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Methods

In order to examine how the initial molecular degrees ofdm®, coordinates and atomic velocities, affect the
outcome of the (cis, trans) photoisomerization reactioa,prepare different initial configurations of the Schiff
base (coordinates and velocities) on thePES. Then, we vertically (photo-)excite these configuretito the $
PES, and track their subsequent relaxation dynamics. Titial iconfigurations are extracted from ab initio
molecular dynamics (MD) trajectory of the molecule an(8acuum), simulated at = 300 K, using a stochastic
dynamics integrator. We also simulate initial PSB2 confations obtained through excitation of its individual
normal modes and thermal ensembles with constrained dihadgles.

We describe the PSB2 molecule by the complete active sp#feeossistent field (CASSCF) method in all the
performed simulations. CASSCEF is a multi-configurationtmoeit[1, 2]. In CASSCEF, a judicious set of occupied
and virtual orbitals is chosen, the so-called active-spagitals. In this active space, a full configuration intei@e
calculation is performed, while the other orbitals are gdiept doubly occupied or empty in all configurations.
The occupied orbitals are optimized such that the eleatrenérgy of the state considered is minimal.

In the § simulations, aimed at obtaining the unbiased thermal ebkeatT = 300 K, the molecule is described
at the CASSCF(4,4)/3-21G level, the timestep is 1 fs, anddhgerature coupling i = 0.01 ps (stochastic
dynamics integrator). From the®ns trajectory, we extraet 500 frames at 1 ps intervals, and vertically excite
the selected configurations t@.S

In preparing the pre-twisted ground state thermal ensesphie harmonically restrain the selected dihedral angles
of the molecule with a force constant kefi, = 10,000 kJ/mol/rad. We run classical MD simulations (OPLS all
atom force field [3]) on the restrained molecule, extracftames at every 10 ps, and run these at CASSCF(4,4)/3-
21G level for additional & ps each, prior to vertically exciting them tq,Svhere the dihedral restraints are
released.

In all the excited-state simulations, the molecular enengg momentum are preserved (no thermostat), and the
molecule is described at the state averaged (SA2) CASSORAB1G* level of theory. The timestep is set t&0

fs. The excited molecule, initially promoted to the BES, relaxes towards the conical intersection (CI) seam,
where it “hops” to the ground state. We compare the resulth@fphoto-induced reaction using two hopping
algorithms, the fewest switches hopping (FSH) algorithhafd the diabatic surface hopping (DSH) algorithm [5].
The ground and excited state simulations are performed)usenGROMACS 4.0 [6] interface to Gaussian03 [7]
and a development version of the GROMACS 4.0 interface to MRQ [8]. The GROMACS/MOLPRO interface
with the fewest switches surface hopping algorithm [4] cisdavailable upon request. We evaluated the excited
state lifetimes in the photo-excited ensembles by fittirg3hpopulation toe~t/. In all the fitting procedures, we
used the data points for the Sopulation in the time interval= 0 — 500 fs. We used the same time interval in all
the fitting procedures because we noticed that fit resultsasitive to the interval length (in all the analyses, S
population is equal to zero long before 500 fs after the plestmtation).

In Fig. 1, we show the CAS active space molecular orbitalsHerS (S similar) state of a representative initial
geometry. Ther, T, T3 andTty CAS orbitals are occupied witly 2e, 2e,0e and @& and~ 2e, 1e,0e and ke on the
S and § PES, respectively.
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Figure 1: CAS active space molecular orbitals for thestate of a representative initial geometry.
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Energy profiles of §, S and S electronic states in PSB2

We examined the characters of thg S; and $ states along the reaction pathways observed in the mofecula
dynamics simulations, i.e. changes of dihedrals around\f@; and GCs bonds, starting from the Franck-
Condon geometries and ending at the conical intersectiomgties. $and $ states are the 1Kionic) and 2A
(covalent) states, respectively. Our results, shown is.Figand 3, show that ordering of the &d $ states is
preserved along the two tested reaction pathways.
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Figure 2: Potential energy profiles of thg, & and $ electronic states along the linearly interpolated pathway
between the planar;Sninimum and the N=Cs twisted S/Sp conical intersections. Note that because the curves
were obtained using state-averaged orbitals for the tHestrenic states, whereas the Cl geometry was obtained
using only ground and first excited states, the degeneralifgeid. Continuous lines are SA3-CASSCF(4,4)/6-
31G(d) energies without dynamic electron-electron catieh. Dashed lines are xMCQDPT2/CASSCF(4,4)/cc-
pVTZ energies [9]
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Figure 3: Potential energy profiles of thg, & and $ electronic states along the linearly interpolated pathway
between the planar S1 minimum and thg=Cs twisted S/Sy conical intersections. Note that because the curves
were obtained using state-averaged orbitals for the tHestrenic states, whereas the Cl geometry was obtained
using only ground and first excited state, the degeneradytésl.] Continuous lines are SA3-CASSCF(4,4)/6-
31G(d) energies without dynamic electron-electron catieh. Dashed lines are xMCQDPT2/CASSCF(4,4)/cc-
pVTZ energies [9].
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Energy profiles for rigid rotation of the CN ,C3C and CC4C5C dihedrals in PSB2

