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ABSTRACT: For a first-principles understanding of macro-
molecular processes, a quantitative understanding of the
underlying free energy landscape and in particular its entropy
contribution is crucial. The stability of biomolecules, such as
proteins, is governed by the hydrophobic effect, which arises
from competing enthalpic and entropic contributions to the
free energy of the solvent shell. While the statistical mechanics
of liquids, as well as molecular dynamics simulations, have
provided much insight, solvation shell entropies remain
notoriously difficult to calculate, especially when spatial
resolution is required. Here, we present a method that allows for the computation of spatially resolved rotational solvent
entropies via a nonparametric k-nearest-neighbor density estimator. We validated our method using analytic test distributions
and applied it to atomistic simulations of a water box. With an accuracy of better than 9.6%, the obtained spatial resolution
should shed new light on the hydrophobic effect and the thermodynamics of solvation in general.

1. INTRODUCTION

Competing enthalpic and entropic contributions to the
solvation free energies give rise to the hydrophobic effect,1

which is vital for protein function and folding.2−4 Despite
extensive theoretical work,1,5 a quantitative understanding of
the hydrophobic effect particularly at heterogeneous surfaces,
such as of proteins and mixed bilayers, remains elusive.
Because surface water shows a significantly altered behavior

compared to bulk,6,7 it is essential for our understanding of the
thermodynamics and energetics of protein solvation to better
characterize, e.g., the relative contributions by different
solvation shells or the effect of individual protein side chains
on the solvent. Molecular dynamics (MD) simulations
describe the hydrophobic effect at an atomic level,8,9 but a
deeper understanding of the molecular driving forces requires a
quantitative and spatially resolved picture of solvation shell
thermodynamics, which poses considerable challenges.
Methods like thermodynamic integration (TI)10,11 allow for

the calculation of solvation entropies based on MD
simulations, but the lack of a spatial resolution precludes
detailed analysis of how local features of the solvent−surface
interface contribute and interact. Various order parame-
ters12−16 assess both the local translational and the local
rotational order of water molecules but yield only a qualitative
picture of the thermodynamic entropy.
Here, we limit our analysis to absolute rotational water

entropies and present a method to reach a spatial resolution
from atomistic simulations or Monte Carlo ensembles. Our
method employs a mutual information expansion (MIE) to
calculate the total entropy of N water molecules based on the

contributions of each molecule individually and the entropy
loss due to correlations between molecule pairs and triples. A
similar approach was taken by, e.g., the grid inhomogeneous
solvation theory (GIST).17−23 Rather than considering
entropic contributions by correlations between individual
molecules directly, GIST calculates discretized correlation
integrals within voxels, which causes severe sampling problems
for higher order correlations. 3D-2-Phase-Thermodynamics
(3D-2PT)24−26 also uses voxels and approximates the system
as a superposition of gas-like and solid-like components.
Likewise, the Grid Cell Theory (GCT)27 includes free energies
and enthalpies, but it approximates rotational water correlation
terms using a generalized Pauling’s residual ice entropy
model.28,29 Here, we address these correlations directly,
convergence of which is challenging, as they require sampling
and density estimates in high-dimensional configuration
spaces.
In our approach, all MIE terms were calculated using a k-

nearest-neighbor (kNN) density estimator, typically used in
Euclidean spaces,30−32 which we modified and optimized for
SO(3)n, the Cartesian products of the group of rotations. We
considered different metrices for the k-nearest neighbors in
SO(3)n, determined an optimal k-value, and provide a
computationally efficient framework for rotational entropy
calculation.
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For easier notation, we will develop our method for water
molecules, although it is general and applicable to any system
with rotational degrees of freedom.
In the following sections, we will first provide the conceptual

foundation and then describe our rotation entropy approach.
Subsequently, we will apply it to analytical test distributions, as
well as to MD water boxes.

2. THEORY

2.1. Absolute Entropy. Separating the entropy of water
into rotational and translational contributions yields

= + −S S S Itotal rotation translation corr

where Srotation is the entropy of the phase space distribution
after projection onto the rotational degrees of freedom;
Stranslation, respectively, is the entropy arising from translational
degrees of freedom; and the mutual information (MI) term
Icorr quantifies the correlations between translation and
rotation. In this paper, we focus on the rotational contribution
Srotation.
Note that some authors21,23,33 define the rotational entropy

as a conditional entropy, in which case it includes the MI term
−Icorr.
Let the rotation of N water molecules of the simulation

s y s t e m b e d e s c r i b e d b y t h e H am i l t o n i a n
ω ω{ } = { } + { }L L( , ) ( ) ( )i i i i , with angular momenta

