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Circular dichroism spectroscopy is a structural biology technique frequently applied to determine 
the secondary structure composition of soluble proteins. Our recently introduced computational 
analysis package SESCA aids the interpretation of protein circular dichroism spectra and enables 
the validation of proposed corresponding structural models. To further these aims, we present the 
implementation and characterization of a new Bayesian secondary structure estimation method in SESCA, 
termed SESCA_bayes. SESCA_bayes samples possible secondary structures using a Monte Carlo scheme, 
driven by the likelihood of estimated scaling errors and non-secondary-structure contributions of the 
measured spectrum. SESCA_bayes provides an estimated secondary structure composition and separate 
uncertainties on the fraction of residues in each secondary structure class. It also assists efficient model 
validation by providing a posterior secondary structure probability distribution based on the measured 
spectrum. Our presented study indicates that SESCA_bayes estimates the secondary structure composition 
with a significantly smaller uncertainty than its predecessor, SESCA_deconv, which is based on spectrum 
deconvolution. Further, the mean accuracy of the two methods in our analysis is comparable, but 
SESCA_bayes provides more accurate estimates for circular dichroism spectra that contain considerable 
non-SS contributions.

Program summary
Program Title: SESCA_bayes
CPC Library link to program files: https://doi .org /10 .17632 /5nnsbn6ync .1
Developer’s repository link: https://www.mpibpc .mpg .de /sesca
Licensing provisions: GPLv3
Programming language: Python
Nature of problem: The circular dichroism spectrum of a protein is strongly correlated with its secondary 
structure composition. However, determining the secondary structure from a spectrum is hindered 
by non-secondary structure contributions and by scaling errors due the uncertainty of the protein 
concentration. If not taken properly into account, these experimental factors can cause considerable errors 
when conventional secondary-structure estimation methods are used. Because these errors combine 
with errors of the proposed structural model in a non-additive fashion, it is difficult to assess how 
much uncertainty the experimental factors introduce to model validation approaches based on circular 
dichroism spectra.
Solution method: For a given measured circular dichroism spectrum, the SESCA_bayes algorithm applies 
Bayesian statistics to account for scaling errors and non-secondary structure contributions and to 
determine the conditional secondary structure probability distribution. This approach relies on fast 
spectrum predictions based on empirical basis spectrum sets and joint probability distribution maps 
for scaling factors and non-secondary structure distributions. Because SESCA_bayes estimates the most 
probable secondary structure composition based on a probability-weighted sample distribution, it avoids 
the typical fitting errors that occur during conventional spectrum deconvolution methods. It also 
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estimates the uncertainty of circular dichroism based model validation more accurately than previous 
methods of the SESCA analysis package.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Circular dichroism (CD) spectroscopy in the far ultraviolet (UV) 
range (175-260 nm) is an established method to study the struc-
ture of proteins in solution [1,2], because of the conformation-
dependent characteristic CD signal of peptide bonds that comprise 
the backbone of all proteins and oligo-peptides. In particular, the 
CD spectrum is known to change with the secondary structure 
(SS) of proteins, and markedly different spectra are observed for 
proteins rich in α-helices, β-sheets, and disordered regions [3,4]. 
Because of these characteristic signals, it is common to interpret 
CD spectra by decomposing them into a set of basis spectra that 
each represent the average CD signal of pure (secondary) structure 
elements.

The CD analysis package SESCA (Structure-based Empirical 
Spectrum Calculation Approach) [5] allows for using several empir-
ical basis spectrum sets in two methods. The first method predicts 
a theoretical CD spectrum from a proposed SS composition, which 
is typically obtained from a model structure or structural ensem-
ble. The second method fits a measured CD spectrum to estimate 
the protein SS composition. Both methods can be used to validate 
protein structural models. The accuracy and precision of validation 
methods is mainly limited by scaling errors due to the uncertainty 
of the measured protein concentration and non-SS contributions 
that are not represented in the basis spectra. We have quantified 
the uncertainty caused by these deviations between measured CD 
spectra and their predicted SS signals previously [6].

The same study also revealed a potential caveat in the cur-
rent SS estimation method used in SESCA. In this deconvolution 
method, a linear combination of selected basis spectra is used to 
approximate a measured CD spectrum of the protein of interest. 
The coefficients of the approximation with the smallest deviation 
are used to estimate the fraction of SS elements in the protein 
under the measurement conditions. Unfortunately, the interference 
caused by non-SS contributions may increase the deviation from 
the measured spectrum for some SS compositions and decrease it 
for others, which may lead to significant errors in deconvolution-
based SS estimates.

