
 
1 
 
 
 
 

Supporting Information 

 

Accurate Estimation of Ligand Binding Affinity Changes upon Protein Mutation 

Matteo Aldeghi1, Vytautas Gapsys1, Bert L. de Groot1∗ 

 

 

1 Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 

Göttingen, Germany 

 

 

*To whom correspondence should be addressed. 

Email: bgroot@gwdg.de 

Tel. +49-551-2012308 

Fax. +49-551-2012302 

 

 

 

 

 

 

 



 
2 
 
 
 

Table of Contents 
 
Methods ....................................................................................................................................................... 3 

Dataset ..................................................................................................................................................................... 3 
System Setup ........................................................................................................................................................... 4 
Free Energy Calculations ........................................................................................................................................ 5 
Rosetta Calculations ................................................................................................................................................ 7 
Data Analysis .......................................................................................................................................................... 8 

 
Supplementary Tables ............................................................................................................................... 10 

Table S1 ................................................................................................................................................................. 10 
Table S2 ................................................................................................................................................................. 11 

 
Supplementary Figures ............................................................................................................................. 12 

Figure S1 ............................................................................................................................................................... 12 
Figure S2 ............................................................................................................................................................... 13 
Figure S3 ............................................................................................................................................................... 14 
Figure S4 ............................................................................................................................................................... 15 
Figure S5 ............................................................................................................................................................... 16 
Figure S6 ............................................................................................................................................................... 17 
Figure S7 ............................................................................................................................................................... 18 
Figure S8 ............................................................................................................................................................... 19 
Figure S9 ............................................................................................................................................................... 20 
Figure S10 ............................................................................................................................................................. 21 
Figure S11 ............................................................................................................................................................. 22 
Figure S12 ............................................................................................................................................................. 23 
Figure S13 ............................................................................................................................................................. 24 

 
Supplementary Text .................................................................................................................................. 25 

Text S1 .................................................................................................................................................................. 25 
Text S2 .................................................................................................................................................................. 26 
Text S3 .................................................................................................................................................................. 27 

 
References ................................................................................................................................................. 28 
 



 
3 
 
 
 
 

 
Methods 
 

Dataset 

The dataset of binding free energy differences and associated structural information was 

extracted from the Platinum database1. The database was filtered to retain only affinities that were 

determined by isothermal titration calorimetry (ITC) or surface plasmon resonance (SPR), and proline 

mutations were excluded. Proline mutations are technically challenging as they involve a bond-breaking 

perturbation2 and as such were not supported in the original pmx library3,4. For calculations using 

Charmm force fields, also glycine mutations were excluded, as it is currently not possible to interpolate 

between different grid-based energy correction maps (CMAPs) in Gromacs. Because the contribution of 

the CMAP to ∂H/∂λ is neglected, and because the CMAPs of glycine and proline are different from those 

of other residues, mutations involving these two residues in Charmm would result in incorrect free 

energy differences. Other entries were excluded due to the poor quality of the structural data (e.g. only 

C-alpha atoms present) or the presence of non-standard amino acids in proximity to the ligand. The 

PDB-ID 3AQT was modified by replacing all selenomethionines with methionines. To obtain a 

distribution of ΔΔG that was not biased towards mutations unfavorable for binding, when X-ray 

structures of both wild type and mutant proteins were available for positive ΔΔG values, we took the 

mutant protein as being the “wild type” so to invert the sign of the affinity change. This resulted in a set 

of 134 experimental ΔΔG values used as reference. All information pertaining the benchmark set (PDB-

IDs, ligands, affinities, temperature, pH, etc.) can be found in the Supporting Information. 
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System Setup 

The structures of the protein-ligand complexes were taken from the PDB (PDB-IDs in 

Supporting Information). Missing loops in 3ZY2, 3H2K, and 3AQT were modelled using Sphinx5. Apo 

structures were generated simply by removing the ligand atoms. Crystallographic water molecules were 

removed. All mutant structures were generated using FoldX v4,6 including the cases where 

experimental structural data for the mutant was available. Protein protonation states were assigned at 

experimental pH (Supporting Information) using the protein preparation tool in HTMD (v1.12)7, which 

uses propka v3.18,9. Ligand protonation states were assigned based on the most abundant species at the 

pH of interest using the pKa calculator in MarvinSketch (v17, ChemAxon)10. Proteins were modelled 

with the Amber99sb*-ILDN11–13, Amber14sb14, Charmm22*15–17, Charmm3618, and Charmm36m19 

force fields. The TIP3P water model was used.20 Ligands were modelled with GAFF2 (v2.1)21 via 

