

Here, we are interested in the scenario where the background
degrees of freedom (i.e., those that become integrated out) relax on
exactly the same time scale as the observable. In particular, we are
interested in the relaxation dynamics of a tagged-particle in a sin-
gle file of Brownian particles confined to a bi-stable potential and
investigate the role of the height of the potential barrier. Project-
ing out particles’ positions introduces memory and strongly breaks
Markovianity.35 The more particles’ coordinates become integrated
out, the stronger Markovianity is broken.35 A distinguishing char-
acteristic of our approach with respect to the existing literature is,
therefore, that we do not introduce memory phenomenologically
via a generalized Langevin equation. Instead, the memory arises
explicitly as a result of projecting out degrees of freedom in an
exactly solvable Markovian many-body system. This is important
because any external potential, in general, also affects the mem-
ory in the tagged-particle’s dynamics.35,58,59 One, therefore, may not
employ ad hoc memory kernels that are independent of the exter-
nal potential, except when the potential does not act as background
degrees of freedom and the interaction between the background
degrees of freedom and the tagged-particle is harmonic or negligibly
weak.

Single-file models are generically used to describe strongly cor-
related, effectively one-dimensional, systems and processes, e.g.,
biological channels,60 transport in zeolites,61 crowding effects in
gene regulation,62,63 superionic conductors,64 and strongly corre-
lated one-dimensional soft matter systems in general.65–68 Over the
past few years, diverse theoretical studies yielded deep insight about
the anomalous tagged-particle diffusion69–77 and the emergence and
meaning of memory.35,78,79 Single-file diffusion in potential land-
scapes has been studied by computer simulations.80

It is well known that a tagged-particle’s diffusion in any homo-
geneous overdamped system of identically interacting particles with
an excluded mutual passage is asymptotically subdiffusive, i.e., the
tagged-particle’s mean squared displacement asymptotically scales
as ⟨x2⟩ ∼ t1/2 (see, e.g., Ref. 81). However, the manner in which
crowding/steric obstruction and particle correlations affect memory
in barrier-crossing, and in particular in the relaxation toward equi-
librium and how such memory can be inferred and quantified from
measurable physical observables, has so far remained elusive. Our
results are relevant in the context of search processes of proteins
on DNA in the presence of macromolecular crowding involved in
transcription regulation and on a conceptual level for transport in
ion-channels. More generally, the methodological framework pre-
sented here does not require an analytical solution of the problem to
be known and can thus also be applied in the analysis of experiments
or computer simulations.

In this work, we provide in Sec. II an analytical solution to the
problem using the coordinate Bethe ansatz. In Sec. III, we analyze
the equilibrium correlation functions and underlying linear mem-
ory kernel as a function of the barrier height and number of particles
in the single file. Section IV addresses the relaxation to equilibrium
from a fixed, non-equilibrium initial condition of the tagged-particle

in the “confining” and “pushing” scenario, respectively. We con-
clude with a brief discussion including potential applications and
extensions of our results.

II. THEORY
We consider a single file of N point-particles confined to a box

of length of L = 2π. In the center of the box, there is a square-
top energy barrier of width π and height Ub [see Fig. 1(a)]. More
precisely, each particle experiences the potential82,83

U(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, π > ∣x∣ > π/2
Ub, ∣x∣ ≤ π/2
∞, otherwise.

(1)

The particles move according to overdamped Brownian dynamics
but are not allowed to cross. For simplicity and without loss of
generality, we set D = 1, which is equivalent to expressing time in
units of 4π2/D, and express U in units of thermal energy kBT, i.e.,
U →U/kBT. The probability density of the set of positions {xi} = x of
the N particles evolves according to the many-body Fokker–Planck
equation,

(∂t −
N

∑
i=1
[∂2

xi + ∂xi{∂xi U(xi)}])G(x, t∣x0) = 0, (2)

with the initial condition G(x, 0∣x0) = ∏N
i=1 δ(xi − x0i), where the

operator in curly brackets { } acts only within the bracket. Equa-
tion (2) is equipped with the set of external and internal boundary
conditions,