To alleviate this problem, we developed and implemented 
a new SS estimation method for SESCA. The Python module, 
SESCA_bayes determines the likelihood of putative SS composi-
tions using a Bayesian inference framework for a given measured 
CD spectrum and a basis spectrum set. This method uses the ex-
pected joint probability distribution of deviations caused by scaling 
errors and non-SS contributions, and thus fully accounts for the 
uncertainty caused by these two experimental factors. Here, we 
describe the theoretical background, general workflow, as well as 
input and output parameters of this implementation. Further, we 
will assess the accuracy and precision of this method through a 
series of sample applications.

2. Theory: Bayesian SS probabilities

Our goal using this method is to determine the conditional 
probability P (S S|C D) of SS compositions given a previously mea-
sured CD spectrum. According to Bayes’ rule [7], this probability 
can be inferred according to

P (S S j|C D) ∝ P (C D|S S j) · P (S S j), (1)
2

where P (C D|S S j) is the probability of observing the measured 
spectrum for a protein with a given SS composition j (i.e., the like-
lihood function) and P (S S j) is the prior probability of the given SS 
composition of the protein.

As shown in Fig. 1 (top), the likelihood P (C D|S S j) is deter-
mined in five steps. First, the SS signal is predicted from the SS 
composition of interest (C ji ) using an appropriate basis spectrum 
set (Bil), as discussed in our previous study [5]. Second, if the basis 
set provides side chain corrections based on the protein sequence, 
they are added to the predicted spectrum. Third, the measured CD 
spectrum is rescaled to minimize the root-mean-square deviation 
(RMSD) from the predicted spectrum using

min RMSDj(αj) =
√∑L

i=1(Scomp
jl − αj · Sexp

l )2

L
, (2)

where Sexp
l and Scomp

jl are CD intensities of the measured CD 
spectrum and the spectrum computed for S S j at wavelength l, 
respectively. The obtained scaling factor α j quantifies and elim-
inates deviations from scaling errors of the measured spectrum, 
whereas the RMSD from the rescaled spectrum (RMSD j ) quantifies 
the average deviation due to unaccounted non-SS contributions. 
Once RMSD j and α j (collectively CD deviations) are computed, the 
likelihood of such deviations is determined from the joint proba-
bility distribution (PRMSD,α , see below) to estimate the likelihood 
of observing the measured CD spectrum for the given SS com-
position P (C D|S S j). Finally, to compute the posterior probability 
P (S S j |C D) of SS composition j, the CD spectrum likelihood is mul-
tiplied by the prior SS probability.

3. Methods

3.1. Joint probability distributions

We computed discrete joint-probability distribution functions 
for SESCA_bayes that can be used to determine CD spectrum like-
lihoods. These probability distributions were computed from CD 
deviations extracted from SS estimations of previously measured 
CD spectra. Reference CD spectra were taken from the SP175 ref-
erence set [8], which contains 71 synchrotron radiation CD (SR-CD) 
spectra of globular proteins with varying SS compositions. The CD 
spectrum of Jacalin (SP175/41) was discarded from the data set 
due to issues reported during the measurement and its unusually 
large estimated CD deviations.

The joint probability distribution functions of CD deviations 
were constructed as the sum of 70 two-dimensional Gaussian 
functions, each representing the estimated scaling factors and non-
SS contributions of a reference spectrum from the SP175 set. The 
mean and the variance of these Gaussian functions was determined 
by averaging over multiple RMSD j and α j values obtained for each 
CD spectrum from SS estimations using four different basis spec-
trum sets. This approach yielded likelihood functions that were 
defined for a wide range of possible CD deviations, and took the 
uncertainty due to discretization errors of the basis spectrum de-
termination into account.