AmberTools 16 and acpype (v2017-01-17),22,23 and CGenFF (v3.0.1)24 via paramchem25,26. With 

GAFF2, two charge models were tested: AM1-BCC27,28 and restrained electrostatic potential (RESP)29 

charges. Geometry optimizations and molecular electrostatic potential calculations (ESP) were 

performed with Gaussian 09 (Rev. D.01), both at the HF/6-31G* level of theory. ESP points were 

sampled according to the Merz-Kollman scheme.30,31 In addition, in the GAFF2/RESP models the σ-

hole on halogen atoms was modelled as described by Kolar & Hobza32. 

 

The protein-ligand systems were solvated in a dodecahedral box with periodic boundary 

conditions and a minimum distance between the solute and the box of 12 Å. Sodium and chloride ions 

were added to neutralize the wild type systems at the concentration of 0.15 M. For the mutant systems, 

the same number of ions as in the wild type systems was added; i.e. the net charge of the wild type 

systems was always zero, while the net charge of the mutant systems was allowed to deviate from zero 

according to the mutation. During testing on a model system, we found that the finite size artefacts due 
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to the use of Ewald summation almost completely cancelled out in the two legs of the thermodynamic 

cycle used for the free energy calculations (Figure S13). 

 

Since FoldX does not consider the presence of ligands when mutating the protein, clashes with 

the ligands in the mutated complexes are possible. If clashes (defined as protein heavy atoms within 1

Å from any ligand heavy atom) were present, an approach similar to the one reported for alchembed33 

was used: after 2,000 steepest descent steps, the ligand vdW interactions were switched on in 2,000 MD 

steps carried out with a 0.5 fs timestep, while using position restraints (1,000 kJ mol-1 nm-2) on all 

heavy atoms. This procedure resolved all clashes encountered. 

 

Free Energy Calculations 

All simulations were carried out in Gromacs 2016.34,35 10,000 energy minimization steps were 

performed using a steepest descent algorithm. The systems were subsequently simulated for 100 ps in 

the isothermal-isobaric ensemble (NPT) with harmonic position restraints applied to all solute heavy 

atoms with a force constant of 1,000 kJ mol−1 nm−2. Temperature was coupled using Langevin 

dynamics at the experimental target temperature, while pressure was coupled using the Berendsen weak 

coupling algorithm with a target pressure of 1 bar.36–38  The particle mesh Ewald (PME) algorithm39 

was used for electrostatic interactions with a real space cut-off of 10 Å when using Amber force fields 

and 12 Å when using Charmm force fields, a spline order of 4, a relative tolerance of 10−5 and a Fourier 

spacing of 1.2 Å.  The Verlet cut-off scheme with the potential-shift modifier was used with a Lennard-

Jones interaction cut-off of 10 Å with Amber and 12 Å with Charmm force fields, and a buffer 

tolerance of 0.005 kJ/mol/ps.40 All bonds were constrained with the P-LINCS algorithm.41 For 

equilibration, 1 ns unrestrained MD simulations were then performed in the NPT ensemble with the 
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Parrinello-Rahman pressure coupling algorithm at 1 bar with a time constant of 2 ps.42  Production 

simulations were then performed for up to 10 ns in length.  

 

For each free energy calculation, multiple equilibrium simulation repeats were used (up to 10), 

so that the above described procedure (from system setup to minimization, equilibration, and 

production MD) was repeated multiple times for each ΔΔG estimate. From each equilibrium simulation, 

between 2 and 100 equally spaced frames were extracted as the starting configurations for the non-

equilibrium part of the calculations. The non-interacting (“dummy”) atoms needed to morph the wild-

type residues into mutant ones were introduced at this stage with the pmx package4, using the mutant 

structure proposed by FoldX as a template. The positions of the dummy atoms were minimized while 

freezing the rest of the system. These systems containing hybrid residues were then simulated for 10 ps 

to equilibrate velocities. Amino acid side chains were finally alchemically morphed at constant speed 

during non-equilibrium simulations of 20, 40, 50, 80, and 100 ps in length. The work values associated 

with each nonequilibrium transition were extracted using thermodynamic integration (TI) and then used 

to estimate the free energy differences with the Bennett’s Acceptance Ratio (BAR).43–45  

