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Abstract.  We uncover a duality between relaxation and first passage processes 
in ergodic reversible Markovian dynamics in both discrete and continuous state-
space. The duality exists in the form of a spectral interlacing—the respective 
time scales of relaxation and first passage are shown to interlace. Our canonical 
theory allows for the first time to determine the full first passage time distribution 
analytically from the simpler relaxation eigenspectrum. The duality is derived 
and proven rigorously for both discrete state Markov processes in arbitrary 
dimension and eectively one-dimensional diusion processes, whereas we also 
discuss extensions to more complex scenarios. We apply our theory to a simple 
discrete-state protein folding model and to the Ornstein–Uhlenbeck process, for 
which we obtain the exact first passage time distribution analytically in terms 
of a Newton series of determinants of almost triangular matrices.
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1. Introduction

In his seminal work [1] Kramers analyzed the kinetics of chemical reactions in terms 
of diusive barrier crossing, assuming that the kinetic rate of a chemical reaction cor-
responds to the inverse of the mean first crossing time. Ever since, first passage theory 
is at the heart of theoretical descriptions of kinetics of chemical reactions [2–7]; see e.g. 
[8–11] for comprehensive reviews.

In a broader context, first passage concepts were invoked in studies of kinetics 
in complex media, such as reactions in fractal-like [12, 13] and planar domains [14, 
15], in inhomogeneous cellular environments [16–19], in the study of neural networks  
[20, 21], ultra cold atoms [22], as well as in diverse narrow escape problems [23–28] and 
so-called intermittent search strategies involving searching agents with internal dynam-
ics [29, 30] (see also [31] for a review).

https://doi.org/10.1088/1742-5468/ab00df
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First passage times play an important role in quantifying persistence properties in 
non-equilibrium interacting many-body systems [32–34]. More recent applications of 
first passage concepts also include stochastic thermodynamics [35–37], in particular, 
fluctuation relations for stopping time statistics and stochastic entropy production in 
driven molecular systems [38] and in stochastic resetting processes [39, 40], as well as 
uncertainty relations for first passage time statistics of fluctuating currents [41, 42] (see 
also [43]).

Moreover, our current understanding of the speed and precision of transcription reg-
ulation in biological cells, and in particular of the role of the so-called proximity eect 
in the co-regulation of genes, [44, 45] builds on first passage time ideas. The corre-
sponding physical principles underlying these proximity eects were explained in [46–
48]. Notably, these works revealed the inherent insuciency of the mean first passage 
time and traditional rate-based concepts for a quantitative description of biophysical 
dynamics in the so-called few encounter limit [48]. As a result, a quantitative under-
standing of phenomena such as gene regulation [44–50] and the misfolding-triggered 
pathological aggregation of proteins [51–56], which are discussed in more detail in a 
related study [57], requires the consideration of the full statistics of first passage time.

Existing studies of the full first passage statistics in physical systems typically focus 
on systems with continuous state-space dynamics, whereas much less emphasis is put 
on discrete-space dynamics [58]. Recent investigations of such discrete-state dynamics 
include, for example, simple models of enzyme kinetics [59–61] and novel numerical 
approximation schemes for studying first-passage statistics based on Bayesian inference 
[62] (see also [63] for a recent review).

Complementary to first passage processes are relaxation dynamics, which by con-
trast do not terminate upon reaching a given threshold for the first time. Relaxation 
phenomena in reversible diusive dynamical systems are nowadays well understood in 
terms of the eigenmodes and eigenvalues of the underlying Fokker–Planck operators, 
which provide a generic and very intuitive understanding of the dynamics of complex 
stochastic systems [64–66]. Conversely, despite for allowing an analogous spectral rep-
resentation, a similar intuitive understanding of the full first passage statistics and 
its physical implications remains elusive. Notwithstanding, an important approximate 
link between the mean first passage time for escaping the deepest potential basin and 
the corresponding slowest relaxation mode in the potential was established in the 
seminal works of Matkovsky and Schuss [67, 68], which has ever since been used rou-
tinely in explaining relaxation phenomena in condensed matter systems. Nevertheless, 
a deeper and more generic connection between the two paradigms to date was not yet 
established.

Here, we present the complete duality between relaxation and first passage phe-
nomena, which holds for all ergodic Markov processes obeying detailed balance in both, 
continuous and discrete state-space, in which the absorbing target is eectively 1D. 
The duality emerges in the form of a spectral interlacing, which we prove rigorously by 
combining spectral-theoretic, matrix-algebraic and Greens function-theoretic concepts. 
On the one hand the duality allows for an intuitive generic understanding of first pas-
sage phenomena in terms of relaxation eigenmodes. On the other hand, it enables us to 
determine the full first passage time statistics exactly from the corresponding relaxation 
eigensystem. The formalism is exact and holds for all reversible Markovian systems 
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governed by a master equation in arbitrary dimensions or by a Fokker–Planck equa-
tion, and therefore unifies the theoretical treatment of discrete and continuous space 
phenomena. We note the spectral interlacing in the case of a discrete state dynamics 
has also recently be deduced from a ‘lumping’ of the state dynamics [69].

To illustrate the predictive power of the formalism in practice, we here predomi-
nantly focus on systems with discrete state-space dynamics, whereas continuous space 
dynamics are treated in more detail in a related study [57]. In particular, we here 
apply our theory to a simple discrete-state protein folding model and to diusion in a 
harmonic potential, also know as the Ornstein–Uhlenbeck process. Notably, we obtain, 
to the best of our knowledge, for the first time an exact analytical solution for the full 
first passage time distribution of the Ornstein–Uhlenbeck process in the time domain.

The paper is organized as follows. In section 2 we present a canonical for mulation 
the first passage problem applicable to both discrete states-pace and continuous 
Fokker–Planck dynamics. Sections 3 and 4 provide a step-by-step explanation of how 
one can exactly determine the first-passage distribution from the corresponding relax-
ation process, and also contain rigorous proofs of the duality in discrete and continu-
ous state-space dynamics, respectively. We apply the duality framework in section 5 
to determine the first passage statistics for a simple protein folding model and for the 
Ornstein–Uhlenbeck process. A concluding perspective is provided in section 6. In the 
appendix we derive a compact representation of the long-time asymptotics of the first 
passage time distribution, which inter alia extends our results for the long time asymp-
totics from equilibrium systems to irreversibly driven systems.

2. Fundamentals

2.1. Relaxation and first passage

We assume that the probability density to find the system in state x at time t upon 
evolving from an initial state x0 according to microscopically reversible dynamics, 
P(x,t|x0), is governed by

∂tP (x, t|x0) = LP (x, t|x0), (1)
where L is a linear reversible operator, which will be specified below. We consider two 
classes of operators: (DS) discrete state Markov jump process, where x and x0 assume 
only a finite number of states, and (FP) continuous Markovian diusion governed by a 
Fokker–Planck equation.

For discrete Markov state models of class the dynamics is governed by

LP (x, t|x0) ≡
M∑

x′=0

L(x, x′)P (x′, t|x0), (2)

where x, x′ = 0, 1, . . . ,M denote the discrete states, L(x, x′) is the rate of jumping 

from state x′ to state x (x �= x′) and −L(x, x) =
∑

x′ �=x L(x
′, x) is the total rate of leav-

ing state x guaranteeing conservation of probability (
∑

x ∂tP (x, t|x0) = 0). In order 
to have reversible dynamics we need to additionally impose detailed balance, i.e. the 

https://doi.org/10.1088/1742-5468/ab00df
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constraint L(x, x′)/L(x′, x) = exp[βU(x′)− βU(x)] (see., e.g. [70]), which assures that 
the system will relax to a Boltzmann distribution in a potential U(x) on ergodic times-

cales Peq(x) ∝ e−βU(x), where β = 1/kBT  is the inverse thermal energy. We call such a 
reversible ergodic process that conserves probability a relaxation process. If we add an 
absorbing point at x  =  a we call the resulting process a first passage process or in short 
absorption, which we introduce in the following way. First, we modify the generator 
(L → La) such that all transitions corresponding to jumps out of the absorbing state a 
are removed, i.e. the elements of the first passage generator read

La(x, x
′) =

{
0 if x′ = a,

L(x, x′) otherwise. (3)

Using a bra-ket matrix notation [71] we rewrite this equation as

La = L− L|a〉〈a|, (4)
where |a〉 = (0, . . . , 0, 1, 0, . . . , 0)� = (|a〉)� is a vector with all entries except the ath 
one; consequently, we identify La(x, x

′) = 〈x|La|x′〉. The first passage time density to 
reach state a at time t starting from x0 is then formally defined by

℘a(t|x0) = ∂t〈a|eLat|x0〉 = 〈a|Lae
Lat|x0〉, (5)

which is nothing but the normalized probability flux into state a with 
∫∞
0

℘a(t|x0)dt = 1. 
Note that with equation (4) we use the convention that |a〉 is the unique stationary 
solution with La|a〉 = 0.

