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Abstract: The molecular-dynamics-based calculation of accurate free energy differences for biomolecular systems is a
challenging task. Accordingly, convergence and accuracy of established equilibrium methods has been subject of many
studies, often focusing at small test systems. In contrast, the potential of more recently proposed nonequilibrium methods,
derived from the Jarzynski and Crooks equalities, has not yet fully been explored. Here, we compare the performance of
these methods by calculating free energy differences for test systems at different levels of complexity and varying extent
of the involved perturbations. We consider the interconversion of ethane into methanol, the switching of a tryptophane-
sidechain in a tripeptide, and the binding of two different ligands to the globular protein snurportin 1. On the basis of
our results, we suggest and assess a new nonequilibrium free energy method, Crooks Gaussian Intersection (CGI), which
combines the advantages of existing methods. CGI is highly parallelizable and, for the test systems considered here, is
shown to outperform the other studied equilibrium and nonequilibrium methods.
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Introduction

Free energy gradients are the driving forces of all biochemical
processes; their accurate calculation is therefore essential for a
quantitative understanding of biomolecular function. A particularly
challenging task is to calculate free energies for the binding of puta-
tive drugs, which typically is only estimated by computationally
much less expensive scoring functions. Limited accuracy in free
energy calculations from atomic-level simulations often results from
limited sampling and has been intensively reviewed.1–4

Over the years, several approaches to compute free energies have
been developed, assessed, and applied, often focusing on smaller
systems.5–14 For larger systems such as proteins, the sampling prob-
lem becomes increasingly severe, mainly due to insufficient overlap
of the involved thermodynamic phase space densities. This problem
also complicates the reliable assessment of accuracy and conver-
gence, simply due to the difficulty of obtaining a reliable reference
value. Methods to calculate free energy differences between two
states A and B fall into two classes, equilibrium methods and,
developed more recently, nonequilibrium methods. The first equi-
librium method considered here, free energy perturbation (FEP),
was developed by Zwanzig15 and has been widely used to calculate
free energy differences for amino acid substitutions in proteins.16–18

This method, however, suffers particularly from the above sampling
problem. Because of the exponential growth of statistical uncertainty

with decreasing phase space density overlap, this method requires
excessive sampling, especially if the size of the perturbation is
large.19–21

A different technique is Thermodynamic Integration (TI),22

which rests on the generalized force (δH/δλ) with respect to the
coupling parameter λ rather than on finite differences. Here λ is
either varied continuously (slow-growth), or, similarly to FEP, sam-
pled at discrete values. One consequence of the continuous shift
of λ in slow-growth TI (SGTI) is that, strictly speaking, the sys-
tem is never in equilibrium, as is assumed in the construction of
the method. Therefore, accurate results are expected only for small
systems or very long simulation times.23, 24

Discrete TI (DTI) avoids this problem. Here, gradients of the free
energy F are calculated at discrete λ values, and �F is obtained from
numerical integration (summation) of these gradients. In regions of
λ where these gradients are large, insufficient sampling and numer-
ical integration may cause problems and, hence, require increased
computational effort. This effect is often particularly large for λ = 0
and λ = 1, especially for differing atom numbers of the two involved
states.12 In this context, the Bennett Acceptance Ratio25 typically
provides an improved free energy estimate compared with numerical
integration.14
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Here we will focus on an assessment of the second class of meth-
ods, which are based on nonequilibrium work simulations (NEW).
Rather than spending computational effort on one long TI trajec-
tory, Hendrix and Jarzynski suggested to carry out many short Fast
Growth TI (FGTI) simulations from state A to B and to calcu-
late the free energy difference between these two states via the
Jarzynski equality.26, 27 Unfortunately, however, from the resulting
set of trajectories, the ones which occur only rarely carry most of
the statistical weight. Therefore, the severe sampling problem per-
sists28, 29 and renders the treatment of larger biomolecules often still
as computationally demanding, as for FEP.

It has been suggested to alleviate this problem by combining
forward (A→B) and reverse (B→A) switching simulations as well
as by using Gaussian approximations of the work distribution.30

Following the Crooks Fluctuation Theorem (CFT),31 Bennett’s
acceptance ratio—which was originally proposed and applied for
equilibrium Monte-Carlo simulations—is also applicable to NEW
calculations. Recently, this approach was combined with a max-
imum likelihood estimate,32 and accurate free energy differences
were obtained.33 Here we refer to this method as BAR.