 

Point estimates of the free energy differences (Figure 1a: ∆𝐺#$→&$
'()  and ∆𝐺#$→&$

*)+) ) were 

calculated with BAR after pooling all available forward and reverse work values coming from the non-

equilibrium trajectories spawned from all equilibrium simulation repeats that were run for a free energy 

calculation. Uncertainties in ∆𝐺#$→&$
'()  and ∆𝐺#$→&$

*)+)  were estimated as standard errors (𝜎-. ) by 

separately considering each equilibrium simulation and its related non-equilibrium trajectories as 

independent calculations (e.g. when 10 equilibrium simulations were used, 10 independent ΔG values 

could be obtained, and these were used to estimate 𝜎-.). These uncertainties were then propagated to 

the final ∆∆𝐺/012 estimate so to obtain the estimate of the standard error 𝜎--.. We define the overall 
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precision of a free energy protocol as the RMS of the 134 𝜎--. values (RMSσ) obtained across the 

whole set of mutations. In addition, we define the overall “reproducibility” of a free energy protocol as 

the RMSE between the two sets of ∆∆𝐺/012 point estimates obtained by running the same protocol 

twice on the whole set of 134 mutations (using 5 or 10 equilibrium simulations and 150 or 300 non-

equilibrium trajectories in both directions for each mutation). 

 

Rosetta Calculations 

Binding free energy changes were calculated in Rosetta using three different protocols: the 

cartesian_ddg protocol46–48 (Rosetta v2017.36), the coupled_moves protocol49 (Rosetta v2017.36), and 

the flex_ddg protocol50 (Rosetta v2017.52). For the cartesian_ddg protocol, the biological assembly of 

the proteins was used, as it was done for the MD simulations. For the coupled_moves and flex_ddg 

protocols, the smallest number of chains needed to capture the protein-ligand interactions were kept. 

For instance, for a homo-tetramer in which the four chains bind four ligands separately, only one chain 

and one ligand were kept (e.g. streptavidin, PDB-ID 3RY2); for a homo-dimer binding a single ligand 

at the interface of the two chains, both protein chains were kept (e.g. HIV-1 protease, PDB-ID 2Q63); 

for a homo-trimer in which each of the three ligands binds at the interface of two chains, one ligand and 

two chains were kept (e.g. ACPS, PDB-ID 2JBZ). Ligand parameters were obtained with the 

molfile_to_params.py script provided with Rosetta (Supporting Information). 

 

In the cartesian_ddg protocol, the lowest scoring model of the protein-ligand complex after 

refinement with the relax command (command lines in Text S3) was used as input for the protocol. The 

final ΔΔG scores were obtained by averaging the results of the 50 iterations of the cartesian_ddg 

protocol. Five different scoring functions were used: score12, talaris2013, talaris2014,51–54 REF2015,48 
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and beta_nov2016. In the coupled_moves and the flex_ddg protocols, only the talaris2014, REF2015, 

and beta_nov2016 scoring functions were tested. The final ΔΔG scores for the coupled_moves protocol 

were obtained by taking the lowest energy score among the 20 iterations performed for each 

calculation. For the flex_ddg protocol, the final ΔΔG estimates were instead the average values of the 

generalized additive model obtained from 35 iterations of the protocol.50 The command lines used for 

each Rosetta calculation are reported in Text S3. 

 

Data Analysis 

 The accuracy of the calculations was evaluated using three performance measures: the root mean 

square error (RMSE), the Pearson correlation, and the area under the receiver operating characteristic 

curve (AUC-ROC). The uncertainty in the estimate of these measures was evaluated by bootstrap. 