In SESCA there are two types of basis sets, those that are solely 
based on SS compositions, and those that also include side chain 
corrections. Because the average size of CD deviations differs for 
these two basis set types, we determined two probability distri-
butions shown in Fig. 2. The joint probability distribution function 

http://creativecommons.org/licenses/by/4.0/
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Fig. 1. Secondary structure probability calculation scheme. The figure depicts the algorithm to compute the posterior probability of a given secondary structure j, based on its 
prior probability, and the deviations between its predicted CD signal and a given measured CD spectrum. Input data are depicted as blue parallelograms, operations as white 
rectangles, and decisions as white diamonds.
for basis set without side-chain corrections (left) was calculated 
from CD deviations estimated using the basis sets DS-dT, DSSP-1, 
HBSS-3, and DS5-4. For basis sets including side-chain corrections, 
the joint probability of CD deviations (right) were computed using 
the basis sets DS-dTSC3, DSSP-1SC3, HBSS-3SC1, and DS5-4SC1. For 
clarity, the Figure shows both a linear (top row) as well as loga-
rithmic (bottom row) representation of the CD deviation likelihood. 
For both likelihoods, the one-dimensional probability distribution 
of RMSD j was also calculated, which can be used to estimate the 
secondary structure from CD spectra without regards to the ap-
plied scaling factors, albeit these estimates naturally have a lower 
precision.

3.2. Synthetic spectra

To test the accuracy of the Bayesian SS estimation method, 
eight synthetic CD spectra were created using a linear combination 
of the three basis spectra from the DS-dT basis set (as discussed in 
our previous study [5]). To this aim, the coefficients shown in Ta-
ble 1 for the basis spectra α-helix, β-strand, and Other for each 
spectrum were used. For five of eight synthetic spectra (k= 1 to 
5), random coefficients were generated from uniformly distributed 
random numbers between zero and one, subsequently normalized 
to sum up to one. For the sixth synthetic spectrum (k= 6), the co-
efficients 0.3, 0.4, and 0.3 as well as the non-SS contributions (see 
3

below) were adopted from our previous study [6] for comparison. 
Synthetic spectra seven and eight were generated using low α-
helix and β-strand contents respectively to represent intrinsically 
disordered proteins (IDP).

To model the effects of experimental deviations from the ideal SS 
signal, the CD spectra were modified by adding non-SS signals and 
scaling errors. The size of these CD deviations for each synthetic 
spectrum was quantified by the scaling factors αk and the root-
mean-squared intensities of non-SS signals RMSIk listed in Table 1. 
Synthetic spectrum 1 (k= 1) was a positive control without any 
CD deviations (αk= 1.0, RMSDIk= 0.0 kMRE), spectra 2 and 6 in-
cluded small (0.4 kMRE) and large (3.5 kMRE) non-SS deviations, 
respectively, but no scaling errors. CD deviations for spectra 3, 4, 
5, 7 and 8 were drawn from the marginal distributions of exper-
imentally observed scaling factors and non-SS contributions using 
rejection sampling.

Non-SS signals were generated as sums of Gaussian functions 
using

SnonSS
kl =

G∑
g=1

I g√
2πσ 2

g

· e
− (λl−μg )2

2σ2
g , (3)

where the non-SS signal SnonSS
kl of spectrum k at wavelengths λl

from 178 to 269 nm was computed from the following randomly 
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Fig. 2. The panels depict the heat map representation of two likelihood functions provided for Bayesian SS estimation with SESCA. The estimated joint-probability distributions 
are shown for basis spectra that A) predict CD signals solely from SS information (left) and B) also include CD corrections from sequence-based side-chain information (right). 
Panels on the top and bottom show the same probability distributions using a linear and logarithmic color scale, respectively.
Table 1
SS compositions and CD deviations of model proteins. Columns show the index and 
name of the respective model protein, the fraction of its amino acids assigned to 
the SS classes α-helix, β-strand, and Other, as well as scaling factors αk and root-
mean squared intensities RMSIk of non-SS signals to quantify scaling errors and 
non-SS contributions in the protein CD spectrum, respectively. Synth denotes syn-
thetic spectrum in the proteins name, whereas Lysm, Dqd-1, Sub-C, and MeV-Nt 
abbreviate Lysozyme, Dehydroquinate dehydratase I, Subtilisin Carlsberg, Measles 
Virus Nucleoprotein C-terminal domain respectively. Note that SS fractions, scaling 
factors, and non-SS contributions for all synthetic proteins (k= 1-8) were parame-
ters used to generate their CD spectrum, whereas for reference proteins (k= 9-12), 
all values were computed based on their measured spectra and protein data bank 
structures (193L, 2DHQ, 1KU8, and 1SCD, respectively). For the disordered Mev-Nt, 
the reference parameters were determined from the CD spectrum by Longhi et al. 
and a molecular dynamics ensemble by Robustelli et al. [9].

