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For the purpose of molecular dynamics simulations of large biopolymers we have built a parallel computer
with a systolic loop architecture, based on Transputers as computational units, and have programmed it
in occam I1. The computational nodes of the computer are linked together in a systolic ring. The program
based on this-topology for large biopolymers increases its computational throughput nearly linearly with
the number of computational nodes. The program developed is closely related to the simulation programs
CHARMM and XPLOR, the input files required (force field, protein structure file, coordinates) and output
files generated (sets of atomic coordinates representing dynamic trajectories and energies) are compatible
with the corresponding files of these programs. Benchmark results of simulations of biopolymers compris-
ing 66, 568, 3 634, 5 797 and 12 637 atoms are compared with XPLOR simulations on conventional
computers (Cray, Convex, Vax). These results demonstrate that the software and hardware developed
provide extremely cost effective biopolymer simulations. We present also a simulation (equilibrium of
X-ray structure) of the complete photosynthetic reaction center of Rhodopseudomenas viridis (12 637
atoms). The simulation accounts for the Coulomb forces exactly, i.e. no cut-off had been assumed.

KEY WORDS: Molecular dynamics simulation, parallel computers, parallel programming, Transputer,
photosynthetic reaction center.

1. INTRODUCTION

A major concern of molecular biology is to understand the structure-function rela-
tionship of biological polymers, mainly proteins and nucleic acids. For a long time it
had been tacitly assumed that the function of a biopolymer can be revealed from its
static structure, i.e. from a precise knowledge of the equilibrium positions of its atoms
together with a knowledge of typical atomic charges and chemical properties like
hydrogen bonding. However, during the past decade it has been realized that further
properties, which are not evident from the characteristics of the separate constituents
of biopolymers, are required to understand function. Such properties are, for exam-
ple, thermal mobilities of atoms, activated motions of constituent groups, local
electric fields and dielectric relaxation.

The properties mentioned are often very difficult to measure experimentally even
for small subsections of biopolymers, let alone for the whole polymer. It appears that
the required information can be obtained only by computer simulations of biopoly-
mers. Currently, many groups are developing a software basis in order to allow an
increasingly faithful representation of biopolymers by computer programs. These
programs are likely to contribute to biology and biotechnology beyond the scope of
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elucidating the structure-function relationship: they might guide the synthesis of new
materials, e.g. in conjunction with genetic engineering methods, as well as predict the
properties of materials, e.g. drug specificities or mechanical properties. A further
long-range goal of computer simulations is to predict secondary, tertiary and quater-
nary structures of proteins from their primary structure (amino acid sequence).

The prospects of computer simulations in molecular biology rest on the availability
of suitable computer resources. In fact, simulations until now are limited to rather
small biopolymers (of a few thousand atoms) and short simulation periods (of a few
nanoseconds). Furthermore, the cardinal issue of a faithful representation of bio-
polymers by computer simulation is closely linked to the availability of computational
resources: realistic descriptions of forces acting between the constituents of biopoly-
mers, e.g. a proper description of Coulomb forces without ‘cut-off’, require enormous
computer time; simulations must also represent enough of the surrounding medium,
e.g. lipids of biological membranes and water, in order to achieve realistic descrip-
tions.

Our study of the photosynthetic reaction center of the bacterium Rhodo-
pseudomonas viridis [1] is a case in point. We have found [2,3.4] that consideration of
all atoms of the molecule and an adequate representation of electrical interactions is
a prerequisite for reliable simulations. The photosynthetic reaction center is a protein
complex embedded in a cellular membrane and contains 12 large prosthetic groups
[5); the whole system encompasses about 12 600 atoms. The protein complex converts
the energy of the sunlight into an electric membrane potential. The two primary
processes which are responsible for the high efficiency of photosynthetic energy
conversion last 3 ps and 140 ps, respectively. If one wishes to include in a simulation
of the primary processes some of the surrounding membrane, water and ions, one
would have to simulate about 30 000 atoms over a period of a few hundred picose-
conds. The necessary computations are not yet feasible except at some extreme cost,
as is explained below.

Computer simulations are faced with a serious computational barrier which can be
illustrated by the following estimate of the requirements on computer time: In order
to determine the forces between all atoms of a protein with 12 600 atoms, i.e. of the
photosynthetic reaction center, without ‘cut-off’, about 98s on a Cray-XMP are
needed. Since the forces have to be re-evaluated at each integration step, the size of
which has to be chosen 1 fs or shorter, a simulation describing a period of 1 ns requires
at least one million steps, i.e. more than 1000 days of Cray time. A ‘cut-off’ of pair
interactions to 10 A reduces this time to about 19 days, but one may question the
soundness of such approach. The numbers illustrate a well-known point, namely, that
computational requirements for molecular dynamics simulations are prohibitive and,
for many problems, exceed all available means.

In this article we want to show that this situation can be improved by employing
parallel computers to simulate biopolymers. For the purpose of such demonstration
we have built a parallel computer with a systolic ring architecture, the design of which
will be outlined. We have developed also a program for protein simulations on this
computer. Computer and program achieve the same rate of computation as much
larger conventional vector machines, but for a small fraction of their cost. The parallel
strategy, therefore, should make the method of computer simulations accessible to
many researchers, allow simulations of larger numbers of atoms as well as of more
realistic (and computer time consuming) force models.

Our suggestion is to delegate only the computationally most intensive phase of
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molecular dynamics simulations, namely the force evaluation and the integration
step', to a parallel computer and to employ existing simulation programs and graphics
packages for an analysis of the simulated trajectories. To implement this suggestion
a program on a parallel computer needs to interface with some existing simulation
software using standard input and output files. The program described below pro-
vides such an interface specifically for the simulation programs CHARMM [6] and
XPLOR (7, 8].

The parallel computer built and programmed by us is based on Transputers as
computational units. The Transputer is a 32 bit processor with a 64 bit floating point
coprocessor integrated on a single chip. We have chosen this chip for our parallel
computer for reasons detailed further below. One advantage of the choice of the
Transputer is that parallel computers, comparable to the one developed by us, can be
obtained from commercial manufacturers. Therefore, molecular biologists not willing
to build computer hardware, which we assume is the majority, can still use our
simulation program. The reason why we decided to build our own computer rather
than use a commercial machine is the following: We wanted to choose an optimal
computer design in order to achieve for a minimum cost a rate of computation
comparable to that of the best currently available supercomputers.

