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Experimental and computational dynamic force spectroscopy is widely used to determine the me-

chanical properties of single biomolecules. Whereas so far the focus has mainly been on rupture or

unfolding forces, recent force-probe molecular dynamics simulations have revealed a strong loading rate

dependence of biomolecular elasticities, which cannot be explained by the established one-dimensional

transition-state treatments. We show that this nonequilibrium behavior can be explained by a theory that

includes relaxation effects. For three structurally and mechanically quite diverse systems, a single

relaxation mode suffices to quantitatively describe their loading-rate-dependent elastic behavior.

Atomistic simulations of these systems revealed the microscopic nature of the respective relaxation

modes. This result suggests a new type of ‘‘elasticity spectroscopy’’ experiment, which should render

nonequilibrium properties of structured macromolecules accessible to single-molecule force spectroscopy.
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Molecular-scale forces govern fundamental biomolecular
processes such as ligand binding, the motion of molecular
motors, and protein folding [1–3]. The mechanical response
of macromolecules to small external forces can be probed
by dynamic force spectroscopy and optical tweezers. For a
wide range of macromolecules, these single-molecule ex-
periments have impressively confirmed time-dependent
transition-state theories predicting a logarithmic increase
of rupture or unfolding forces with the loading rate [4–8].

First established by Bell [9], most of these theories rely
on a one-dimensional transition state or Kramers treatment
for activated barrier crossings [10], which assumes all
molecular degrees of freedom except the probe coordinate
to be in equilibrium, even at the barrier top [5–8,11,12].
As an important consequence, current models predict
a Hookean behavior of structured biomolecules, i.e., an
elastic response independent of the loading rate. This
assumption, however, is difficult to reconcile with the large
number of known slow internal dynamic modes particu-
larly of biomolecules.

For protein folding, recent single-molecule spectroscopy
experiments and their theoretical treatments demonstrated
the need to go beyond approaches with one-dimensional
reaction coordinates [13]. In particular, both the use of
multiple pathways [13,14] in the treatment of protein
folding and two-dimensional transition-state treatments
of yielding under constant load [15–17] have shown strong
deviations from one-dimensional results. Elastic properties
of biomolecules, however, have not yet been considered.

With recent force-probe molecular dynamics simula-
tions focusing on the time-dependent elastic properties
of biomolecules rather than their yielding behavior, this
discrepancy has become acute. Indeed, strong and so far

unexplained non-Hookean deviations from Bell-type mod-
els have been observed for several proteins with quite
diverse structural and elastic properties, e.g., a flexible
superhelical protein [18,19], a rigid virus capsid [20,21],
and the bacteriophage head-tail connector �29 [22]. To
address this issue, and going beyond transition-state theory,
we here develop a nonequilibrium theory that includes
relaxation of modes perpendicular to the reaction coordi-
nate. A single relaxation mode suffices to quantitatively
describe the loading-rate-dependent elastic properties of
the above prototypic structured macromolecules, suggest-
ing that this property may be universal.
This result also suggests a new experimental approach.

Whereas so far almost all single-molecule force-probe
experiments have focused on unbinding, rupture, or un-
folding forces, nonequilibrium relaxation dynamics and
molecular friction in biological macromolecules should
become accessible through ‘‘elasticity spectroscopy,’’ i.e.,
by measurement of their loading-rate-dependent elastic
properties.
According to Bell’s theory [9], deformation and rupture

occur on a single reaction coordinate x, governed by a Gibbs
free-energy landscapeG0ðxÞ [Fig. 1(a)]. The region near the
minimum ofG0ðxÞ at x ¼ 0 is the equilibrium reactant state
of the system, and yielding occurs between that minimum
and a barrier located at xb, the rupture length. With an
attempt frequency !0, a logarithmic, force-dependent rup-
ture rate rðFÞ ¼ !0 expð�FxbÞ is predicted.
The external force exerted onto the system in force-probe

experiments such as single-molecule atomic force spectros-
copy or optical tweezers is included via a harmonic ‘‘spring’’
coupling described by a time-dependent probe potential,
Vp ¼ 1