For a continuous space Markovian diusion the transition probability density func-
tion (the ‘propagator’) instead obeys the Fokker–Planck equation (1)

LP (x, t|x0) = −∂xj(x, t|x0)

≡ ∂xD[βU ′(x) + ∂x]P (x, t|x0),
 (6)

where j (x,t|x0) is the probability current, D is the diusion constant, −U ′(x) = −∂xU(x) 
is a force field generated by the potential U(x) at position x, and β is the inverse 
temper ature, which we set to β ≡ 1 to express energies in units of kBT  from now on. 
The scenario with reflecting barriers at x = b± with j(b±, t|x0) = 0 [9], we term a relax-
ation process, where b± = ±∞ correspond to so-called natural boundary conditions1.

Conversely, an absorbing boundary at x  =  a enters the Fokker–Planck equation via 
the Dirichlet boundary condition P(a,t|x0)  =  0, without altering the partial dierential 
equation (6), i.e. the first passage operator still reads La = ∂xD[U ′(x) + ∂x]. However, 
here the first passage time density becomes the probability flux into state a. For con-
venience we use the operator La as shorthand for equation (6) under the boundary 
condition P(a,t|x0)  =  0.

We note that without an absorbing point both, dynamics governed by the master 
equation (2) and the Fokker–Planck equation (6) relax to the Boltzmann distribution 
Peq(x) ∝ exp[−U(x)], whereas with the absorbing boundary condition the particle will 
eventually reach the target with probability 1.

1 For natural boundary conditions the current and the probability density both vanish, i.e. 
limb→±∞ j(b, t|x0) = limb→±∞ P (b, t|x0) = 0.

https://doi.org/10.1088/1742-5468/ab00df
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2.2. Eigendecomposition

Since L is assumed to generate a reversible Markov process, we can expand the genera-
tor L in a bi-orthogonal eigenbasis [72]. Denoting the eigenvalues of the relaxation pro-
cess by λk and the corresponding left (right) eigenvectors by 〈ψL

k | (|ψR
k 〉), respectively, 

the generators from equations (2) and (6) become in the respective eigenbases

L = −
∑
k

λk|ψR
k 〉〈ψL

k |, (7)

where λ0 = 0 � λ1 � . . ., and 〈ψL
k |ψR

l 〉 = δkl. We assume the eigenvalues to be ordered 
such that λk � λk+1, and the generator to be irreducible λ0 = 0 < λ1, which means that 
there is a unique equilibrium state [70]. Note that for a Fokker–Planck equation with 
reflecting barriers at x = b± (relaxation) the eigenfunction ψR

k (x) ≡ 〈x|ψR
k 〉 must satisfy 

the zero flux condition −D[U ′(x) + ∂x]ψ
R
k (x)|x=b± = 0, with 〈x|ψR

0 〉 ∝ e−U(x).
The generator with the absorbing point at state a, can similarly be expanded in a 

bi-orthogonal set of eigenfunctions

La = −
∑
k

µk|φR
k 〉〈φL

k |, (8)

where µk is the kth eigenvalue and 〈φL
k | (|φR

k 〉) denote the corresponding left (right) 
eigenfunctions of the first passage process. Without loss generality we use an ordered 
labeling such that µk � µk+1, where 0 < µ1.

The left and right eigenvectors of the absorption (at position x �= a) as well as of the 
relaxation process are related via 〈x|φL

k〉 ∝ eU(x)〈x|φR
k 〉 and 〈x|ψL

k 〉 ∝ eU(x)〈x|ψR
k 〉, respec-

tively. In the case of a discrete number of states, the lowest eigenvalue of the generator 
(4) will be µ0 = 0 with the right eigenfunction |φR

0 〉 = |a〉, whereas for Fokker–Planck 
dynamics one imposes the boundary condition 〈a|φR

k 〉 = 0.
In a previous work an explicit Newton series expression for µ1 in terms of a series 

of almost triangular matrices was derived [48], which corresponds to a large deviation 
limit t → ∞. One of our main goals here is to obtain the full first passage statistics 
℘a(t|x0) explicitly in terms of relaxation eigenmodes. Our theory builds on the renewal 
theorem, which we briefly review in the following subsection.

2.3. Renewal theorem

The classical renewal theorem provides a well known implicit connection between first 
passage and relaxation processes. It relates the probability density of the freely propa-
gating system to be in state x at time t upon starting from a state x0, to the first passage 
distribution ℘a(t|x0) from x0 to a:

P (x, t|x0) =

∫ t

0

dτP (x, t− τ |a)℘a(τ |x0), (9)

where both P(x,t|x0) and ℘a(t|x0) admit a spectral representation

P (x, t|x0) = 〈x|eLt|x0〉 =
∑
k

〈x|ψR
k 〉〈ψL

k |x0〉e−λkt

 (10)

https://doi.org/10.1088/1742-5468/ab00df
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and

℘a(t|x0) =
∑
k�1

wk(x0)µke
−µkt,

 (11)

respectively. In other words, a system starting from state x0 must pass through state a 
before reaching the final state x, which for an eectively 1D Fokker–Planck necessarily 
means x0 < a � x or x0 > a � x. In equation (11) we introduced in the first passage 
weights

wk(x0) =

{
−〈a|φR

k 〉〈φL
k |x0〉 for DS,

−σ±D
∂〈x|φR

k 〉
∂x

∣∣∣
x=a

〈φL
k |x0〉
µk

for FP, (12)

for DS and FP dynamics, respectively, which must satisfy 
∑

k wk = 1 with the 
first nonzero weight being strictly positive w1(x0) > 0, and where we introduced 

σ± ≡ sign(a− x0). Note that the first line of equation (12), i.e. the DS case, is equiv-

alent to wk(x0) =
∑

x�=a〈x|φR
k 〉〈φL

k |x0〉 with La from equation (4). In the case of FP 

dynamics the second line of equation (12) is equivalent to wk(x0) ≡
∫
〈x|φR

k 〉〈φL
k |x0〉dx, 

which follows from a partial integration using both equations (6) and (8).
In the case of x  =  a the renewal theorem (9) has the simple interpretation: a system 

being in state a at time t must have arrived at that point at some earlier time τ  for the 
first time (τ � t), and then returned to the same position again at time t, where τ = t 
corresponds to the time of first arrival.

Laplace transforming the renewal theorem (9), where a generic function f  is trans-

formed according to f̃(s) ≡
∫
e−stf(t)dt, yields [73]

℘̃a(s|x0) =
P̃ (x, s|x0)

P̃ (x, s|a)
=

∑
k(s+ λk)

−1〈x|ψR
k 〉〈ψL

k |x0〉∑
k(s+ λk)−1〈x|ψR

k 〉〈ψL
k |a〉

. (13)

Based on this well known renewal theorem we construct in the following section a 
method that allows to determine explicitly the first passage time statistics ℘a(t|x0) 
exactly in terms of the relaxation process, i.e. we render equation (13) explicit in the 
time domain.

3. Principal result for discrete state systems

Starting from the renewal theorem (13), we now derive an expression for the first pas-
sage time density for discrete state Markov processes in terms of relaxation modes in 
the following three steps. The first step involves a crucial relation between the eigen-
values of the relaxation process λk and absorption process µk, which are here shown to 
interlace

λk−1 � µk � λk (14)
for k = 1, . . . ,M . For eectively one dimensional finite lattice models with the target 
at an outer edge these inequalities become strict

https://doi.org/10.1088/1742-5468/ab00df
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λk−1 < µk < λk, (15)
which will also apply identically to Fokker–Planck dynamics discussed in section 4 in 
which case we formally assume M = ∞. In the second step we exactly express the first 
passage eigenvalues µk in the form of a Newton series of determinants of almost trian-
gular matrices, which generalizes the result for the slowest mode µ1 from [48] to all first 
passage modes. The third and final step corresponds to a straightforward application of 
the residue theorem, which is used to determine the first passage weights wk(x0).