∂x1 G(x, t∣x0)∣x1=−π = ∂xN G(x, t∣x0)∣xN=π = 0,
(∂xi+1 − ∂xi)G(x, t∣x0)∣xi+1=xi = 0,

(3)

and is solved exactly using the coordinate Bethe ansatz (for tech-
nical details, refer to Refs. 35, 79, and 84). In a nutshell, the Bethe
ansatz solution exploits the intuitive fact that a trajectory of N iden-
tical non-crossing Brownian particles is identical to that of an ideal
Brownian gas if we re-label the particle indices such that that they
are ordered at all times. As a result, one can construct the probability
density of the set of particles’ positions x by a suitable permutation of
the products of probability densities of individual, non-interacting
particles. In turn, an eigenfunction expansion of the many-body
Fokker–Planck operator can be obtained by permuting products of
single-particle eigenspectra, which is what we exploit in the present
article. The resulting Bethe many-body Green’s function reads

G(x, t∣x0) =∑
k
ΨR

k(x)ΨL
k(x0)e−Λkτ , (4)

where ΨL
k(x) and ΨR

k(x) are the so-called left and right Bethe
eigenfunctions, respectively, defined as

ΨL,R
k (x) ≡N 1/2Ôx∑

{k}

N

∏
i=1

ψL,R
ki
(xi), (5)
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FIG. 1. (a) Schematic of the potential
U(x) defined in Eq. (1); single file with
N = 5 particles. Throughout this work, we
either tag the first (magenta stands for i
= 1) or the last (orange stands for i = N)
particle. (b)–(d) depict the equilibrium
probability distribution Peq(xi) for i = 1
(b), i = 3 (c), and i = 5 (d) in a single file
with N = 5 for different barrier-heights Ub,
respectively.

where ψL,R
n (x) are the orthonormal eigenfunctions of the single-

particle problem (given in the Appendix), the sum over {k} refers
to the sum over all permutations of the multiset k, and N is the
number of these permutations k. Λk = ∑N

i=1 λki refers to the Bethe
eigenvalue with multi-index k = {ki}, i ∈ [1, N], and Ôx is the particle-
ordering operator, which ensures that x1 ≤ ⋯ ≤ xi ≤ ⋯ ≤ xN . More-
over, λn refer to the eigenvalues of the respective one-body problem,
given by82,83

λn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n2

4
, mod (n, 4) = 0,

(n − 1
2

+ ν)
2
, mod (n, 4) = 1,

n2

4
, mod (n, 4) = 2,

(n + 1
2
− ν)

2
, mod (n, 4) = 3,

(6)

where ν = 2 arctan(e−Ub/2)/π and mod(k, l) stands for the remainder
of the division k/l.

We are interested in the non-Markovian probability density of
xi and the position of the ith tagged-particle under the condition that
the initial positions of the remaining particles are drawn from those
equilibrium configurations that contain particle i at x0, which reads
(for a derivation, see Refs. 35, 79, and 84)

G(xi, t∣x0i) = V−1
00 (x0i)∑

k
V0k(xi)Vk0(x0i)e−Λkt , (7)

where the “overlap-elements” Vkl(xi) are defined as84

Vkl(xi) =
ml

NL!NR! ∑{k}
∑
{l}

ψR
ki
(xi)ψL

li (xi)
i−1

∏
n=1

Ln(xi)
N

∏
m=i+1

Rm(xi), (8)

with ml being the multiplicity of the multiset l, and NL = i − 1 and
NR = N − i are the number of particles to the left and right of the
tagged-particle, respectively. In Eq. (8), we introduced the auxiliary
functions

Ln(x) = ∫
x

−π
dzψL

ln(z)ψ
R
kn
(z), Rn(x) = ∫

π

x
dzψL

ln(z)ψ
R
kn
(z). (9)

Note that the equilibrium probability density of the tagged-particle’s
position is given by [see Eq. (7)] Peq(xi) ≡ limt→∞ G(xi, t∣x0i)
= V00(xi) and is depicted for various values of Ub in Figs. 1(b)–
1(d). Intuitively, as Ub increases, particles become expelled from the
barrier.