Despite the considerable amount of studies for the different
methods described earlier, mostly on smaller and quite diverse sys-
tems, it is difficult to judge how these methods perform for larger
and more complex systems such as biological macromolecules. We
therefore have carried out a comprehensive evaluation of these meth-
ods for three test systems at different levels of complexity, namely
the interconversion of ethane to methanol, of tryptophane to glycine
in a tripeptide and of m3GpppG to m7GpppG in the globular protein
Snurportin 1.

On the basis of these results, we suggest and evaluate an
improved nonequilibrium free energy calculation method, which
combines the advantages of the methods discussed earlier.

Methods

Here we derive our new method to calculate free energies from
nonequilibrium trajectories. To compare the accuracy of our method
with existing methods from both, the equilibrium and the nonequi-
librium class, four established methods are considered and used
for extensive test simulations. Recently proposed nonequilibrium
methods include Jarzynski’s work averaging and Bennett’s Accep-
tance Ratio; established equilibrium methods are Slow Growth
Thermodynamic Integration (SGTI) and Discrete Thermodynamic
Integration (DTI). As these methods have already been described
in detail in the literature,22, 25–27, 34 we therefore only sketch the
respective approaches.

Exponential Work Averaging Using a Gaussian Approximation
(EXP)

Jarzynski has shown26, 35 that the Helmholtz free energy differ-
ence �F can be derived from a series of nonequilibrium work
measurements or computations,

e−β�F = 〈e−βWτ 〉, (1)

where 〈〉 denotes an average over an ensemble of N trajectories,
which were started from an equilibrated canonical ensemble. Here,
β is the reciprocal thermal energy, and Wτ is the work

Wτ =
∫ 1

0

δHλ

δλ
dλ (2)

over a switching process of arbitrary length τ , which may be very
short. In eq. (2), λ is the so called coupling parameter, which
switches the system during a simulation of length τ from state A to
state B (defined by Hamiltonians HA and HB, respectively), e.g. via
Hλ = (1 − λ)HA + λHB.

For very long switching times the system stays sufficiently close
to equilibrium, such that the dissipated work is negligible and �F =
W ; in this case, eq. (2) describes thermodynamic integration.34, 36

For method EXP, the distribution P(W) of values for the
work obtained from the trajectory ensemble is approximated by
a Gaussian function,

Pf ,r(W) ≈ 1

σf ,r
√

2π
exp

[
− (W − Wf ,r)

2

2σ 2
f ,r

]
, (3)

where Wf ,r and σf ,r are the means and the standard deviations of the
work distributions, respectively. The index f denotes the forward
ensemble, where λ = 0 → 1, and r the reverse ensemble, where
λ = 1 → 0, respectively.

As has been shown by Hummer,30 for this approximation eq. (1)
yields

�Ff = Wf − 1

2
βσ 2

f (4)

and

�Fr = −Wr + 1

2
βσ 2

r . (5)

With the statistical accuracy of the two above expressions,

σ̄ 2
f ,r = σ 2

f ,r

N
+ β2σ 4

f ,r

2(N − 1)
, (6)

and using standard error propagation theory, we suggest to improve
Hummer’s estimate by using the weighted mean

�FEXP =
(

�Ff

σ̄ 2
f

+ �Fr

σ̄ 2
r

) /(
1

σ̄ 2
f

+ 1

σ̄ 2
r

)
(7)

with statistical accuracy

σ̄ 2
EXP =

(
1

σ̄ 2
f

+ 1

σ̄ 2
r

)−1

. (8)
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The latter two expressions have been used as method EXP in our
simulations. We note, that also Hummer30 has derived an expression
for σf �= σr ; however no error estimate has been derived for this case.
Further, in our hands no improvement was observed for this method
(data not shown).

Bennett Acceptance Ratio with a Maximum Likelihood Estimator
(BAR)

Rather than relying on Jarzynski’s equality, several methods are
based on the more general Crooks Fluctuation Theorem (CFT).31

Accordingly, the forward and reverse work distributions obey

Pf (W)

Pr(−W)
= eβ(W−�F). (9)

Using eq. (9), and assuming sufficiently smooth a priori distribu-
tions, a maximum likelihood approach32 on Bennett’s Acceptance
Ratio25 yields

〈
1

1 + exp[β(W − �FBAR)]
〉

f
=

〈
1

1 + exp[−β(W − �FBAR)]
〉

r
,

(10)

assuming an equal number of forward (f ) and reverse (r) simula-
tions. From eq. (10) �FBAR is calculated numerically.