Our program has been written in occam II [9, 10, 11, 12], the language around
which the Transputer had been designed. The language facilitates distribution of
computational processes among Transputers as well as communication among these
processes. In the initial phase of the research described here, occam II had been the
only programming language for the Transputer. However, since that time more
conventional languages, e.g. FORTRAN and C, have been ported to the Transputer.
Molecular biologists who prefer these languages over a new language might want to
incorporate the programming strategies presented below in these conventional lan-
guages. Such approach would actually allow to include elements of programs, written
for sequential machines, into the program for a parallel Transputer-based machine.

The software development environment chosen by us has been the Transputer
Development System (TDS), also described below, which runs on IBM personal
computers. Recently, familiar operating systems, e.g. UNIX-like systems, have also
been adapted to Transputer workstations. We point this possibility out, since the aim
of this paper is not to propagate a particular parallel computer and a particular
concurrent algorithm but rather to provide a convincing example which demonstrates
the feasibility and the cost effectiveness of molecular dynamics simulations on parallel
computers.

It must be pointed out that we succeeded in making molecular dynamics simula-
tions more affordable because we had ready access to supercomputers such that
programming strategies for large scale molecular dynamics simulations became fami-
liar to us. Our experience that the use of supercomputers does not always lead to
bigger appetite for expensive computational equipment, but rather can have the
opposite effect, will not be an isolated one. Future development of parallel approaches
to molecular dynamics simulations will require numerical experiments on convention-
al supercomputers.

"The latter step does not require much time; however, it is so closely linked to the force evaluation and,
therefore, we do not want to separate the two.
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A most recent review on large-scale molecular dynamics simulations of simple
liquids using vector and parallel processors has been given by Rapaport [13]. This
review emphasized, however, methods for handling systems of structureless particles
with simple short-range interactions and, therefore, computational strategies dis-
cussed differ in most respects from the ones for biopolymers presented below. The
differences are the following: (i) The force fields to be employed for biopolymers are
more complex than those of condensed matter systems, i.e. there is a large family of
different forces as explained briefly in Sect. 2, (ii) Furthermore, biopolymers most
often are completely heterogeneous, i.c. no translational symmetry exists; (iii) The
native structures of biopolymers are non-trivial, i.e. they cannot be determined by
reasonable guesses and simulations, but rather need to be known beforehand from
analyses of X-ray scattering data; (iv) The atoms in biopolymers have an intricate and
heterogeneous pattern of chemical bonds which determines the force field and, hence,
needs to be known to the simulation program. These aspects require computational
approaches which differ from those taken for molecular dynamics simulations of
condensed matter systems, e.g. liquids and crystals, and only few computational
strategies can be shared between the approaches.

A most pertinent review on concurrent computation for molecular dynamics
simulation covering algorithms for homogeneous as well as heterogeneous, e.g.
biopolymer, systems has been provided by Fincham [14]. This review has influenced
the work reported here, in particular, since it discussed the use of Transputers, a
systolic loop architecture and respective algorithms for the evaluation of pair interac-
tions, the latter constituting the most time-consuming task in molecular dynamics
simulations.

In Section 2 we review briefly the computational aspects of protein simulation. In
Section 3 we discuss the strategy of parallel computation which is dictated by the long
range character of the Coulomb forces in proteins. In Section 4 we describe the
parallel computer, i.e. its nodes and board design. In Section 5 we introduce our
parallel program. In Section 6.1 we provide benchmark tests for actnal molecular
dynamics simulations comparing computational speeds with those of XPLOR run-
ning on various conventional machines producing the same output files (trajectories
of various proteins). In Section 6.2 we discuss the costs of our computer system. This
discussion reveals that the suggested parallel computation achieves biopolymer simu-
lation for a much lower price than sequential computations. Finally, in Section 7, we
present an application of parallel simulation, namely the relaxation of the complete
structure of the photosynthetic reaction center, a system of 12 600 atoms, to an
equilibrium geometry.

2. NUMERICAL TASKS IN MOLECULAR DYNAMICS SIMULATIONS

In this Section we review briefly the computational aspects of molecular dynamics
simulations and discuss the relationship between our parallel algorithm and the
programs CHARMM [6] and XPLOR [7, 8}, to which our algorithm is closely related.

Computer simulations of biological macromolecules are based on a classical me-
chanical model of biomolecules. For the nuclei of the N atoms of a molecule the
Newtonian equations of motion (i = 1, 2, ... N) are assumed to hold

mif, = —VE(F, fay. .. Fy) (1
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where F, denotes the position of the i-th atom. Here we have used the notation
V, = 8/0F,. The function E

E = Eg+E;+E;+ Eyg+ Egy+ Eg+ E 2

defines the total energy of the molecule. It is comprised of several contributions which
correspond to the different types of forces acting in the molecule. The first contribu-
tion describes the high frequency vibrations along covalent bonds, the second contri-
bution the bending vibrations between two adjacent bonds and the third contribution
the torsional motions around bonds. The fourth contribution describes electrostatic
interactions between partial atomic charges, the charges being centered at the posi-
tions of the atomic nuclei. The next term, E,;, accounts for the van der Waals-
interactions between non-bonded atoms in the molecule, E, stands for the energy of
hydrogen bonds, and the last term describes so-called improper motions of one atom
relative to a plane described by three other atoms. Various research groups have
developed functional representations and corresponding force constants which at-
tempt to faithfully represent atomic interactions and dynamic properties of biomole-
cules [15]. The program which we have developed is based on the energy representa-
tion of CHARMM [6]. Actually, our program can read a file of force parameters
which has a format identical to that of XPLOR [7, 8], a simulation program closely
related to CHARMM. As a result, any adaptation of force constants suggested in the
framework of CHARMM or XPLOR can be transferred to our program.

Due to the intermediate state of development of our program there exist still a few
limitations in regard to compatibility with CHARMM and XPLOR: Our program
cannot account for hydrogen bonding directly, except by reparameterizing the energy
contributions other than those in E,, of participating atoms. Our program also does
not include a special representation of water. Further differences will be mentioned
in this Section.