In Ref. 84, we have developed an algorithm designed to effi-
ciently cope with the combinatorial complexity of the implemen-
tation of the analytical solution in Eq. (7). Due to the piece-wise
constant nature of the potential U(x) in Eq. (1), all integrals (9) can
be computed analytically. As the resulting expressions are lengthy,
we do not show them here. Instead, they are readily implemented in
an extension of the code published in Ref. 84 (see the supplementary
material).
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III. LINEAR CORRELATIONS AT EQUILIBRIUM
First, we consider linear correlations at equilibrium and limit

the discussion in the reminder of this paper to tagging the first or
last particle (i.e., throughout, we set i = 1 or i = N). That is, we are
interested in the normalized positional autocorrelation function of a
tagged-particle, defined as

Ci(t) =
⟨xi(t)xi(0)⟩ − ⟨xi⟩2

⟨x2
i ⟩ − ⟨xi⟩2

, (10)

where the covariance of the position is defined as

⟨xi(t)xi(0)⟩ ≡ ∫
π

−π
dxi ∫

π

−π
dx0i xix0iG(xi, t∣x0i)Peq(x0i) (11)

and ⟨xn
i ⟩ = ∫π−πdxi xn

i Peq(xi). The above integrals have been per-
formed numerically by means of Gauss–Kronrod quadrature.85 Note
that Eq. (10) alongside Eqs. (5)–(9) necessarily implies the structure
Ci(t) = ∑k≠0 ake−Λkt with∑k≠0ak = 1, where all ak ≥ 0.86 The results
for C1(t) as a function of the barrier height Ub are depicted in Fig. 2.
Since U(x) is symmetric, the autocorrelation functions of the first
and last particles coincide, i.e., C1(t) = CN (t).

The autocorrelation of an isolated particle (i.e., N = 1) in
Fig. 2(a) displays for a given value of Ub to a good approxima-
tion an exponential decay with rate Λ1 = λ1 given by Eq. (6). This
reflects that positional correlations decay predominantly due to
barrier-crossing. Conversely, as the number of particles increases,
C1(t) decays on multiple timescales [see Fig. 2(b)] and develops an
“anomalous” shoulder on shorter timescales78 whose span increases
with the barrier height Ub. A comparison of C1(Λ−1

1 ) reveals that
the relative decay of correlations from the relaxation time τrel ≡ Λ−1

1
onward is substantially reduced for about a factor of 2 compared
to the isolated particle case. τrel denotes the timescale on which the
system reaches equilibrium from any initial condition. Note that (i)
C1(t) measures relative correlations, and (ii) according to Eq. (7)
(terminal), relaxation roughly corresponds to the particles individ-
ually crossing the barrier several times. It is also important to note
that the natural timescale of a tagged-particle is set by the average
collision time35,79 τcol = 1/N2, which decreases with an increase in
N. That is, in units of the average number of collisions, t → t/τcol
correlations decay more slowly for larger N.

A common means to quantify the extent of correlations found
in the literature is the so-called correlation time Tc,25,26,44,87 and it
should be compared with the actual relaxation time τrel,88

Tc = ∫
∞

0
dtCi(t), τrel ≡ Λ−1

1 = (
2
π

arctan(e−Ub/2))
−2

, (12)

where we note that for high barriers, i.e., UB≫ 1, the relaxation time
follows the expected Arrhenius scaling τrel ≃ 4eUb/π2. In Fig. 3(a), we
depict the correlation time for the leftmost particle in units of τcol as
a function of the barrier height Ub for different N. For an isolated
particle, Tc = Tisolated

c agrees very well with τrel for all values of Ub,
confirming the idea that C(t) decays to a very good approximation as
a single exponential. Note that for systems obeying detailed balance,
the mathematical structure of Ci(t) trivially implies a shorter correla-
tion time as soon as Ci(t) decays on multiple timescales if the longest
timescale Λ−1

1 is the same. This is particularly true when compar-
ing Ci(t) of a tagged-particle in a single file with an isolated particle.
Namely,

Tc =∑
k≠0

ak/Λk ≤∑
k≠0

ak/Λ1 = Λ−1
1 ≈ Tisolated

c . (13)

Therefore, the interpretation of Tc should always be made cautiously
and in the particular case of tagged-particle diffusion in a single file
is not meaningful if we consider Tc on an absolute scale. However, it
becomes somewhat more meaningful on the natural timescale, i.e.,
when time is expressed in terms of the average number of inter-
particle collisions (see also Ref. 35). Inspecting C1(t) on this natural
time scale, we find in Fig. 3(a) that the tagged-particle on average
undergoes more collisions before it decorrelates for larger values of
N, and this number increases with an increase in Ub.