k protein α-helix β-strand Other αk RMSIk

1 Synth-1 0.11 0.40 0.49 1.0 0.0

2 Synth-2 0.41 0.20 0.39 1.0 0.4

3 Synth-3 0.43 0.10 0.47 1.2 2.0

4 Synth-4 0.27 0.26 0.47 1.6 2.7

5 Synth-5 0.00 0.33 0.67 1.4 0.7

6 Synth-6 0.30 0.40 0.30 1.0 3.6

7 Synth-7 0.11 0.00 0.89 1.1 2.3

8 Synth-8 0.00 0.08 0.92 1.3 1.3

9 Lysm 0.35 0.03 0.62 1.1 1.0

10 Dqd-1 0.43 0.18 0.39 1.1 2.9

11 Jacalin 0.01 0.28 0.71 0.3 3.2

12 Sub-C 0.30 0.12 0.58 0.4 1.2

13 MeV-Nt 0.08 0.03 0.89 1.7 1.8

chosen parameters. The number of Gaussians G was chosen from 
the range 1 to 5, the relative peak intensity for Gaussian g I g was 
chosen between -20.0 and 20.0, with a peak position μg chosen 
from 178 to 241 nm, and peak half-widths σg chosen between 2 
4

and 37 nm. Once the parameters were determined, the non-SS sig-
nal at every wavelength (using 1 nm spacing) was calculated, and 
the non-SS signal intensity was rescaled to match the previously 
defined RMSI values in Table 1.

The final synthetic spectra were computed by determining the 
SS signals first, by adding the appropriately scaled non-SS signal 
contributions in a second set, and finally by rescaling the resulting 
CD spectrum according to the indicated scaling factor.

4. Algorithm overview

Our newly implemented Python module SESCA_bayes.py per-
forms a Monte-Carlo (MC) sampling in SS space to determine the 
most probable SS composition of a protein based on its measured 
CD spectrum. Fig. 3 shows the flowchart of the algorithm that is 
divided into three phases: preparation, sampling, and evaluation.

4.1. Preparation and input parameters

In the preparation phase, input, output, and run parameters 
are read based on the user-provided command line arguments. 
If SESCA_bayes.py is used as a Python module, an array of argu-
ments can be processed by the function Read_Args and passed to 
the Main function to run the algorithm. Arguments in SESCA are 
identified by preceding command flags (marked by the “@” charac-
ter in the first position. There are four input files – shown as blue 
parallelograms in Fig. 3 – that SESCA_bayes accepts, each read in 
white-space separated data blocks stored as simple ascii text files.

The CD spectrum file (specified using the @spect flag) should 
contain two columns, wavelength in nanometers (nm) and CD sig-
nal intensity in 1000 mean residue ellipticity (kMRE) units. This 
file must be specified for SESCA_bayes, and if no command flags 
are provided, the first argument is automatically recognized as a 
CD spectrum file.
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Fig. 3. Schematic workflow of the Bayesian secondary structure estimation module in SESCA. The scheme depicts input data files as blue parallelograms, data on the sampled 
SS compositions are shown as a red parallelogram. Operations are depicted as white rectangles, and decisions are shown as white diamonds. Posterior probability calculation 
operations (see Fig. 1) are highlighted as yellow rectangles on the scheme.
The side-chain correction file (specified by @corr) is an optional 
file to add baseline or sequence-dependent side-chain correction 
to the predicted CD spectrum, which are independent of the SS 
composition. If the basis spectrum set has basis spectra to calcu-
late side-chain contributions, these signals can be computed before 
running SESCA_bayes, and added as a correction.

The Bayesian parameter file (@par) contains several data blocks, 
most importantly, the binned probability distribution function of 
CD deviations PRMSD,α (likelihood function), prior SS probability 
distributions for the SS composition P (S S j) and scaling factors 
P (α j), as well as the MC step parameters. If no parameter file is 
provided by the user, SESCA_bayes.py uses one of two default pa-
rameter files (Bayes_2D_SC.dat and Bayes_2D_noSC.dat) found in 
the “libs” sub-directory of SESCA, depending on whether a side 
chain correction file was provided or not. These files contain one of 
the two likelihood functions shown in Fig. 2, and uniform prior SS 
probability distributions. A more detailed description of the param-
eter blocks is provided in the examples sub-directory (examples 5).

