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For the purpose of molecular dynamics simulations of large biopolymers we have developed a new method 
to accelerate the calculation of long-range pair interactions (e.g. Coulomb interaction). The algorithm 
introduces distance classes to schedule updates of non-bonding interactions and to avoid unnecessary 
computations of interactions between particles which are far apart. To minimize the error caused by the 
updating schedule, the Verlet integration scheme has been modified. The results of the method are 
compared to those of other approximation schemes as well as to results obtained by numerical integration 
without approximation. For simulation of a protein with 12 637 atoms our approximation scheme yields 
a reduction of computer time by a factor of seven. The approximation suggested can be implemented on 
sequential as well as on parallel computers. We describe an implementation on a (Transputer-based) 
MIMD machine with a systolic ring architecture. 

KEY WORDS: Molecular dynamics simulation, distance classes, parallel programming. 

I .  INTRODUCTION 

Molecular dynamics simulations have become a widely used tool to investigate 
biological and chemical systems. Simulations which account for the long-range 
interactions between partial atomic charges consume long computing times. As a 
result only rather small biopolymers (of a few thousand atoms) and short simulation 
periods (of a few nanoseconds) are possible today. This is illustrated by the fact that 
the simulation of a large biopolymer with about 12 600 atoms over a period of 1 ns 
requires several weeks of CPU-time on the fastest current computer hardware. 

To overcome the computational barrier we have developed and programmed a 
MIMD (Multiple Instructions Multiple Data) computer with a systolic ring architec- 
ture zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 1,2,3,4]. The computational nodes of this computer are currently based on T800 
Transputers. Our computer allows extremely cost-effective molecular dynamics simu- 
lations. For a review on molecular dynamics on parallel computers see [5 ] .  

To simulate macromolecules faster, it is necessary, to accelerate the algorithm 
adopted for simulations. Since the evaluation of long-range pair interactions is the 
computationally most demanding part of a simulation, this task needs to be ac- 
celerated. Existing simulation programs adopt rather crude approximation schemes 

*To whom correspondence should be sent. 
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for this purpose. One method often employed chooses a cut-off of pair interactions 
beyond a certain distance. This can lead to the prediction of artificial structural 
rearrangements within a macromolecule (see Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.2). In order to gain a substan- 
tial speedup while avoiding such artefacts, we developed a new algorithm to account 
for long-distance interactions. This algorithm judiciously schedules updates of non- 
bonding interactions avoiding unnecessarily frequent computations of interactions 
between particles which are far apart. The algorithm is closely related to the multiple- 
time scale (MTS) algorithm suggested in [6]. An excellent discussion of this algorithm 
and other issues regarding molecular dynamics algorithms can be found in [7]. The 
algorithm developed by us differs from the MTS algorithm in that we apply it to 
long-range Coulomb interactions rather than short-range Lennard-Jones potentials, 
in that we employ a large number of distance classes rather than two, in that we 
modify the algorithm to yield results as close as possible to the Verlet algorithm 
without distance classes, in that we apply the algorithm in the context of a simulation 
program for complex molecular systems, namely biological macromolecules like 
proteins and DNA, rather than Lenard-Jones liquids, and finally that we adopted the 
algorithm for a molecular dynamics program running on massive parallel computers. 

After a brief review of conventional approximation schemes in Section 2, we will 
derive our new scheme in Section 3. In Section 4 the actual implementation of the 
algorithm on a parallel computer is described. In order to test the accuracy of our 
algorithm, we carried out simulations of a large biopolymer, which are described in 
Section 5. 

2 .  CONVENTIONAL METHODS TO INCREASE EFFICIENCY 

Computer simulation of a classical many-particle system is based on the solution of 
the Newtonian equations 

where rk denotes the position and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmk the mass of particle k,  k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1,2, ..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN,N being 
the number of atoms in the molecule. Fk(rl ,..., r , I  ) = -V,  Epot(r ,,..., r. , .)  represents 
the force acting on particle k .  

A commonly used algorithm to integrate Equation (1) is the ‘Verlet algorithm’ [8]. 
According to this algorithm, the configuration x,, I = (rl ,..., rSI . )  E g3.’. of a macro- 
molecule (the index denotes the integration step) at instance (i + 1)Ar is 

xj+l = 2x, - xj-1 + (At)’ f(x;), (2) 

where xi and x,- I denote the configuations at time iAt and (i - l)At, respectively, and 

f(x,) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, ...,- denotes the accelerations’ acting at time iAt. A t  is the integration 

step size. This algorithm is exact to second order in At. 
f(x,) needs to be computed every integration step. This vector, in general, will 

depend on the positions of all particles in the system. As a result, evaluation of f(x,) 
is the computationally most intensive part of a simulation. Futhermore, the computa- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(I, :.:I 

‘We will refer to this quantity as a force, even though it is strictly an acceleration. 
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GENERALIZED VERLET ALGORITHM 123 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tional effort increases with the square of the number of particles. It appears highly 
desirable to reduce the number of arithmetic operations in simulation calculations. 
Two approximation schemes which reduce the number of arithmetic operations will 
be described now. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACut-Of Scheme 

The most commonly used approximation cuts-off all pair interactions beyond a 
certain maximum distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR,,,. The cut-off is achieved by multiplying the force by a 
‘cut-off -function, which depends only on the distances and reduces the force to zero 
in a continous differentiable, manner. A typical ‘cut-off -function assumes the con- 
stant value unity up to a distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR,,, then decreases to zero between R,, and R,,, and 
remains zero for all distances greater than R,,,. As a result, only interactions up to the 
distance R,,, have to be evaluated. 

The appropriate choice of R,,, is a compromise between accuracy and computing 
time. On the one hand, the smaller R,,, is chosen, the faster the computation will be 
carried out. On the other hand, a large R,,, will reduce the error of the approximation. 

The ‘cut-off, although often employed, cannot be an appropriate approximation 
for molecular dynamics simulations since a neglect of the Coulomb interaction is 
believed to cause major rearrangements within the molecule. An improved approxi- 
mation scheme involves ordering of the long-range interactions according to distance 
classes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9],  as described below. A similar algorithm had been suggested in [6] for short- 
range forces in Lenard-Jones liquids. 