Moreover, as N increases, the space explored by a tagged-
particle becomes progressively more confined35 rendering the cor-
relation time Tc on an absolute timescale also intuitively shorter.
Indeed, in Fig. 3(b), we depict the ratio Tc/Λ−1

1 , which decreases with
an increase in N for any barrier height Ub. Note that Λ−1

1 is inde-
pendent of N and the breaking of Markovianity (reflected, e.g., in
the violation of the Chapman–Kolmogorov semi-group property35)
is encoded entirely in the overlap elements V0k, Vk0. For systems
with microscopically reversible dynamics, Tc/Λ−1

1 < 1 quite gen-
erally implies that relaxation evolves on multiple timescales. Thus,
the results in Fig. 3(b) suggest, in agreement with intuition, that
more and more timescales are involved in the relaxation of a tagged-
particle’s position in equilibrium as we increase N. In other words,
on the level of linear correlations’ signatures of memory of the ini-
tial conditions of “latent”/background, particles are reflected in the
multi-scale relaxation of C1(t).

FIG. 2. Position autocorrelation function
C1(t) of an isolated particle (a) and the
leftmost tagged-particle in a single file
with five particles (b) as a function of
the barrier height Ub. Symbols denote
C1(Λ−1

1 ).
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FIG. 3. (a) Tc (in units of collision time)
for the first particle (i.e., i = 1) as a
function of the barrier height Ub for var-
ious values of N. The full line depicts
τrel ≡ Λ−1

1 (in absolute time units). (b)
Ratio Tc /τrel as a function of the barrier
height Ub for various values of N; both Tc

and τrel are measured in units of collision
time.

As shown by Zwanzig from first principles,58,59 one can also
analyze the memory encoded in Ci(t) defined in Eq. (10) in terms
of a memory function KU (t) defined through

d
dt

Ci(t) = −∫
t

0
KU(s)Ci(t − s)ds, (14)

where the subscript U is included to stress that the memory kernel
depends on the external potential. The kinetic equation (14) obeyed
exactly.58,59

Note that the memory kernel KU (t) in the linear kinetic equa-
tion (14) is not equivalent to the memory kernel entering a non-
linear generalized Langevin equation for a tagged-particle motion
in a potential of mean force.48,49,59 If, however, one were to com-
pute Ci(t) from such a non-linear generalized Langevin equation,
this would yield Eq. (14). Here, we aim to connect quantitatively
the different signatures of memory encoded in Ci(t) and the correla-
tion time Tc solely by means of the information encoded in Ci(t).
Note that this approach is simple and model-free and can there-
fore directly be used in the analysis of experimental and simulation
data. Alternatively, one may equally well use a non-linear framework
(for an excellent recent example, see Ref. 89) that, however, requires
more effort and a more detailed input.

We determine KU (s) from the Laplace transform of Eq. (14),

K̃U(u) =
1

∑k≠0 ak/(Λk + u) − u, (15)

where f̃ (u) ≡ ∫∞0 e−utf (t)dt. The inverse Laplace transform is, in
turn, determined by numerically inverting Eq. (15) using the fixed
Talbot method.90

By construction, ∫t0KU(s)Ci(t − s)ds ≥ 0, and therefore, KU (t)
must have a positive contribution at least for t → 0. For example,
if Ci(t) decays exactly as a single exponential with rate Λ, we have
K̃U(u) = Λ, and hence, KU (t) = Λδ(t). In fact, one can show by
means of Mori’s projection-operator formalism that KU (t) has the
generic structure KU (t) = aδ(t) + ζ(t), where a > 0 and ζ(t) is a
smooth function of t [see, e.g., Eq. (8.61) in Ref. 59].