Li, orientations ωi ∈ SO(3), the kinetic energy , and the
potential energy , typically described by a molecular
mechanics force field. The total entropy is
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where >h 0 is arbitrary, =h h h/ , and Ii are the
eigenvalues of the moment-of-inertia tensor of a water
molecule.
Because Skin can be solved analytically, the challenge is to

estimate Sconf.
2.2. Entropy Estimation. Because the rotational entropy

integral in 3N dimensions usually cannot be computed directly,

Figure 1. (A) Mutual information expansion illustrated for the entropy breakdown of three particles. (B) Sketch of density estimation on SO(3)
(here represented as a 2-sphere). Each dot on the sphere represents an orientation. For each point xi, the kth neighbor according to a distance
metric (e.g., dquat or dgeo) is found. The density is estimated via the volume V(r) of a ball with radius r = d(·, ·). (C) Visualization of the fill mode
approach: A correlated data set is shown on the left-hand side. The identical data is decorrelated by applying a random permutation along one axis,
as shown on the right. The entropy of the decorrelated data is the sum of both “marginal entropies”.
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we used a truncated mutual information expansion34−37 (see
Section 2.2.1) to expand the full high-dimensional integral into
multiple low-dimensional integrals over marginal distributions,
which can be calculated numerically, similarly to the
Inhomogeneous Solvation Theory (IST),19,20,38 underlying
GIST. To obtain these marginal entropies, a k-nearest-
neighbor estimator (see Section 2.2.2), which estimates the
density at each sample point by finding the k closest
neighboring sample points and dividing by the volume of a
ball that encloses the points, was used. Here, the orientations
of N water molecules in nf different samples, e.g., frames of a
computer simulation trajectory, were represented by a series of
quaternions (see Section 2.2.3) {qi,1, ..., qi,nf} with i = 1, ..., N.
We then defined suitable distance metrics, as required by the
kNN algorithm, which are not trivial in curved spaces of
rotations SO(3)n (see Section 2.2.4), and then calculated the
volumes of balls, as induced by the metrics (see Section 2.2.5).
We finally present a computationally efficient framework that
allows finding k neighbors to each sample point (see Section
3.1).
2.2.1. Mutual Information Expansion. Figure 1A shows an

example of an entropy expansion into mutual information
(MI) terms of a system containing three subsystems, such as
three water molecules, in a Venn diagram: The full entropy (S)
is expanded into MI terms (Im), of which the first term
represents the entropies of each molecule individually and the
further terms are correlation terms of second and third order,
respectively,

=I i S i( ) ( )1 (1a)

= + −I j k S j S k S j k( , ) ( ) ( ) ( , )2 (1b)

= + +

− − −

+
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3

(1c)

In this notation, S(γ1, ..., γm) is the entropy of the marginal
distribution with respect to molecules with indices γ1, ..., γm.
For N water molecules, the expansion consists of N MI

orders, of which the mth term involves (3m)-dimensional
integrals and takes all possible m-molecule correlations into
account. Approximating the full entropy by a truncated
expansion thus leads to lower dimensional integrals, which
can be better sampled. Although there is no guarantee that
truncated orders are small and can be neglected, it has been
shown that a truncated expansion provides accurate entropy
estimates if the correlations are short ranged,39 as for water in
physiological conditions.
Here, we took up to 3-molecule correlations into account by

truncating after the third order, hence,
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where the first order includes the kinetic entropy contribution
and a correction of −N log 2, due to the 2-fold symmetry of
the water molecule. The three terms are akin to the terms in

IST.23 In fact, closer analysis shows that, in the thermodynamic
limit, the second and third order terms in the IST-
expansion17−19 of the molar entropy converge toward the
respective terms in eq 2.

2.2.2. kNN Entropy Estimation. To evaluate eq 2 from a
given sample of orientations {q1, ..., qnf}i with i = 1, ..., N, the
marginal entropies from eq 1 are calculated using a kNN
entropy estimator.30−32,40,41 For SO(3)1, the kth nearest
neighbor with respect to the sample point qi is defined by a
metric d(qi, qj) (see Figure 1B), and ϱ q( )i is estimated as (nf −
1)−1k/V(ri,k), where k is a fixed integer, V(ri,k) is the volume of
a ball with radius ri,k, the distance between qi and its kth
neighbor, and (nf − 1)−1 is a normalization constant. Results
for SO(3)2 and SO(3)3 are obtained by generalizing the metric
d and the volume V(ri,k) to higher dimensions. The choice of
metrices, on which the results may depend for finite sampling,
and their corresponding volumes in SO(3)n will be discussed in
Sections 2.2.4 and 2.2.5. The entropy is
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where γk = ψ(k) − log k is a correction which accounts for the
bias introduced by the kth neighbors being, by definition, on
the edges of the balls.32 ψ is the digamma function.
Because eqs 1b and 1c are sums and differences of integrals