2.2 Distance Class Schemes 

A ‘distance class’ is defined as follows: Let (Ro zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, R, ,  ..., R,,} be a set of radii with 
R, < R,+, for all j = O,l, ..., n - 1. Then the set of particles k with positions r k  

satisfying the condition Rl < Ir, - rk I < Rlt- I is called the distance class j with respect 
to particle i .  The class scheme is illustrated in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. 

The basic idea of the distance class algorithm relies on the observation that the 
change in time of pair interactions acting between two particles in general is smaller 
the further the particles are separated. Thus, it is possible to approximate the time 
development of pair interactions by a ‘step function’, i.e. the interactions are assumed 
to remain constant during a number of integration steps. For closely spaced particles 
the ‘step function’ extends only over a single instance in time, for particles separated 
further the ‘step function’ extends over several instances in time, the number of steps 
it spans increasing with the increasing separation between the particles. The ‘step 
function’ extending over j  steps implies that the force has to be computed only once 
during j integration steps. For any given particle one can order all other atoms 
according to the distance classes introduced above. The interactions with atoms in the 
inner distance classes have to be computed more often than those of the outer classes. 
Assuming that the forces originating from the particles within distance class j are 
evaluated once every 2’ integration steps, an obvious choice of a distance class 
algorithm is of the form, 

n 

XNi+k+ l  : = 2XN!+k - XNi+k- l  + (At)2 e t + U [ k p ]  7 (3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
/=0 
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124 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. GRUBMULLER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAET A L .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Distance Classes 

class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno. 3 

Figure 1 Scheme of the distance classes for a particle located at the center. The distance classes are 
numbered 0.1,2,3. One other particle and its distance to the center particle is shown for each distance class. 

where k ,  denoting the integration step, runs from 0 to N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1. The index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi counts 
groups of integration steps, each group consisting of N = 2" single integration steps. 
One such group will be referred to as a 'macro-integration step'. The number of 
distance classes is n + 1. The force fo' is caused by the particles of the innermost 
(0-th) distance class, P i )  by the particles of the class next to the innermost, and so on. 
Force fen) is caused by the particles of the outermost (n-th) distance class. The brackets 
(1 ...j) denote the floor function, i.e. the positive integer less than or equal to the 
argument. 

Table 1 Computation scheme for the distance class algorithm. Shown are the forces orginating from the 
different classes required during several integration steps. Boxed forces need to be computed; the others can 
be copied from previous integration steps. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
in regration distance class 
step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 I 2 3 . . .  
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GENERALIZED VERLET ALGORITHM 125 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The corresponding computation scheme is illustrated in Table 1 ,  where the forces 

used for the actual integration step are listed for the different distance classes. The 
numbers represent the integration step, during which the corresponding force has 
been computed. The boxed numbers represent forces that need to be evaluated, while 
the non-boxed forces need not be computed, since they can be copied from previous 
integration steps. 

As explained above, the forces of the outer distance classes, according to the 
distance class algorithm, are not updated within every integration step. Instead, the 
most recently evaluated forces are used as an approximation for the actual forces. As 
a result of this approximation the total energy of the system will not be constant. In 
the following chapter two methods to overcome this disadvantage will be presented. 
The first one (referred to as ‘Verlet-I algorithm’) is a generalization of the distance 
class algorithm and can be regarded as a first step towards the second algorithm, the 
‘Verlet-I1 algorithm’. 

3. GENERALIZATION OF THE VERLET ALGORITHM 

3.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFirst Generalization 

To devise a scheme which reduces the error resulting from applying the distance class 
algorithm (Equation (3)), we consider the special choice of distance classes [R, ;  R , + , ] ,  
as follows: Ri zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:= 0 for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi < n and R, := zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi > n. For this choice all particle 
pairs fall into distance class number n. Interactions are calculated every N-th integra- 
tion step (N = 2“). In this case, in which all pair interactions are treated identically, 
the algorithm should yield the same result as the conventional Verlet algorithm with 
an integration step N At. 

However, ‘Verlet equivalence’ is not satisfied by the distance class algorithm defined 
by Equation (3). We want to rewrite the scheme by generalizing Equation (3) such that 
‘Verlet equivalence’ results. Verlet equivalence appears to be desirable since it ascer- 
tains energy conservation and close agreement with predictions resulting from the 
Verlet algorithm. For this purpose we modify Equation (3) as follows 

X N i + k + l :  = 2 x N , + k  - X N i + k -  I + (At>2 a!?yk/u] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc!+2[!,jZ] . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I - 0  

Here k denotes the integration step, running from 0 to N - 1 .  The definitions of 
Equation (4) are the same as in Equation (3). The modification introduces weight 
factors a!? , which will be chosen to establish the Verlet equivalence. To determine 
these a!’ we define 

Yk:  = XNi+k 

The N Equations (4) can then be written 
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In order to compare Equation (6) with the conventional Verlet algorithm Equation 
(2) ,  for an integration step size of N At ,  one needs to express zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyZN in terms of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ,  and 
yo. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs will be shown, the resulting expression is of the form 

Y 2 N :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= hO”I yo, b,,..., bz,v-1) . (7) 

This expression will be used to determine the coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAup). In order to guarantee the 
uniqueness of the solution we require uf) > 0. This restriction is reasonable since such 
weights conserve the direction of the corresponding force. 

We will now determine expression h defined in Equation (7). Since there are 
2N - 1 unknowns, namely J’, ,..., y N - [ ,  y,+[ ,..., y2 , - ,  , y 2 N ,  a system of 2N - 1 equa- 
tions is needed. For this purpose we use Equation (6) with k now running from l to 
2N - 1. This implies the use of the equations of IM” macro-integration steps. Since 
the first N equations are connected to the second N equations via an index transfor- 
mation k -+ k + N ,  one could argue that the extension is redundant. This is not the 
case, because the force terms b, and b,+,v differ. It should be emphasized that neither 
yo nor y ,  are considered unkown, since they are parameters of the function h.  
Equation (6) can be written 

2 

- 1  

- I  

2 

- 1  

0 

- 1  

2 

- 1  

0 

- 1  

2 

- 1  - 1  

2 - I  

- 1  . 