Following Shirts et al.32 and Anderson,37 we estimated the
statistical error of �FBAR by

2

β2N

[〈
1

1 + cosh[β(W − �FBAR)]
〉−1

− 2

]
, (11)

where 〈〉 denotes the average over all (i.e., forward and reverse)
work calculations. We will refer to this method as BAR in our work.

Crooks Gaussian Intersection (CGI)

An alternative set of methods employs CFT [eq. (9)] more directly.
Again, for each trajectory the mechanical work for the switching
process is calculated via eq. (2). As can be seen from eq. (9), �F
is the work W for which Pf (W) = Pr(−W), i.e., the intersection
point of the two work distributions (Fig. 1).29

Direct determination of the intersection point (e.g., from his-
tograms) is prone to large statistical errors, however, because only
those work values are used which fall into the bin containing the
intersection point. Particularly if the forward and reverse distribu-
tions exhibit only a small overlap, this number can be very small or
even zero.

In analogy to method EXP, we here propose to use Gaussian
approximations. This approach has the advantage that the assump-
tion of a Gaussian work distribution has been shown to hold in
the limit of large numbers of degrees of freedom.38 Furthermore,
as we will show below, this assumption can be tested through a
Kolmogorov–Smirnov test.39

Figure 1. Schematic Gaussian work distributions for the switching
from state A to B for a forward [Pf (W), solid line] and a reverse
[Pr(−W), dashed line] process. Wf , σf , −Wr , and σr are the means and
standard deviations of Pf (W) and Pr(−W), respectively. These values
are used to calculate the free energy difference �FCGI.

The intersection point is given by

�FCGI =
Wf

σ 2
1

− −Wr

σ 2
2

±
√

1
σ 2

1 σ 2
2
(Wf + Wr)2 + 2

(
1
σ 2

1
− 1

σ 2
2

)
ln σ2

σ1

1
σ 2

1
− 1

σ 2
2

,

(12)

where Wf and −Wr are the means, and σf and σr are the standard
deviations of the respective Gaussian functions, as also defined in
Figure 1.

We note that for σf �= σr , two intersection points will gener-
ally be found, whereas �F is of course uniquely defined. Only for
σ 2

f = σ 2
r a unique solution, �FCGI = (Wf − Wr)/2,40 is obtained.

Typically, one intersection point is located between Wf and −Wr ,
and is close to (Wf −Wr)/2. The second intersection point is located
far in the tail region and in this case is an artifact of our Gaussian
approximation, which often fails in the tail region.38 Accordingly,
we chose the intersection value which is closest to (Wf − Wr)/2 as
our estimate for �FCGI.

If both Gaussians were too close to compute a proper intersec-
tion point, i.e., if Wf and −Wr were closer to each other than to
one of the two intersection values, we empirically chose the mean
of both as the best estimate for �FCGI. To estimate the statistical
accuracy of �FCGI, we resorted to a Monte Carlo approach. Accord-
ingly, 10, 000 synthetic sets of work values were generated, each
set containing N values that were randomly chosen from a Gaus-
sian distribution with mean Wf and standard deviation σf for the
forward simulation, and, similarly, N values for the reverse calcu-
lations. Wf , −Wr , and σf ,r , were taken from the above Gaussian
fits to the work distribution obtained from the simulations. For
each of the 10,000 synthetic forward/reverse work distributions,
intersection points were calculated from the respective means and
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standard deviations. The standard deviation of this ensemble of syn-
thetic intersection points was used as an estimate for the expected
statistical error of �FCGI.

Slow Growth TI (SGTI) and Discrete TI (DTI)

To compare convergence behavior and accuracy of the above NEW
methods with each other as well as with established equilibrium
methods, we chose two widely-used approaches, Slow Growth TI
(SGTI) and Discrete TI (DTI). Similar to FGTI, SGTI is also based
on eq. (2). In contrast to the NEW methods, where many TI cal-
culations are used to compute a statistical meaningful free energy
difference, only one SGTI trajectory with a much longer τ than in
FGTI is computed and evaluated. Since in this case only one for-
ward and one reverse trajectory is available, statistic convergence
can be—and usually is—assessed only via the hysteresis of the for-
ward and reverse free energy values. Here we provide this value as
an indication of the expected statistical accuracy, which, however,
is often likely to be larger.