Specifically, pairs of experimental and calculated ΔΔG values were resampled with replacement 105 

times and, given that each experimental and calculated ΔΔG value has an associated standard error, a 

data point was sampled randomly by assuming a Gaussian distribution around the mean values. In this 

way, the uncertainty due to the imprecision of the calculations, due to the specific choice of dataset and 

due to variability within the dataset are reflected in the confidence intervals shown. From the 105 

bootstrap measures obtained, we took the 2.5 and 97.5 percentile as the lower and upper bounds of the 

95% confidence interval. For the Rosetta calculations, which did not return an estimate of the standard 

error, the parametric part of the bootstrap procedure was not performed. The experimental standard error 

for the ΔΔG values was taken to be 0.18 kcal/mol, based on the variance of the ΔG measurements found 

by the ABRF-MIRG’02 study for isothermal titration calorimetry (ITC)55. A bootstrap procedure was 

also used to obtain p-values for the differences between force fields and approaches. In this case, triplets 

of ΔΔG values were resampled with replacement together 105 times: ΔΔG values from experiment and 

from the two approaches to be compared. Both non-parametric and parametric bootstrap strategies were 
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used together as described above whenever possible. At each bootstrap iteration, the difference in the 

performance measure of interest (e.g. RMSE) between the two approaches to be compared was stored. In 

this way, at the end of the procedure, 105 bootstrap differences (e.g. ΔRMSE) would have been collected. 

The fraction of differences crossing zero was multiplied by two so to provide a two-tailed p-value for the 

difference observed.56 Data analysis was performed in python using the numpy, scipy, pandas, scikit-

learn, matplotlib, and seaborn libraries. 
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Table S1. Reproducibility of free energy calculations by protein system. The table reports the RMSD 
between two repeated calculations performed with the Amber99sb*-ILDN/GAFF2 force field. Four 
protein systems were found to be particularly challenging, with RMSDs above 1 kcal/mol: aldose 
reductase, streptavidin, D7R4 protein, and RolR. 
 

Protein #ΔΔG RMSE 
(kcal/mol) 

Streptavidin 8 1.61 
D7R4 Protein 11 1.50 

Aldose reductase 26 1.27 
RolR 3 1.11 

HIV-1 Protease 9 0.90 
O-FucT-1 9 0.89 

Esterase LipA 6 0.86 
HSP82 24 0.73 
RtxA 10 0.64 

KPA reductase 4 0.62 
ACPS 4 0.60 

BCKADE2 5 0.44 
Anti-tumor lectin 4 0.40 

Epsin 3 0.31 
Exoenzyme C3 2 0.17 

PMT 4 0.11 
DHFR 2 0.01 

RolR: bacterial transcriptional repressor RolR 
O-FucT-1: Putative GDP-fucose protein o-fucosyltransferase 1 
HSP82: ATP-dependent molecular chaperone HSP82 
RtxA: RTX toxin RtxA 
ACPS: holo-[acyl-carrier-protein] synthase 
BCKADE2: Lipoamide acetyltransferase component of branched-chain alpha-keto acid dehydrogenase complex 
PMT: Phosphoethanolamine N-methyltransferase 
DHFR: dihydrofolate reductase type I. 
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Table S2. Rosetta results. Each evaluation metric is shown with its 95% confidence interval. “n.a.”: “not 
applicable” is used for combination of Rosetta protocols and scoring functions that were not developed 
to return quantitative results. 
 

Protocol Scoring Function #ΔΔG Experimental ΔΔG Range 
(kcal/mol) 

RMSE 
(kcal/mol) Pearson AUC-ROC 

Cartesian_ddg Score12 86 6.1 n.a. 0.257.787.98 0.607.9;7.<= 

 134 9.5 n.a. 023.7.797.97 0.597.@77.;A 

Cartesian_ddg Talaris2013 86 6.1 n.a. 0.237.7B7.97 0.597.987.;C 

 134 9.5 n.a. 0.357.=B7.9C 0.657.@97.<8 

Cartesian_ddg Talaris2014 86 6.1 n.a. 0.237.777.9B 0.597.987.;C 

 134 9.5 n.a. 0.347.BC7.9< 0.637.@=7.<B 

Cartesian_ddg REF2015 86 6.1 5.689.;B;.<= 0.237.787.9B 0.647.9C7.<8 

 134 9.5 5.98@.7B;.A8 0.337.B<7.9< 0.647.@97.<8 

Cartesian_ddg Beta_nov16 86 6.1 6.36@.==<.9; 0.237.797.8A 0.587.997.;A 

 134 9.5 6.52@.98<.@C 0.337.B<7.9; 0.627.@87.<= 

Coupled_moves Talaris2014 86 6.1 n.a. 0.11G7.7;7.=;  0.557.8A7.;; 