2 - I  

- 1  2 - 1  

)’I 

Y2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PV -. 

Y N  - 

Y N  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y.\ + 

Y, + 

Y 2 N  

- b, 

- b, 

-bN_2  

-b2N-, 

By eliminating all unknowns except for Y , , ~ ,  one obtains 

N - 2  2 N - 2  

y,, = 2YN - Yo + c (k  + I ) b k + l  + 1 (2N - k - 1) b k + l  + N b n .  
k = O  k = H 

(9) 

To establish Verlet equivalence Equation (9) has to be compared to a step in the Verlet 
algorithm for a step size N .  At. Since all forces originate from distance class n it holds 
that 

P’ = 0 for a l l j  z n . (10) 
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GENERALIZED VERLET ALGORITHM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The definitions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  yield zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k=l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N -  I 

B :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 (2N - 
k =  I 

k)af )  . 

127 

1 

Since the conventional Verlet algorithm contains only forces fi$,+l), A has to vanish. 
With zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa t )  > 0 we obtain 

a t )  = 0 for all k = 1,2 ,..., N - 1 . (12) 

Therefore, B vanishes, too, and Equation (1 1) transforms to 

(13) 1 n )  (n) 
xN(~+Z)  = 2 x N ( ~ + l )  - x N ~  f (NAr)2 ' fN(r+l) . 

Obviously, Equation (13) is equivalent to the conventional Verlet algorithm, if and 
only if a$') = N = 2" . 

Given a number of distance classes, this procedure can be applied recursively 
(starting with the innermost distance class) to all classes. This yields = 2, 
bk,z,k,Dl and Equation (4) transforms to 

k = 0, ..., N - 1 . 

This scheme will be referred to as Verlet-I algorithm. 

3.2 Discussion of the Verlet-I algorithm 

The Verlet-I algorithm (14) is constructed to be equivalent to the Verlet algorithm, if 
only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAone distance class is occupied, i.e. if the distances between all pairs of particles 
lie within one distance class. In this case, the additional error of the distance class 
algorithm (compared with the Verlet algorithm) could be avoided. However, this is 
a case that never occurs for realistic simulations. It was considered only to find 
conditions for a unique description of the algorithm. We will now consider the 
properties of the Verlet-T algorithm in the case of several distance classes being 
occupied. 

The physical interpretation of the Verlet-I algorithm is the following: In using the 
conventional distance class algorithm of Equation (3), during one macro-integration 
step one transfers the momentum F.At onto a given particle at N instances of time. 
The difference between these instances of time is Ar. In contrast to that, the Verlet-I 
algorithm transfers a momentum N times larger, i.e. N . F . At, only once. If only the 
outermost distance class is occupied, there will be no difference to the conventional 
Verlet algorithm (with an integration step of NAr), since, in this case, the physical 
interpretation is the same. 
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In order to understand qualitatively why the results turn out to be worse when not 

only one, but several distance classes are occupied, we discuss the following example: 
Consider a system of three bodies, two of which (A and B) are located close together 
compared to the distance between each of those two particles and the third one (C). 
Assuming Coulomb interaction, the charge of particle A shall be positive, whereas B 
carries negative charge. In integrating the Newtonian equations of this system, one 
will usually choose an integration step size At of approximately two orders of 
magnitude less than the period of the fastest oscillation in the system, which in this 
case is the rotation of particles A and B around each other. Let us assume that n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1 
distance classes are used, where only class 0 and class n are occupied. Now the Verlet-I 
algorithm will apply the force caused by particle C acting on both, particle A and B, 
only every 2"-th integration step. However, this time interval might be near the 
resonance frequency of the system. Since the charges of the first two particles are 
opposite, the forces act in opposite directions, too. As a result, conservation of energy 
will be violated2. In the worst case, an artificial resonance can occur. Thus, the Verlet-I 
algorithm can not be used for more than approximately 3 or 4 distance classes. 
However, if the forces are purely attractive, as for example in gravitational systems, 
the situation is more favorable, because the forces caused by particle C on particles 
A and B point in the same direction. 

3.3 Second Generalization 

To avoid the disadvantage of the Verlet-I algorithm described above, we introduce a 
second generalization of the Verlet algorithm, the 'Verlet-I1 algorithm'. The basic idea 
is the following: 

As shown in Equation (1 l), the demand that At'$ = 0, i.e. all forces of the previous 
macro-integration step vanish, is a sufficient condition for a unique determination of 
the weight factors a)". To gain additional degrees of freedom for those weight factors, 
the Verlet-I1 algorithm includes the forces of the previous macro-integration step in 
addition to the forces of the actual macro-integration step. This inclusion actually 
corresponds to an interpolation of forces. Such interpolation had been also suggested 
in [6,7]. These authors evaluated, for the purpose of such interpolation, time deriva- 
tives of the forces. In the algorithm detailed below the interpolation is based on a 
knowledge of forces evaluated at different time instances. Also the interpolation is 
described by weight factors which optimize agreement with a linear interpolation 
scheme as well as agreement with the conventional Verlet algorithm. 

The algorithm can be written in the following form 

with the definitions being identical to the ones used in Equations (3) and (4). The only 
difference to Equation (4) is the addition of the new force coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby). These 
coefficients belong to the force of the previous macro-integration step and have to be 
determined along with the weights ay'. In contrast to the Verlet-I algorithm, there will 

'As would be the case when using the conventional Verlet algorithm with an integration step size of 2" 
At 
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GENERALIZED VERLET ALGORITHM 129 

be no restrictions on the sign of neither zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAup) nor by1. Nevertheless, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu?) turn out to 
assume always positive values. 

We like algorithm (15) to satisfy Verlet equivalence as well. For a many-body 
system, in which there are only forces belonging to distance class n, Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 5) 
shall represent a Verlet algorithm with an integration step size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANAt. 