3.1. Interlacing of eigenmodes (step 1)

For a discrete system with M + 1 states the eigenvalues λk and µk correspond to the 
roots of the respective characteristic polynomials

χ(s) ≡ det(1s− L) = s
M∏
i=1

(s+ λi),

χa(s) ≡ det(1s− La) = s
M∏
i=1

(s+ µi),

 (16)

i.e. χ(−λk) = 0 and χa(−µk) = 0. Inserting equation (4), which is La = L− L|a〉〈a|, 
into the second characteristic polynomial (16) and using the matrix determinant lemma 
establishes a link between the two characteristic polynomials

χa(s) = χ(s) + 〈a|adj(1s− L)L|a〉, (17)
where adj(A) is called the adjugate of a matrix A satisfying Cramer’s rule 
Aadj(A) = det(A)1. We note that the same mathematical concepts have been used 
recently to determine the stalling distribution of irreversibly driven systems (see dele-
tion-contraction formula in [74, 75]).

The adjugate of a diagonal matrix D with elements Dii = di (Dij  =  0 if i �= j) is 
diagonal as well, with elements adj(D)ii =

∏
j �=i dj. Consequently, the bi-orthogonal 

expansion (7) implies

adj(1s− L) =
M∑
i=0

|ψR
i 〉〈ψL

i |
M∏
j=0
j �=i

(s+ λj), (18)

which inserted into equation (17) gives

χa(s) = χ(s)−
M∑
i=0

〈a|ψR
i 〉〈ψL

i |a〉λi

M∏
j=0
j �=i

(s+ λj), (19)

where we used the eigenvalue equation 〈ψL
i |L|a〉 = −λi〈ψL

i |a〉. Equation (19) constitutes 
an essential step in our calculations, which allows us to express the diagonal of the 

relaxation propagator P̃ (a, s|a) solely in terms of eigenvalues µk and λk (see the follow-
ing subsection for more details).

Moreover, the characteristic polynomials of the first passage process χa(s) and 
relaxation process χ(s) change sign one after the other, since detailed balance imposes 

https://doi.org/10.1088/1742-5468/ab00df
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〈a|ψR
i 〉〈ψL

i |a〉 � 0 for all i = 0, . . . ,M , which proves that the eigenvalues of the first 
passage process µk and eigenvalues of the relaxation process λk interlace according to 
equation (14). We note that this result is directly related to the interlacing of eigenval-
ues generated from a ‘lumping’ of states which is proven in [69]. In the following para-
graph we briefly discuss the scenario, in which the interlacing of eigenvalues becomes 
strict (15), which will be the case for systems with Fokker–Planck dynamics discussed 
in section 4.2.

The stronger condition (15) holds if all eigenfunctions are nonzero at the target 
|〈a|ψR

k 〉| > 0 and all relaxation eigenvalues are non-degenerate, that is, λi−1 < λi for all 
i = 1, . . . ,M . One can show that this condition is always trivially satisfied for 1D mod-
els (L(x, x′) = 0 if |x− x′| > 1), in which the target a is placed at the border (e.g. a = M  
or a  =  0); see inset of figure 1(a) for such an exemplary three-state system.

Inserting the relaxation eigenvalues s = −λk into the characteristic polynomial of 
the first passage process (19) yields

χa(−λk) = (−1)k+1λk〈a|ψR
i 〉〈ψL

i |a〉
M∏
i=0
i �=k

|λi − λk|, (20)

where we used the relations λi − λk < 0 for all i  <  k and λi − λk > 0 for all i  >  k, as well 
as χ(−λk) = 0. Since for k � 1 each eigenvalue is positive (λk > 0), the characteristic 
polynomial of the first passage process χa(−λk) is equal to (−1)k−1 multiplied by a posi-
tive constant. Consequently, χa changes sign exactly once between any two consecutive 
relaxation modes −λk < s < −λk−1. The fact that χa and χ are polynomials of the same 
degree M + 1 forbids more than a single root, and hence implies the strict interlacing 
of eigenvalues from equation (15), which completes the proof. The aforementioned rea-
soning is illustrated in figure 1(a) for a simple three state model in which the vertical 
arrows represent equation (20).

For fine-tuned systems in which the target is not located at the very outer posi-
tion (see e.g. figure 1(b)) or systems that are not eectively one dimensional (see e.g. 
figure 1(c)) the strict interlacing theorem (15) can be violated, whereas the ‘slightly 
weaker’ interlacing condition (14) still holds.

3.2. Diagonal of the relaxation propagator in terms of bare eigenvalues

Using the results from the previous subsection we are now in the position to represent 

P̃ (a, s|a) (i.e. equation (10) with x0  =  x  =  a), using only the eigenvalues of both the first 
passage process and the relaxation process, µk and λk, respectively. Laplace transform-
ing the eigenmode expansion in equation (10) assuming x0  =  x  =  a yields

P̃ (a, s|a) = Peq(a)

s
+

M∑
k=1

〈a|ψR
k 〉〈ψL

k |a〉
s+ λk

, (21)

where we identified the equilibrium probability density 〈a|ψR
0 〉〈ψL

0 |a〉 = Peq(a) in the 
first term. Comparing now P̃ (a, s|a) in (21) with χa from equation (19) and χ from 

equation (16) yields after some algebra

https://doi.org/10.1088/1742-5468/ab00df
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P̃ (a, s|a) = χa(s)

sχ(s)
=

1

s

M∏
i=1

(s+ µi)

(s+ λi)
. (22)

The second equality in equation (22) follows from equation (16). Hence, P̃ (a, s|a) 
encodes the eigenvalues of both, the relaxation and the first passage processes. Due 

to equation (21) P̃ (a, s|a) contains only simple poles and decreases monotonically in 
s between any two consecutive poles since 〈a|ψR

k 〉〈ψL
k |a〉 � 0. If 〈a|ψR

k 〉〈ψL
k |a〉 > 0 (e.g. 

1d models with the target at at the border) each root λk of P̃ (a, s|a) represents a first 
passage eigenvalue s = −µk (k � 1), which is located in between two relaxation modes 
λk−1 < µk < λk, thus providing an alternative proof of relation (15) [76]. In the follow-
ing section we determine the roots of the diagonal of the propagator explicitly, which 
due to equation (22) correspond to first passage eigenvalues µk.

Let us briefly reformulate P̃ (a, s|a) in a way that can also be applied to continuous 
systems with an infinite number of states. Isolating the equilibrium probability, which 
is the first term in equation (21), from the product formula (22) yields

P̃ (a, s|a) = Peq(a)

s

M∏
k=1

(1 + s/µk)

(1 + s/λk)
. (23)

Since µk,λk increase monotonically with k we will later be able to adopt these results to 
systems governed by Fokker–Planck dynamics, which formally corresponds to the limit 
M → ∞ for which the product in equation (23) still converges.

Figure 1. Characteristic polynomials χ (solid blue line) and χa (dash-dotted red 
line) for simple three state models (see insets) along real axis in s. (a) Linear chain 
of states with the absorbing state at the border a  =  2. χ crosses the s axis at 
s = −3,−1, 0 which correspond to −λ2,−λ1,−λ0, respectively. (b) The same model 
as in (a) but with the absorbing state at a  =  1. The first eigenmode |ψR

1 〉 = (1, 0, 1)� 
vanishes at the target. (c) Fully connected three state model, in which λ1 = λ2. All 
rates in (a)–(c) are set to 1 (relaxation process). The transition rates away from 
absorbing point (dashed arrows) are set to zero (absorption). We note this special 
choice of rates deliberately generates a multiplicity of the first relaxation mode in 
(b) and the first passage mode in (c).

https://doi.org/10.1088/1742-5468/ab00df
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3.3. From the relaxation spectrum to the first passage time spectrum (steps 2 and 3)

Based on the interlacing theorem presented in equation (14), which is also given in equa-
tion (4) in a related work [57], we can determine the full first passage time spectrum 
{µk,wk(x0)} from the corresponding relaxation spectrum, {λk, |ψR

k 〉, 〈ψL
k |}. For simplic-

ity we first consider the eigenvalues to be both ordered λk < λk+1 and non-degenerate, 
and also assume that 〈a|ψR

k 〉〈ψL
k |a〉 > 0 holds for all values of k. The extension to situ-

ations with 〈a|ψR
k 〉〈ψL

k |a〉 = 0, which also includes degenerate eigenvalues, for some k is 
straightforward and will be dealt with at the end of this subsection.