(a) 0.0

E-E [keal/mol]

1
—_
(e

~
-
p——
= o
N o
T

E-E; [keal/mol]
o
02e]

Figure 4: (a) Energy profiles on the Surface for rigid rotation of the C}C3C and CGCsC dihedrals for nuclear
positions of the §state, which are preserved in the Sate, immediately upon vertical excitation. (b) Same as in
(a), for the molecule with the nuclear positions of thes&te, which develops within 1520 fs after excitation
during the dynamics simulations. To obtain therSolecular geometry for the planar molecule, we optimize the
molecule geometry on;Sstarting with the geometry at the) &inimum {/in) and holding the dihedral angles
which keep the molecular frame planar fixed. The moleculee&dbed within SA2-CAS(4,4)/6-31G* level of
theory, as in the simulations.
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Diabatic surface hopping

Here we describe the basic assumptions behind the diabafice hopping algorithm. This algorithm is described
in greater detail in [5,10]. The diabatic hopping algoritishased on the one-dimensional Landau-Zener equation,
which relates the probability of a transition between twec#bonic state¥, andW¥; to the nonadiabatic coupling,
via

Pr1= exp(—%n{) 1)

In this equatiorg, is the Massey parameter, defined as

AE
= 2
¢ h929(Q) @

whereAE is the energy gap between the adiabatic st@agpresents a one dimensional nuclear reaction coordi-
nate, and
9(Q) = (W1|UQ¥2) ®)

is the derivative coupling vector. If we differentidt® with respect td via ‘fj—?, we can rewrit€, as

AE

== 4
€ w1 2% (4)

To decide when to undergo a transition to a different potéminergy surface, one would in principle need to
compute<wl|%> at every time step/t) of the simulation In practice, however, it is possible tpaximate the
derivative coupling vecto(lvl|%> as(W1(1)|W2(t +At)), i.e., the overlap between the excited-state wave func-
tion at the current time step and the ground-state waveifumat the previous time step. Since in our simulations
we use the complete active space self-consistent field (C&$Bethod with state-averaged (SA) orbitals to model
the wave function, we compute the overlap as the inner ptoafuthe corresponding SA-CASSCF eigenvectors
C; andCy:

(W (t)|Wa(t +At)) = CY-CHHAL (5)

Calculating the energy gapE andC! -Ct;m at every time step is straightforward, and we can use the diand
Zener formula to calculate the probability of a transitiorttte other surface. In principle, the transition prob&pili
can be used to spawn a new trajectory on the other surfaceewowsince this procedure would lead to multiple
trajectories that have to be computed simultaneously, sipaws too demanding in practice. We therefore restrict
hopping to situations where the transition probability mgghes unity. This happens at the conical intersection
seam, wherdE ~ 0 andC}{ - C5™" ~ 1.

Because we allow hopping only at the conical intersecti@mseur classical trajectories never leave the diabatic
surface. Therefore, energy and momentum are obviouslyeceed. In principle, this strict diabatic hopping crite-
rion could lead to an underestimation of the populationgfanprobability, because a surface hop in regions with
strong non-adiabatic coupling far from the intersectioprhibited. In practice, however, the high dimensionality
of the seam ensures that all trajectories encounter suameegf high transfer probability. A major advantage of
restricting hopping to the seam is that we obtain inforntaba the location of the seam in our trajectories. The
latter is important to understand how the interactions betwa chromophore and its (protein) environment alter
the topology of the surfaces and the seam and thereby cahtrautcome of the photochemical process. The
Landau-Zener model is clearly an approximation, but cap teekeep a proper physical insight, which is crucial
for understanding complex systems.
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Atomic Displacements along Normal Modes in Internal Coordirates

Here, we describe our calculations and numerical apprdiomaused to obtain the atomic displacements along
the normal modes in the basis of non-redundant internad@oates of the PSB2 molecule. In all the calculations
we used Gaussian03 [7]. We performed frequency calcumtonthe PSB2 molecule on thg BES, optimized

at the CASSCF/6-31G* level of theory, to obtain atomic diggiments of the molecule along its= 42 normal
modes. The modes are expressed in the Cartesian coordiﬁa{@s{ (Nm,can Nm,cart =1). Since some of the
normal mode displacements involve rotations, we exprétisaamodal displacements in curvilinear non-redundant
internal coordinates of the molecule. Several of the “fotétmodes have low frequencies and large displacements
at the room temperature (not suitably describedﬂlayart).