More generally, when memory is short-lived, that is, when
K(t) decays rapidly compared to the timescale on which Ci(t)
changes appreciably, we may approximate Eq. (14) as d

dt Ci(t)
≈ −(∫∞0 K(s)ds)Ci(t) ≡ −ΛCi(t), and hence, the autocorrelation
decays approximately as a single exponential Ci(t) ≈ e−Λt—the sys-
tem is therefore said to be effectively memoryless (Markovian).58,59

The memory kernel of an isolated particle and that of the left-
most tagged-particle in a single file are depicted in Fig. 4 [note that
we depict −KU (t) > 0, implying an anti-persistent motion]. The
unavoidable truncation of the spectral solution (7) does not allow us
to determine KU (t) in the limit of t→ 0. In the case of an isolated par-
ticle [Fig. 4(a)], the memory is short-lived and decays on a timescale
t ≪ Λ−1

1 much shorter than the relaxation time and decreases with
the barrier height Ub. This agrees with the essentially single expo-
nential decay of C1(t) found in Fig. 2 and implies that the dynamics
is essentially memoryless.58,59

Conversely, in the case of a tagged-particle [see Fig. 4(b)], KU (t)
displays a strikingly different behavior. First, the range where KU (t)

FIG. 4. Memory kernel −KU(t) of an iso-
lated particle (a) and the leftmost tagged-
particle in a single file with five par-
ticles (b) as a function of the barrier
height Ub shown on a double logarith-
mic scale. The inset provides the same
results shown on a linear-logarithmic
scale. We used 900 pairs ak,Λk to deter-
mine K̃U(u) in Eq. (15). Note that the
range of t in (a) and (b) is different.
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considerably differs from zero is orders of magnitude longer and
increases with an increase in the barrier height Ub. Second, the anti-
persistence of KU (t) is much larger than for an isolated particle, and
third, for high barriers, KU (t) develops a shoulder, indicating a tran-
siently stalled decay of memory, presumably due to “jamming” in
front of the barrier prior to crossing. The latter acts as a transient
entropic trap.

Importantly, Ub strongly and non-trivially affects the memory
in the tagged-particle’s motion [compare with the trivial effect of
Ub on K(t) for an isolated particle in Fig. 4(a)]. As a result, any
microscopically consistent memory kernel KU (t) must depend on
the external potential U(x). The reason is twofold: (i) the external
potential also acts on the background degrees of freedom and (ii)
the coupling of the background degrees of freedom and the tagged-
particle’s motion is strong. In fact, whenever (i) and/or (ii) hold,
the external potential generally alters the memory. Conclusive evi-
dence that the potential affects the memory function has been found,
e.g., by atomistic computer simulations of molecular solutes in
water.91

In contrast to C1(t) depicted in Fig. 2, which on an absolute
timescale decays to zero faster for larger N as a result of being
normalized and having the same relaxation time Λ−1

1 , the memory
kernel KU (t) clearly displays long-time memory effects that become
more pronounced as N increases. This can be understood by noting
that KU (t) in Eq. (14) is unaffected by the normalization. The mem-
ory kernel is thus more informative than C1(t) and less ambiguous
than correlation times Tc. Moreover, it is not required that Ci(t) is
known analytically in order to apply the analysis.

IV. RELAXATION FROM A PINNED CONFIGURATION
We now focus on the “complete” (i.e., including correlations

to all orders) relaxation to equilibrium from a pinned configuration.
That is, we are interested in those initial configurations where either

the first (i = 1) or the last (i = N) particle is pinned at x0, while
the initial conditions of the remaining particles are drawn from the
corresponding pinned equilibria (i.e., those equilibrium many-body
configurations where the first/last particle is located at x0). In this
non-stationary setting, the analysis of memory kernels seems less
sensible since these would depend explicitly on time and x0.