Before determining the weights wk, we first determine the first passage eigenvalues 

µk, which were shown to be encoded in the roots of P̃ (a, s|a) in equation (22). We intro-
duce the k*th ‘modified diagonal of the propagator’ 

Fk∗(s) ≡ (s+ λk∗)P̃ (a, s|a)

= 〈a|ψR
k∗〉〈ψL

k∗ |a〉+ (s+ λk∗)
M∑
l=0
l �=k∗

〈a|ψR
l 〉〈ψL

l |a〉
s+ λi

, 
(24)

which still encodes all of the first passage eigenvalues {µk} according to equation (22), i.e. 
it has exactly the same roots as P̃ (a, s|a). However, in contrast to P̃ (a, s|a) the modified 
function Fk∗(s) is strictly concave within the interval −λk∗+1 < s < −λk∗−1, which can eas-

ily be confirmed by taking the second derivative and realizing that F̈k∗(s) ≡ ∂2
sFk∗(s) < 0 

holds within the region of interest −λk∗+1 < s < −λk∗−1.
For k*  =  k and k*  =  k  −  1 the modified functions Fk(s) and Fk−1(s) both are strictly 

concave within the interval −λk < s < −λk−1 and, consequently, also locally concave 

around the kth first passage eigenvalue s = −µk, i.e. F̈k(−µk) and F̈k−1(−µk) < 0. 
Moreover, both functions Fk(s) and Fk−1(s) allow a Taylor expansion around the mid-
point µ̄k ≡ (λk + λk−1)/2 that converges within the whole interval −λk < s < −λk−1 
including the root s = −µk at which Fk(−µk) = Fk−1(−µk) = 0.

The method we present in the following is an analytical technique based on the 
principles of Newton iteration, which is a simple root finding algorithm that is guar-
anteed to work for functions that are both negative and concave between the starting 
point and the first root. Hence, to determine the kth eigenvalue we accordingly choose 
the modified function

f(s, k) = Fk∗(s), (25)
such that

k∗ =

{
k if Fk(−µ̄k) < 0,

k − 1 otherwise.
, (26)

which guarantees both negativity f(s, k) � 0 and concavity ∂2
sf(s, k) � 0 between 

s = −µ̄k and s = −µk.
According to the interlacing theorem (15) s = −µk is the only zero f(−µk, k) = 0 within 

the interval −λk < s < −λk−1. With the midpoint starting condition µ̄k = (λk + λk−1)/2 
the kth first passage eigenvalue can be represented exactly in a series of determinants 
of almost triangular matrices

https://doi.org/10.1088/1742-5468/ab00df
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µk = µ̄k +
∞∑
n=1

f0(k)
n

f1(k)2n−1

detAn(k)

(n− 1)!
, (27)

where f n(k) is the nth derivative of f(s, k) as defined in (25) with respect to s at s = −µ̄k, 
and An(k) stands for an almost triangular matrix with elements [48]

Ai,j
n (k) =

fi−j+2(k)Θ(i− j + 1)

(i− j + 2)!

[
n(i− j + 1)Θ( j − 2) + iΘ(1− j) + j − 1

]
,

 (28)
with Θ(l) denoting the Heaviside step function (Θ(l) = 1 if l � 0) and i, j = 1, 2, . . . ,n− 1. 
Moreover, we adopt the convention detA1(k) = 1. We note that this method general-
izes the method recently derived to determine the slowest first passage mode µ1 [48] to 
all first passage eigenmodes µk.

Let us briefly repeat the two crucial steps towards equation (27). First, the interlac-
ing theorem (15) guarantees that the Taylor series f(s, k) =

∑
i fi(k)(s+ µ̄k)

i around the 
midpoint µ̄k = (λk + λk−1)/2 converges in the entire spectral interval −λk < s < −λk−1, 
which also contains the first passage eigenvalue s = −µk. Second, due to Fk∗(s) in equa-
tions (24)–(26) the function f(s, k) is strictly concave and negative between s = −µ̄k 
and s = −µk, which in turn guarantees the convergence of the explicit Newton  
series (27).

Equations (24)–(26) provide a universal method for determining explicitly first pas-
sage eigenvalues from the corresponding relaxation spectrum and constitute the cen-
tral result of this work. We show in the appendix a simpler derivation of µ1 as well 
as a compact approximation of the principal first passage eigenvalue µ1, which is par-
ticularly useful in the case of time scale separation µ1 � λ1 (or λ1 � λ2). Furthermore, 
the appendix provides a generalization of the long time asymptotics from systems with 
reversible dynamics to irreversibly driven systems.

In the following we briefly comment on the practical implementation of the exact 
result for µk to render equations (24)–(27) fully explicit. The weights wk will be deter-
mined afterwards in this subsection. The nth derivative of Fk∗(s) with respect to s at 
s = −µ̄k, fn(k) ≡ ∂n

s f(s, k)|s=−µ̄k
, can be written explicitly as

f0(k) = 〈a|ψR
k∗〉〈ψL

k∗ |a〉+
∑
l|l �=k∗

〈a|ψR
l 〉〈ψL

l |a〉
(µ̄k − λk∗)

(µ̄k − λl)
,

fn�1(k) = n!
∑
l|l �=k∗

〈a|ψR
l 〉〈ψL

l |a〉
(λl − λk∗)

(µ̄k − λl)n+1
,

 

(29)

where k*  =  k or k*  =  k  −  1 is chosen according to equation (26). Note that condition 
(26) is equivalent to the condition f0(k) � 0, implying the first line of equation (29) to 
be either negative for k*  =  k or for k*  =  k  −  1, i.e. one has to evaluate the first line of 
equation (29) for k*  =  k: if f 0(k)  >  0 one must to change k* to k*  =  k  −  1 and reevalu-
ate f 0(k). Once one has determined k*(k) and f 0(k) one can proceed with the second line 
of equation (29) to determine f n(k)/n! and insert the result in the almost triangular 
matrix (28). The determinant of almost triangular matrices can be calculated elegantly 
using the simple recursion relation from [77], see also [78] for an ecient numerical 
implementation.

https://doi.org/10.1088/1742-5468/ab00df
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Having obtained the first passage eigenvalues, the weights of the first passage time 
distribution can be calculated using the standard residue theorem. The Laplace trans-
form of the spectral expansion of the first passage time density (11) reads

℘̃a(s|x0) ≡
∑
k

wk(x0)µk

s+ µk

. (30)

Using the residue theorem to invert the Laplace transformed renewal theorem (13) 
yields

wk(x0) =
P̃ (a,−µk|x0)

µk
˙̃P (a,−µk|a)

=

∑
l(1− λl/µk)

−1〈a|ψR
l 〉〈ψL

l |x0〉∑
l(1− λl/µk)−2〈a|ψR

l 〉〈ψL
l |a〉

,

 

(31)

where ˙̃P (a, s|a) = ∂sP̃ (a, s|a) is taken at s = −µk. The explicit Newton series (27) along 

with the first passage weights (31) fully characterize the first passage time distribution 
℘a(t|x0) =

∑
k wk(x0)µke

−µkt in terms of relaxation eigenmodes {λk,ψ
R
k }. This completes 

our third and final step, which allows, for the first time, to analytically deduce first 
passage time statistics directly from relaxation eigenmodes. We call this relation the 
explicit forward duality between first passage and relaxation. This completes the central 
result of this paper.

The spectral representation is very useful for determining the moments of the first 
passage time, 〈tn〉 ≡

∫
tn℘a(t|x0)dt = n!

∑
k wk(x0)µ

−n
k . Moreover, as explained in more 

detail in a related work [57], the full spectral expansion is required for a correct expla-
nation of kinetics in the so-called few encounter limit, where N molecules starting 
from position x0 are searching for the target at a. The probability density that the 
first molecule out of N arrives at time t at a for the first time for this case becomes 

℘
(N)
a (t|x0) = N℘a(t|x0)[

∫∞
t

℘a(τ |x0)]
N−1dτ , which can be understood as follows. The 

probability that the first N  −  1 molecule have not yet reached the target will be given 

by [
∫∞
t

℘a(τ |x0)dτ ]
N−1, while the Nth particle arrives at a with a rate ℘a(t|x0); hence 

the probability density that any particle out of N molecules arrives at the target for 

the first time according to ℘
(N)
a (t|x0). Further details of the N-particle problem and in 

particular the physical implications of the few-encounter limit are discussed in a related 
study [57].