We define abbreviations in analogy to Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  

yk : = x N i + k  

With these definitions Equation (1 5) transforms into Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6), i.e. the solution 
Equation (9) of Section 3.1, can be used. Resubstitution of the abbreviations together 
with the restriction P = 0 for a l l j  # n yields 

' N ( r + 2 )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2XN(r+I) - x N ~  + (At)2 ( A f i $ ~ + l )  + + cfi!{f-l)) 

N -  I 

A : = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ( N  - k)  u p  
k = O  

N -  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN- I 

B :  = 1. kaf" + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ( N  - k)  bp) 
k =  I k = O  

N -  I 

C :  = 1 kbf" 
k =  I 

Since, again, the force terms in Equation (17) have to be equal to N2 * f@,+,,, the 
coefficients must satisfy 

i 
N -  I N -  I 

C k&) + 1 ( N  - k )  b$" = 0 
k =  I k = O  

N -  I c k b p  = 0 . 
k = l  

In contrast to the derivation of the Verlet-I algorithm, Equations (18) do not deter- 
mine a unique solution for the weight factors u r )  and @). If this were the case, the 
introduction of the forces f,','~l-l~ would yield no improvement. Now it is possible to 
optimize the algorithm by introducing further conditions on the force coefficients. The 
conditions have to be chosen in a way that guarantees evenly distributed force 
coefficients. 

As a first step, one might wish to make use of the fact that for each integration step 
forces of two previous integration steps are known, namely fi$-,) and fi$. Based on 
these two forces, one could find an approximation for the actual force fi$+k by the 
linear exptrapolation 

(19) 
k 

fii!+k % 6;; + - fi$-l))  + k = O,...,N - 1 . 

M.SIM E 
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The force coefficients would then become: 

(20) 

However, our consideration leads us to a suitable optimization criterion, namely zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk k 
N N '  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(kn' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 + - and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb',"' = - - 

Unfortunately, these force coefficients do not satisfy equations (1 8). 

the weights should 

(i) satisfy equation (18) and 
(ii) differ as little as possible from the coefficients obtained by the linear extrapola- 

Condition (i) is the Verlet equivalence and was already explained above. Condition 
(ii) is new; it will be realized by minimization of 

tion(l9). 

The solution, i.e. the force coefficients a:' and by', which minimizes (21) and satisfies 
Equation (18), can be found by the method of Lagrangian multipliers. The result is 

Substitution of the force coefficients ap" and by' into Equation (15) yields the Verlet-I1 
algorithm. 

The aim of the second generalization was to avoid force coefficients which are 
unevenly distributed. It can be easily shown that all force coefficients lie within the 
interval [- 2; + 31, in contrast to the Verlet-I algorithm, for which the first coefficient 
grows as N2,  while all others vanish. As a result, according to the. Verlet-I1 algorithm, 
the forces acting on a given particle are distributed evenly over all integration steps 
within one macro-integration step. For this reason, it can be expected that the 
Verlet-I1 algorithm avoids the disadvantages of the Verlet-I algorithm, as described 
above. 

However, one has to pay for the expected increase in numerical accuracy: In order 
to simulate a given number of particles using the Verlet-I1 algorithm, one has to keep 
in memory two forces per particle and distance class which is about twice the amount 
of memory required for the Verlet-I algorithm. This reduces the maximum number of 
particles that can be simulated on a given computer system by half. 

4. IMPLEMENTATION OF THE VERLET-I1 ALGORITHM 

4.1 Initialization Phase of the Algorithm 

The initialization phase of the Verlet-I1 algorithm is more complex than that of the 
conventional Verlet algorithm. To start a simulation of a many-particle system one 
chooses positions xo E B3.' (often determined experimentally by X-ray diffraction or 
by NMR) and velocities vo E B3.' of all particles of the system. Since the Verlet 
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algorithm requires knowledge of particle positions of two successive instances of the 
discretized time one needs to evaluate a second set of coordiantes xi from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxo and 
velocities vo 

where At  denotes the integration step size. After this initialization step the algorithm 
works as explained above: For the coordinates x, , the forces f, can be calculated and 
these forces, in turn, are then used to carry out an integration step (2), yielding 
another set of new coordinates, and so on. 

Let us now discuss the initialization of the Verlet-I1 algorithm. In the following, we 
will call the forces connected to the weights a?] the ‘new’ forces (they stem from the 
actual macro-integration step), and the forces connected to the weights zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby) the ‘old’ 
forces (they stem from the previous macro-integration step). In contrast to the Verlet 
algorithm Equation (3), the Verlet-I1 algorithm, according to Equation (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5) ,  implies 
the use of two sets of forcesper distance class, and, therefore, a single initialization step 
cannot suffice. Actually, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn distance classes, ‘old’ forces, calculated up to 2“ 
integration steps before the current integration step are required, but are not available 
at the beginning of the simulation. 

One solution to this problem’ is to inhibit the use of all outer distance classes during 
initialization, thus avoiding the need for forces that cannot yet be provided. This is 
done by introducing the following rule during initialization: Each pair of particles that 
would normally lie within ‘inhibited’ distance classes, is treated as if the pair was 
contained in the outermost ‘allowed’ distance class. Following this rule, one finds that 
after each integration step the necessary forces of the previous integration steps are 
available. As a result, from time to time, the actual innermost ‘inhibited’ distance class 
can be made ‘allowed’. After all classes have become ‘allowed’, the initialization is 
completed. Consequently, the initialization scheme falls into n groups of steps, each 
group consisting of twice as many steps than the previous one. 

Table 2 demonstrates the initialization scheme for the case of four distance classes. 
Shown are the indices of the ‘old’ and the ‘new’ forces (belonging to the four different 
distance classes) that are used during the actual integration step. Only the boxed 
forces have to be computed; the others can be taken from previous steps. The 
substitution of ‘old’ forces with ‘new’ ones is represented by an arrow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1). Exclusion 
of ‘inhibited’ distance classes is accomplished by using the same force coefficients a? 
and for all forces p+’),...,P-’) belonging to the ‘inhibited’ classesj, + l,...,jn-l 
during integration step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi. Table 2 illustrates this by grouping appropriate forces with 
brackets (( ...)). 