We quantify the relaxation dynamics by means of D(t, x0i),
the Kullback–Leibler divergence92 between the non-Markovian
probability density of the tagged-particle’s position at time t,
G(xi, t∣x0i) in Eq. (7), and the respective equilibrium density Peq(xi)
≡ limt→∞ G(xi, t∣x0i),

D(t, x0i) ≡ ∫
π

−π
dxG(x, t∣x0i) ln(G(x, t∣x0i)

Peq(x)
). (16)

In physical terms, D(t, x0i) represents the displacement from equi-
librium in the sense of an excess instantaneous free energy, i.e.,
kBTD(t, x0i) = F(t) − F.93–95 Since the integral in Eq. (16) cannot
be performed analytically, we evaluate it numerically. We always
pin the initial position of the tagged-particle at x0 = −2. Accord-
ing to the effect of the pinning on the relaxation of the tagged-
particle, the scenario in which we tag the first particle is referred to as
“confining” (since background particles obstruct the relaxation of
the tagged-particle) and the one in which we tag the first particle as
“pushing” (since background particles exert an entropic force push-
ing the tagged-particle over the barrier). D(t, x0i) as a function of the
barrier height Ub for N = 5 and N = 9 is shown in Fig. 5.

Note that limt→0 D(t, x0i) = ∞ irrespective of N and Ub since
we are comparing a delta distribution with a smooth probability den-
sity. Conversely, in an arbitrarily small time interval τε > 0, the non-
Markovian tagged-particle density G(x, t∣x0i) evolves to a smooth,
well-behaved probability density such that D(t > 0, x0i) is always
finite and the “pathology” at t = 0 is mathematical and not physical.

FIG. 5. Time evolution of D(t, x0i) for
various barrier heights Ub for N = 5 [(a):
confining and (b): pushing] and N = 9
[(c): confining and (d): pushing], respec-
tively. The symbols denote D(Λ−1

1 , x0i).
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With this in mind, we observe in Fig. 5 a striking difference
between the “confining” and “pushing” scenarios. In the “confin-
ing” setting, D(t, x01) at a fixed time t is a monotonically increasing
function of Ub and as a function of time decays on a timescale that
seems to be rather independent of Ub. In the “confining” scenario,
an increase in Ub displaces the system at t = 0+ further from equi-
librium. This is intuitive because Peq(x1) becomes more strongly
confined to the boundary and hence away from x0. To a domi-
nant extent, relaxation occurs already on timescales t ≳ 1 ≪ Λ−1

1 .
The reason may be found in the fact that Λ−1

1 corresponds to the
mixing/ergodic timescale on which the full single file (and thus
the tagged-particle) explores the entire system. In the “confining”
scenario, the background particles are drawn from a distribution
that resembles closely the unconstrained equilibrium, and in addi-
tion, the tagged-particle is nominally unlikely to be found in the
right well in equilibrium. Therefore, the fraction of paths that
cross the barrier in the ensemble of relaxation paths is small, ren-
dering V0kVk0 for low-lying k essentially negligible [see Eq. (7)].
Nevertheless, a second, slower relaxation stage is still discernible
at t ≳ 1.

Conversely, in the “pushing” scenario depicted in Figs. 5(b) and
5(d), we find (i) the dependence of D(0+, x01) on Ub to be inverted,
and (ii) for given N and Ub, relaxation extends to much longer
timescales compared to the “confining” scenario. In order to ratio-
nalize (i), we consider a pair of barriers Ub1 , Ub2 and take the limit

lim
t→0
(D b1(t, x0) −D b2(t, x0)) = ln(P b2

eq (x0)/P b1
eq (x0)), (17)

which is finite and well defined despite the fact that limt→0 D b1 ,b2

(t, x0) are infinite. Equation (17) explains that the dependence of
D(0+, x0) on Ub is not unique and depends on the pinning point
x0, which determines whether or not P b2

eq (x0)/P b1
eq (x0) is greater

or smaller than 1 [see Figs. 1(b) and 1(d)]. (ii) can be understood by
an extension of the argument put forward in the discussion of the
“confining” scenario, i.e., as a result of the pinning, the initial con-
figurations of the background particles are displaced much further
away from equilibrium, rendering V0kVk0 for low-lying k substan-
tial [see Eq. (7)]. Therefore, a pronounced second relaxation stage is
visible at longer times t ≳ 1.