Let us now briefly generalize the method to systems with degenerate eigenvalues or 
vanishing relaxation modes. An eigenfunction that vanishes at the target 〈a|ψR

k 〉 = 0 
will have a vanishing spectral weight as a result of equation (31). Hence, ‘manually’ 
removing such modes will not aect the first passage time distribution ℘a. Moreover, if 
a relaxation eigenvalue λk is degenerate we define

Ψk(a, x0) ≡
∑

k′|λk′=λk

〈a|ψR
k′〉〈ψL

k′ |x0〉,
 (32)

and replace 〈a|ψR
k 〉〈ψL

k |x0〉 → Ψk(a, x0) as well as 〈a|ψR
k 〉〈ψL

k |a〉 → Ψk(a, a) and take the 
sums in equation (13) over all dierent values of λk. After renumbering all distinct 
contributing eigenvalues we obtain a strict interlacing (15). Therefore, we can apply 

https://doi.org/10.1088/1742-5468/ab00df
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our standard forward duality also to degenerate eigensystems. In the next subsection 
we will briefly derive a formal backward duality after which we reformulate the results 
from this subsection to continuous Fokker–Planck dynamics.

3.4. Backward duality

In contrast to the explicit forward duality, which was presented in the previous subsec-
tion, an explicit reverse relation in the time-domain could not be established. In Laplace 
space, however, the forward duality can be inverted to give a backward duality as fol-
lows. Inserting the first passage generator La = L− L|a〉〈a| from (4) into the Laplace 

transform of the propagator P̃ (a, s|x0) = 〈a|(1s− L)−1|x0〉 and using the Sherman–
Morrison–Woodbury formula yields

P̃ (a, s|x0) =
〈a|(1s− La)

−1|x0〉
1− 〈a|(1s− La)−1L|a〉

. (33)

Let us now insert the expression for the first passage time distribution from equa-
tion (5), which can be written as ℘a(s|x0) = s〈a|(1s− La)

−1|x0〉, into equation (33) to 
obtain

P̃ (a, s|x0) =
℘̃a(s|x0)/s

1−
∑M

x=0 L(x, a)℘̃a(s|x)/s
, (34)

where L(x, a) = 〈x|L|a〉 is the generator of the relaxation process. Notably, this is 
expression corresponds to the backward duality and is the formal inverse of the renewal 
theorem, where ℘̃a(s|x0)/s is the Laplace transform of the cumulative first passage time 

distribution 
∫ t

0
℘a(τ |x0)dτ.

4. Principal result for Fokker–Planck dynamics

4.1. Greens function with natural boundaries

We restrict our discussion to eectively 1D dynamics, which include diusion in d 
dimensions in an isotropic potential as discussed in [48], where d may also be fractal. 
Introducing an absorbing target at position a splits the first passage problem into two 
cases (I) x0  <  a and (II) x0  >  a. Case (I) corresponds to an absorption from the left, and 
case (II) to an absorption from the right. In the following paragraph we demonstrate 
that all first passage modes µk of both distinct cases (I) and (II) are entirely encoded in 

P̃ (a, s|a), which allows to formulate the results from section 3.3 also for systems with 
Fokker–Planck dynamics.

Laplace transforming the Fokker–Planck equation (6) yields

(L− s)P̃ (x, s|x0) = −δ(x− x0) (35)

where L = −∂xD[βU ′(x) + ∂x] and x0 is the initial position of the relaxation process. 
Equation (35) is a inhomogeneous linear dierential equation which can be solved 
using the standard Green’s function approach. First, we find the two independent 

https://doi.org/10.1088/1742-5468/ab00df
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solutions v±(x, s) of the homogeneous problem (L− s)v±(x, s) = 0, where we use the 
label ‘−’ and ‘+’ for the solution satisfying the left and right boundary condition, 
respectively. That is, a diusion process within an interval b− < x < b+ imposes the 
probability current j±(x, s) ≡ −D[βU ′(x) + ∂x]v±(x, s) to vanish at the boundaries, i.e. 
j±(b±, s) = 0. The special case of so-called natural boundary conditions correspond to 
the limit limx→±∞ v±(x, s) = 0 or analogously limx→±∞ j±(x, s) = 0, that is, b± = ±∞. 

The full solution P̃ (x, s|x0) of (35) is a continuous function in x with a discontinuity of 

its first derivative at x  =  x0. Using the scaled Wronskian2

Ws(x) ≡ D[v−(x, s)∂xv+(x, s)− v+(x, s)∂xv−(x, s)],

= v+(x, s) j−(x, s)− v−(x, s) j+(x, s)

= det

(
v+(x, s) v−(x, s)

j+(x, s) j−(x, s)

) 

(36)

the propagator, which satisfies the proper jump condition of the first derivative (cur-
rent function) at x  =  x0, becomes

P̃ (x, s|x0) =

{
v+(x,s)v−(x0,s)

Ws(x0)
if x0 � x,

v−(x,s)v+(x0,s)
Ws(x0)

if x0 � x.
 (37)

We note that the Wronskian (36) is proportional to the Boltzmann factor (see, e.g. 
[76]), i.e. Ws(x) = Ws(x0) exp[βU(x0)− βU(x)]. Hence using the renewal theorem (13) 
and P̃ (a, s|a) as well as P̃ (a, s|x0) from equation (37) yields the Laplace transform of 
the first passage time distribution

℘a(s|x0) = eβU(x0)−βU(a) ×

{
v−(x0,s)
v−(a,s)

if x0 < a,
v+(x0,s)
v+(a,s)

if x0 > a.
 (38)

The two independent functions v±(x, s) are entire functions without any poles in s [79], 
and in turn encode in their roots all first passage eigenvalues s = −µk. In particular 
v− encodes all first passage modes from case (I) x0  <  a, and v+ encodes all first passage 
modes from case (II), in which the particle is absorbed from the right x0  >  a. Due to 

equation (37) the zeros of P̃ (a, s|a) at s = −µk determine the first passage spectrum. 
Hence, all results from section 3.3 hold identically for continuous systems as well. 

However, the sums are here not finite, i.e. M = ∞. For example, P̃ (a, s|a) becomes

P̃ (a, s|a) =
∞∑
l=0

ψL
l (a)ψ

R
l (a)

s+ λl

, (39)

where ψR
l  is the lth right eigenfunction of the Fokker–Planck operator satisfying 

LψR
l (x) = −λlψ

R
l (x) with the corresponding left eigenfunction ψL

l (a) ∝ eβU(a)ψR
l (a) and 

normalization 
∫ b+
b−

ψR
l (x)ψ

L
l (x)dx = 1. The first passage modes µk can then be deter-

mined with equations (27)–(29), where k* (k*  =  k or k*  =  k  −  1) must be chosen such 

2 For convenience we defined with the scaled Wronskian with the current function j±(x, s) instead of the first der-
viative ∂xv±(x, s), i.e. Ws(x)/D would represent the standard definition of the Wronskian.
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that f 0(k)  <  0 holds in equation (29) with 〈a|ψR
l 〉〈ψL

l |a〉 ≡ ψL
l (a)ψ

R
l (a). Concurrently, the 

first passage weights follow from equation (31).
The formal backward duality from section 3.4, however, must be adopted as follows. 

After some tedious algebra we obtain formally the exact inverse duality in the form of

P̃ (x, s|x0) = σ±
eβU(x0)−βU(x)℘x0(s|x)

D ∂
∂x0

ln[℘x0(s|x)℘x(s|x0)]
, (40)

where sign σ± = −1 if x0  <  x and σ± = +1 if x0  >  x; equation (40) can easily be verified 
by inserting the Wronskian (36) and the first passage time distribution (38) into the 
right hand side of equation (40), and comparing the result with the propagator from 
equation (37). Notably, this inverse duality is the continuous version of equation (34).

4.2. Relaxation under reflecting boundary conditions and strict spectral interlacing

In the previous subsection the target a divided the phase space into two regions, which 
implies that the first passage modes for the cases (I) and (II) separate into ‘left’ and 
‘right’ modes as well. For example, if x1  <  a and x2  >  a one of the first passage weights 
wk(x1) or wk(x2) must typically be zero for all values of k. If one uses just the first M 
modes to approximate the propagator (see equation (39)) the zeros of the right hand 
side of

P̃M(a, s|a) ≡
M∑
k=0

ψR
k (a)ψ

L
k (a)

s+ λk

,

 (41)
become approximations of the first passage modes and, hence, the weights wM

k (x1) 
and wM

k (x2) deduced from equation (41) will only satisfy wM
k (x1) � wM

k (x2) (or 
wM

k (x1) � wM
k (x2)) for finite M, i.e. modes from case (I) and (II) mix. Such a mixing 

can be avoided entirely if the relaxation process is analyzed with a reflecting boundary 
at the target position a (b+   =  a or b−  =  a).