The integration method of the Newtonian equations of motion employed by our
program is the Verlet algorithm [16]. This method determines the positions F,(t + Af),
of atoms i at the instant ¢ + At according to the formula

A+ A = 27 — 7@t — A) + F(9) (AP m, (3)
where F.(7) stands for the sum of all forces acting on the i-th atom at time 1, i.e.
F(t)y = =VEF®, K(0), . .. iy(0) 4

While integrating the Newtonian equations of motion computer time is spent mainly
on evaluation of the two-particle interactions, i.e. of interactions connected with the
Coulomb potential E; and with the van der Waals energy E,,,. The programs
CHARMM and XPLOR avoid the prohibitive computational effort of an exact
evaluation by allowing a cut-off for these interactions; this assumes that these interac-
tions do not contribute much to the dynamics for pairs of atoms separated beyond
a certain distance. We have not introduced such a criterion into our program. Rather
than providing a cut-off option we intend to introduce an option which makes it
possible to evaluate the Coulomb interaction in a hierarchical way such that, accord-
ing to a hierarchy of inter-particle distances, Coulomb forces are updated with
different frequencies. Such algorithm has been suggested in [4]. An alternative most
promising method for an efficient evalnation of Coulomb forces, the Fast Multipole
Algorithm, has been developed by Greengard and Rokhlin [17].
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Calculation of van der Waals and Coulomb forces is the most time consuming task
in molecular dynamics calculations. Therefore, we will concentrate below almost
exclusively on the strategy to determine these forces concurrently on several Trans-
puters.

The forces connected with the chemical bonds of biopolymers are determined much
more rapidly during program execution. Because of the essentially linear arrangement
of biopolymers the respective calculations can be readily ordered in a linear fashion
and, therefore, a strategy for parallel computation of forces connected with chemical
bonds is straightforward. Hence, we will not explain how these interactions are
evaluated.

Those features of CHARMM and XPLOR which, as mentioned above, are still
omitted in our current parallel program can be readily added since parallel strategies
for the corresponding algorithms are known. Somewhat problematic, though, is an
inclusion of the hydrogen bonding interaction since this interaction is an effective four
body interaction. We are currently working on a strategy to include these interactions
into our program?. Two further, but related differences exist between CHARMM or
XPLOR and our program, which have not been mentioned yet. First, we did not
include the possibility to focus a simulation on a spherical subset of protein atoms
divided by a so-called ‘stochastic boundary’ from the remaining atoms of the protein.
Second, we did not provide for the possibility to add random forces to some degrees
of freedom of the Newtonian equations of motion, i.e. describe some atoms by
Langevin dynamics. There is no essential difficulty connected with these features and
we expect to include them into our program soon.

We would like to close this section with a brief description of the input-output
requirements of our molecular dynamics program. As input the program needs a file
of force parameters, a (.pdb) file of atomic coordinates in protein data bank format,
and a protein structure file (.psf) with definitions of bonds, dihedral and improper
angles, etc. The file formats are identical to those of CHARMM and XPLOR. As
output the program delivers atomic coordinates in an internal format which is
converted on the host computer into a (binary) format for analysis of trajectory
properties by CHARMM or XPLOR.

3. COMPUTATIONAL STRATEGY FOR LONG RANGE PAIR
INTERACTIONS

The first step in considering a computational stragegy for concurrent simulation
calculations s to make a basic decision about the nature of the processing elements:
should they all receive the same instructions synchronously (so called SIMD: Single
Instruction Multiple Data) or should they each have a resident molecular dynamics
program working on local data (so called MIMD: Multiple Instruction Multiple
Data). The decision is, of course, closely tied to the hardware one wishes to employ.
Since we decided to use Transputers (which are loosely coupled processors with
distributed memory) as computational elements of our parallel computer we opted for
a solution in which each processor executes its own molecular dynamics program. The

%Since the number of atoms which are possible candidates for hydrogen bonding is much smaller than
the total number of atoms one can actually devote a single computational node to the task and compute
hydrogen bonds in a conventional, i.e. sequential, manner (see also below).
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next decision to be made is concerned with the way the processors should be linked
together through data channels, commonly referred to as the topology of a parallel
computer. In this section we will explain the topology chosen by us, namely, the so
called systolic loop.

The computational task we are mainly concerned with is the evaluation of Coulomb
and van der Waals forces. Since these forces, from a computational point of view, are
very similar, we will consider Coulomb forces only. Actually, much of the program
code deals with the remaining interactions included in Equation (2); however, the
evaluation of these interactions, in case of large polymers, consumes only a small
fraction of computer time. Since some of these interactions involve three or four
atoms the evaluation requires that the coordinates of as many atoms are simul-
taneously available to a processor. In our approach which involves a fixed mapping
of processors to the primary sequence of the biopolymer (see below) this requirement
is not problematic as the mapping can be chosen as to keep atoms engaged in
multi-atom interactions on one processor”.

The Coulomb forces, which describe the electrostatic interactions in a homoge-
neous dielectric environment“Ldepegd on the charges g;and g; of atomic pairs (7, j) and
on the corresponding vector r; = r, — r; joining the atoms at positions r; and r;. The
force between atoms i and j acting on atom i is

7 4gry

=
4rer,

)

The force between atoms i and j acting on atom J is
ﬁ‘i = —F:j : (6)

J

On a given atom the Coulomb forces of all other atoms act. It is, therefore, necessary
to determine Fj; for all pairs of atoms. There are N(N — 1)/2 pairs for a total number
N of atoms. For larger biopolymers the resuiting number can be extremely large,
leading to the need for parallel processing.

A key problem connected with concurrent evaluations of Coulomb forces is that
each processor has to know the coordinates of all atoms. If each processor had
enough memory to store the coordinates of all atoms, and if updating these coordina-
tes did not consume essential processing time, the problem of computing Coulomb
forces concurrently would be rather straightforward. In our approach (see below) to
molecular dynamics simulations processing elements actually spend most time on the
evaluation of forces and only little time on communication of data (coordinates,
forces). However, storage requirements for atomic coordinates and for lists defining
the bond structure can be considerable. A processor with 1 MByte of RAM can only
store coordinates of about 3 000 atoms. If one would keep all coordinates with each
processor, the rather small number of 3 000 atoms would be the limit for the largest
biopolymer to be simulated, no matter how many processors are employed. If one
could distribute, however, storage of coordinates over all processors (because of the
need of evaluating pair interactions, coordinates have to be stored at any time in two
processors simultaneously), for a 50-processor machine the largest biopolymer to be

3This mapping requires that some atoms are represented on more than one processor.