2 kpðx� vtÞ2. Assuming a constant loading rate, the
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minimum of Vp moves with constant velocity v. Neglecting

barrier recrossings as well as the small perturbation of the
probability distribution caused by ‘‘leakage’’ over the barrier,
the probability distribution of the reaction coordinate within
the reactant state,pðx; tÞ, obeys a Smoluchowski equation for
the time-dependent free energy Gðx; tÞ ¼ G0ðxÞ þ Vpðx; tÞ.
With the use of an appropriate barrier crossing rate rðtÞ, an
expression for the probability of finding the system within
the reactant state PðtÞ is readily derived. This results in a
distribution of yielding forces and, in particular, an average
yielding force hFyieldðvÞi � lnðv=v0Þ scaling logarithmically

with probe velocity v (with appropriate unit velocity v0)
[4,6–9].

Similarly, for the time span prior to yielding, the one-
dimensional, near-equilibrium treatment predicts an increas-
ing average force

hFvðtÞi ¼ kpv

�
t� kp

k0 þ kp

�
t� 1� e��ðk0þkpÞDt

�ðk0 þ kpÞD
��

; (1)

which enables extraction of the elastic constant k0 ¼
@2xG0ðxÞjx¼0 from force-extension data from experi-
ments or force-probe simulations. Obviously, this
one-dimensional model predicts an elastic constant that
does not vary with loading rate, in contrast to the velocity-
dependent behavior we observed [21].

To resolve this discrepancy, we include slow nonequi-
librium relaxation dynamics of modes perpendicular to the
probe coordinate (slow on the time scale of the pulling
process). Accordingly, a generalized model is considered
[Fig. 1(b), contour lines],

G0ðx; yÞ ¼ 1

2
kkx2 � k?�xyþ 1

2
k?�2y2; (2)

for x < xb and 0 otherwise. Here, x is the probe coordinate
and y represents one or several, typically collective, relaxa-
tion coordinates perpendicular to x. kk and k? are the corre-

sponding force constantswith coupling constant�. To enable
analytic treatment, a coupled harmonic model is used.
In this generalized treatment, the path taken by the

system on the time-dependent free-energy surface, gov-
erned by the probe potential Vp moving along the probe

coordinate x, depends on the probe velocity v [Fig. 1(b),
colored symbols]. At low probe velocities, all orthogonal
modes y remain close to their equilibrium distribution, and
the system follows a minimum energy path (blue symbols,
top paths). By construction, this generalized model reduces
to the one-dimensional Bell-type model

G0;BellðxÞ ¼ 1

2
ðkk � k?Þx2; (3)

in the quasistatic limit of fully equilibrated orthogonal
coordinates y (diagonal blue line). For larger v values,
the slow modes can no longer equilibrate, and thus the
path taken deviates from the minimum energy pathway
(orange, mid paths). In the adiabatic limit of infinitely slow
relaxation, the path approaches a parallel to the probe
coordinate (red, bottom paths). As a result, an increased
barrier height and stronger forces are found for deforma-
tion and yielding of the system.
By including the time-dependent probe potential, Vp,

Gðx; tÞ ¼ G0ðxÞ þ Vpðx; tÞ can be cast into the more con-

venient matrix form

Gðx; tÞ ¼ 1

2
ðx� vtÞTCðx� vtÞ þ V0ðtÞ; (4)

with C11 ¼ kk þ kp, C12 ¼ C21 ¼ ��k?, C22 ¼ �2k?,
x ¼ ðx; yÞT , and v¼vð1;1=�ÞT=½1þðkk�k?Þ=kp�. V0ðtÞ
is an extraneous time-dependent offset. The two-dimensional
probability distribution pðx; tÞ obeys a Smoluchowski
equation

@tpðx; tÞ ¼ rDe��Gðx;tÞre�Gðx;tÞpðx; tÞ; (5)

with diffusion constant D and the reciprocal thermal energy
�, which is readily solved assuming an underlying Ornstein-
Uhlenbeck processpOUðx; tÞ [23], after transformation into a
Smoluchowski equation with time-independent potential via

pðx; tÞ ¼ pOUðxþ xoff � vt; tÞ: (6)