The result for reflecting boundary conditions j + (a)  =  0 (case (I)) and j −(a)  =  0 (case 
(II)) is automatically obtained by the following replacement:

v±(x) → v±(x, s) j∓(a, s)− j±(a, s)v∓(x, s),

j±(x) → j±(x, s) j∓(a, s)− j±(a, s) j∓(x, s),
 (42)

respectively, which inserted into the scaled Wronskian (36) at x  =  a yields

Ws(a) =

{
v+(a, s) j−(a, s) if case (I) x0 < a,

−v−(a, s) j+(a, s) if case (II) x0 > a. (43)

Utilizing the Wronskian for the reflecting boundary condition in equation (37) yields 
the diagonal of the propagator in the form

P̃ (a, s|a) ≡ lim
ε→0

P̃ (a± ε, s|a) = ±v±(a, s)

j±(a, s)
. (44)

For two linearly independent functions v± with nonzero Wronskian (36) the zeros of v± 
and j± are dierent. Hence, the zeros of v− in s contain only the first passage modes for 
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the case (I) x0  <  a, whereas the zeros of v− do not contain zeros of first passage modes 
corresponding to the case (II) x0  >  a.

Let us from now on just focus on a case (I), in which x0  <  a, since case (II) follows by 
analogy. For case (I) we consider the Fokker–Planck operator L from equation (6) with 
zero current condition at x  =  a and natural boundary condition for x → −∞. To that 
end we first determine the relaxation eigenvalues λk and eigenmodes ψR

k ,ψ
L
k . Note that 

we consider the eigensystem in the presence of a reflecting wall. Without loss of gen-
erality we here explicitly treat only the ‘left’ problem −∞ < x � a, since the opposite 

‘right’ problem (denoted later on with †) follows by analogy. As before we have the nor-

malization 
∫ a

−∞ ψL
k (x)ψ

R
l (x)dx = δkl. Using {ψL

k (x),ψ
R
l (x)} we now determine the first 

passage eigenvalues µk as explained in the previous subsection. The resulting first pas-
sage eigenvalues µk will automatically contain only first passage modes corre sponding 
to the ‘left’ problem. This procedure remarkably simplifies the numerical determina-

tion of the first passage distribution, especially of those modes that are faster than the 

slowest mode of the ‘right’ problem (i.e. absorption from the right), µk > µ†
1, since a 

small number of modes M in equation (41) might otherwise be confused with ‘fantom’ 
modes from the opposite case †. In a related work [57] we investigated the ‘left’ first 
passage problem (case (I)) for a triple well potential in the presence of a reflecting 
boundary, and found an excellent agreement between the analytical first passage time 
distribution and computer simulations extending over many orders of magnitude in 
time using merely M  =  40 relaxation modes. Finally, we have to point out that solving 
an eigenvalue problem {λk,ψ

R
k } with reflecting boundary condition is numerically easier 

than without reflecting boundary, i.e. natural boundaries albeit theoretically easier are 
numerically harder.

In the following section we apply these theoretical results to a discrete-state protein 
folding model and for the Ornstein–Uhlenbeck process.

5. Examples

5.1. Discrete protein folding model

We consider a simple continuous-time Markov state model for a protein with three struc-
tural elements as shown in figure 2. The protein starts from an initially unfolded state 
x0 = (0, 0, 0) ≡ I, from which it is searching for the native state a = (1, 1, 1) through 
intermediate states II–VII (see e.g. [80, 81]). Each arrow in figure 2 indicates a possible 
transition x → x′ (x, x′ = I, . . . , VIII, x �= x′) that occurs with a Arrhenius type rate 
L(x′, x) ≡ exp(Fx − Bxx′), where Fx denotes the free energy of state x and Bxx′ = Bx′x 
the energy barrier along the transition link x ↔ x′. The resulting transition matrix 
satisfies detailed balance ln[L(x′, x)/L(x, x′)] = Fx − Fx′ for all values of {Fx,Bxx′}, and 
naturally has negative diagonal elements L(x, x) = −

∑
x′ �=x L(x

′, x).
To test the power of the method from section 3.3 we set up the 8× 8 transition 

matrix L with elements 〈x′|L|x〉 = L(x′, x) for a given set of energy barriers Bxx′ and 
free energies Fx. Then we carry out the eigendecomposition of L, for which we first 
determine the eigenvalues 0 < λ1, . . . ,λ7 (with λ0 = 0) corresponding to the zeros of 

https://doi.org/10.1088/1742-5468/ab00df


Interlacing relaxation and first-passage phenomena in reversible discrete and continuous space Markovian dynamics

18https://doi.org/10.1088/1742-5468/ab00df

J. S
tat. M

ech. (2019) 024002

the characteristic function (16), χ(−λk) = 0. We then determine the right eigenvectors 
|ψR

k 〉 by solving L|ψR
k 〉 = −λk|ψR

k 〉 for k = 0, . . . , 7. The corresponding left eigenvec-
tors, which solve 〈ψL

k |L = −〈ψL
k |λk, have components 〈ψL

k |x〉 = N−1eFx〈x|ψR
k 〉, where 

N =
∑VIII

x=I e
Fx |〈ψR

k |x〉|2 is a normalization factor. We take the function Fk∗ as defined in 
equation (24), where Ψk = 〈a|ψR

k 〉〈ψL
k |a〉 and µ̄k = (λk + λk−1)/2 with k = 0, . . . , 7, and 

choose k*(k)  =  k,k  −  1 according to equation (26), which guarantees f(s, k) = Fk∗(k)(s) 
to be negative at s = −µ̄k. The truncated Newton series (27) involving the first N terms 
is then given by

µN
k = µ̄k +

N∑
n=1

f0(k)
n

f1(k)2n−1

detAn(k)

(n− 1)!
, (45)

where detAn(k) is the determinant of the almost triangular matrix from equation (28) 
and f i(k) is the ith derivative of f(s, k) at s = −µ, with explicit formulas given in equa-
tion (29). The weights wk(x0) are determined using equation (31), i.e. by inserting 
µk → µN

k . The calculations are performed for 100 randomly generated folding land-
scapes chosen as described in the caption to figure 2. In figure 3 we present the results 
for one particular realization of the folding landscape. Figure 3(a) displays the first pas-
sage time distribution for N  =  6 and N  =  12 on a doubly-logarithmic scale. The solid 
line represents the first passage time distribution obtained via a numerical diagonaliza-
tion of La. The corresponding duality solutions nicely overlap with the numerical result 
even on relatively short time scales (see inset for a plot with linear scales).

Having obtained the full distribution of first passage times is important for under-
standing kinetics in the so-called few encounter limit [48], in which for example 100 
molecules are simultaneously searching for a state a. This scenario is indeed biologi-
cally relevant, for example, in the misfolding-triggered protein aggregation, which in 
turn leads to numerous diseases (see [57] for a more detailed discussion). Namely, as 
soon as the first protein molecule spontaneously misfolds it creates a nucleation site for 
further downhill misfolding and aggregation events ultimately leading to a macroscopic 
insoluble toxic aggregate.

In such a scenario the typical timescale of first arrivals will naturally be shifted 
towards shorter timescales, thus requiring an accurate determination of the full first 

Figure 2. Discrete state protein folding model. Each arrow indicates a transition 
x → x′ with rate L(x′, x) = exp(Fx − Bxx′), where Bxx′ = Bx′x is the energy barrier 
between the pair of states x and x′ and Fx is the free energy of state x, where 
x, x′ = I, . . . , VIII. We randomly generated 100 folding landscapes with Bxx′ and 
Fx uniformly distributed within the interval 0 � Bxx′ ,Fx � 4. The results for one 
particular realization of the landscape are presented in figure 3.
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Figure 3. Results for a particular realization of the folding landscape. (a) First 
passage time distribution as function of time t. The Inset depicts the same data 
but on a linear time scale. (b) Relative error of the first passage eigenvalue 
ε(µk) ≡ |µk,N − µk|/µk, where µk,N is the finite version of (27), where n = 1, . . . ,N .