Let us explain the example in Table 2 in greater detail: The first step (no. 0) is 
equivalent to the one of the conventional Verlet algorithm. Using the initial con- 
ditions (positions and velocities), one computes a second set of coordinates (Equation 
(23)). In addition to that, forces, which will be used later, are stored as ‘old’ forces. 
Having evaluated the ‘new’ forces, integration step 1 can be carried out, with force 
coefficients chosen as if all pairs were located within the innermost (0-th) distance 
classs. 

’A possibly simpler solution of the problem is to carry out conventional Verlet-steps in the beginning 
until all necessary forces can be provided, which will be the case after 2” steps. However, as this approach 
is not very efficient, it was not followed by us. 
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132 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. GRUBMULLER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAET A L  

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComputation scheme for the initialization of the Verlet-I1 algorithm. As an example, four distance 
classes were assumed. Shown are the indices of the ‘old’ and ‘new’ forces belonging to the four distance 
classes, which are used during the actual integration step. Boxed forces have to be computed; substitution 
of ‘old’ forces wi h ‘new‘ ones is represented by an arrow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( I). Distance classes which are grouped together 
by brackets ((. . )) are treated as one class as explained in the text. 

~ 

durance clossec. 
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 2 3 

Step new’ old nebc old new‘ old new old 

4 
I 

a 3  

‘ I  

F l 2  

8 

9 

10 

I 1  

12 

13 

14 

15  

16 

17 

[ 8 1 7  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p J 9  

I 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

I 

III] 10 

pg I I  

pJ 12 

14 

Fi 16 

I 

I 

13 
I 

I 

15 
I 

I 

[ 8 1 6  

p g 8  

8 6  
I 

10 8 
I 

10 

12 10 
I 

12 

14 12 

14 

16 14 

I 

I 

E l 4  

8 4  

8 4  

8 4  
I 

B 8  

12 8 

12 8 

I2 8 

12 

16 12 

I 

N o  

N O  

8 0  

8 0  

8 0  

8 0  

8 0  

8 0  
L 

E l 8  

16 8 

Integration step 2 marks the beginning of the second group of steps: At this 
moment, all forces required for using distance class 1 have been computed (namely 
fo and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi). It is then possible to separate the innermost distance class from the rest of 
the pairs, which in turn is now defined to belong to distance class 1. As a result of this, 
during integration step 3 computation of forces of the outer classes is not necessary. 
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GENERALIZED VERLET ALGORITHM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA133 

The third group starts with integration step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. From now on there are three distance 
classes, and both, class 0 and class 1, can be treated in the usual manner. 

In the example, the initialization ends with integration step 7. Step 8 is the first 
integration step for which the ‘oldest’ force required by the Verlet-I1 algorithm, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ4), 

had been stored and the Verlet-I1 algorithm proper sets in. Notice that a4) is the only 
force computed during step 0 which has not yet been overwritten by some ‘newer’ 
force. The algorithm outlined is summarized in Table 2 which shows one macro-inte- 
gration step as well as two successive integration steps in addition to the initialization 
phase. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPair- and Bit-Lists 

In order to take advantage of the principle of distance classes, an efficient algorithm 
to identify all pairs of particles belonging to a given distance class has to be provided. 
One can think of three possibilities (among others) to perform this task: 

1) The most simple is to explicitly compute the distance of every pair of particles for 
every integration step. This will be necessary if there are stringent memory limits 
on the computer system used. However, in implementing this method, one gains 
only an increase of efficiency by a constant factor; the numerical effort will still 
increase proportionally to the square of the number of particles, due to the number 
of distances that have to be computed. 

2) The second possibility is to provide a so-called ‘bit-list’, which is any array of 
bit-fields; one field for each pair of particles (see also discussion of this issue in [7]). 
Asuming n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1 = 2” distance classes, every field consists of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm single bits. Those 
bits provide sufficient information for each pair of particles to know which distance 
class it belongs to, and, therefore, whether the corresponding force has to be 
computed or not. Of course, this bit-list has to be updated every few integration 
steps, e.g. after every macro-integration step, to keep track of movements of 
particles. But, as there is still a constant number of operations (namely reading the 
bit-list) to be performed for each pair of particles-even if the corresponding force 
does not have to be computed-, the numerical effort will still increase with the 
square of the number of particles as in method 1). 

3) The method which allows to avoid this disadvantage uses ‘pair-lists’: For each 
particle and each distance class there is a list of all other particles belonging to that 
class with respect to the given particle (see also discussion of this issue in [7]). In 
performing the Verlet-I1 algorithm, only the listed particles are considered, which 
results in a linear increase of computational effort in the limit of a large number 
of particles. However, this method requires a tremendous amount of computer 
memory: For the simulation of a molecule of about 12 000 atoms a memory of 150 
MBytes would be necessary. 

One can see that the efficiency increases with the amount of memory required. Thus 
a method should be choosen that makes use of the available memory as much as 
possible to maximize efficiency. Since the most efficient method of pair-lists in general 
cannot be implemented due to a lack of memory, the method of choice might be the 
method of bit-lists. In our application we choose 8 distance classes, requiring a coding 
by three bits per particle pair. In this case one macro-integration step lasts 128 
integration steps. Since all forces and all distances have to be computed according to 
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the Verlet-I1 algorithm once every macro-integration step, the bit-lists are updated 
every 128 integration steps as well. 

Actually an optimal choice is to use a combination of both, bit-lists and pair-lists. 
The basic idea is the following: According to the Verlet-I1 algorithm, the forces 
belonging to the innermost distance classes have to be computed most often, the 
frequency of computation decreasing for classes with larger distances. The corres- 
ponding fraction of integration steps is 50 percent for the innermost distance class, 75 
percent for both, the innermost and the second class, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA87.5 percent for the first three 
classes, etc. Despite the rare use of the outer distance classes, in using only the method 
of bit-lists, the whole list has to be searched through without doing any force 
computation. Since usually only few particles belong to the innermost distance 
classes, it is a good idea to make use of pair-lists for these classes, in addition to the 
bit-lists. These pair-lists will then be used instead of the bit-list for every integration 
step that doesn’t require evaluation of the forces of the outer distance classes. The 
number of classes for which pair-lists are kept will be determined by the available 
amount of memory. In this way one can adjust the efficiency according to the available 
memory. 