The basis set file (@lib) contains several data blocks for CD 
spectrum calculations, including a block where the CD intensity 
of 3-6 basis spectra at each wavelength (175-269 nm) is provided. 
Several derived basis sets are available in libs sub-directory, and a 
detailed description of the data blocks is given in example 1.
5

In addition to the input files, SESCA_bayes recognizes several 
additional command flags to modify program behavior. The num-
ber of initial SS compositions for MC sampling phase is specified 
by @size. The number of MC steps per initial SS composition is set 
by @iter. The @scale flag allows the user to control whether the 
measured CD spectrum is rescaled before determining the devia-
tion from the predicted CD spectra or not. In the absence of these 
command flags, the values 100, 500, and 1 (yes) are used for the 
SS estimation.

Finally, three command flags control the output of SESCA_bayes.
py; providing a “0” argument to any of these flags disables writ-
ing the associated output. The command flag @write specifies the 
file name for the primary output, and if no command flags are 
given, SESCA_bayes automatically recognizes the second argument 
as primary output file. This file contains a summary of the in-
put parameters, binned posterior probability distributions for the 
SS compositions and scaling factors, as well as the most proba-
ble SS fractions and their uncertainties. The command flags @proj 
and @data allows the user to print secondary output files. The 
@proj flag specifies a file name for heatmap-style two-dimensional 
projection of the posterior SS distribution. The projection is made 
along two SS fractions selected using the @pdim flag Finally, the 
flag @data specifies a file name for printing all the sampled SS 
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compositions the primary output is computed from, along with 
their estimated CD deviations, prior and posterior probabilities. By 
default, only the primary output file is printed into ‘SS_est.out’, and 
no secondary output is written.

4.2. Monte Carlo sampling

To determine the most probable SS composition of the protein 
based on its CD spectrum, sampling of the SS space is required. To 
this aim, SESCA_bayes uses a MC sampling scheme starting from 
N (set by @size) initial SS compositions, drawn from the prior SS 
distribution using rejection sampling. As the center part of Fig. 3
shows, at every step t of the MC sampling phase, a change on each 
of the SS compositions (C ji,t ) is attempted. The change is realized 
by transferring a given SS fraction between two randomly cho-
sen SS classes, yielding a new SS composition (C ′

ji,t ). The amount 
of the transferred SS fraction from the donor class to the accep-
tor class is determined based on the distribution specified in the 
Bayesian parameter file. If no distribution is provided, the fraction 
is drawn from a Gaussian distribution with a mean of 0.05 and 
variance of 0.1. To remain in the space of possible SS compositions, 
the transferred SS fraction cannot exceed the current fraction as-
signed to the donor class, and classes that currently have a fraction 
of zero assigned to them cannot be selected as donors.

After the changes are attempted, the posterior probabilities P ′
jt

of the new SS compositions are calculated (see Section 2) and com-
pared to the posterior probabilities (P jt ) of the SS compositions 
before the change. The attempted change is accepted or rejected 
by applying the Metropolis criterion to the ratio of posterior prob-
abilities, i.e. the change is accepted if the ratio P ′

jt/P jt is larger 
than a randomly generated number between zero and one. If the 
change is accepted, C ′

ji,t is added to the sampled SS distribution 
and used as the initial SS composition C ji,t+1 in the next MC step, 
otherwise C ji,t is added to the sampled SS distribution (again) and 
is used in the next MC step. This procedure is repeated until the 
specified number of MC attempts is reached, and yields N × tmax

sampled SS compositions. The sampled SS compositions resemble 
the prior SS distribution during the initial MC steps but converge 
towards an SS distribution weighted by the posterior SS probabili-
ties.

4.3. Sample evaluation

The sampled SS distribution is analyzed in the evaluation 
phase, as shown in the bottom part of Fig. 3. To avoid the over-
representation of very low posterior probability SS compositions, a 
fraction of the initially sampled SS compositions may be discarded 
from final SS distribution. This fraction can be set by the user 
through the @discard flag, otherwise, the initial 5% of SS compo-
sitions is discarded. The remaining probability-weighted ensemble 
of possible SS compositions is used to compute the estimated SS 
composition Cest

ji for the protein, the estimated scaling factor αest
j , 

as well as to approximate the discrete posterior probability distri-
bution for both quantities.