Here, xoff ¼
P

i¼1;2ðei � vÞei=ð��iDÞ, where �1;2 are the

eigenvalues and e1;2 are the normalized eigenvectors of C.
After subsequent diagonalization, Eq. (6) reduces to two
uncoupled one-dimensional Ornstein-Uhlenbeck processes,
with an analytic solution pðx; tÞ in terms of Gaussian func-
tions with time-dependent widths and centers. The latter are
given by
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FIG. 1 (color). Models for rupture events. (a) One-dimensional
Bell-type model. (b) Two-dimensional nonequilibrium model.
Upper panel: Free-energy landscape G0ðx; yÞ (contour lines),
Eq. (2), with a barrier at x ¼ xb and sample paths (symbols).
Probe potentials Vp ¼ 1

2 kpðx� vtÞ2 with slow (blue, top path),

medium (orange, mid), and fast (red, bottom) retraction velocities
were applied. Limiting cases for fast and slow pulling are depicted
as red (horizontal) and blue (diagonal) lines, respectively. Center
panel: Potential energy along the sample paths (symbols, top: fast,
bottom: slow) and limiting cases. Lower panel: Forces along the
sample paths.
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hxðtÞi ¼ X
i¼1;2

ðei � vÞei
�
t� 1� e���iDt

��iD

�
: (7)

From the x component, a mean force along the probe
coordinate

hFðtÞi ¼ kpðvt� hxðtÞiÞ; (8)

is obtained. With the analytic expression for pðx; tÞ and the
approximate instantaneous transition rate [10,24]

rðtÞ ¼ DR
well e

��GNEðx;tÞdx
R
barrier e

�GNEðx;tÞdx
; (9)

where GNEðx; tÞ ¼ �kBT lnpðx; tÞ is (up to an irrelevant
offset) the nonequilibrium free energy, one obtains (see
Supplemental Material [25])

rðtÞ ¼ 2D�e��2ffiffiffiffi
�

p
�2

xðtÞð1þ erfð�ÞÞð1þ e�2�2Þ ; (10)

where � ¼ ðxb � hxðtÞiÞ=ð ffiffiffi
2

p
�xðtÞÞ; �xðtÞ is defined in the

Supplemental Material [25].
The probability PðtÞ of finding the system within the

reactant well at time t is obtained from numerical integra-
tion of

@tPðtÞ ¼ �rðtÞPðtÞ; (11)

which yields an average velocity-dependent yielding force

hFyieldðvÞi ¼ �
Z 1

0
hFðtÞi@tPðtÞdt: (12)

In agreement with Bell’s model and its extensions, the rate
dependence of hFyieldðvÞi is governed by logarithmic terms

in v. Here however, hFðtÞi exhibits also loading-rate-
dependent elastic properties.

We applied our model to the Importin-� (Imp�)
superhelix, a protein characterized by its unusual intrinsic
flexibility [19,26]. By force-probe all-atom molecular
dynamics simulations, Imp� was reversibly stretched by
up to twice its equilibrium length with probe velocities
from 0.08 to 20 m=s [19]. At low probe velocities, effective
elastic constants keff obtained from force-extension curves
converged to ð10� 4Þ � 10�3 N=m, in agreement with the
value derived from the end-to-end distance distribution of
Imp� in equilibrium simulations. At high probe velocities,
however, a clear velocity dependence is seen [Fig. 2(a)], in
obvious contradiction to Bell’s model.

We thus investigated whether the behavior of the
system across all probe velocities can be explained by our
relaxation model. Accordingly, Eq. (8) was simultaneously
fit to all 42 force profiles obtained, yielding kk ¼
0:101 N=m, k?¼0:090N=m, �¼0:510, andD ¼ 1:641�
10�10 m2=s [Fig. 2(b), solid lines]. The resulting equilibrium
elastic constant keq ¼ kk � k? ¼ 11� 10�3 N=m agrees

well with the equilibrium elastic constant obtained previ-
ously from a one-dimensional model, ð10�4Þ�10�3N=m.