In our case of about 12 000 particles, only one pair-list (for the innermost distance 
class) was implemented. Although this required only a small additional amount of 
memory, namely 1.3 percent, the increase in efficiency was about 25 percent. 

4.3 Implementation on a Parallel Computer 

For our simulation we used a parallel computer (MIMD-Multiple Instructions, 
Multiple Data) with 12 nodes (so called ‘Transputers’ from INMOS), each containing 
its own memory. The Transputers are connected in a systolic ring[l,lO]. The basic idea 
of the parallelization is the following [2]:  Each node of the computer keeps one twelfth 
of the coordinates of all particles (called the ‘own’ particles) in memory. In addition, 
a second set of coordinates (called the ‘external’ ones) is kept in memory at  every 
node. During computation of one integration step, this second set of coordinates 
travels around the ring of nodes in such a way that every node is able to compute the 
interactions of its ‘own’ particles with all the other particles in the system. This scheme 
allows the total amount of necessary computations to be evenly distributed among the 
computational nodes. 

In using this scheme, one cannot make use of the Newtonian law ‘actio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= reactio’ 
and, thereby, cut into half the amount of computations of pair interactions. As it 
turns out, in order to implement this law, one has to send also theforces along the 
ring. Although, in the case of the Verlet-I1 algorithm, the forces have to be computed 
only every 2’-th integration step (j being the number of the corresponding distance 
class), one finds that (according to Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  5)) for each distance class the two most 
recently computed forces have to be known within every integration step. As a result, 
in using n + 1 distance classes, a total of 2(n + 1) force vectors have to be kept in 
memory for each particle. Furthermore, these 2(n + 1) force vectors have to be sent 
along the ring, such that the total amount of data to be transferred between nodes 
increases by a factor of about (n + l), compared with the conventional Verlet 
algorithm. Taking into account the fact that the average computation time for one 
integration step decreases, we observed in our simulation an increase of the com- 
munication rate by a factor of roughly 60. 
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GENERALIZED VERLET ALGORITHM 135 

5. ACCURACY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF THE VERLET-I1 ALGORITHM 

In order to test the accuracy of the Verlet-I1 algorithm, we performed molecular 
dynamics simulations on the photosynthetic reaction center of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARhodopseudomonas 
viridis starting from the X-ray structure of Deisenhofer and Michel [ I  13. This molecule 
consists of 12 637 atoms4. We actually started our simulations with a relaxed struc- 
ture, as described in [l]. 

The simulations of the reaction center were carried out employing the energy 
function of the molecular dynamics program CHARMM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 121 including the following 
energy contributions: electrostatic energy, van der Waals energy, bond energy, angle 
energy, dihedral energy and improper energy. H-bonds have been taken into account 
by a so-called implicit computation. The first two energy contributions (electrostatic 
and van der Waals) are long-range interactions. For this reason, the number of atom 
pairs contributing to the total electrostatic energy increases proportionally to the 
number of atoms squared, and so does the computational effort when using the 
conventional Verlet algorithm. In contrast to that, the other energy contributions 
(bond, angle, dihedral and improper energy) represent short-range interactions, so the 
computational effort increases only linearly with the number of atoms. Thus, a very 
large fraction of the total computation time has to be spent in evaluating non-bonding 
forces. For this reason we used the Verlet-I1 algorithm for evaluation of Coulomb 
interactions, but not for other interaction?. However, the short-range contributions 
had to be fitted into the distance class scheme, too, and this was simply done by 
defining the corresponding forces to be within the innermost distance class. It should 
be emphasized that this possibility is a feature of the Verlet-I1 algorithm which makes 
it very well suited for molecular dynamics simulations on parallel computers. 

5.1 Parameters of the Simulations 

All simulations were carried out using an integration step size of 0.25fs, which is 
relatively short compared with other simulations [9,13]. This short integration time 
step was chosen to accurately reproduce the fastest vibrations in the biomolecular 
system. The choice is not connected to the Verlet-I1 algorithm. In fact, if only the 
Coulomb forces were acting on the atoms a much longer integration time step could 
be chosen. At least 600 integration steps were performed, i.e. the simulation lasted 
150 fs. A second set of simulations lasting 1.5 ps (6000 integration steps) was carried 
out to compare the long time behavior of the Verlet and Verlet-I1 algorithms. 

Four different algorithms were compared, using identical conditions for the dif- 
ferent simulations. The algorithms are: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Computation of all interactions within every integration step, according to the 

conventional Verlet algorithm (referred to as ‘all interactions’ or ‘Verlet’). 

0 Implementation of a ‘cut-off, as described in Section 2.1. This algorithm is also 
used by the program XPLOR [14], from which we adapted the cut-off function. The 

4Some groups were collectively treated as compound atoms. 
SThe van der Waals interaction was included, since it is formally very similar to the electrostatic 

interaction, although it would as well be possible to simply cut it off because of the rapid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr-6 decrease of 
this interaction. 
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cut-off radii were chosen as proposed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 131: 1 1 .O A for the electrostatic interaction 
and 9.5A as well as l O . O A  for the van der Waals interaction6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 The conventional distance class algorithm, as explained in [9]. This algorithm will 
be referred to as ‘distance class’. 

The Verlet-I1 algorithm, as explained above. 