The second equilibrium method considered here is DTI, which
is currently becoming increasingly popular. In contrast to SGTI, the
integral in eq. (2) is evaluated via discrete summation over ensemble
averages of δH/δλ,

�FDTI =
∫ 1

0

〈
δH

δλ

〉
λ

dλ ≈
N∑

i=0

〈
δH

δλ

〉
λi

�λ, (13)

where each ensemble average is obtained from one equilibration
trajectory. The discrete summation here was carried out via Simp-
son’s rule.41 The statistical accuracy of �FDTI was computed via
a Gaussian error propagation of the error contributions from each
trajectory, calculated as usual by block averaging.42

Test Systems

To evaluate the accuracy and convergence of the described CGI
method as well as the conventional ones, we considered two small
test systems and a large one (see Table 1). The first, “E2M”, involves
the interconversion of one solvated ethane into a methanol molecule,
which affects essentially all eight atoms (Fig. 2, E2M). The second,
“W2G”, is a tripeptide, Gly-Trp-Gly, which is “mutated” into Gly-
Gly-Gly. Here, 19 atoms are involved, where 17 were transformed
into dummy particles which keep their mass and bond parameters,
but do not interact via Lennard Jones or via Coulomb interactions
(Fig. 2, W2G). For both systems the OPLSAA force field was used.43

As a third, large test system of biological relevance we chose the
protein snurportin 1 (SPN) (PDB entry 1XK544). The ligand from

the SPN crystal structure, m3GpppG, was transformed to a modified
form, m7GpppG. Here, ten atoms are affected by the perturbation,
and six become dummy particles (Fig. 2, SPN). For this system
the AMBER99 force field45, 46 was used. For both SPN ligands,
m3GpppG (resolved in the crystal structure) and m7GpppG (not
resolved in the crystal structure), no force field parameters were
available. We therefore used the standard AMBER99 values for
guanosine and ribose. The m3G- and m7G-nucleoside parameters
were taken from ref. 47, and the parameters for triphosphate, con-
necting the two nucleotides, from ref. 48. Additionally, we scaled
the charges of the molecule at the connecting phosphates such that
a net charge of −2 was obtained.

Simulation Details

All simulations were carried out in explicit solvent, except one SGTI
simulation of E2M, which was additionally carried out in vacuum to
compute solvation free energies. All nonvacuum simulations were
treated with a cutoff of 1.0 nm for short-range Coulomb as well as
for Lennard-Jones interactions, and with Particle-Mesh-Ewald with
a grid spacing of 0.12 nm and an interpolation order of 4 for long
range electrostatics.49 All simulations were carried out in an NpT
ensemble using Berendsen pressure and temperature coupling50 at 1
bar with a pressure coupling coefficient of τp=1 ps and at 300 K with
a temperature coupling coefficient of τT =0.1 ps. The TIP4P water
model51 was used and, in the case of snurportin 1, a 150 mmol NaCl
salt-concentration was used to mimic physiological solution. All
simulations were carried out with the GROMACS software-package
(version 3).52 The E2M and W2G systems were equilibrated for one
nanosecond; the SPN system was equilibrated for 50 ns. All test
simulations were started from these equilibrated systems.

For the free energy calculations, we used a hardcore and, where
necessary, a softcore potential. A softcore potential was used for
perturbations involving changes of the number of atoms with van
der Waals interactions. In addition, whenever required for proper
comparison, a softcore potential was used also in those cases,
where a hardcore potential would otherwise suffice according to the
above criterion. For the softcore potential a 3-step scheme was used
to avoid Coulomb interaction singularities for overlapping atoms.
Accordingly, the switching process from state A to state B was split
into three steps, involving two intermediate states. In the first step,
the charges of all perturbed atoms of state A were switched to zero. In
the second step, we switched the Lennard-Jones parameters, masses,
as well as all bond, angle, and dihedral parameters of the perturbed
atoms. Masses of dummy atoms and the parameters of bonds involv-
ing dummy atoms were not changed. A softcore potential53 with
α = 0.25 and σ = 0.3 was used, with the two parameters defined as
in ref. 52. In the last step, the charges of the perturbed non-dummy

Table 1. Summary of Simulation System Details of the Test-Systems Ethane (E2M), Tripeptide (W2G), and
Snurportin 1 (SPN).