The diffusion constant yields a molecular friction coefficient
of kBT=D ¼ 2:5� 10�11 N s=m for the respective mode.
For comparison, and to obtain optimal reference parameters,
Eq. (8) was fit to each force curve individually [Fig. 2(b),
dashed lines]. These fits reproduce the curves from the
simulations remarkably well. Notably, force curves from
the collective fit (solid lines) closely resemble these reference
curves. Hence, using our model, four parameters suffice to
describe the nonequilibrium elastic response of the protein to
an external force over a broad range of probe velocities.
Closer analysis of the atomistic force-probe simulations
revealed as a perpendicular relaxationmode collective tilting
motions of adjacent �-helical units [colored in Fig. 2(a)].
We next addressed the local elasticity of a virus capsid,

which is much stiffer than Imp�. The Southern Bean
Mosaic Virus (SBMV) was chosen, as its elastic properties
were recently characterized by all-atom force-probe mo-
lecular dynamics simulations with probe velocities ranging
from 2 to 50 m=s [21,27]. Figure 3(a) shows the effective
elastic constants obtained from linear fits to the force-time
curves. Although this macromolecular system is very dif-
ferent from Imp�, all effective elastic constants derived
from the simulations are reproduced [Fig. 3(a), black line]
and yield an equilibrium stiffness of keq ¼ kk � k? ¼
0:954 N=m.
To test the model’s predictions, we used the parameters

kk, k?, �, andD obtained from the previous fit to calculate

the velocity dependence of yielding forces of the SBMV

FIG. 2 (color). (a) Velocity-dependent effective elastic con-
stants keff derived from Imp� force-probe MD simulations.
Elastic constants were calculated with the assumption of an
underlying one-dimensional energy landscape G0ðxÞ ¼ 1

2 keffx
2

using Eq. (1) (b) Example force profiles from stretching
MD simulations (symbols) with fits using Eq. (8) assuming a
two-dimensional energy landscape G0ðx; yÞ according to Eq. (2)
(lines). Solid lines show a collective fit to all available force
profiles, dashed lines display individual fits to each.
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shell [Fig. 3(b)]. With the barrier location xb as sole addi-
tional fit parameter, the logarithmic dependence of yield-
ing forces was reproduced for all investigated velocities.
As expected for velocities below the characteristic relaxa-
tion time, a near-constant yielding force of �1:4 nN,
which lies in the range measured for viral capsids
(� 0:6–2:5 nN), is predicted [20,28].

To test the predictive value of the relaxation model, we
analyzed the elastic behavior of the�29 head-tail connector
[22] (Fig. 4), for which velocity-dependent elastic constants
are also observed for the distance L between the upper and
lower domains as force-probe coordinate. Here, an irislike
twisting motion provides a likely relaxation mode, which
followed a velocity-dependent path [Fig. 4(a) symbols].
Analysis of this path enabled us to extract the parameters
for our model without using any force or extension curves as
input. To that aim, the probability distribution pðL; �Þ from
equilibrium simulations was fit to exp½��G0ðL;��Þ�,
yielding kk ¼ 24:3 N=m, k? ¼ 2:1 N=m, and �� ¼
�0:15, where � is a conversion factor [Fig. 4(a), contour
lines]. With these parameters, a simultaneous fit to all
trajectories was carried out, yielding � ¼ 0:13 nm= deg
and D ¼ 1:09� 10�12 m2=s [Fig. 4(a), lines]. As can be
seen in the Figure, the obtained model accurately describes
the molecular dynamics trajectories. Moreover, also the
predicted forces agree well with those from the simulations
[Fig. 4(b)], thus confirming the validity and predictive power
of our model.

We have shown that universal nonequilibrium relaxation
of one collective mode quantitatively explains the inelastic
and elastic force response of quite diverse structured biologi-
cal macromolecules. Combined with atomistic simulations,
the microscopic origin of the proposed relaxation coordinate
is revealed as collective modes, thus connecting atomistic
descriptions to more phenomenological descriptions of
nonclassical mechanical behavior, as used, e.g., in material
science [29]. Thereby, our study extends previous work on

biomolecular yielding beyond one-dimensional reaction
coordinates [13–17] into a general two-dimensional treat-
ment of molecular elasticity. Our theory is readily general-
ized to multiple dimensions and a broad spectrum of
relaxation processes. The describednon-Hookeanfingerprint
should be detectable in force-probe experiments on systems
with millisecond or slower relaxations. By ‘‘elasticity spec-
troscopy,’’ one should be able to extract, e.g., coupling
strengths of perpendicular relaxation modes, as well as their
relaxation rates and stiffness.
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