Since the radii of the distance classes determine the accuracy of the distance class 
algorithms, we would like to comment on the choice of appropriate radii. No specific 
rule for an optimal choice can be given; rather the choice will depend on the size and 
the shape of the molecule to be simulated as well as on the specific charge distribution 
within the molecule. In order to judge the quality of a given set of distance class radii, 
we used the following criteria, which are presented in order of decreasing importance: 

1 )  Criteria of accuracy 

(a)The most important criterion is appropriate accuracy. Roughly speaking, the 
error of the Verlet algorithm with respect to a given particle is proportional to 
the time derivative of the total force acting on the particle times the integration 
step size. An estimate for an upper limit for this derivative can be derived from 
the total force itself, acting on the particle. Since the force contributions of the 
outer distance classes are less than those of the inner classes, one can choose 
different integration step sizes for different distance classes, as done by the 
distance class algorithms. Appropriate accuracy, then, means that the error of 
the outer distance classes (estimated by the force contribution times the integra- 
tion step size) should not exceed the error of the innermost distance class. 

(b)As one can conclude from (a) it is reasonable to chose the radii such that errors 
for the different distance classes are within the same order of magnitude. 

2) Criteria of efficiency 

(a)Since the interactions of the inner distance classes are computed most often, the 
corresponding radii should be as small as possible. 

(b)For reasons of economical memory usage, the radius denoting the beginning of 
the outermost distance class should be less than the maximum size of the 
molecule; that is, ‘empty’ classes should be avoided. 

Using these criteria, we tested several different sets of distance class radii. The set with 
the best performance, which was then used for both simulations, ‘distance class’ and 
‘Verlet-11’, is given in Table 3. Since the distance class lists are updated only once per 
macro-integration step, some atoms might get closer to each other than they seem to 
be according to the distance class lists. In order to compensate for these atomic 
motions, all radii were provided with an offset, which is already included in Table 3. 

5.2 Results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the Simulations 

In this Section we will present results of simulations of the complete photosynthetic 
reaction center Rhodopseudomonus viridis over two time periods, a time period of 

6The switching function for the van der Waals interaction requires two parameters. 
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GENERALIZED VERLET ALGORITHM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA137 

Table 3 Radii of the distance classes used for the simulations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAradii ( A ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 
5 
8 

14 
23 
35 
50 
68 

. . .  5 

. . .  8 

. . .  14 

. . .  23 

. . .  35 

. . .  50 

. . .  68 

. . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco 

150 fs and a time period of 1.5 ps. The simulations were carried out on a Transputer- 
based parallel computer using a molecular dynamics program in Occam zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, both 
developed by us [ 13. Over the brief (1 50 fs) period three simulations were performed, 
a simulation according to the conventional Verlet scheme including all interactions, 
the same simulation assuming a cut-off of long-range interactions with a cut-off radius 
of 10 A, and a simulation according to the Verlet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 algorithm described above. Over 
the longer (1.5 ps) period two simulations were carried out, a simulation according to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-26250. 
_.1 

3 

h 
M 
5 -26750. 
c, 
Q, 

0 

3 

v) 

0 
L 

0 
aJ 

Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.I 

2 -27000. 

4 

-27250. 

I I I I I 

all interactions 

0. 25. 50. 7 5 .  100. 125. 150. 

Figure 2 Comparison of the time development of the electrostatic energy resutling from a Verlet-type 
simulation assuming a cut-off of 11 .O 8, for the electrostatic energy and a cut-off of 9.58, as well as 10.08, 
for the van der Waals interaction as described in Sections 2.1, 5.1 (upper curve) and from a Verlet-type 
simulation including all interactions (lower curve). The same equilibrated starting structure of Rhodop- 
seudomonas viridix and the same time step of 0.25 fs have been used for both simulations. 
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I38 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1, 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. '2: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 -1. 
U 

H. GRUBMuLLER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAET AL.  

I 

- Verlet-I1 

-. 
- 

2. 1 I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 

a, 
L 
9) 1. 
2 
a 0 .  

2l -1 .  

ru 

h 

Q, 

distance classes - 

- 

c: 
Q, -2. ' I I I J 

0 .  50 .  100. 150. 

Figure 3 Time development of the electrostatic energy resulting from a Verlet-I1 type simulation and a 
distance class simulation (see text). In the upper figure are shown the dflerences of the energy between a 
Verlet-I1 type simulation and a simulation including all interactions. In the lower figure are shown the 
diflerences of the energy between a distance class type simulation and a simulation including all interac- 
tions. The same starting structure and time step as  for Figure Z have been used. 

the conventional Verlet integration scheme and a simulation according to the Verlet 
I1 scheme. In order to compare the accuracy of the different schemes we consider the 
time-development of several observables, the total energy, which should remain 
constant, the total electrostatic energy which should provide a sensitive measure in 
how far the approximation of the Coulomb forces in the Verlet I1 scheme is satisfac- 
tory, the temperature which monitores the mean kinetic energy of atoms and, finally, 
the deviation from the X-ray structure of the average structures resulting from the 
simulations. 

We first want to demonstrate that the cut-off of long-range non-bonding forces 
leads to unsatisfactory deviations in the total electrostatic forces of a system and 
induces a drift of the system. For this purpose we present in Figure 2 the total 
electrostatic energy resulting from conventional Verlet-type simulations, one includ- 
ing all non-bonded forces, the other assuming a cut-off at a radius of 10 A. The results 
in Figure 2 show an initial energy difference of about 1,000 kcal/mol between the two 
simulations, resulting from the neglect of long-range interactions by the cut-off. More 
serious than this energy difference is the fact that a cut-off induces artificial forces 
which lead to a structural relaxation in the system. The relaxation manifests itself in 
the decrease of electrostatic energy by 500 kcal/mol shown in Figure 2. This finding 
should serve as ample evidence that an integration scheme which allows simulations 
which account for long-range Coulomb forces are desirable. 
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GENERALIZED VERLET zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAALGORITHM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA139 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.2 0.4 0.6 0.8 1.0 1.2 1.4 

t [PSI 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 Comparision of the long-term development of the temperature of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARhodopseudomonm viridis 
when using the Verlet algorithm (shaded line) and the Verlet-I1 algorithm (solid line), respectively. Both 
simulations used the same equilibrated strarting structure, which however is different from the one used 
in Figures 2 and 3. The same time step of 0.25 fs was used in both simulations. 