System A-state B-state Force field Water model Ion conc. (mmol/L) No. of atoms

E2M C2H6 CH3OH OPLSAA TIP4P – 1,432
W2G GWG GGG OPLSAA TIP4P – 1,389
SPN m3GpppG m7GpppG AMBER99 TIP4P 150 63,642

The tripeptide in the A- and B-state is given in the one-letter-code for amino acids.
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Figure 2. Structures of the tested systems. (A) A-state of the free energy calculations for E2M, W2G,
and SPN. (B) Respective B-state. The dark gray ellipsoids denote the atoms, which contribute most to the
perturbation. The light gray ellipsoids indicate regions of minor perturbations. Rx denotes the rest of the
respective molecule, D the dummy particles. In W2G B the complete imidazole ring is composed of dummy
particles.

particles were switched from zero to their state B value. For the
hardcore potential, the conventional 1-step scheme was used. The
simulation length of all these steps was always chosen to be equal,
and Gaussian error propagation was used to estimate the total error
of �F.

Comparison to Experiment

As a control, solvation free energies were calculated for ethane and
methanol, respectively, and compared to experiments. To this aim,
nine SGTI simulations were carried out for system E2M in solvent
and one in vacuo. All SGTI simulations were performed in a 1-step
process over 10 ns in the forward and reverse direction, yielding a
total simulation time of 200 ns.

Test of the Gaussian Approximation

To test the assumption that the obtained distributions of nonequi-
librium work values can be approximated by Gaussian functions,
1000 forward and 1000 reverse FGTI simulations of τ = 50 ps each
were carried out for system E2M, using a 1-step switching process.
After equilibrating the two states A and B for 11 ns, 1000 starting
snapshots were extracted from the last 10 ns of each of the two trajec-
tories. To the obtained set of work values, a Kolmogorov–Smirnov
(KS-) test39 was applied.

Convergence of Trajectories: Varying Number and Lengths

For the two small systems, E2M and W2G, extended test simulations
with comparable total simulation times were carried out. FGTI was
used to compute trajectories for the NEW methods, and SGTI for
comparison. To assess the effect of the number of used trajectories,
the number of trajectories for the nonequilibrium simulations was
varied and a constant switching time τ = 50 ps was used. 12, 25,
50, and 150 trajectories were used, yielding a total simulation time
of 3.6, 7.5, 15, and 45 ns, respectively, for both the forward and
reverse simulations. The SGTI simulations switching times τ were

chosen to be 3.84, 7.5, 30, 37.5, 48, 60, and 75 ns, respectively,
for the forward and reverse path. To allow proper comparison, the
3-step scheme was used for all simulations in this paragraph.

The effect of trajectory length (for a fixed number of trajectories)
was assessed for all three systems, E2M, W2G, and SPN. The 3-step
scheme was used for systems E2M and W2G; the 1-step scheme was
used for system SPN. Switching times τ of 1, 5, 10, 25, 50, 80, 100,
128, 160, and 200 ps were used for all FGTI calculations. For each
value of the switching time, 50 trajectories were calculated. The
total simulation times for E2M and W2G were thus 0.3, 1.5, 3, 7.5,
15, 24, 30, 38.4, 48, and 60 ns, respectively.

For SPN, we additionally computed the interconversion of the
two ligands m3GpppG and m7GpppG, bound to snurportin 1 and in
solution to calculate their binding free energy difference. The total
simulation times for these simulations were 0.6, 1, 2, 5, 10, 16, 20,
25.6, 32, and 40 ns.

Accuracy for Given Computational Effort

To evaluate the accuracy of all five methods SGTI, DTI, EXP, BAR,
and CGI for given computational effort, the test systems E2M and
W2G were used. A total simulation time of roughly 20 ns was spent
for each method. The 3-step scheme was used for these simulations.

Figure 3. Used thermodynamic cycles. (A) switching from ethane (Eth)
to methanol (MeOH) in vacuum (g) and aqueous solution (aq), (B)
switching from m3GpppG to m7GpppG bound to SPN (b) and unbound
(u) in solution.
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Figure 4. (A) Distribution of 1000 work measurements for the switching process of ethane to methanol
in aqueous solution, forward (f) and reverse (r). A Gaussian function was fitted to the forward and reverse
data, with their intersection yielding the free energy. (B) Distribution functions for the same data, which are
assessed by the Kolmogorov–Smirnov-test. For comparison, the respective cumulative distribution function
(error function) of the respective Gaussian functions is shown in gray.

The SGTI simulation times for both systems were 9.6 ns each
for the forward and reverse process, yielding a total simulation time
of 19.2 ns. For the DTI simulations, the switching process was
split into 11 equally spaced discrete λ values. For each of these
values, the system was sampled for 600 ps, yielding a total sim-
ulation time of 18.6 ns. The first 200 ps of each simulation were
discarded as additional equilibration time and were not used for the
calculation of the intermediate free energies Fλ and their statistical
accuracies.