Based on Fig. 5 alone we are not able to deduce whether these
observations are a trivial consequence of the pinning in the sense
that they have nothing to do with memory (note that a Markov
process “remembers” the initial condition up to ∼τrel) or whether

they are, in fact, a signature of memory in the dynamics. Additional
insight is gained by inspecting the relaxation of the full, Markovian
single file evolving from the same initial condition, i.e.,

DM(t, x0) ≡ [
N

∏
i=1
∫

π

−π
dxi]G(x, t, P0) ln(G(x, t, P0)

Peq(x)
), (18)

where we have introduced the joint Markovian two-point proba-
bility density G(x, t, P0) ≡ ∫dy0G(x, t|y0)P0(y0), and whereby, for
−π < x0 < −π/2, P0(y) is defined as

P0(x) = N!(π + x0)−NL Ôxδ(xi − x0)
e−Ub∑N

j=i+1 θ(π/2−∣xj ∣)

(πe−Ub − x0)NR
, (19)

where θ(x) is the Heaviside step function and Peq(x)
= limt→∞ G(x, t∣x0). The integration in Eq. (18) can be per-
formed analytically (for details, see Ref. 95). Introducing the
two-point joint density of the single-particle problem Γt(x, a, b)
≡ ∑k ψ

R
k (x)[∫badyψL

k(y)P0(y)]e−λkt , with P0(y) ≡ θ(−π/2 − y)/
(π + x0)+ θ(y + π/2)e−U(y)/(πe−Ub − x0) and the auxiliary function

Ξt(a, b) = ∫
b

a
dxΓt(x, a, b) ln(Γt(x, a, b)/Peq(x)), (20)

where Peq(x) = e−U(x)/π(1 + e−Ub), the result reads

DM(t, x0) = Ξt(−π,π)Ξt(−π, x0)NLΞt(x0,π)NR . (21)

An explicit solution is obtained with the aid of Mathematica.96 As it
is bulky, but straightforward, we do not show it here. The Marko-
vian result in Eq. (21) for the same set of parameters, as in Figs. 5(a)
and 5(b), is depicted in Fig. 6. A comparison of Figs. 5 and 6 reveals
that the second, long-time relaxation stage observed in the “pushing”
scenario of Fig. 5 is absent in the Markovian setting (compare Figs. 5
and 6, and note that the relaxation time Λ−1

1 is identical in both set-
tings). This, in turn, implies that the pronounced second relaxation
stage in the non-Markovian, tagged-particle scenario at times t ≳ 1
is, indeed, a signature of memory.

FIG. 6. Time evolution of DM(t, x0i) for
various barrier-heights Ub for N = 5 [(a):
confining, i = 1 and (b): pushing, i = N].
The symbols denote DM(Λ−1

1 , x0i).
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V. DISCUSSION

We identified pronounced signatures of memory in the over-
damped relaxation of a tagged-particle in a single file confined to
a bi-stable potential. On the level of linear correlations in equilib-
rium, memory is visible in the form of a multi-scale relaxation of the
autocorrelation function (see Fig. 2), a substantial and long-ranged
(linear) memory kernel [see Fig. 4(b)], and a seemingly paradoxical
shortening of the so-called correlation time Tc (see Fig. 3). The latter
was shown to be an artifact of the definition of Tc. When includ-
ing the complete correlation-structure as encoded in the so-called
excess instantaneous free energy [see Eq. (16)], distinctive signa-
tures of memory emerge in the form of a second, late-time relaxation
regime.

The memory originates from the fact that the entire single file
relaxes to equilibrium in the form of linearly independent many-
body eigenmodes, which become projected onto the motion of
a tagged-particle.35,79 The projection couples distinct modes, thus
breaking Markovianity and giving rise to memory.35 It turns out
to be very important which particle is tagged. Here, we were only
interested in the “confining” (all background particles in front of
the tagged-particle) and “pushing” (all background particles behind
the tagged-particle) scenarios and found qualitatively different relax-
ation behaviors. A systematic analysis would be required to under-
stand the intricate details on how the number of particles on each
side affects relaxation dynamics, which is beyond the scope of the
present work.