“If one wishes to determine electrostatic forces in an inhomogeneous dielectric environment, one needs
to solve the Poisson equation. For a computational method, see [18]. We have adopted this method to
describe the interior of proteins [3] and are currently implementing the method on our computer.
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Figure 1 Cube topology: Each processor is assigned to simulate all atoms within a spatial cell, e.g. within
a cube. This topology has not been adopted by us.

simulated could encompass about 75 000 atoms. Because the latter storage mode,
obviously, is more favorable, one likes to adopt a computational strategy which
distributes the storage of forces and coordinates as well as the actual computation
over all computational nodes. As already mentioned, data transfer is not critical for
molecular dynamics simulations, at least not for /arge biopolymers.

Another important consideration in devising a programming strategy for a parallel
computer is to take advantage of the fact that for any pair of atomic charges ¢; and
g;, the Coulomb forces F;; and F; acting on gq; and on g;, respectively, are related by
Equation 6. Of course, one wishes to avoid evaluating both forces, i.e. duplicating
computational effort. A programming strategy which avoids such duplication re-
quires that forces are communicated among processors.

One possible way to link processors and computational as well as storage tasks is
to assign atoms, i.e. the evaluation of the forces acting on them, to processors
according to the spatial arrangement in the protein. Such assignment is referred to as
a geometric mapping. An example is illustrated in Figure 1: to each processor are
assigned all atoms within a spatial cell, e.g. within a cube. For our purpose the
seemingly natural geometric mapping of Figure 1 has serious disadvantages:

@ The geometric mapping in Figure 1 would require each processor to communicate
with the neighbouring processors, i.. with six processors. However, the Transputer
currently has only four links for communication with other Transputers, i.e. Trans-
puters cannot reproduce the connectivity required for this mapping.

® An inhomogeneous distribution of atoms over the simulated volume can lead to a
poor balance of computational tasks of processors, i.e. some processors may need
to monitor more atoms than others and, consequently, would make other proces-
sors ‘wait’ which, therefore, remain idle. This problem could be alleviated by using
a flexible spatial grid which, however, would lead to some extra overhead in
assigning atoms to ‘their’ Transputer.

®Atoms which switch between cells require additional communication between
processors of neighbouring cells.

®Evaluating pair interactions between atoms separated by a large distance, i.e.
between atoms in two cells separated by several other cells, requires communication
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Figure2 Ring topology adopted by us: Processors are connected to form a ring with one outlet to the host
transputer. This topology had been suggested also in [19, 20).

of coordinates across other Transputers. This leads to wait states as well as impedes
computations in the Transputers involved in the communication route,

The topology of the parallel computer suggested by Figure 1 is actually suitable for
the simulation of particle systems with short-range interactions because the required
communication routes are short. Since future versions of Transputer chips are likely
to have more than four links, one will be able to map an arrangement of cells covering
the simulated volume rather easily onto a set of Transputers.

The problems mentioned above are circumvented by the systolic loop topology
illustrated in Figure 2, which is actually the topology adopted by us. This topology
had been suggested previously as optimal for the problem at hand by Ostlund and
Whiteside [19], by Hillis and Barnes [20] and by Fincham [14]. The topology connects
the processors in a ring, the ring having one outlet to the host computer. Our
implementation of this topology corresponds to that in Reference [20] and differs
from that discussed in [19] and [14] in that the mapping between atoms and processors
is fixed. The atoms are mapped onto processors (Transputers) irrespective of their
position in space. In case of protein simulations one can assign Transputers to atoms
in accordance with the amino acid sequence, but this is by no means necessary’. The
atoms assigned to a specific Transputer will be referred to as the ‘own’ atoms of that
Transputer, all other atoms are the ‘external’ atoms. For a discussion of the computa-
tional task of a processor we separate the Coulomb forces into two contributions

F = Z q:9;7y + 99" ik %
: 3
e dmer i ‘external 4TTEF, ?k
atoms j atoms k

F, is the force which acts on atom i ‘owned’ by the processor. In order to evaluate the
first contribution the processor needs to know only the coordinates of its ‘own’ atoms
J- The second contribution, however, requires knowledge of the coordinates of all
‘external’ atoms k. These coordinates are passed around the ring of processors in such
a way that any time coordinates pass by, a processor uses them to complete computa-

5 A mapping of atoms following the amino acid sequence, however, is most suitable for bond interactions,
e.g. bond stretch and bond angle interactions, since some of these interactions involve three or four atoms.
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tion of the total forces F, that act on its ‘own’ atoms. The ring topology also allows
to avoid unnecessary evaluation of forces of pairs of charges related by Equation 6.
The details will be explained further below.

4. HARDWARE

Having decided on a topology for the parallel computer, we like to describe briefly the
hardware developed by us for the purpose of molecular dynamics simulations. We like
to point out again that an application of our computational strategy does not require
a prospective user to rebuild the same parallel computer; a user may also acquire a
similar hardware available through several commercial manufacturers.

4.1 Structure of a Single Computational Node

A computational node, placed on a board with five other nodes, is shown schematic-
ally in Figure 3. The node has been constructed from the following components:

@a Transputer IMS T800G20S as the central processing unit of the node; this
processor has a 32 bit data and address bus and runs on a 22.5 MHz cycle; the
processor also contains, integrated on a single chip, a 64 bit floating point coproces-
Sor.

o1 MByte dynamic RAM (four SIP modules each with nine 100 ns 256 Kbit chips; 8
chips contain data, the 9th chip carries parity information) as local memory to store
program (currently about 30 KByte) and data; the size of the memory can be readily
extended to 4 MByte by using 1 Mbit DRAM chips.

Figure 3 Schematic drawing of a transputer-board enlarging a part of the board corresponding to one
computational node. Components on the board are explained in the text.
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@®@an address-buffer/address-latch; these components separate address signals from
data and forward them multiplexed to the memory, i.e. the components act as an
interface between processor and memory.

@ parity logic; this serves to detect parity errors and forwards messages about detected
errors to the host transputer.

@bus bars; these devices carry the supply voltage for all components on the board;
the advantage of the use of bus bars is that their high capacity provides an excellent
buffering of the supply voltage.

e®three LEDs (not shown in Figure 3) to indicate the current status of the node.

No ROM is employed for the computational nodes. The reason is that the Trans-
puter feature ‘boot from link’ is used, and that the program is being loaded at the
beginning of computations into the RAM of each node.