 134 9.5 n.a. 0.257.B=7.8< 0.587.9<7.;C 

Coupled_moves REF2015 86 6.1 n.a. 0.08G7.7A7.=9  0.607.987.<7 

 134 9.5 n.a. 0.237.BB7.89 0.637.@=7.<= 

Coupled_moves Beta_nov16 86 6.1 n.a. 0.16G7.7=7.8B  0.597.987.;A 

 134 9.5 n.a. 0.257.B97.8@ 0.637.@=7.<= 

Flex_ddg Talaris2014 86 6.1 1.047.A7B.=B 0.367.B=7.@8 0.527.8<7.;= 

 134 9.5 1.45B.=@B.;C 0.267.7C7.9B 0.527.9B7.;B 

Flex_ddg REF2015 86 6.1 1.057.A=B.=B 0.337.BB7.9C 0.557.9B7.;; 

 134 9.5 1.42B.=@B.;= 0.317.B@7.99 0.537.9=7.;= 

Flex_ddg Beta_nov16 86 6.1 0.997.C;B.B; 0.397.B;7.@9 0.617.9<7.<B 

 134 9.5 1.46B.=8B.<8 0.257.797.98 0.567.9@7.;@ 
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Figure S1. Chemical structures of the ligands present in the dataset. For each ligand, the residue name 
and the number of calculations it is present in are shown. The protonation states depicted were 
determined by RDKit and are just for visualization. The details of the protonation states used can be 
found in the input files provided in the Supporting Information. 
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Figure S2. Distribution of experimental ΔΔG values present in the dataset. All ΔΔG values are shown as 
a rug plot, along with their histogram and kernel density estimate (KDE), and a Gaussian fit of the data. 
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Figure S3. Space of protocol setup parameters tested. The three axes indicate the length of the 
equilibrium simulations (5 repeats of 1 to 10 ns), the number of nonequilibrium trajectories spawned 
from the equilibrium simulations (from 10 to 500), and their length (from 20 to 100 ps). Each mark 
represents a specific combination of the above three variables, with the color indicating the overall 
accuracy (RMSE) of each calculation. 
 

 
 
 

 

 

 
 
 
 
 
  



 
15 
 
 
 
 

Figure S4. Effect of the nonequilibrium transition length on the overall precision (RMSσ) and accuracy 
(RMSE) of the calculations. The RMSσ and RMSE of all protocols tested (Figure 2a and Figure S3) 
have been pooled for each transition length and shown here as swarm and box plots. The boxes show the 
first, second, and third quartiles of the data, while the whiskers are up to 1.5 times the interquartile range. 
Looking at the median values, while the precision seems to keep improving with slower transitions, the 
accuracy seems to have reached its optimum at transition lengths of 80 ps. 
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Figure S5. Reproducibility of the calculations and ion placement. a) Scatter plot showing the results for 
all 134 ΔΔG values obtained in two repeated sets of calculations. The uncertainties shown are one 
standard error of the mean. The RMSE obtained for the two repeats was large (1.57 kcal/mol). Part of the 
issue was found to be due to ion placement: in the first set of calculations, some structural water 
molecules were replaced by ions during system setup, while this did not happen in the second set of 
calculations. Consequently, ion placement biased some of the results in the two different repeats in a 
way that was not accounted for by the standard error (all equilibrium simulations were originally started 
from the same system configuration). b) Aldose reductase starting structure shown as an example. A 
buried water molecule was replaced by a chloride ion (green sphere), biasing the equilibrium sampling 
of the calculation. 
 