of different dimensionalities, biases are introduced: With
increasing dimensionality and thus reduced sampling, the kNN
estimator yields increasingly smoothed versions of the
underlying true distributions. The estimator therefore over-
estimates entropies of distributions with higher-dimensional
supports more than of those defined in lower-dimensional
spaces, resulting in biases if entropies of different dimension-
ality are added or subtracted. To overcome this problem, the
sampling space is expanded to equal dimensionality by using
fill modes.37,42 I2, defined in eq 1b as the sum of integrals in
SO(3)1 and SO(3)2, can be rewritten as a sum of two SO(3)2

integrals

= ̂ −I j k S j k S j k( , ) ( , ) ( , )2

if the corresponding joint distribution ϱ(j, k̂) factorizes to
ϱ(j)ϱ(k̂) = ϱ(j)ϱ(k). To achieve statistical independence, the
sample points corresponding to index k were subjected to a
random permutation {qk̂,1, ..., qk̂,nf} = perm{qk,1, ..., qk,nf}, which

decorrelates {qj,1, ..., qj,nf} and {qk,1, ..., qk,nf} but leaves the
marginal distributions unchanged, as sketched in Figure 1C.
The joint entropy S(j, k̂) is thus the sum of the initial marginal
entropies S(j) + S(k).
Similarly, the third order MI term reads

= ̂ ̂ ̂

− ̂ − ̂ − ̂
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I l m n S l m n

S l m n S l m n S l m n

S l m n

( , , ) 2 ( , , )

( , , ) ( , , ) ( , , )

( , , )

3

2.2.3. Parametrization of Orientations. From different
parametrizations of orientations in 3D-space, such as Euler
angles, Tait-Bryan angles, Hopf coordinates,43,44 and spherical
coordinates, we used quaternions,45 which, contrary to most
other charts of SO(3), do not suffer from Gimbal lock. They

are defined as = = ± θ θ( )q uq q q q( , , , ) cos , sin1 2 3 4
T

2
T

2

T
,
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where u and θ are a normalized rotation axis and a rotation
angle, respectively. q can thus be interpreted as an element of
the 3-sphere, i.e., ∥q∥2 = 1. Because there is a one-to-one
mapping of the 3-sphere to the Special Unitary group SU(2),
which in turn provides a double-covering of SO(3), each
orientation is described by two equivalent quaternions, which
differ only by a sign.46

2.2.4. Choice of Metrics in SO(3)n. We next considered the
proper choice of metrics in SO(3)n. At first sight, one might
think that, of many possible metrics in SO(3),46,47 only one,
e.g., the geodesic metric dgeo(q1, q2) = arccos(|q1·q2|) shown in
Figure 1B, yields the correct entropy. However, in the limit of
infinite sampling, kNN entropy estimation with any metric is
possible if used with its induced ball volumes (see Section
2.2.5).48 Our choice was therefore guided by the speed of
convergence and computational efficiency.
We chose the quaternion metric46,49

= {|| − || || + || }q q q q q qd ( , ) min ,quat 1 2 1 2 2 1 2 2

sketched in Figure 1B, which defines a metric between two
rotations as the minimum Euclidean distance between unit
quaternions, taking the sign ambiguity into account. In SO(3),
the quaternion metric and the more natural geodesic metric
dquat yield identical nearest neighbors. They are functionally
equivalent because a positive continuous strictly increasing

function h, such that h○dgeo = dquat (and vice versa), exists.46

dquat does not require evaluation of the inverse cosine function
and thus is computationally more efficient; it was therefore
preferred over dgeo.
Metrices in SO(3)2 and SO(3)3 were obtained by combining

dquat with the Euclidean norms in 2 and 3, respectively,

∑=
=

q q q q

q q

d

n
d

(( , ..., ), ( , ..., ))

( , )

n n

i
i i

quat 1,1 1, 2,1 2,

1
quat 1, 2,

2

n

with (qi,1, ..., qi,n) ∈ SO(3)n. When combined with the
Euclidean norms, the quaternion metric and the more natural
geodesic metric are not functionally equivalent and hence
yield, in general, different nearest neighbors. For small
distances, i.e., for high sampling, the metrices are asymptoti-
cally identical.
To test whether this choice of metrics impacts the accuracy

of the MI results, we compared our choice to the composite
metric using dquat and the maximum-norm in 2, which is
functionally equivalent to the geodesic composite metric but
slightly less efficient to evaluate than dquat2. For 10

5 frames, no
significant difference between the MI values was seen.