For EXP, BAR, and CGI, identical trajectories were used as input.
For the 1-step process (system SPN), the A- and B-states were equi-
librated for 1 ns. For the 3-step process (systems E2M and W2G),
the intermediate states were also equilibrated for 1 ns. From the last
100 ps of each equilibration trajectory 50 snapshots were extracted
as starting structures for the subsequent 50 ps FGTI simulations.
Statistical independence was assessed via an autocorrelation anal-
ysis of dH/dλ which yielded an autocorrelation time well below
100 ps/50 = 2 ps. The total simulation time including the necessary
equilibration runs was 21 ns.

Results

Comparison to Experiment

As a check, we compared computed free energies with experimen-
tal solvation free energies for E2M. The appropriate thermodynamic
cycle (Fig. 3A) required interconversions of ethane into methanol
both in solvent and in vacuum. From nine SGTI simulations in sol-
vent, �G4=−21.91 ± 0.09 kJ/mol was obtained. Here, the error
of the mean was estimated from the standard deviation (σ = 0.27
kJ/mol) of the obtained nine free energy values. The observed value
for the hysteresis was 0.09 kJ/mol on average, which agrees with this
estimate. The vacuum free energy difference was�G1 = 6.72±0.03
kJ/mol, with the error estimated from the hysteresis. The result-
ing solvation free energy difference ��G = �G1 − �G4 =
28.63 ± 0.10 kJ/mol agrees well with the experimental value of
��G = 29.01 kJ/mol54 as well as with earlier simulations, ��G =
28.25 ± 1.13 kJ/mol.5 We note that we consider Gibbs’ free ener-
gies here, as the experiments refer to constant pressure conditions.

Figure 5. Comparison of 3-step free energy calculations. (A) System E2M, (B) System W2G. The total
simulation time is shown on a logarithmic time scale. The upper scale shows the corresponding number of
FGTI trajectories used (unidirectional). For each SGTI free energy calculation, one trajectory was used.
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Because only double differences are considered, the p�V term is
not expected to affect our results.

Test of the Gaussian Approximation

Methods EXP and CGI rely on the assumption that the distribu-
tion of work values from nonequilibrium switching processes can
be approximated by Gaussian functions. To test this assumption,
1000 independent simulations for the system E2M were performed,
from which 1000 work values were obtained. Figure 4A shows the
obtained distributions as well as the Gaussian fits.

To test the hypothesis that these 1000 values are actually
distributed according to a Gaussian function, the Kolmogorov–
Smirnov-test was applied (Fig. 4B). The obtained significance levels
of αf =0.10 and αr=0.50 for the forward and, respectively, reverse
work distributions imply that the hypothesis cannot be rejected at
the usual 5% (or lower) significance level. We thus assume that the
Gaussian approximation holds for the case at hand as well as for the
other test systems considered here. We note that the limited set of
work values lacks data points in the far tail regions of the distribu-
tions, which therefore cannot be reliably assessed by the KS-test.
Because the intersection of the forward and reverse distribution falls
typically within the “main body” of the Gaussian function and not
in the tails, however, this uncertainty will not affect our free energy
estimates.

Convergence for Varying Numbers of Trajectories

To assess the accuracy and convergence behavior of the three NEW
methods, test simulations were carried out for the two test systems
E2M and W2G. SGTI was used as a reference. Figure 5 shows
the convergence of �F for the four methods as a function of the
total computational effort spent. For SGTI, convergence is reached
for both systems after about 40 ns. The mean and statistical accu-
racy of the last four energy values are �F = −21.89 ± 0.20
kJ/mol for E2M and �F = −16.54 ± 1.31 kJ/mol for W2G,
respectively. We used these two mean values as our best refer-
ence estimates, against which convergence of the NEW methods is
assessed.

As can be seen, beyond 7.5 ns, all NEW methods, except
EXP for system W2G, yield free energy estimates, which agree
with the reference within their respective statistical accuracy.
Accordingly, for the systems at hand we consider 25 trajecto-
ries for the forward process and 25 for the reverse, respectively,
sufficient to obtain reasonably converged results for the NEW
methods.