Figure 4. Rate of convergence of the truncated duality solution towards the 
respective numerical solution for randomly generated folding landscapes. We 
generated 100 folding landscapes according to figure 2 and determined for each 
model the error of the truncated Newton series (45) in terms of ε(µk) ≡ |µk,N − µk|/µk 
for all first passage eigenvalues k = 1, 2, . . . , 7. (a) The typical error given by the 
median over all respective errors ε(µk), as function of the number of terms N in 
the truncated Newton series (45). That is, 50 models generated a smaller error 
ε(µk) � εmedian(µk) and 50 models generated a larger error ε(µk) � εmedian(µk).  
(b) Maximal error ε(µk) ≡ |µk,N − µk|/µk out of all 100 randomly generated models 
as function of N. Here the maximal error (worst case) was observed for the fifth 
mode. The inset shows the diagonal of the propagator P̃ (a, s|a) as function of 
s for the model corresponding to the worst case; the approximations −µk,N for 
the corresponding first passage eigenvalue at s = −µ5 are indicated for N  =  20 
(diamond) and N  =  200 (star).
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passage statistics. Standard approaches focusing on the mean first passage time alone, 
would therefore fail in the few encounter limit, whereas our new framework provides 
an accurate and consistent result (see also [57] and figure 2 therein for more details).

In figure 4 we systematically analyze the deviation of the truncated Newton series 
(45) with respect to corresponding numerically obtained first passage eigenvalues µk 
for 100 randomly generated folding landscapes. For a given landscape the relative error 
is quantified in terms of the dimensionless quantity ε ≡ |µN

k − µk|/µk, and figure 4(a) 
depicts the typical error characterized by the median of the individual errors for all 
seven modes, respectively. Note that for N  =  20 the relative error of the finite Newton 
series is typically below 10−6.

Figure 4(b) displays the maximal error out of 100 randomly picked landscapes. We 
observe that larger errors can occur if a first passage eigenvalue is located immediately 
after a gap in the relaxation spectrum. The smaller error of the slowest first passage 
mode µ1 is due to the fact that µ1 cannot be located after such a gap due to the inter-
lacing theorem (14), which implies µ1 � λ1. In this specific example the maximum 
relative error out of 100 models randomly generated models is found for the fifth mode 

(µ5); the inset of figure 4(b) shows the corresponding P̃ (a, s|a) as well as the result form 
the finite Newton series with N  =  20 (see diamonds in the inset of figure 4(b)). In this 
extreme scenario the weight of the fifth relaxation mode Ψ5 � Ψl �=5 is almost negligible 
compared to other weights, leading to an almost vanishing weight w5, which would in 
turn require an increased number of terms N entering the Newton series. Increasing the 
number of terms in the truncated Newton series from N  =  20 to N  =  200 reduces the 
deviation from ε � 10−1 to ε � 10−2, the result for N  =  200 is marked by the star in the 
inset of figure 4(b). Figure 4 readily demonstrates that the our duality can be robustly 
and reliably applied to all Markov state models.

5.2. Ornstein–Uhlenbeck process

Let us now consider a linear Ornstein–Uhlenbeck, which corresponds to a diusion pro-
cess in a harmonic potential βU(x) = ωx2/2. The corresponding Fokker–Planck opera-
tor reads L = D∂xωx+D∂2

x. The eigendecomposition of the relaxation process in the 
absence of reflecting boundaries is well known. The respective eigenvalues are given by 
λk = Dωk with the corresponding eigenfunctions [72]

ψR
k (x) ≡ 〈x|ψR

k 〉 =
e−ωx2/2

√
2π/ω

Hk(x
√
ω/2)

k!2k
,

ψL
k (x) ≡ 〈ψL

k |x〉 = Hk(x
√

ω/2),

 

(46)

where Hk is the kth Hermite polynomial. Although this process is extremely well stud-
ied, a closed-form analytical result for the first passage time distribution ℘a(t|x0) for 
any non-centered target position a �= 0 remained elusive [82–84]. We note that the well 
known analytical solution of the Laplace transform of the probability density ℘̃a(s|x0) 
in terms of Hermite polynomials [73, 82, 85, 86] until now could only be analytically 
inverted to ℘a(t|x0) for the special case a  =  0 [82]. Furthermore, the exact large devia-
tion limit ℘a(t|x0) � w1(x0)e

−µ1t was just recently derived in [48]. To obtain the full 
first passage time distribution we here use equations (24)–(26) as follows. Inserting 
equation (46) into equations (24)–(26) yields the modifed diagonal of the propagator
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f(s, k) = (s+Dωk∗)
M∑
l=0

e−ωa2/2

√
2π/ω

Hl(a
√

ω/2)2

l!2l(s+Dωl)
 (47)

where k*(k)  =  k,k  −  1 is chosen according to equation (26), which is equivalent to 
f(−µ̄k, k) < 0 with µ̄k = Dω(k − 1/2). Note that we truncated the sum after M terms 
for the numerical evaluation, whereas the exact formal result corresponds to M = ∞. 
The first line of equation (29) is then simply given by f0(k) = f(−µ̄k, k) and the second 
line of equation (29) becomes

fn�1(k) =
e−ωa2/2

(Dω)n
√

2π/ω

M∑
l=0
l �=k∗

Hl(a
√
ω/2)2(l − k∗)

l!2l(k − l − 1/2)n+1
. (48)

The kth first passage eigenvalue µk is determined by using the finite Newton series (45), 
where the almost triangular matrix is taken from equation (28), and the corresponding 
first passage weights wk(x0) are determined using the residue theorem (31). Note that 
our theory allows for the first time to determine analytically all first passage eigenval-
ues {µk} as well as the weights {wk} and, therefore, also provides a complete solution 
to the first passage time density ℘a(t|x0).

Figure 5 depicts the results for the case, where the absorbing point is set at a  =  2. 
Note that this scenario does not yet correspond to the well-known high barrier Kramers 

regime. In figure 5(a) we compare the exact P̃ (a, s|a) (solid blue line) with the finite 
approximation from equation (41) using M  =  20 (dashed yellow line) and M  =  2000 
(dash-dotted red line) relaxation modes, respectively. The symbols represent the 
corre sponding first passage modes (s = −µ1,−µ2, . . .). Using only a small number of 
relaxation modes M  =  20 (see yellow crosses) the zeros dier substantially from the 
respective numerically obtained solution, which becomes, however, rather well approxi-
mated if we increase the number of modes to M  =  2000 (see open red circles). We note 
that such deviations of the first passage modes become particularly inconvenient for 
the modes that are marked by the vertical arrows in figure 5(a). These first passage 
modes correspond to an absorption from the right, where the corresponding weights 
vanish wk(x0) = 0 (here k = 4, 7, 9, . . .) completely for all x0 � a, which, however, is 
only obtained in the limit M → ∞.

This numerical truncation problem can be avoided completely if the relaxation 
process is considered with a reflecting boundary condition as explained in section 4.2, 
which automatically removes beforehand all zeros marked by the arrows in figure 5(a) 
(s = −µ4,−µ7,−µ9, . . .). Nevertheless, to illustrate the power and robustness of our 
duality approach we proceed here without a reflecting wall and use M  =  2000. In 
figure 5(b) we show the first passage time distribution on a log-log scale (see inset for 
a linear scale) for three dierent starting positions x0  =  0,0.5,1 (absorbing point a  =  2). 
The lines represent the first passage time distribution which is determined using our 
new method (with M  =  2000 relaxation modes) and the symbols represent the results 
℘a of a numerical Laplace inversion of the renewal theorem (see figure caption for more 
details). We find a perfect agreement between our new analytical method (lines) and 
the numerical solution. For comparison, we imposed a reflecting wall at the target in 
a related article [57] and obtained a similarly excellent agreement between the duality 
solution and the simulated first passage time density using a total of M  =  40 relaxation 
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modes to quantify the first passage time statistics for diusion in a multi-well potential. 
In either case, our new duality framework is exact for infinite M, and hence the desired 
precision can be tuned at will.

6. Concluding perspectives

We rigorously established a duality between the relaxation and the corresponding first 
passage processes in terms of an interlacing of eigenvalues. In other words, the time-
scales at which a particle is absorbed into the target are proven to interlace with the 

Figure 5. Analytical first passage time density for the Ornstein–Uhlenbeck process. 
(a) Exact diagonal of the relaxation propagator (solid blue line) versus a finite 

mode expansion P̃ (a, s|a) ≈
∑M

k Ψk(a, a)/(s+Dωk) for M  =  2000 (dash-dotted red 

line) and m  =  20 (dashed yellow line); the exact solution is obtained from (37) 
with particular solutions v±(a, s) = e−ωa2/2H−s/(Dω)(±a

√
ω/2), where H−s(x) is the 

generalized Hermite polynomial. The symbols represent the roots s = −µk that 
are determined from the Newton series (45) with N  =  10 using M  =  2000 (open red 
circles) and M  =  20 (yellow crosses modes, respectively. The three vertical arrows 
s = −µk indicate the first passage eigenvalues that correspond to an absorption 
from the right, where wk(x0) = 0 for all x0 � a. (b) First passage time distribution 
for three dierent initial conditions x0  =  0,0.5,1. We have used M  =  2000 
relaxation modes and N  =  30 and used our analytical forward duality to calculate 

the lines. The symbols represent a numerical inversion of the Laplace transform 

of ℘̃a(s|x0) = eω(a
2−x2

0)/2H−s/(Dω)(−x0

√
ω/2)/H−s/(Dω)(−a

√
ω/2) according to [82]. 