Figure 2. Analytic test distribution compared to entropies and MI values obtained from density estimates. Panel (A) shows the distribution p1
(μ) for

increasing localizations μ, illustrated by different colors. Here, we represent SO(3) as a 1-sphere and the distribution is renormalized accordingly for
this 1d representation. The north pole (1, 0, 0, 0) and the quaternion (0, 1, 0, 0) are indicated with black crosses. Panels (B), (C), and (D) show
entropies and MI values obtained using the test distributions p1

(μ), p2
(μ), p2,corr

(μ) , and p3
(μ) for varying coupling parameters μ. Panel (E) shows the

convergence of the results for increasing sample sizes. In panels (B) to (E), the analytical result is shown by a dashed line; results for different k-
values are colored according to the legend at the bottom left of the figure. Values that were fixed during the calculation, such as the choice of the
test distribution, the number of frames nf, or the coupling parameter μ, are stated in a corner of the respective panel. The shown errors denote 1σ
regions.
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2.2.5. Volumes of Balls in SO(3)n. The volumes V(r) =
∫ d(qi,y)<r dy (dark green in Figure 1B), enclosed by the kNN
radius r, read

i
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jjjj

y
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V r r r
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2
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The integrals were solved numerically for 104 equally spaced
values of r using the software Mathematica 10.050 and the
multidimensional rule; the results were stored in a lookup
table. Cubic interpolation was used to obtain results from the
stored values.

3. METHODS

3.1. Nearest-Neighbor Search. Nearest-neighbor
searches were performed using the Non-Metric Space Library
1.7.3.651 (NMSLIB) (https://github.com/nmslib/nmslib) and
the above metrics. Each data set was indexed in a vantage-point
tree52,53 (VP-tree) that rests on the triangle inequality. Our
version of the NMSLIB, modified to include the orientational
metrices, is available online (https://gitlab.gwdg.de/lheinz/
nmslib_quaternion).
3.2. Accuracy Assessment. 3.2.1. Test Distributions. To

assess the accuracy of our method, we used analytical test-
distributions p(μ) in SO(3)1, SO(3)2, and SO(3)3, derived from

ϕ= =μ
μ

μ
μ

μqp
Z Z

q( )
1

cos
1

1
( )

( ) 1 ( ) 1

with a quaternion q ∈ SO(3)1, the first quaternion component
q1, the first azimuthal angle in spherical coordinates for the 3-
sphere ϕ1 ∈ [0, π/2), and the appropriate normalization
constant Z(μ) (Figure 2A). The analytical expression for the
configurational entropy ∫ dqp1(μ) log p1

(μ) reads

l
mo
no

i
k
jjj

y
{
zzz

i
k
jjj

y
{
zzz

i

k

jjjjjjjjj

y

{

zzzzzzzzz

|
}
oooo

~
oooo

μψ μ μψ μ

π

= + − +

+
Γ

Γ
+

μ

μ

μ

+

+

( )
( )

S
1
2

4
2

1
2

2 log log(64 )

1
( )

1
2

4
2

3

using the gamma function Γ and kB = h = 1 for simpler
notation. As illustrated in Figure 2A, the distribution depends
on the localization parameter μ; a value of 0 yields a uniform
distribution; larger μ values yield increasingly narrower
distributions.
For (q1, q2) ∈ SO(3)2 and (q1, q2, q3) ∈ SO(3)3, probability

distributions p2
(μ)((q1, q2)) = p(μ)(q1)p

(μ)(q2) and p3
(μ)((q1, q2,

q3)) = p(μ)(q1)p
(μ)(q2)p

(μ)(q3) were used to obtain uncorre-
lated distributions with entropies S2

(μ) = 2S1
(μ) and S3

(μ) = 3S1
(μ),

respectively.
To also assess the accuracy for correlated distributions with

(q1,q2) ∈ SO(3)2, the test distribution

π

π

=

= | · |

μ
μ

μ

μ
μ

q q q q

q q

p
Z

d

Z

(( , ))
1

8
cos ( ( , ))

1
8

2,corr
( )

1 2 2 ( ) geo 1 2

2 ( ) 1 2

was used, which was designed such that the marginals with
respect to q1 and q2 are p1

(μ)(q2) and p1
(μ)(q1), respectively. The

localization μ here controls the degree of correlation between
q1 and q2, ranging from an uncorrelated uniform distribution
(μ = 0) on SO(3)2 to strongly correlated distributions for
larger values. The entropy of this distribution is

π= +μ μS S log(8 )2,corr
( )