 
 

 

 

 

 

 

  



 
17 
 
 
 
 

Figure S6. Performance of free energy calculations when using X-ray structures of the apo states for five 
protein systems: aldose reductase (PDB-ID 1ADS), streptavidin (3RY1), HIV-1 protease (1HHP), RolR 
(3AQS), and ACPS (2JCA). The results shown are for these systems only (total of 50 ΔΔG values). 
Performance is summarized for the force fields tested in terms of RMSE, Pearson correlation, and AUC-
ROC (point estimates and 95% CIs are shown). Full-circle markers refer to the free energy calculations 
that used the X-ray structures of the protein-ligand complexes only, while empty-circle markers refer to 
the free energy calculations that also used X-ray structures of the apo proteins. Overall, the use of apo 
structures did not result in a significant improvement of the calculations’ performance for this dataset. 
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Figure S7. Analysis of the performance of the force field consensus approach. On the diagonal of the 
matrices shown are the performances achieved by the parent force fields using all simulation data 
available. The off-diagonal elements show instead the performance of the consensus results obtained by 
averaging the results of the parent force fields when using half of the simulation data from each parent. 
Cells are color-coded depending whether performance of the consensus approach is better, in between, 
or worse than the performance of the two parent force fields. Note that when combining Charmm and 
Amber force fields, a subset of the full dataset is considered that excludes glycine mutations (see 
Methods). Standard errors in the final percentages shown were determined by bootstrap.  
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Figure S8. Analysis of the performance of combined Rosetta and MD consensus approach. Each cell 
shows the performance the consensus results obtained by averaging the results from Rosetta (flex_ddg 
protocol) and the free energy calculations. Cells are color-coded depending whether performance of the 
consensus approach is better, in between, or worse than the performance of Rosetta or MD alone. Note 
that when combining Charmm and Amber force fields, a subset of the full dataset is considered that 
excludes glycine mutations (see Methods). Standard errors in the final percentages shown were 
determined by bootstrap.  
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Figure S9. Overview of the performance of three machine learning approaches. The evaluation measures 
on the top-left of the plots refer to the high-reproducibility subset, while those on the bottom-right to the 
full dataset. 
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Figure S10. Free energy calculation performance by protein system. Only proteins with at least 5 data 
points for both Amber and Charmm force fields are shown. a) Swarm and box plots of the performance 
of the six force fields tested across different protein systems. The boxes show the first, second, and third 
quartiles of the data, while the whiskers are up to 1.5 times the interquartile range. b) Example scatter 
plots for the A99 force field. 
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Figure S11. Precision (standard error: σcalc) and accuracy (absolute error compared to experimental 
values) of the calculations by number of concurrent mutations. Data for all 6 force fields were pooled 
together. Each mark represents one ΔΔG estimate. The boxes show the first, second, and third quartiles 
of the data, while the whiskers are up to 1.5 times the interquartile range. Both precision and accuracy 
seem to deteriorate when performing multiple mutations at once. 
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Figure S12. Precision (standard error: σcalc) and accuracy (absolute error compared to experimental 
values) of the calculations by change in net charge of the system upon mutation. Data for all 6 force 
fields were pooled together. Each mark represents one ΔΔG estimate. The boxes show the first, second, 
and third quartiles of the data, while the whiskers are up to 1.5 times the interquartile range. While 
charge-changing mutations might be more challenging then charge-conserving ones overall, it is hard to 
discern a clear trend that would be suggestive of simulation artefacts dominating the calculation errors. 
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Figure S13. Effect of finite size effects on charge-changing mutation results. We used the A117K 
mutation in streptavidin (PDB-ID 3RDO) as a test case, due to the large finite size effects noticed when 
running the calculation at two different box sizes (edge of the cubic box of 6 and 12 nm). To aid 
convergence, we kept the protein and ligand atoms frozen during the simulations, with the exception of 
the residue being mutated. Despite the large size effects noticed for the ΔG calculations in the complex 
and apo states, these almost exactly cancelled out in the final ΔΔG values, with a barely significant 
difference of 0.18 ± 0.09 kcal/mol (mean and standard error). Uncertainties are one standard error 
obtained from ten independent calculations. 
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Text S1: note about root-mean-square error 
 
The root-mean-square function (𝑅𝑀𝑆) is homogenous and scales linearly with the size of the errors (𝒆), 

such that 𝑐 ∙ 𝑅𝑀𝑆(𝒆) = 𝑅𝑀𝑆(𝑐𝒆), with c being a constant: 