Such scheme is provided by the conventional distance class algorithm as well as by 
the Verlet-I1 algorithm. Figure 3 presents the results of simulations involving these 
two algorithms. To monitor the accuracy of the simulations we consider the total 
electrostatic energy of each of the simulations from which we subtracted the corres- 
ponding (equal time) total electrostatic energy of simulations according to the con- 
ventional Verlet algorithm including all interactions. As can be seen, both the distance 
class and the Verlet I1 algorithm reduces the error in energy by nearly three orders of 
magnitude compared with that of the cut-off scheme (see Figure 2). 

In order to demonstrate the accuracy of the Verlet I1 algorithm for longer simula- 
tion periods we compare in Figures 4 3  and 6 observables resulting from Verlet-type 
and Verlet 11-type simulations. In Figure 4 we present the temperature, i.e. essentially 
the mean kinetic energy resulting from the two simulations lasting 1 . 5 ~ s .  The results 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 

t [PSI 

Figure 5 Comparision of the long-term development of the electrostatic energy of Rhodopseudomonas 
viridis when using the Verlet algorithm (shaded line) and the Verlet-I1 algorithm (solid line), respectively. 
The data have been extracted from the same simulations as described in Figure 4. 
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0.2 0.4 C.6 0.8 l.C 1.2 1.4 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComparision of the long term time development of the total energy of Rhodopseudomonas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAviridis 
when using the Verlet algorithm (shaded line) and the Verlet-I1 algorithm (solid line), respectively. The data 
have been extracted from the same simulations as described in Figure 4. The devergence needs further 
investigation. 

show good agreement for the complete simulation period. In Figure 5 we present for 
the same two simulations the total electrostatic energy. This quantity also shows a 
satisfactory behaviour over 1.5 ps, demonstrating that major structural drifts do not 
occur between the two simulations. A most stringent test is presented in Figure 6 
which tests the conservation of energy at a high resolution. The results presented show 
that a Verlet-type simulation satsifies energy conservations within an error of about 
3 kcal/mol. The corresponding error of the Verlet 11-type simulation is 20 kcal/mol. 
This error is small on the scale of thermal energy measuring only about lO-'*NkT. 
Longer simulations showed that the energy drifts monotoneously by about 10 kcal/ 
mol each ps over a 5ps period. 

Another interesting observable to monitor the accuracy of the Verlet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 scheme is 
provided by the positions of the C-atoms of the protein backbone during the 
simulations. We have determined during the Verlet-type and the Verlet 11-type 
simulations the mean rms deviations of the C'-atoms from three structures, the X-ray 
structure, the average structure of the Verlet-type simulation and the average struc- 
ture of the Verlet 11-type simulation. The differences are presented in Table 4. 

Figure 7 compares the total energy during two simulations which result from the 
distance class algorithm and from the Verlet I1 algorithm. The results show that the 
Verlet I1 algorithm at short times reproduces energy conservation better than the 
distance class algorithm. This difference between the algorithms motivated the 
generalization of the Verlet integration scheme presented in Section 3. 

Table 4 Mean rms deviations in k, of the C'-atoms of the reaction center of Rhodopseudomonas viridis. 
Shown are the values for comparisons between the X-ray structure (X-ray), an averaged structure com- 
puted without approximations (Verlet) and one computed with the Verlet-I1 algorithm (Verlet-11) descirbed 
in this text. The averaging has been done over a trajectory of 1 . 5 ~ s  length, starting with an equilibrated 
structure. 

X-ray zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Verlet X-ray - Verier-II Verlet - Verlet-II 

2.9552 2.9554 0.0305 
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141 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0. 50. 100. 150. 200. 250. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA300 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf4 
Figure 7 Time development of the total energy of Rhodopseudomonas viridis when using the distance class 
algorithm and the Verlet-I1 algorithm, respectively. The dashed line represents the development of the total 
energy computing all interactions. The same simulations as described in Figure 2 have been used. 

The results given show that the two simulations show essentially the same mean 
deviation from the X-ray structure. Also the deviations of Ca-atoms between the two 
simulations are very small. The results indicate that over the simulation period of 
1.5 ps no major structural differences can be discerned. We interpret this behaviour 
as evidence that the Verlet I1 type algorithm yields simulation results in good agree- 
ment with the more time-consuming Verlet-type simulations. 

5.3 Performance of the Verlet-11 Algorithm 

In using the Verlet-I1 algorithm we achieved considerable reductions of computing 
times. By implementing bit-lists, as described in Section 4.2, the time required for one 
integration step (simulating Rhodopseudornonas viridis using 12 Transputers) was 
reduced from 386.6 s to an average value’ of 71.6 s. Actually, we expect that the fast 
multipole algorithm (FMPA) [15] applied to a 12 600 atom system would be about 25 
percent faster than the Verlet I1 algorithm. However, the FMPA is notoriously 
difficult to program and, as a result, can only be parallelized with a great deal of effort. 

After implementing a pair-list for the innermost distance class (in addition to the 
bit-lists), the average computing time for one integration step could be reduced by 

’The duration of an integration step is not longer constant for the Verlet-I1 algorithm. 

D
o
w

n
lo

ad
ed

 b
y
 [

M
P

I 
M

ax
-P

la
n
ck

-I
n
st

it
u
te

 F
u
er

 B
io

p
h
y
si

k
al

is
ch

e 
C

h
em

ie
] 

at
 0

0
:2

6
 2

8
 A

p
ri

l 
2
0
1
5
 



142 H. GRUBMULLER ET zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAL.  

another 26 percent to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA53.0s. Thus, in comparison to the simulation evaluating all 
forces within each integration step, a speedup of more than seven has been achieved. 

The simulations carried out showed that conventional methods to decrease com- 
puting time, e.g. the use of cut-off, are accompanied by numerical errors. In contrast 
to this, the Verlet-I1 algorithm yields a considerable reduction of computing times 
without any significant loss of accuracy. Using the Verlet-I1 algorithm, it seems 
possible to reproduce conservation of energy even for large many-body systems with 
a high degree of accuracy. 
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