Since our system is designed to have 60 computational nodes®, i.e. a rather large
number, and will have to run for long periods of time to carry out simulations, one
needs to be concerned with the recognition of so-called soft memory errors. One has
to expect 100-1000 FITs (one FIT is a Failure in Time expected during one billion
hours of operation). For a parallel computer configured with 60 MBytes of memory
this error rate amounts to about one failure every few months. In order to protect
calculations against such errors we store an additional parity check bit for each byte
(the Transputer permits byte-wise memory access) which allows to test for single-bit
errors. In case an error is detected the program can restart with the last integration
step and with correct data. This makes the more complex task of error detection and
correction, i.e. by using seven parity bits, unnecessary.

The three LEDs which are located in the front panel provide the following informa-
tion:

® A red error-LED is wired to the error pin of the Transputer; it signals errors like
division by zero, floating point overflow or array boundary violation.

® A yellow parity-LED indicates a parity error.

® A green busy-LED flashes with each external memory access. Therefore its intensity
allows to estimate the frequency of memory accesses which in turn signals to the
experienced user which kind of instructions (memory-intensive or computationally
intensive) are currently being executed. Most importantly, the busy-LED signals
which node is idle, a state to be avoided.

4.2 The Boards

One of the aims of the design of our parallel computer had been to make it compact.
We achieved a design which allowed us to locate six Transputers with memory and
necessary support chips onto a double eurocard. This was done as follows:

®We used a three layer board and chose a very high PCB density, i.e. a PCB trace
width and spacing of 0.2 mm.

®We employed passive SMD components.

®We placed chips on both sides of the board: The Transputers, the parity logic as well
as driver ICs were placed on the front side. The RAM-SIP modules were placed on
the back. The compact design resulted in short distances which, in turn, yield
well-defined signal levels and a reduced probability of error occurrence,

$This number, presently, is determined by the dimension of the chassis, and could be considerably larger.
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The simulations presented below were carried out by means of these boards. We
have recently developed new (six layer) boards each with six Transputers and 4 MByte
RAM per Transputer.

4.3 Backplane and Chassis

The ‘topology’ of the parallel computer is defined through the backplane. For this
purpose all links of the Transputers on the boards (see above) have been connected
to the backplane. The backplane establishes the connections between the computa-
tional nodes. For that purpose the backplane, currently, has a layer with fixed
connections which define the ring topology. However, by placing link switches (IMS
C004 [21]) onto the backplane the topology can be reconfigured even during program
execution.

The chassis (197) holds the backplane and provides ten slots for Transputer boards,
each board contributing six computational nodes. 60 Transputers providing a com-
putational through-put for molecular dynamics calculations exceeding that of a Cray
XMP (see below) fit into the chassis. The backplane contains an interrupt logic which
allows to separately access any of the 60 Transputers.

5. THE PROGRAM
5.1 Coarse-Grained versus Fine-Grained Parallel Program

We want to address first the question of why we have opted for a coarse-grained
approach to parallel computation, i.e. the smallest computational node being a
powerful processor on which a rather long serial program is being executed. One may
argue that the best approach to parallel computation of polymer dynamics would be
to adopt a parallelism which matches that of the physical system described and
employ one computational node for each atom. Such fine-grained approach would
simplify the structure of the parallel algorithm, i.e. one would not have to differentiate
between ‘own’ and ‘external’ atoms (see Chapt. 3).

The terms coarse-grained and fine-grained are meant to refer here to the software,
rather than the hardware, i.e. a fine-grained approach implies a program for which
the longest process uninterrupted by communication of data to other processes is
rather short. In fact, we envision that the fine-grained approach suggested would be
realized on a set of Transputers as well, such that each Transputer accommodates
through its hardware scheduler a number of processes each monitoring the dynamics
of a single atom. In occam II the programmer would actually write his program as
if each of the processes joined to an atom would run on a separate Transputer, and
it is the on-chip logic of the Transputer which schedules these processes to run on the
available computational nodes.

The seemingly natural approach of matching the parallel program process structure
to atoms would lead to a run-time disadvantage. The reasons are the following:

1.Each parallel process involves a certain scheduling overhead which cannot be
ignored despite the fact that the scheduling is done by the hardware scheduler of the
Transputer.

2. The 4 KByte on chip RAM of the Transputer is a most valuable resource since it
allows faster data access than external memory. In case a Transputer runs a single
process, the on-chip RAM can hold all scalar data and access these data quickly.
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In case a Transputer has to run several, e.g. 10-100, processes simultaneously, only
few of these processes can hold their data in the on-chip RAM, since the Transputer
must provide the workspaces for the inactive processes, too.

3.An individual Transputer is a sequential machine; if one Transputer has to run
several processes, only one of them can be active at a given time, while the other
processes are waiting for their time slice.

4. A most serious objection against a scheme ‘one atom-one process’ arises from the
fact that the phenomenological force field employed in describing atomic interac-
tions in biopolymers involves effective 3- and 4-atom interactions, e.g. describing
bond angle vibrations and torsions. In order to determine such forces an atom’s
process would need to collect and store the coordinates of several atoms; in fact, a
maximum of five atomic coordinate vectors need to be stored. This would require
rather large memories for each computational node. In case of a coarse-grained
programming approach with processes which monitor a few hundred atoms, the
requirement on memory is much less stringent since atoms involved in multi-atom
interactions often will be joined to the same process. For biopolymers this is true,
in particular, when processes monitor segments of the polymer’s primary sequence.
In fact, such scheme leads to an increase of memory requirements for multi-atom
interactions which measures only 1/15 of that for the ‘one atom-one process’ type
of approach.

An alternative fine grained scheme of parallel computation would join processors
to the terms contributing to Equation (2) in evaluating the forces V, E. Such approach
is a generalization of schemes which join processors to atoms, since the latter schemes
correspond to an accumulation of all terms arising in V,E, i.e. for fixed i, to a single
processor. Joining processors to individual contributions of V,E, of which there is a
number O(N?), allows an extreme distribution of computational tasks. However, such
approach would result in more data flow since the evaluated contributions need to be
accumulated in certain processors to yield the total forces F,. Such approach might
be favourable, however, for shared-memory machines.

5.2 Transputer Development System and Folding Editor

Before we explain details of our program we like to introduce some key features of
the Transputer development system [22] and its editor, the folding editor, which were
used to develop and run our program.