The estimated SS composition is determined by computing the 
mean and standard deviation (SD) of each SS fraction over the 
sampled SS compositions. Similarly, the most probable scaling fac-
tor is computed as the mean and SD of scaling factors estimated 
for the sampled SS compositions. The discrete probability distribu-
tion for both scaling factors and SS compositions is computed by 
binning all sampled SS compositions and scaling factors using the 
parameters extracted from the prior distributions provided in the 
Bayesian parameter file. The number of sampled SS compositions 
and scaling factors in each bin is normalized by the final sample 
size to obtain the discrete probability distributions. The computed 
6

estimates, their uncertainties and the discrete probability distri-
butions are all written in the primary output file (defined by the 
@write flag) and returned as output by the SESCA_bayes mod-
ule. If requested (@proj flag), the sampled SS compositions can be 
printed in a separate file. Finally, the two-dimensional projection 
of posterior SS distribution along two chosen SS fractions can also 
written into a separate output file (@proj flag), formatted as a hu-
man readable heat map, that can be easily processed into images 
using e.g. Python’s Matplotlib module [10] or external visualization 
programs.

5. Testing the algorithm

5.1. Accuracy and precision

The accuracy and precision of the Bayesian SS estimation was 
tested using the 13 CD spectra listed in Table 1. Eight of these 
spectra (k= 1-8) are synthetic spectra that were generated from a 
given SS composition, but modified by adding artificial non-SS sig-
nals and scaling errors (see Section 3.2) to emulate CD deviations 
in real measured spectra. Four of the remaining five CD spectra 
(k= 9-12) are measured spectra from the SP175 set [8], for which 
the estimated SS compositions are compared to those extracted 
from the (protein data bank) structure of the reference protein. 
The last CD spectrum (k=13) was measured for the intrinsically 
disordered C-terminal domain of the Measles virus Nucleoprotein 
by Longhi et al. [ref] [11]. Because this domain is disordered, 
there was no experimental reference structure available for it, and 
therefore we used a molecular dynamics ensemble of Robustelli et 
al. [9] as reference. This ensemble was generated using the Am-
ber99SB-disp force field and was validated by small angle X-ray 
scattering (SAXS) and nuclear magnetic resonance (NMR) exper-
iments. Table 1 lists the (estimated) CD deviations of all 13 CD 
spectra, quantified by the scaling factors αk and the root-mean-
square intensity (RMSIk) of non-SS signals in each spectrum.

To test the accuracy of SESCA_bayes, we estimated the SS com-
position of the above 13 CD spectra using the same DS-dT basis set 
with three SS classes (α-helix, β-strand, and Other) that was used 
to generate the synthetic spectra. The obtained Bayesian estimates 
for the test set are summarized in Table 2. This table includes 
the mean and SD (in parentheses) of SS fractions of the sampled 
posterior distributions, as well as the total SS deviation from the 
reference SS compositions, computed according to

�S Sk = 1

2

F∑
i=1

|Cest
ki − Cref

ki |, (4)

where Cest
ki are the estimated SS fractions and Cref

ki are the refer-
ence SS fractions listed in Table 1.

The obtained SS fractions show a fairly consistent 0.03 to 0.06 un-
certainty. As expected, 35 of 39 SS fractions are within two SD 
of their reference value, with no significant difference in accu-
racy between synthetic and measured CD spectra, or globular and 
disordered protein models. In addition, the calculated total SS de-
viations (�S S) from the reference structures range between 0.03 
and 0.12, and ten of thirteen values are also smaller than the esti-
mated uncertainty of the estimation (two SD) that was calculated 
from the individual SD of SS fractions (σki ) according to

σk = 1

2

√√√√ F∑
σ 2

ki . (5)

i=1
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Table 2
Bayesian secondary structure estimates. The table lists the index and name of the 
model protein, the estimated fraction of its amino acids assigned to SS classes α-
helix, β-strand, and Other, as well as the total SS deviation �S Sk from the reference 
SS compositions shown in Table 1. The uncertainty (standard deviation) of each SS 
fraction and deviation is given in parentheses. Estimates that are more than 2 SD 
away from their reference value are highlighted in red.