1
( ) 2

where log(8π2) is the entropy of a free rotor.
Samples were obtained using a rejection method: First, a

random point in Q = (q1, ..., qn) ∈ SO(3)n was drawn from a
uniform distribution by drawing n quaternions from the
uniform distribution on the 3-sphere. Next, a random number
a was drawn from a uniform distribution between 0 and
max(pn

(μ)). Q was accepted if a < pn
(μ)(Q) and was rejected

otherwise. This process was repeated until the desired number
of samples was obtained.
The accuracy of our method was assessed for each test

distribution for localization parameters between μ = 0 and 50,
nearest-neighbor k-values of 1, 5, 9, and 13, and with 102 to 105

frames (nf). The computed entropy and MI values were
compared to the analytical results. To obtain statistical error
estimates, the calculations for each parameter set was repeated
1000 times.

3.3. Molecular Dynamics Simulations. All MD simu-
lations were carried out using a modified version (https://
github.com/Tsjerk/gromacs/tree/rtc2018) of the software
package Gromacs 201854−58 with an additional center of
mass motion (COM) removal59 method, used to individually
constrain all oxygen atoms. We furthermore made small
additional changes to apply COM removal to individual atoms
and to overcome the limit of 254 COM removal groups
(https://gitlab.gwdg.de/lheinz/gromacs-rtc2018_modif). The
CHARMM36m force field60−64 and the CHARMM-TIP3P
water model65 were used. All water molecules were subjected
to SETTLE66 constraints (i.e., rigid), and the leapfrog
integrator with a time step of 2 fs was used. Electrostatic
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forces were calculated using the Particle-Mesh Ewald (PME)
method67 with a 1.2 nm real space cutoff; the same cutoff was
used for Lennard-Jones potentials.68 In all simulations, the V-
rescale thermostat69 with a time constant of 0.1 ps, and, if
applicable, the Parrinello−Rahman barostat70,71 with a time
constant of 1.0 ps and 1 bar pressure were used.
A total of 1728 water molecules were placed within a cubic

simulation box, and the system was equilibrated for 1 ns at 300
K as a NPT ensemble. From the equilibrated system, resulting
in a box size of approximately 3.7 nm, three 1 μs production
runs were started, as shown in the first column of Figure 3. Run

m (“mobile”) was carried out as described above. To
benchmark our method against the established method of
thermodynamic integration (TI), a system with only rotational
degrees of freedom was constructed. To this end, all oxygens
were position-constrained using COM removal as shown in the
first column of Figure 3 in run p (“pinned”), allowing only
rotational movements around the oxygen atom under NVT
conditions. The temperature was increased to 600 K, since the
water molecules formed an almost rigid, ice-like hydrogen
bond network at 300 K, showing only very little dynamics. Run
sp (“sliced and pinned”) was simulated like p, but all water

Figure 3. Entropies and MI contributions for the systems m, p, and sp. The first column shows the three considered MD systems. Panels (A), (C),
and (E) show the rotational entropy computed using the MIE in purple; its breakdown into contributions by first to third order is visualized
underneath. For systems p and sp, the result is drawn in comparison to the TI values in gray. Panels (B) and (D) show the mutual information I2
between all considered pairs of water molecules depending on their distance. The blue lines correspond to running Gaussian averages. Panel (F)
displays I2 between pairs of molecules that are closer than 0.33 nm in relation to the their distance to the vacuum slice in system sp. The inset in
green shows the molecule pair density with respect to the center of mass distance to the slice.
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molecules within a slice of 0.5 nm width were removed to
create a water−vacuum interface.
For all three test systems, the entropy of rotation was

calculated as described in Section 2, each using a 1 μs
trajectory with 105 frames. For the MI terms, a cutoff
depending on the distance between average molecule positions
was used. Whereas including the MIs of many molecule pairs
by using a large cutoff distance gave rise to a more accurate
MIE, it also introduced larger noise due to limited sampling.
For pairwise MI terms, the cutoff was chosen as 1.0 nm,
because for larger distances, the MI terms vanished within
statistical errors (see Figure 3B,D). Similarly, triple MI
contributions were cut off at 0.45 nm.
Because the water molecules in system m were mobile,

average positions across the obtained trajectory were unusable
to define a cutoff. Therefore, the water molecules were
relabeled in each frame, such that they remained as close as
possible to a simple-cubic reference structure using permuta-
tion reduction,72,73 which left the physics of the system
unchanged. In systems p and sp, the molecules were
immobilized and the oxygen positions were used for applying
the cutoff.
To quantify the precision of the method, the MD

simulations and the subsequent entropy analyses were repeated
in 10 independent calculations.
Reference entropy values for systems p and sp were obtained

using thermodynamic integration10,11,72 (TI). Interactions
between water molecules were gradually switched off in a
stepwise fashion to obtain the entropy difference between real
water and noninteracting water. The absolute rotational
entropy was obtained as the sum of the excess entropy,
obtained via TI, and the ideal gas contribution,
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where Ii are the eigenvalues of the moment of inertia tensor of
a water molecule.
Both TI calculations were performed using the soft-core74

parameters α = 0.5 and σ = 0.3. Coulomb interactions were
linearly switched off in 80 windows of 20 ns each, and a further
10 windows were used to subsequently switch off the van der
Waals interactions. The first nanosecond of each window was
discarded.