The folding editor is key to the Transputer development system. Within this editor
the compiler can be activated and so-called EXEs executed. An EXE is a program
resident on a Transputer host, which, in our case, is a T414 Transputer on a modified
B004 board of INMOS. The editor is named after the ‘fold’ which is the building
block of a kind of hierarchical windowing system and which structures the source
code of the program. Each part of the text is located within a fold which can be
labelled by a title. A fold can be closed and, in this case, is represented on the screen
by . . . title’ on a single line. Closing all subfolds one can view the global structure
of the program.

Opening a fold results in a full representation of its contents on the monitor. A fold
can contain other folds. Open folds can be recognized through three curly brackets
which mark the beginning ‘{{{ title’ and the end ‘}}}". All editor commands, the
compiler as well as EXEs are activated through function keys and usually apply only
to the fold designated by the current cursor position. In keeping with the fold
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organization of the Transputer development system we use an EXE to write the
atomic coordinate file and force parameter file into a fold with a hierarchical subfold
structure. This allows, in particular, ordering of data in input files and, consequently,
speeding-up initial loading of the computational nodes with input data. The folding
editor also permits some editing of input data without leaving the Transputer develop-
ment system,

A simulation is started by calling the ‘controller’ EXE with the cursor placed on the
fold containing the relevant molecular data.

5.3 Modular Structure of the Program

The program has three modular parts. The first module provides an interface to the
protein data bank (.pdb) file format as well as to CHARMM (XPLOR) files which
contain information on protein atomic coordinates and the parameterization of force
fields. The second module is a controller program which handles data transfer of the
main program, i.e. of the program that actually carries out the simulation. The
controller program also monitors the parity flag and periodically polls the keyboard
for some user action, e.g. program interruption. The third module is the main
(simulation) program and runs separately on each computational node. The separa-
tion of the controller program and the main simulation program is a consequence of
various organizational requirements and fits well into the Transputer development
programming environment.

The controller program is executed on the host Transputer. The latter is connected
to an IBM PC AT computer, but will later be connected to a high end workstation
capable of molecular graphics. The controller program is written as an EXE (in the
Transputer development system nomenclature). The simulation program in the same
nomenclature has the form of a PROGRAM.

5.4 Loading of Data onto the Computational Nodes

After the data fold has been completed the EXE controller can start on this fold. The
module first clears all parity flags and all iocal memories. After all nodes have received
the simulation program (the same for each node) the module transfers the relevant
data to the nodes. For this purpose the module needs to determine how many atoms
will be ‘owned’ by each node. In order to evenly distribute the computational load the
difference between the number of atoms ‘owned’ by any two nodes should be at most
one atom.

5.5 Communication Channels along the Ring Architecture

We like to explain now how the computational strategy of the main program builds
on the ring architecture, i.e. adopts a communication pattern compatible with this
architecture. A flow chart of this program is presented in Figure 4. We will refer to
this chart repeatedly in the following.

The overall structure of the simulation program is a loop over a computational
cycle. A cycle starts at the moment when the program has just completed an integra-
tion step invoking the algorithm stated by Equations (3) and (4). The integration step
yields a new set of coordinates. The computational cycle then uses these coordinates
to determine the forces acting on the atoms. When these forces are determined the
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Figure 4 Flow chart of the main program. Copies of this program are running on every computational
node.

Newtonian equations are integrated again for a time step Af and a new computational
cycle is started.

In a first initialization step (part 1, 2, 3 of Figure 4) each node starts computation
of the forces F, = Z F acting on its ‘own’ atoms i begmmng with the contributions
of pair interactions F orlgmatmg from all of its ‘own’ atoms j. The node then hands
the coordinates of 1ts own’ atoms to its next neighbour in clockwise direction and
receives the coordinates of atoms ‘owned’ by its other neighbour. Each node keeps its
‘own’ coordinates in store.

The simulation program then carries out repeatedly the following steps (part 4 of
Figure 4). On the basis of the coordinates just received each node evaluates pair
interactions F for the corresponding set of ‘external’ atoms and adds the results to
the forces F.. "As explamed below, at this point the nodes may avoid to evaluate
interactions of pairs (i, j) which previously have been evaluated for the opposite
ordering of atoms, namely (/, i), by a node which ‘owns’ atoms j. For this purpose
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forces, too, need to be communicated along the ring of computational nodes. After
adding all possible contributions to F, the ‘external’ atoms are passed by each node
to its next neighbour in clock-wise direction and new ‘external’ coordinates are
received from its next neighbour in counterclock-wise direction.

These steps are repeated until each node receives its ‘own’ coordinates again, at
which point this loop is terminated. The strategy outlined keeps all computational
nodes busy at all times except for periods when some set of nodes may have to wait
for other sets of nodes to complete the computations. However, these periods can be
kept very short as long as all nodes ‘own’ nearly the same number of atoms.

The strategy described would stili be inefficient if one would not avoid that interac-
tions for pairs (i, j) are evaluated twice, once by the node which ‘owns’ the atoms i
and once by the node which ‘owns’ atoms j. The issue of avoiding redundant evalua-
tion of pair interactions had already been addressed by Ostlund and Whiteside [19].
We will follow a slightly different strategy than these authors. In order to illustrate
how redundant computations are avoided we assume a ring of six nodes labelled 0
through S. In the initialization step each node evaluates all pair interactions among
its ‘own’ atoms. In the further steps, node 0 then evaluates all pair interactions
between its ‘own’ atoms and those ‘owned’ by nodes 5, 4, 3. Node | evaluates those
interactions for atoms ‘owned’ by nodes 0, 5, 4, node 2 those of nodes 1, 0, 5. Hence,
nodes 0 to 2 compute pair interactions for three sets of ‘external’ atoms. Nodes 3, 4
and 5 compute only pair interactions for two sets of ‘external’ atoms, namely in case
of node 3 for those sets ‘owned’ by node 2 and 1, in case of node 4 for those ‘owned’
by node 3 and 2, and, finally, in case of node 5 for those ‘owned’ by node 4 and 3.

This example involving six nodes should make a generalization to an even number
of nodes obvious. In case of an even number of nodes half the nodes are computing
one set less than the other half. In case of an odd number of nodes the situation can
be improved in that no node becomes idle. We have derived expressions which
describe the decrease in computer time when M nodes compute the forces between all
pairs of atoms in parallel according to our scheme. In the ideal case this decrease
would correspond to a computation time

ot o= nIM ®

where ¢, is the time needed by a single processor. The latter time for N atoms is

A LS| B o
where T, is the time required to evaluate a single interaction, which for Coulomb
interactions measures about 50 us on a Transputer.