Next, we studied the effect of trajectory length for a given number
of 50 trajectories for systems E2M, W2G, and SPN. As can be seen
in Figure 6, all NEW methods converge for all three systems at
about 80 ps trajectory length. However, for the large system SPN,
as well as for the large perturbation in system W2G, CGI turns out
to converge markedly faster, such that accurate results are obtained
already from quite short trajectories. Closer analysis reveals that
CGI provides the same accuracy as EXP or BAR at about half of
the computational effort. Furthermore, CGI provides reliable error
estimates, whereas EXP drastically underestimates the statistical
error.

Figure 6. Convergence of NEW free energies for differing FGTI trajec-
tory lengths on a logarithmic scale. (A) system E2M, (B) system W2G,
(C) system SPN. Trajectory lengths vary from 1 to 200 ps. The errors of
the BAR method for the very short trajectories (1–25 ps) are often very
large and are therefore not shown in the plot.

Accuracy for Given Computational Effort

We compared the accuracy of both equilibrium (SGTI, DTI) and
nonequilibrium methods (EXP, BAR, CGI) for given computational
effort. For systems E2M and W2G, a total simulation time of roughly
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Table 2. Free Energy Contributions of a 3-Step Switching Process of System E2M.

Method �GQQoff σ �GVdW σ �GQQon σ �GTot σ

SGTI −8.44 0.01 −0.77 0.09 −12.86 0.17 −22.07 0.19
DTI −8.43 0.05 −0.70 0.49 −12.68 1.51 −21.81 1.59
EXP −8.43 0.01 −0.77 0.05 −12.80 0.12 −22.00 0.13
BAR −8.43 0.001 −0.78 0.002 −12.70 0.01 −21.91 0.01
CGI −8.43 0.01 −0.78 0.24 −12.33 0.20 −21.54 0.31

“QQoff ” denotes switching the charges of the perturbed atoms in the state A to zero, “VdW” the interconversion of the
Lennard Jones parameters from state A to B with softcore potentials, “QQon” the switching of the charges to their values
in state B, and “Tot” the sum of these three contributions, yielding the total free energy difference. All free energies are
given in kJ/mol. The estimated error for all values is σ . For slow growth TI, σ provides a lower bound error estimate.

20 ns was spent as described in the methods section. Table 2 shows
the free energy contributions of the 3 steps as well as the total free
energy difference obtained from the 3-step switching processes for
system E2M. Table 3 shows the same results for system W2G. As
can be seen from Table 2, for system E2M all applied methods yield
free energy differences which converge to �GTot ≈ −21.9 kJ/mol.
For a larger perturbation (system W2G), however, convergence to
�GTot ≈ −15.2 kJ/mol with reasonable statistical accuracy was
only reached by the NEW methods (Table 3). In addition to the DTI
result using 11 discrete λ values listed in Table 3, DTI was also used
with 21 discrete λ values, sampling each for 300 ps. However, no
significant differences in the resulting free energies were seen (data
not shown).

We finally applied the NEW techniques to SPN using the ther-
modynamic cycle shown in Figure 3B. As can be seen from Table 4,
the free energy differences obtained for all three NEW methods are
sufficiently accurate to allow a reliable calculation of the required
double differences ��G. Despite the fact that quite small differ-
ences of large values are involved, CGI provides reliable values
already for much shorter trajectory lengths than EXP and BAR.
Comparison with the measured value of 5.61 − 11.22 kJ/mol44, 55

suggests that, given the relatively large experimental uncertainty,
good agreement is obtained for both, CGI and BAR.

Discussion and Conclusions

We compared established equilibrium (SGTI, DTI) and nonequilib-
rium (EXP, BAR) free energy calculation methods. On the basis of
our results, an improved nonequilibrium method, CGI, has been
derived and tested, which combines the advantages of existing
methods. Interconversions between ethane and methanol (E2M),

between tryptophane and glycine within a tripeptide (W2G), and
between m3GpppG into m7GpppG bound to the globular protein
snurportin 1 (SPN) were used as test cases. The main aim here
was to assess recently proposed nonequilibrium methods, particu-
larly for large perturbations, which typically occur in the context of
complex biomolecular systems.

For system E2M, the calculated free energy difference of 28.63±
0.1 kJ/mol agrees well with the measured value of 29.01 kJ/mol,
which suggests that the used force field and simulation times provide
sufficiently accurate results for our further assessments.

To assess their convergence behavior, the three NEW methods
as well as SGTI were compared by calculating the free energy of the
two systems E2M and W2G for different simulation times. Extended
SGTI simulations were found to converge after about 40 ns and were
therefore taken as reference. All NEW methods, except EXP for
system W2G, yielded converged and, compared to SGTI, accurate
free energies (within the error bars) already above 7.5 ns, i.e., for
five times shorter simulation times.