4. RESULTS AND DISCUSSION
4.1. Test Distributions. We first assessed the accuracy of

our method for three uncorrelated analytical test distributions
(defined in SO(3)1, SO(3)2, and SO(3)3) and one correlated
analytical test distribution (defined in SO(3)2), as described in
Section 3.2.1. The distributions depend on the localization
parameter μ, which, for the uncorrelated distributions p1

(μ), p2
(μ),

and p3
(μ), determines their width, as demonstrated in Figure 2A,

and, for p2,corr
(μ) , controls the strength of the correlation.

As can be seen in Figure 2B, the kNN estimator largely
agrees with the analytic results (dashed lines) for the
uncorrelated distributions p1

(μ), p2
(μ), and p3

(μ) for μ between 0
(uniform distribution) and 50 (strongly peaked) and the tested
k-values between 1 and 13. The graphs for the three
distributions are scaled and offset as indicated in the figure.
We find that, for distributions p1

(μ) and p2
(μ), our method

accurately reproduces the true entropy for all tested μ values
within statistical errors, even for the small number of 100

frames. The statistical errors amount to 0.25 nats (natural units
of information) for p2

(μ), k = 1, μ = 50 or less. Also for p3
(μ) and

k = 1, the analytical result is matched within statistical errors
(0.28 nats at μ = 50 at maximum), whereas larger values of k
lead to overestimated entropies of up to 0.7 nats (k = 13, μ =
50), caused by the limited sampling of just 100 frames and the
increased dimensionality of SO(3)3 compared to the other
tested distributions.
Next, we assessed the accuracy for the correlated test

distribution. The panels of Figure 2C,D show the entropy
(calculated via the MIE as defined in eq 1b) and the MI of
p2,corr
(μ) for 1000 frames, respectively. For the uniform

distribution (μ = 0), the algorithm yields the analytic values
of 2 log(8π2) and 0 for entropy and mutual information,
respectively. With increasing correlation μ, the entropy is
increasingly overestimated as MI is underestimated. Both
effects are more pronounced for larger k-values: Whereas for k
= 1, the algorithm yields accurate values within statistical errors
up to a correlation of μ ≈ 20, the results deviate significantly
for k = 13 even for very small μ-values. Overall, small k-values,
such as k = 1, yield high accuracy but with reduced precision
(i.e., larger statistical errors) compared to large k-values like 13,
which gives rise to smaller statistical errors but reduced
accuracy.
To further assess this trade-off and the convergence

properties of our method, we calculated the relative entropy
errors for p2,corr

(20) for sampling between 102 and 105 frames,
shown in Figure 2E. For k = 1 and only 100 frames, the
method overestimates the true entropy by 5 to 10%, which
quickly drops to below 1% for more than 2 × 103 frames. For
larger k-values, the entropy errors increase and the
convergence becomes slower, e.g., k = 13 requires 2 × 104

frames to achieve an entropy error of less than 1%. The
statistical errors at 105 frames are 0.11% and 0.05% for k-values
of 1 and 13, respectively. Overall, k = 1 yields somewhat lower
precision but significantly faster convergence compared to
larger values, which becomes even more pronounced in higher
dimensions. We therefore consider this value the optimal
choice for the systems at hand and used it for all subsequent
analyses.
The kNN entropy estimator rests on the assumption that the

density is approximately constant and isotropic within each k-
nearest-neighbor ball (see Figure 1B). This assumption implies
that features of the true distribution that are smaller than the
average distance between sample points are not resolved,
which, in case of poor sampling, inevitably leads to an
overestimated entropy, as seen for p3

(μ) with large k or as shown
in Figure 2E. The assumption of isotropy no longer holds for
highly correlated data sets, such as p2,corr