Parameters: a  =  2, ω = D = 1.
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corresponding relaxation timescales. This duality allows us to understand first passage 
processes, both qualitatively and quantitatively, in terms of relaxation eigenmodes. For 
example, spectral gaps in the relaxation spectrum translate directly into spectral gaps 
in the first passage spectrum. More explicitly, in eectively one dimensional systems N 
gaps in the relaxation spectrum, arising from N local (free) energy basins, translate into 
N  −  1 gaps in the first passage time spectrum corresponding to the N  −  1 barriers sepa-
rating the minima. Most importantly, we established a duality that allows, for the first 
time, to determine exactly the first passage time distribution from the corre sponding 
relaxation spectrum.

Our theory is developed end tested on both, continuous reversible Fokker–Planck 
dynamics and Markov state jump processes in arbitrary dimensions. For convenience 
and without loss of generality, we restricted the applications of the duality for systems 
obeying Fokker–Planck dynamics to eectively one dimensional problems. An exten-
sion to more general models, for example, to diusion on graphs would be straightfor-
ward, albeit rendering the calculations more cumbersome.

We tested and applied our theory to a discrete Markov state model of a simple 
protein folding landscape and the Ornstein–Uhlenbeck process, while a continuous ana-
logue of a folding landscape are discussed elsewhere [57]. Notably, we have derived, to 
the best of our knowledge, for the first time an exact and explicit analytical expression 
for the first passage time distribution of the Ornstein–Uhlenbeck process.

Looking forward it will be interesting and relevant to apply the duality to the analy-
sis of first passage processes on graphs. Applications of the duality to narrow escape 
problems in arbitrary dimensions [23–28] will also be carried out in future studies.

Finally, an extension of the framework to periodically or constantly driven systems 
(i.e. irreversible Markovian dynamics), which goes beyond the long time limit that is 
presented in the appendix, will be particularly challenging. Namely, there the interlac-
ing theorem cannot be expected to hold anymore, since both eigenvalue spectra {λk} 
and {µk} can become complex valued.
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Appendix. Explicit formula for principal eigenvalue

In this appendix we simplify equations (24)–(26) in the limit of a time-scale separation 
and for rare-event asymptotics for the principal first passage eigenvalue µ1. We obtain 
a compact asymptotic expression of the principal first passage eigenvalue µ̃1 � µ1, 
which is particular accurate if the time-scale of the slowest first passage eigenvalue 
is well separated from the time-scale of the slowest relaxation mode (µ1 � λ1), which 
inter alia refines a previously proposed approximate link between the mean first pas-
sage time and the slowest relaxation mode [67, 68].
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First, we redefine equation (25) by setting k  =  1, k*  =  0 and µ̄1 = 0

f(s) = Peq(a) +
∑
l�1

〈a|ψR
l 〉〈ψL

l |a〉
s

s+ λl

,
 (A.1)

where we dropped for convenience any argument with k since k  =  1 is assumed through-
out this appendix. The nth derivative of f  at s  =  0 simplifies with equation (29) to

fn =

{
Peq(a) if n = 0,

n!(−1)n+1
∑

l�1〈a|ψR
l 〉〈ψL

l |a〉/λn
l if n � 1. (A.2)

The almost triangular matrices equation (28) become

Ai,j
n =

fi−j+2Θ(i− j + 1)

(i− j + 2)!

[
n(i− j + 1)Θ( j − 2) + iΘ(1− j) + j − 1

]
, (A.3)

where we have replaced f n(k) by f n from equation (A.2). Consequently, the Newton 
series (27) also simplifies to

µ1 =
∞∑
n=1

fn
0

f 2n−1
1

detAn

(n− 1)!
. (A.4)

If we now set f3 = f4 = . . . = 0 in the almost triangular matrices (A.3), that is 

Ãn ≡ An|f3=f4=...=0, the resulting matrix Ãn becomes triangular, implying that its 
determinant is simply given by the product of the diagonal elements

Figure A1. Principal eigenvalue for Ornstein–Uhlenbeck with potential 
βU(x) = x2/2 (with ω = D = β = 1). (a) Deviation of the approximation µ̃1 from 
the exact first passage eigenvalue µ1 as function of the height of the energy barrier 
∆E = a2/2. The symbols corresponds to the absorbing points a = 1.5, 2, 2.5, 3 
used in (b). The colored solid line is calculated with equation (A.6). (b) First 
passage time density ℘a(t|x0) for particle starting from x0  =  1 as function of time 
t for target positions a = 1.5, 2, 2.5, 3. The lines correspond to long time limit 
approximation w̃1(x0)µ̃1 exp(µ̃1) � ℘a(t|x0). The symbols represent ℘a(t|x0) deduced 
from a histogram over 106 simulated trajectories. The weight w1(x0) is deduced 
from the first line of equation (31), where µ1 is replaced by µ̃1 and we have inserted 

the propagator from (37) with the solutions v±(x, s) = e−x2/2Hs(±x/
√
2).
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det Ãn =
n−1∏
i=1

Ai,i
n = ( f2/2)

n−1 (2n− 2)!

n!
, (A.5)

where we have inserted equation (A.3) and evaluated the product in the last step. 
Replacing A → Ãn in the Newton series (A.4) finally yields exactly

µ̃1 ≡
∞∑
n=1

fn
0

f 2n−1
1

det Ãn

(n− 1)!
=

f1 −
√

f 2
1 − 2f0f2
f2

. (A.6)

Equation (A.6) is nothing but the root of the second order Taylor expansion of f(s) 
around s  =  0 (i.e. the parabolic equation). This approximation is quite accurate when-
ever µ̃1 � λ1.

If the target is located at a high energy barrier, such that slowest first passage eigen-
value is exponentially suppressed by the (free) energy at the target (i.e. µ1 ∝ e−U(a)), 
equation (A.6) will lead to a quite accurate approximation µ̃1, which can be seen in 
figure A1. More precisely, in figure A1(a) we depict the relative error |µ̃1 − µ1|/µ1 
as function of the target-site energy ∆E = a2/2 for the Ornstein–Uhlenbeck process 
from section 5.2 with U(x)  =  x2/2 (ω = D = β = 1). Conversely, figure A1(b) dis-
plays the results the first passage time distribution to four dierent target positions 
a = 1.5, 2, 2.5, 3 for a particle starting from x0  =  1. The symbols represent histograms 
for ℘a(t|x0) deduced from 106 Brownian dynamics trajectories, and the lines correspond 
to the large deviation asymptotic ℘a(t|x0) � w1(x0)µ̃1e

−µ̃1t deduced from (A.6). We con-
clude that the limit µ1 � λ1 lead to both, a quite accurate approximation µ̃1 � µ1 and 
to an eectively single exponential decay µ1 � µ2 of the first passage statistics, which 
extends previous results [87] (see also [88]).

Moreover, a spectral gap such as λ1 � λ2 will also render fn�2 from equation (A.2) 
to be negligibly small if the target is not located at the global minimum of the potential. 
For example, a multi-barrier crossing, as the one studied in [57] (see figure 5 therein), 
the principal first passage eigenvalue from equation (A.6) deviates less than two per-
cent from the exact value µ1, i.e. |µ1 − µ̃1|/µ1 < 0.02. Notably, the approx imation (A.6) 
refines previous conjectures that the mean first passage time to escape from the deepest 
potential basin corresponds to the first nonzero relaxation mode [67, 68].

We note that equation (A.6) can be reformulated to give

µ̃1 =
σ1

2σ2

[√
1 + 4

Peq(a)σ2

σ2
1

− 1

]
, (A.7)

where we inserted f0 = Peq(a) and defined σn =
∑

l�1〈a|ψR
l 〉〈ψL

l |a〉/λn
l . This relation is 

equivalent to equation (17) from a related article [57].
Finally, we emphasize that equations (A.4) and (A.6) apply also to homogeneous 

irreversible Markov processes, i.e. the relations from this appendix are not restricted to 
hold just for reversible Markov chains.
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