k protein α-helix β-strand Other �S Sk

1 Synth-1 0.14 (0.05) 0.44 (0.06) 0.43 (0.04) 0.06 (0.04)

2 Synth-2 0.49 (0.06) 0.19 (0.06) 0.32 (0.06) 0.08 (0.05)

3 Synth-3 0.45 (0.06) 0.12 (0.05) 0.43 (0.05) 0.03 (0.04)

4 Synth-4 0.22 (0.04) 0.21 (0.05) 0.57 (0.04) 0.09 (0.04)

5 Synth-5 0.03 (0.04) 0.26 (0.03) 0.71 (0.05) 0.07 (0.04)

6 Synth-6 0.36 (0.05) 0.32 (0.04) 0.31 (0.06) 0.08 (0.04)

7 Synth-7 0.15 (0.04) 0.01 (0.04) 0.84 (0.05) 0.05 (0.04)

8 Synth-8 0.03 (0.04) 0.12 (0.04) 0.85 (0.05) 0.07 (0.04)

9 Lysm 0.38 (0.05) 0.04 (0.05) 0.57 (0.05) 0.05 (0.04)

10 Dqd-2 0.48 (0.06) 0.06 (0.05) 0.47 (0.05) 0.12 (0.05)

11 Jacalin 0.01 (0.04) 0.31 (0.06) 0.68 (0.06) 0.03 (0.05)

12 Sub-C 0.26 (0.05) 0.13 (0.04) 0.61 (0.04) 0.04 (0.04)

13 MeV-Nt 0.07 (0.05) 0.13 (0.04) 0.80 (0.05) 0.10 (0.04)

5.2. Comparison to deconvolution

Next, we compare the accuracy and precision of the Bayesian 
estimates to that of SS estimates obtained through spectrum de-
convolution. To this aim, we estimated SS compositions with the 
deconvolution module of SESCA (SESCA_deconv) for the same 13 
CD spectra (Table 1), using the same DS-dT basis spectrum set. 
The deconvolution was carried out using the most accurate proto-
col (method D2) tested previously [6]. This method constrains the 
basis spectrum coefficients to positive values, but normalizes them 
to unity only after the search for the best approximation. The SS 
compositions obtained using SESCA_deconv are listed in Table 3, 
along with the total SS deviations from reference SS compositions 
(found in Table 1). The total SS deviation of deconvolution esti-
mates (�S Sk) ranges from 0.0 to 0.29. The mean SS deviation for 
the whole set (0.07) is similar to that of the Bayesian estimates 
(0.07), but shows a significantly larger scatter (0.09 vs. 0.04). All 
three CD spectra with larger than average SS deviations (k= 3,4,10) 
have large non-SS contributions (2.0-2.9 kMRE), which is in line 
with our previous findings that non-SS contributions may be detri-
mental to the accuracy of deconvolution methods.

Although the SESCA_deconv module does not provide informa-
tion on the uncertainty of individual SS fractions, many SESCA 
basis sets (including DS-dT) include a calibration curve to esti-
mate the expected total SS deviation if the true SS composition 
is unknown. This curve was computed from 4.9 × 105 synthetic 
spectrum-structure combinations, which were binned according to 
their estimated non-SS contributions (RMSD j), to provide an ex-
pected mean and SD of SS deviations for a given (rescaled) RMSD. 
Comparing the true SS deviations of the deconvolution results with 
their estimated values shows that these estimates correctly de-
scribe the precision of the deconvolution method: 8 of 13 �S Sk
values are within 1 SD of the estimated total deviation, and all 13 
fall within 2 SD. However, the average uncertainty of the deconvo-
lution (0.09) is again considerably larger than that of the Bayesian 
SS estimates (0.04), and it increases with increasing non-SS contri-
butions.

In summary, Bayesian SS estimation and spectrum deconvolu-
tion provides SS estimates that – in most cases – have a similar 
accuracy. However, Bayesian SS estimates are considerably more 
precise when significant non-SS contributions are present in the 
measured spectrum. Further, the Bayesian approach provides un-
certainties for each individual SS fraction as well as for the optimal 
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Table 3
Secondary structure estimates based on spectrum deconvolution. The table lists the 
index and name of the model protein, the estimated fraction of its amino acids as-
signed to SS classes α-helix, β-strand, and Other, as well as the total SS deviation 
�S Sk from the reference SS compositions shown in Table 1. The values in parenthe-
ses after �S Sk show the mean and SD of the estimated total SS deviation computed 
from the rescaled RMSD between the measured (generated) CD spectrum and pre-
dicted spectrum of the SS estimate.