(μ) for large values of μ.
In this case, also the k-nearest neighbors to each sample point
are correlated and thus not isotropically distributed, which is
not reflected by an isotropic kernel, i.e., a ball. For Euclidean
spaces, this problem was addressed by using anisotropic
kernels.75,76 Although this idea could also be applied in
SO(3)n, the correlation of water molecules at standard
conditions is weak enough (Figure 3A) to allow for sufficiently
accurate results under the isotropy assumption.
The trade-off between accuracy and precision with respect

to the k-value is a general property of kNN entropy estimators,
which has been characterized previously76,77 and is intuitively
accessible: Whereas averaging over an increasing number of
neighbors reduces statistical uncertainties and thus improves
precision, the assumptions of approximately constant isotropic
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densities are applied to increasingly larger balls, resulting in
increasingly overestimated entropies for distributions with
small scale features or strong correlations.
Overall, the kNN method with k = 1 yields most accurate

results while being only slightly less precise than estimators
with lager k. It retrieves the analytical entropies within
statistical errors for the uncorrelated distributions, as well as
for the correlated distribution with μ < 20 using just 100 and
1000 frames, respectively.
4.2. Entropy Calculated from MD Simulations. Having

assessed our rotational entropy method against analytic test
distributions, we tested its accuracy for more realistic systems
of up to 1728 interacting water molecules. To this end, we
simulated three atomistic water MD systems (Figure 3, left
column), as described in Section 3.3. For all systems, 10
independent MD simulations were performed, and for each
system, entropies were calculated via a MIE as explained in
Section 3.3.
System m (“mobile”) comprises 1728 unconstrained water

molecules. As shown in Figure 3A, an absolute rotational
entropy of (40.53 ± 0.04) J·mol−1·K−1 per molecule is
obtained, to which the first, second, and third MI orders
contribute (44.2349 ± 0.0007) J·mol−1·K−1, (−4.550 ± 0.015)
J·mol−1·K−1, and (0.85 ± 0.04) J·mol−1·K−1, respectively. Note
that the provided values are averages and standard deviations
of the 10 independent calculations and that the uncertainties
are too small to be shown as error bars in Figure 3. The pair-
mutual information terms I2, shown in Figure 3B, reach a
maximum of 0.8 J·mol−1·K−1 for very close water molecules
and vanish monotonically for molecules that are, after
permutation reduction and on average, separated by more
than ≈0.8 nm. Note that the discrete nature of distances in
Figure 3B is due to the choice of a simple cubic reference
structure for permutation reduction.
To compare the obtained absolute entropies to TI10,11

(described in Section 3.3), the water movement was restricted
to the rotational degrees of freedom in system p (“pinned”) by
pinning each molecule as described in Section 3.3. Here, the
rotational entropy, shown in panel C, is reduced to (29.53 ±
0.03) J·mol−1·K−1. The second and third order mutual
information terms contribute (−18.47 ± 0.01) J·mol−1·K−1

and (4.21 ± 0.02) J·mol−1·K−1, respectively. Compared to the
results from TI shown in gray, the entropy is underestimated
by 9.6% due to the limited sampling of the strongly correlated
system. Similar to what we observe for the analytical test case
depicted in Figure 2D, the MI terms are underestimated for
strong correlations, of which the third order is most severely
affected due to the high dimensionality of the sampling space.
The I2 terms, illustrated in Figure 3D, show a maximum of 7

J·mol−1·K−1 and indicate that water molecules decorrelate
beyond ≈0.4 nm. The distribution shows secondary and
tertiary peaks around 0.55 and 0.80 nm that arise from indirect
coupling via one or two mediating water molecules, as
indicated by the structures shown in Figure 3D. In this case,
the correlations between the molecule pairs are not due to
direct interactions; instead, mediating water molecules
(orange) enhance distant orientation correlations via short
hydrogen-bonded chains (shown in red). This finding
demonstrates that the method is able to identify regions of
locally coupled water molecules and to quantify the resulting
entropy losses, thus providing a spatially resolved picture of
entropy changes.

To further assess and demonstrate the accuracy of the
method for systems with spatial features, we included a 0.5 nm
vacuum slice in system sp (“sliced and pinned”, Figure 3), such
that the dynamics of water molecules at the surface differs from
those molecules in the bulk. For system sp, the accuracy of our
entropy estimation relative to TI improves to 8.5%, whereas
the contributions by higher MI orders remain almost identical
(see Figure 3E). We assume that the improved accuracy is due
to the smaller number of molecules (1728 vs 1493 with slice)
and possibly because the vacuum slice limits the range of
many-particle correlations that would not be captured by a
third order approximation.
Figure 3F shows the I2 terms of molecule pairs that are

closer than 0.33 nm, i.e., those that are within their first
hydration shells, relative to their distance to the slice. The
correlations of pairs that are close to the vacuum interface are
increased to 5.6 J·mol−1·K−1 on average compared to 4.1 J·
mol−1·K−1 in bulk. Although the entropy per molecule
increases compared to system p, mainly due to the dominating
first order term (see Figure 3C,E), the increased correlations at
the surface and their associated entropy losses contribute to
the thermodynamic unfavorability of water at a (hydrophobic)
vacuum interface.
The MIE approaches the TI values for systems p and sp to