We have shown that the memory non-trivially depends on the
external potential. That is, a tagged-particle was shown to experi-
ence the external potential directly (i.e., time-locally) and indirectly
through the effect it exerts on the memory kernel. This effect is
general—it occurs whenever the potential is sufficiently strong and
also acts on either the latent degrees of freedom (i.e., those that are
integrated out) or the interaction between the tagged-particle and
the latent degrees of freedom that is not harmonic or, more gener-
ally, non-negligible. Direct evidence for the effect has been found
in all-atom computer simulations of the hydration of molecular
solutes.91 It is important to keep this in mind when applying gen-
eralized Langevin equations (GLEs) with phenomenological mem-
ory kernels or microscopically consistent GLEs “decorated” with an
external potential as these may lead to erroneous conclusions or
misinterpretations.

The application of the methodology for extracting and analyz-
ing memory in tagged-particle dynamics put forward in Eqs. (10),
(14), and (16) requires neither Ci(t) nor G(x, t∣x0i) to be known
analytically. The quantities can be equally well determined from
experiments or computer simulations. The analysis is expected to
provide insight into memory effects as long as either the “crowd-
ing” (i.e., the concentration of background particles) and/or the
barrier-height can be controlled. The qualitative features of the sig-
natures of memory are expected to be preserved in most systems of
effectively one-dimensional systems with obstructed tagged-particle
dynamics. The proposed analysis of memory effects can be viewed
as complementary to the analysis of anomalies in tagged-particle
diffusion.97–99

Our results can readily be tested by existing experiments prob-
ing colloidal particle systems (see, e.g., Refs. 100–102) and may,
furthermore, be relevant for a theoretical description of transport

in ion-channels.103–106 Our results can be extended in diverse ways,
most immediately by including other types of inter-particle interac-
tions81 and time-dependent energy barriers.107

SUPPLEMENTARY MATERIAL

See the supplementary material for the extension of the code
published in Ref. 84 that implements the analytical results presented
this article.
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APPENDIX: SINGLE PARTICLE EIGENSPECTRUM
In this appendix, we give explicit expressions for the single-

particle eigenfunctions that are required in the diagonalization of
the many-body Fokker–Planck operator using the so-called coordi-
nate Bethe ansatz. For details of the solution method, see Refs. 35,
79, and 84. The eigenfunctions of the corresponding single-particle
eigenvalue problem are

(∂2
x + ∂x{∂xU(x)})ψR

k (x) = −λkψ
R
k (x),

(∂2
x − {∂xU(x)}∂x)ψL

k(x) = −λkψ
L
k(x),

(A1)

where ψL,R
k (x) : [−π,π] → R allow for a spectral decomposition of

the single-particle Green’s function,

Γ(x, t∣x0) =∑
k
ψR

k (x)ψL
k(x0)e−λkt . (A2)

ψL,R
k (x) enter Eq. (5) and are here defined via their “Hermitianized”

counterpart ψk(x) : [−π,π] → R as ψR
k (x) = e−U(x)/2ψk(x) and

ψL
k(x) = eU(x)/2ψk(x), where108

ψk(x) =
√

2
1 + δk,0

e−U(x)/2
√
π(1 + e−f 0)

cos(
√
λkx), mod (k, 4) = 0,

(A3)

ψk(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− cos(
√
λk(x + π))√
π

, x < −π/2

sin(
√
λkx)√
π

, ∣x∣ ≤ π/2

cos(
√
λk(x − π))√
π

, x > π/2

, mod (k, 4) = 1,

(A4)

ψk(x) =
√

2
eU(x)/2

√
π(1 + ef 0)

cos(
√
λkx), mod (k, 4) = 2, (A5)
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ψk(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos(
√
λk(x + π))√
π

, x < −π/2

sin(
√
λkx)√
π

, ∣x∣ ≤ π/2

− cos(
√
λk(x − π))√
π

, x > π/2

, mod (k, 4) = 3,

(A6)

where δk ,0 is the Kronecker delta.
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