𝑅𝑀𝑆(𝒆) = Q∑ 𝑒0=T
0UB
𝑁  

𝑐Q
∑ 𝑒0=T
0UB
𝑁 = Q∑ 𝑐=𝑒0=T

0UB
𝑁 = Q∑ (𝑐𝑒0)=T

0UB
𝑁  

Where e is the “error” or “deviation” (e.g. the difference between ΔΔG values of two repeated 

calculations), and N the number of samples. In the context of the RMSEs shown in Figure 2 and 

measuring reproducibility, this means that halving the RMSE can also be interpreted as halving the 

errors/deviations between each repeated ΔΔG estimate: 𝑅𝑀𝑆(𝒆𝟏) =
X&Y(𝒆𝟐)

=
= 𝑅𝑀𝑆 [𝒆𝟐

=
\. 
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Text S2: Protein systems posing reproducibility challenges 

Obtaining reproducible results (as measured by the RMSD between two repeated calculations) was 

found to be particularly challenging (RMSD > 1 kcal/mol) for four protein systems: aldose reductase, 

streptavidin, D7R4 protein, and RolR. Aldose reductase and streptavidin might have been expected to 

provide precision and thus reproducibility challenges. Aldose reductase presents a flexible binding site 

with little ordered secondary structure, where most ligands bind with an induced-fit mechanism.57,58 For 

streptavidin, only 3 (out of 8) calculations involved single-mutants, 2 involved hexa-mutants also 

affecting the quaternary structure of the protein, and 6 involved the mutation of Ser52, a residue 

affecting the structure and flexibility of a loop at the top of the binding pocket.59 Thus, in these two 

systems one might have easily foreseen sampling issues given the information available. On the other 

hand, it would have been hard to foresee the reproducibility challenges posed by RolR and D7R4 

proteins without repeated calculations, as there is no clear indication that sampling could be an issue in 

these two systems. These two proteins have a large proportion of charge-changing mutations, which 

often require more sampling to converge. However, other systems that in our dataset too have a large 

proportion of charge-changing mutations (e.g. Epsin, ACPS, BCKADE2, Anti-tumor lectin) did not 

present the same reproducibility challenges. 
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Text S3: Rosetta sample commands 
 
Shown are example commands using the ref2015 scoring function. For talaris scoring functions, the 
restore_talaris_behavior flag was added; for the beta_nov16 scoring function, the 
corrections:beta_nov16 flag was added. 
 
Cartesian_ddg 
 
relax.linuxgccrelease -s 
input.pdb -use_input_sc -constrain_relax_to_start_coords-nstruct 
50 -relax:coord_constrain_sidechains -relax:ramp_constraints 
false -relax:cartesian -relax:min_type 
lbfgs_armijo_nonmonotone -score:weights ref2015_cart -extra_res_fa 
ligand.params 
 
 
cartesian_ddg.linuxgccrelease -s relaxed.pdb -ddg:mut_file 
mut_list.txt -ddg:iterations 50 -optimization:default_max_cycles 
200 -bbnbr 1 -relax:min_type lbfgs_armijo_nonmonotone -fa_max_dis 9.0 
-score:weights ref2015_cart -ddg:dump_pdbs false -extra_res_fa 
ligand.params 
 
 
Coupled_moves 
 
coupled_moves.linuxgccrelease -s input.pdb -resfile 
myresfile.dat -database 
~/rosetta_src_2017.36.59679_bundle/main/database/ -mute 
protocols.backrub.BackrubMover -extra_res_fa ligand.params  -ex1 -ex2 
-extrachi_cutoff 0 -nstruct 20 -coupled_moves:mc_kt 
0.6 -coupled_moves:ntrials 1000 -coupled_moves:initial_repack 
true -coupled_moves:ligand_mode true -coupled_moves:fix_backbone false 
-coupled_moves:bias_sampling true -coupled_moves:bump_check 
true -coupled_moves:ligand_weight 1.0 -score:weights ref2015 
 
 
Flex_ddg 
 
rosetta_scripts.linuxgccrelease -s input.pdb -parser:protocol 
ddG-backrub.xml -in:file:fullatom -ignore_zero_occupancy 
false -ex1 -ex2 -extra_res_fa ligand.params -score:weights ref2015 
 
A sample ddG-backrub.xml file is attached in the Supporting Information. 
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