The ideal Equation (8), in fact, can be achieved by our computation scheme when
the number of nodes employed is odd. This can be shown as follows. Our scheme
assignes N/M atoms to each node’. Each node evaluates first the pair interactions
between the atoms assigned to it and then the interactions with the M — 1 sets of
atoms assigned to other nodes, of which only half need to be evaluated. The total
computation time is given by

"The number of atoms assigned is actually the integer closest to N/M. For large N the value is close to
N/M such that we may use this ratio in our derivation.
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In the limit M < N the deviation from ideal behaviour is given by the factor 1 + %
This observation leads to a most interesting computational strategy: since our boards
each hold six Transputers our parallel computer has an even number of nodes, say
2M; the strategy is to assign of these nodes 2M — 1 to the evaluation of pair
interactions, and to delegate the remaining node to evaluate the forces governing
hydrogen bonds; since the latter forces arise from effective four particle interactions
they are best evaluated, in fact, by a single processor which can hold in its memory
the coordinates of all those atoms being possibly candiates for hydrogen bond
formation.

We still need to specify how the forces F:»j which are not evaluated by the node
‘owning’ atom i, but are nevertheless needed to determine the force F;, reach this node.
For this purpose a communication channel for forces is established which runs in a
direction opposite to that of the coordinate channel, namely counterclock-wise. If we
define (node m being the sender and node n the receiver)?

A, = {iliis the index for the atoms ‘owned’ by node m} (13)
and
S,. = {F)F;, = — Y F,jed,}, (14)
€Ay, i#£]

then, in case of our example with six nodes, 15 such sets S, of interactions are
generated during one computational cycle. The sets S,,, can be routed through the ring
of computational nodes in the following way: After computing one of the sets each
node sends its result down the ring in counterclock-wise direction. The node which
needs the set fetches it and does not send it further. The routing of the sets of forces

$8Reader please note: the indices 7, j refer here to atom numbers, the indices m, # to computational nodes;
the connection between the two sets of indices is determined by the assignment of atoms to computational

nodes.
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Figure 5 Process structure of the program running on the T800 nodes and of the program running on the
T414 host Transputer. Shown are the processes running in parallel.

S,.. along their pathway is asynchronous to the routing of coordinate packets and
evaluation of S,,,. The processes need to be synchronized only as far as it is necessary
that each node has to fetch the routed S,,, needed to complete evaluation of the total
forces F, for its ‘own’ atoms i.

5.6 Process Structure of a Single T800 Node

The computational nodes need to carry out the following processes: (i) send coordina-
tes around the ring clock-wise; (ii) send force sets S, along the ring counterclock-
wise; (iii) evaluate force sets S, and total forces F,, (1v) synchronize as far as it is
necessary the routing of S,,, and the evaluation of F,. The processes and their
relationship are shown schematically in Figure 5.

The process in each node, which routes the coordinates and uses them to evaluate
the sets of forces S,, as well as the forces F,, is rather straightforward. In the
initialization step a node uses the coordinates of its ‘own’ atoms to determine the sets
S,.. and then passes its ‘own’ coordinates on. When packets of ‘external’ coordinates
arrive they are stored and, if necessary, used to evaluate sets S,,,. From this set the
node determines the contribution to F; for its ‘own’ atoms, The node also passes the
sets S,,, to a multiplexer which feeds them into the force pathway.

The administration of the force pathway is slightly more complex, mainly because
the pathway is asynchronous to the former node processes, i.e. to those processes
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passing coordinates. A routing process receives incoming sets S, and passes them
either (if this node is node #) through a buffer to the process which evaluates the forces
F or (if this node is not node n) to the multiplexer which passes them further down
the ring. The communication of the routing process with the process ‘calculation’
evaluating forces F is complicated by the fact that in occam II two processes cannot
share data, since data may reside at different nodes. As a result the following strategy
has been adopted: When a node m evaluates the sets of forces S,,,, m # n, it adds the
results to its local force accumulators. Then it transmits the set S,,, to node » along
the ring. When a node p (p # m, p # n) receives the set S,,, its routing process
recognizes that the set is not addressed to this node and passes it further. When the
set reaches node n, the routing process of that node transfers it to the process
‘add.buffer’. This process passes forces F €8,,, to the process ‘calculation’, which adds
them to the accumulators for the forces F

After evaluation of the total force actmg on atom i, F,, is completed in each node
for all of the node’s atoms i, the integration step can be carried out and new sets of
coordinates are available. The coordinates have to be fed now to the host Transputer
and from there to the host computer for further analysis. We will discuss now how
the coordinates are fetched by the host Transputer.

5.7 Processes on the Host Transputer T414

The host Transputer is part of the ring. As a result it needs to pass along coordinate
packets and the sets of forces S, as well as fetch coordinates to be sent to the host
computer. Furthermore, the host Transputer monitors all processors for parity errors
and stops and restarts computations if necessary. The tasks described are carried out
by the EXE ‘controller’ mentioned above. The processes and their relationships are
shown schematically in Figure 5 together with the processes residing on the T800
nodes.

We first assume that a parity error did not occur and that, therefore, the parity
control process did not become active, i.e. we discuss all the processes in Figure §
except the parity control process. Most trivial is the role of the host Transputer with
regard to the packets of forces handed down the ring of computational nodes; these
packets are simply passed along whenever they arrive. Also the action of the host
Transputer on coordinate packets is rather trivial. The master process decides if a
coordinate packet needs to be sent to the host computer, i.e. to the PC AT. The actual
data transfer is executed by the process ‘analysis’. This process also keeps track of
valid restart files and writes the trajectory data in user-definable intervals to a host file.
Data concerning the various energy contributions (see Equation (2)) are also stored
after each integration step in order to provide some information about the current
state of the calculation to the user. Time stamps are tagged to the output data, to
enable determination of the runtime required for completion of a trajectory.

We discuss now the action taken by the controller EXE in case a parity error occurs.
On each node parity is checked as outlined above (Section 4). The parity error lines
of all nodes are daisy-chained and connected to the event pin of the host Transputer.
In case a parity error occurred anywhere in the system, the parity control process is
activated and assumes control. The first action is that the process ‘analysis’ is in-
formed of the event. The process ‘analysis’ closes down all files and assures that a valid
restart file is made available. Under no circumstances will corrupted data be stored
(neither in a data file nor a restart file). Al other processes, i.e. ‘pass-through’ and
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‘buffers’, are forced to terminate. Since all parallel processes on the Transputer host
terminate, computation can now be restarted. During restart, not only the data, but
also the program of the computational nodes is reloaded, to take every possible error
into account.