The effect of trajectory length on the convergence behavior of
the NEW methods was then studied in more detail by varying the
trajectory length of the FGTI simulations performed for the sys-
tems E2M, W2G, and SPN. Using ensembles of 50 trajectories,
all NEW methods converged for all studied systems for trajectory
lengths above 80 ps. Remarkably, our new method CGI converged
significantly faster, particularly for the more complex perturbations.

Both equilibrium (SGTI, DTI) and nonequilibrium methods
(EXP, BAR, CGI) were then compared for given computational
effort. To compute the free energy differences for the systems E2M
and W2G, a total simulation time of roughly 20 ns was spent. For
the very small system E2M, all five methods turned out to per-
form reasonably well. For such a small system, convergence after
20 ns is indeed expected. Importantly, for the larger perturbation of

Table 3. Free Energy Contributions of a 3-Step Switching Process of System W2G.

Method �GQQoff σ �GVdW σ �GQQon σ �GTot σ

SGTI 26.61 0.3 −52.00 4.17 6.39 1.13 −19.00 4.33
DTI 26.79 2.94 −48.42 9.46 7.68 1.66 −13.95 10.04
EXP 25.55 0.21 −46.84 1.52 6.86 0.05 −14.43 1.54
BAR 25.54 0.03 −48.38 1.24 7.24 0.02 −15.60 1.24
CGI 25.53 0.20 −47.63 0.92 7.24 0.16 −14.98 0.96

Symbols are defined as in Table 2.
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Table 4. Free Energy Contributions of a 3-Step Switching Process of SPN.

Method �GCpx σ �GSol σ ��G σ

EXP −427.35 1.51 −441.18 0.67 13.83 1.65
BAR −429.52 1.29 −440.91 0.17 11.39 1.30
CGI −430.34 0.86 −441.16 0.51 10.82 1.00

“Cpx” denotes the free energy difference calculated for the ligands bound to the protein, and “Sol” for the ligands in
solvent, respectively. All free energies are given in kJ/mol. The estimated error for all values is σ .

system W2G, the NEW methods provide significantly more accu-
rate results than the equilibrium methods. Among the equilibrium
methods, DTI was found to provide the most accurate free energy
values; however, the very large statistical uncertainty involved is
clearly a disadvantage.

As our new method CGI (as well as EXP) relies on the validity of
the Gaussian approximation of work distributions, this assumption
deserved particular attention. To test this assumption, Kolmogorov–
Smirnov-tests were applied to the work distributions calculated
for the systems mentioned above. 1000 forward and 1000 reverse
work values were obtained from a corresponding number of FGTI
trajectories, and their distributions were subjected to a Kolmogorov–
Smirnov-test. Indeed, the hypothesis of an underlying Gaussian
distribution could not be rejected, such that the Gaussian approxima-
tion for work distributions seems to be sufficiently accurate, which
is in line with the accurate values obtained by CGI.

We attribute the improved accuracy of CGI over EXP to the fact
that CGI is derived directly from the more general Crooks’ theorem
rather than from Jarzynski’s equality, in particular, CGI exploits
the relation between forward and reverse distributions, which is not
implied in Jarzynski’s equality.

As a check against experiment involving a large system, we
finally calculated binding free energies for two ligands, m3GpppG
and m7GpppG, bound to the globular protein snurportin 1 (SPN).
The obtained values of 11.39 ± 1.3 kJ/mol (BAR) and 10.82 ± 1.0
kJ/mol (CGI), respectively, agree with the estimate from experi-
ments of 6 − 11 kJ/mol, albeit such large experimental error does
not allow to attribute a pronounced significance to this result. Nev-
ertheless, the value of 13.83 ± 1.65 kJ/mol obtained from method
EXP, is clearly too large.

Overall, for the three test systems considered, the nonequilib-
rium methods were shown to outperform the traditional equilibrium
methods. The best results were obtained for our newly proposed
CGI method. We attribute the substantially faster convergence of
the nonequilibrium methods to the fact that these do not rely on the
assumption that the system is sufficiently close to equilibrium at all
times. Rather, only the ensembles from which the required sets of
trajectories are started need to be sufficiently equilibrated.

A further advantage of the nonequilibrium methods is that they
are inherently parallel, and therefore scale optimally on parallel
machines, in contrast to calculations of single long trajectories.
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