k protein α-helix β-strand Other �S Sk

1 Synth-1 0.11 0.40 0.49 0.00 (0.00 ± 0.02)

2 Synth-2 0.41 0.20 0.39 0.00 (0.05 ± 0.03)

3 Synth-3 0.72 0.03 0.24 0.29 (0.16 ± 0.09)

4 Synth-4 0.19 0.22 0.59 0.12 (0.08 ± 0.05)

5 Synth-5 0.01 0.33 0.66 0.01 (0.06 ± 0.04)

6 Synth-6 0.31 0.31 0.37 0.08 (0.14 ± 0.09)

7 Synth-7 0.14 0.00 0.86 0.03 (0.13 ± 0.08)

8 Synth-8 0.02 0.03 0.95 0.06 (0.07 ± 0.04)

9 Lysm 0.34 0.06 0.60 0.03 (0.07 ± 0.05)

10 Dqd-2 0.51 0.04 0.45 0.14 (0.09 ± 0.06)

11 Jacalin 0.00 0.35 0.65 0.07 (0.20 ± 0.09)

12 Sub-C 0.25 0.13 0.62 0.05 (0.07 ± 0.05)

13 MeV-Nt 0.09 0.10 0.81 0.08 (0.07 ± 0.04)

scaling factor of the measured CD spectrum, which is an additional 
advantage of the new method.

5.3. Example spectrum analysis

To further investigate the differences between the two meth-
ods, we analyzed the SS estimates for the CD spectrum with the 
largest difference between the deconvolution and Bayesian SS es-
timates. Fig. 4A shows the obtained posterior SS probability dis-
tribution for synthetic spectrum 3, which contains larger than av-
erage non-SS contributions (2.02 kMRE). The heatmap shown in 
Fig. 4A illustrates that the most likely SS compositions are indeed 
clustered around the SS composition the synthetic spectrum was 
created from (shown as a red cross), with the highest posterior 
probability regions (shown in dark green) located in the immedi-
ate (�S Sk < 0.05) vicinity of correct SS composition. However, the 
SS composition determined by deconvolution (purple cross) has a 
much higher α-helix content and it is not in a high-probability re-
gion in the Bayesian SS estimation.

To examine why the two algorithms evaluate the proposed SS 
compositions differently, in Fig. 4B we computed the predicted CD 
signals of the two estimated SS compositions, rescaled them, and 
compared them to the synthetic spectrum, as is done during the 
deconvolution process. The figure shows that with the proper scal-
ing factor both SS compositions approximate the synthetic spec-
trum well, but the deconvolution estimate (purple dashed line, 
RMSD j : 1.31 kMRE) fits slightly better than the Bayesian estimate 
(blue dashed lines, RMSD j : 1.71 kMRE).

In contrast, the Bayesian SS estimation rescales the synthetic CD 
spectrum to match the predicted spectra, and evaluates the likeli-
hood of the SS compositions based on the joint probability of their 
non-SS contributions RMSD j and their scaling factors α j , as shown 
in Fig. 4C. Although the two estimates have a comparable RMSD 
in this method as well, the deconvolution estimate requires a scal-
ing factor (α j : 1.99) to achieve a good agreement that is shown to 
be very unlikely according to the joint-probability map in Fig. 2A. 
Comparing the two estimated SS signals (dashed lines) to the SS 
signal of the true SS composition (in red) illustrates how consid-
ering scaling factors improves the precision of the SESCA_bayes. In 
this case, eliminating SS compositions with unlikely scaling factors 
from the sampled distribution allowed a fairly accurate (RMSD: 
0.99 kMRE) approximation of the true SS signal.
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Fig. 4. SS estimation for a synthetic CD spectrum. The figure compares the true SS composition (shown in red) with SS compositions obtained from Bayesian SS estimation 
(in blue) and spectrum deconvolution (in purple). A) shows the posterior probability distribution of sampled SS compositions in a heat map representation and indicates the 
true SS composition and the deconvolution SS estimate as crosses. The SS compositions, estimated scaling factors, and SS deviations are also listed in a tabulated format on 
the top. The difference on how the two estimates are evaluated by B) the deconvolution and C) Bayesian SS estimation is also shown. During deconvolution, the predicted 
CD signal of SS estimates is rescaled to match the measured CD spectrum, and the measure of quality is solely the RMSD. In the Bayesian approach, the measured spectrum 
is rescaled to match the predicted SS signals, and both the RMSD-s and the scaling factors are used to determine the most likely SS composition.
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