9.6% and 8.5%, respectively, and additionally yields informa-
tion about individual correlations and their associated entropy
losses, thus providing spatial resolution. Remarkably, about 25-
fold less computer time was required for the MIE compared to
TI for the shown examples.
The large second and third order contributions, illustrated in

Figure 3C,E, show that both systems with pinned water exhibit
strong correlations between water molecules. As for the test
distributions illustrated in Figure 2, strong correlations result in
systematically underestimated MI values. Due to their high
dimensionality and, thus, low sampling density, we expect the
third order MIE contributions for systems p and sp to be
mostly affected, contributing to their overall underestimated
entropy. For the same reason, we expect entropies calculated
from more loosely coupled mobile water to yield markedly
more accurate results.
Although a direct comparison to TI is impossible for system

m, we expect that the errors due to the truncation of higher
order MI terms, observed for the more tightly correlated
systems p and sp, are larger than for unconstrained water.
Therefore, the approximation of the truncated MIE yields
more accurate results for realistic solute systems. These two
effects combined, the performances obtained for the more
correlated pinned water systems provide upper bounds for the
expected errors.

5. CONCLUSION
We developed an estimator for spatially resolved rotational
solvent entropies based on a truncated mutual information
expansion and the k-nearest-neighbor algorithm on SO(3)n.
Accuracy and computational efficiency were assessed for both
analytical test distributions and for systems of up to 1728 water
molecules, described by atomistic MD simulations.
For the uncorrelated test distributions in SO(3)1, SO(3)2,

and SO(3)3, the estimator with k = 1 yields accurate entropies
for as little as 100 sample points. For the correlated test
distribution p2

(μ), the entropies are overestimated for increasing
coupling, caused by underestimating mutual information
terms. The latter effect is especially pronounced for large k-
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values. Precision increased only marginally for larger k at the
cost of decreased accuracy, which led us to conclude that k = 1
represents the best trade-off for the problem at hand. We
furthermore demonstrated convergence within 2 × 103 frames
for a correlated distribution (μ = 20) and therefore expect our
approach to accurately describe correlations of water molecules
already in relatively short MD trajectories of 100 ns to 1 μs.
For the considered MD systems, we find agreement within

9.6% and 8.5% with TI for pinned waters in systems p and sp,
respectively, corresponding to energy deviations (−TΔS) of
0.94 kJ·mol−1 and 0.84 kJ·mol−1 per water molecule at 300 K.
The obtained rotational entropic contributions to the free
energy are precise within ±0.008 kJ·mol−1 and ±0.018 kJ·
mol−1, respectively. For the binding of a small ligand that
displaces 10 water molecules at the binding pocket, we
therefore expect to obtain absolute rotational entropy
contributions corresponding to an accuracy of at least 10 kJ·
mol−1 and to resolve rotational entropy differences corre-
sponding to at least 0.06 kJ·mol−1. As seen in the second
column of Figure 3, fully mobile water exhibits considerably
smaller correlations than pinned water, rendering the tests
using pinned water a tough benchmark compared to realistic
solute systems. For a protein/water system, we would therefore
expect markedly smaller error margins.
The algorithm provides spatial resolution by assessing the

mutual information contributions on the level of individual
molecules, distinguishing it from, e.g., GIST.17−22 For the
hydrophobic vacuum interface, we calculated an entropy loss
due to an increase in mutual information close to the surface.
The ability to resolve the origin of entropy changes renders the
method a promising tool to enhance our understanding of
processes like the hydrophobic effect and the thermodynamics
of solvated complex heterogeneous biomolecules in general.
Work on including the contributions by the translational

entropy and the translation-rotation correlation to the overall
entropy is in progress and will be published elsewhere. Also,
our method can be extended to include intramolecular entropy
contributions of flexible solvents, e.g., simulated water without
SETTLE66 constraints. In this case, additional correlation
terms would arise from pairwise correlations between the
internal degrees of freedom, translation, and rotation, as well as
the respective triple-correlation terms, which might be
challenging to converge.
Although in this study we restricted the application and

assessment of our approach to water, generalization to other
solvents is straightforward. An implementation is available for
download (https://gitlab.gwdg.de/lheinz/hydration_entropy)
as a python module78,79 with a C++ backend for fast neighbor
search.
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