In order to find out how normal modes are populated in arlyittanfigurations of the molecule (thermal ensemble),
we first need to describe small perturbations of the molealgieg the normal modes in the internal coordinates.
We prepare a set of PSB2 structurﬁﬁ.,cart, by slightly distorting the minimum energy geometﬁ()’can, along
each of the 42 normal modes,

I'=\Sm,cart = I_Q'O.,cart + kmNm,cart, m=1,...,42 (6)

where we choose a small valuelgf = 0.03. We project the vectorl?m,can onto a set of non-redundant internal
coordinates (the default set in Gaussian calculati%at. This gives us the normal mode displacements in these
internal coordinates,

km'i]m,int ~ I_Q'm,int - IféO,inb (7)
whereRy i is the minimum energy PSB2 geometry, expressed in the ritumdant internal coordinates. We use
the vectorst,im to perform a normal mode analysis to obtain the unknéyyooefficients.

In Fig. 5 (a-c), we show the energy of the moleclfe calculated by Gaussian03, in dependence of the displace-
ment,ky, along the 12 and 5 modes. Two separate sets of structures are prepdred thesd,, are used in the
Cartesian and the internal coordinates. H&re; Egispi — Eg, whereEg;sy is the energy of a molecule with atoms
displaced along the normal modeandEy is the minimum energy. We also present a quadratic appraikima

for the energy E = cm(knNm)? = cmk?), when the constart, is extrapolated from the energies of the molecular
structures displaced alorﬁl}n,cart atkm = 0.03. At small displacements, the thrEecurves are very similar. At
larger displacements, the energies associatedﬁlmﬂan largely deviate from those associated \Aﬁmim and the
guadratic fit. This plot shows that our numerical approxiorafEgs. 6 and 7) leads to a quadratic-like dependence
for energies associated wiﬂlhim.

We also test the energy additivity for different normal medescribed by the internal coordinates. In Fig. 5 (d),
we compare the energieBgucture) Of molecules displaced along several normal modes, WitBethE yregicted)
obtained by summing the energy contributions arising fraspldcements along the individual normal modes. We
can see a good agreement betwEghcture aNdEpredicted, CONfirming the validity of our numerical approximation
(Egs. 6 and 7).
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Figure 5: (a) Energies of the PSB2 molecules displaced albagiormal mode 1 by the coefficiekt,. We
compare the energies of PSB2 structufgs: = Ro.cart + KmNmcart @and Rint = Roint + kmNmint, WhereNm cart

are obtained from Gaussian calculation, afgi are approximated as shown in Egs. 6 and 7. These energy
profiles are compared with the energy expressed as a quafiratition ofky,, as described in the text. The
dashed red line markgsT. (b) Same for mode 2 and (c) mode 5. (d) Comparison of pratlietergies and
calculated energies of several PSB2 geometries, whenpieutibrmal modes are excited (the 3 cases have the
(1-3), (1-6) and (1-9) modes excited). The excitation coigffits for the first point (closest to the origin) are
kn=1-3 =0.2, 0.2, 0.2, for the second point ate,—1_¢ = 0.6, 0.5, 0.2, 0.3, 0.3, 0.2, and for the third point are
km=1-9=1.0, 0.9, 0.4, 0.5, 0.4, 0.2, 0.2, 0.1, 0.1. For the third point, we choose the coefficients to appraxaty

give each excited mode the thermal engtgy. We show that the larger the number of the excited modes,lend t
larger the extension coefficiekt, the moreEgrycture deviates fronEpregicted-
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PSB2 geometry at the $ minimum (CASSCF(4,4)/6-31G*)

0.000000 0.000000 0.000000
0.000000 0.000000 1.002419
1.147986 0.000000 -0.583519
2.004300 -0.000052 0.067142
1.359127 0.000086 -2.009223
0.509029 0.000246 -2.665606
2.617621 -0.000078 -2.498291
3.444093 -0.000241 -1.805690
-1.322139 0.000142 -0.653957
-1.424688 -0.887660 -1.259616
-2.072889 -0.000213 0.119265
-1.424830 0.888381 -1.258956
2.969439 -0.000079 -3.952364
3.568873 0.873201 -4.188291
3.568665 -0.873486 -4.188349
2.090321 0.000048 -4.583737
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