6. PERFORMANCE
6.1 Benchmarks

Benchmark tests to compare the performance of computers are rightly criticized as
they often do not provide a basis to judge a computer’s performance for special
applications. Since we consider, however, a specific application, namely, molecular
dynamics simulations of biopolymers, meaningful benchmark tests which compare
how different computational approaches generate the same output from given input,
can be provided. The output contains sets of atomic coordinates {f,(¢) | / denotes
atoms} at successive times ¢t = t,, t,, . . . and the input consists of the CHARMM
force parameters, a protein structure file and initial coordinates. The remaining
uncertainty connected with such test is how performance depends on the size of the
proteins simulated and on the number of computational nodes involved in the
concurrent computation. With regard to the size of polymers simulated we will
provide five examples, a short chain (deka-alanine, 66 atoms), a small protein (panc-
reatic trypsin inhibitor (PTI), 568 atoms), and three larger protein segments (parts of
the photosynthetic reaction center (RC) comprising 3 634 atoms, 5 797 atoms, and the
complete RC complex of 12 637 atoms). These examples allow an extrapolation to
other polymer sizes. To demonstrate the dependence of computational performance
on the number of nodes we provided data for a single node as well as data for 12 and
24 nodes. We will demonstrate that the scaling of the computational effort with the
number of nodes follows closely the law derived in Section $.5. This implies that from
our data one can estimate rather accurately the performance of our parallel computer

Table 1 Benchmark results for a molecular dynamics simulation of Alanin, PTI (pancreatic trypsin
inhibitor) and RC (photosynthetic reaction center of Rhodopseudomonas viridis); shown is the time required
for an integration step (in seconds); no cut off of Coulomb interactions had been assumed. ‘Optimized’ refers
to placing all scalar variables and the main loop of the program in the on-chip RAM of the Transputer.

alanin, 66 PTI, 568 RC, 3634 RC, 5797 RC, 12 637
atoms atoms atoms atoms atoms

electrostatic and 0.13 9.2 374.0

vdW-interaction,

single T800

all interactions, 0.16 10.0 392.6

single T800

all interactions, 0.15 8.7 339.7

optimized,

single T800

electrostatic and 0.03 0.8 313

vdW-interaction,

optimized, 12 T800

all interactions, 0.06 0.9 31.6 80.8 386.9

optimized, 12 T800

all interactions, 0.2 0.65 15.6 40.5 191.0

optimized, 24 T800
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Table 2 Benchmark results of a molecular dynamics calculation on a segment of the photosynthetic
reaction center (3634 atoms); shown is the time required for an integration step. The extrapolations were
done on the basis of benchmarks with PTI.

VAX 11-750 1 x T800 CONVEX CI 24 x T800 CRAY-XMP 50 x T800
XPLOR MD XPLOR XPLOR

(23]
2 hours 339.7s 350s 147s 15.6s 7.8s 71.6s
(estimated) (extrapolated) (extrapolated)  (extrapolated)

for any number of nodes, as long as the number of nodes is a small fraction of the
number of atoms.

Actually, computer time in molecular dynamics simulations for polymers of in-
teresting size is spent mainly on determining the forces at each instant in time. The
integration according to the Verlet algorithm (Equation (3)) takes only a small
fraction of the computational effort. For this reason the benchmark tests provided
here only show the time required for evaluation of the total force F,(¢), and not the
time required for evaluating the remaining part of Equation (3). The benchmark tests
presented vary in the degree of completion to which the total forces are determined.
In one case we show results of an evaluation of solely non-bonded interactions, i.e.
the Coulomb and van der Waals interaction; in another case we show results for all
forces. The times needed for the computations in the different situations are given in
Table 1. It should be pointed out that the computations underlying the results in
Table 1 did not assume a cut-off of the pair-interactions, for which reason the times
given in Table 1 are considerably longer than is the case for molecular dynamics
calculations with cut-off.

The times shown in Table 1 need to be compared with equivalent times on conven-
tional computers. Such times are provided in Table 2 for a VAX 11-750, a Convex Cl1,
a Cray-XMP, a single Transputer (T800) and parallel machines with 12 and 24
Transputers (T800). The simulations compared in Table 2 involve a 3634 atom
segment of the photosynthetic reaction center. As explained below the computer times
needed to be extrapolated for some entries of Table 2.

We first discuss the results presented in Table 1. The time needed for simulations
increases with the square of the number of atoms; the time required for evaluation of
Coulomb and van der Waals forces amounts of 50-99 percent of the time needed for
the evaluation of all forces, the percentage approaching 100 percent with increasing
polymer size. This behaviour is understood readily. The larger the number of atoms
in a polymer the more a force evaluation is dominated by Coulomb and van der Waals
contributions since the respective number of terms in the total energy expression
increases quadratically with polymer size.

The decrease in computer time in going from a single Transputer to 12 Transputers
varies between a factor of 2.5 for the smallest polymer to a factor of 10.75 for the
largest polymer. For protein segments with 3634, 5797, and 12637 atoms the rate of
computation doubles in going from 12 to 24 Transputers. However, such enlargement
of the computer is quite disastrous for the smaller segments simulated, i.e. those with
66 and with 568 atoms; in the first case the rate of computation actually decreases, in
the second case doubling the number of processors yields only a 1.4-fold increase in
computing speed.
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The small decrease of computer time in going from a single Transputer to 12
Transputers in the case of alanine and the increase of computing time in going to 24
Transputers is due to the character of the parallel program: in case of a polymer
comprised of not more than 66 atoms the overhead for loops and the opening and
closing of communication channels it not outweighted by the concurrency of com-
putation. Also in case of very few atoms, the ratio of time needed for computations
to time needed for communication is poor. This poor gain in computational speed,
when computational nodes are increased in number, is not a serious deficit since
actual computations on biopolymers usually involve a very large number of atoms
with a very small ratio nodes vs. atoms.

The decrease in computer time found for the polymer with 3634 atoms in going
from a single Transputer to 12 Transputers, i.¢. a decrease by a factor of 10.75, is close
to the theoretically best possible value (see above) of 11.08. The decrease in computing
time by a factor of two for simulations of the largest proteins in going from 12 to 24
Transputers is also expected from a quantitative estimate. This finding, i.e. a beha-
viour close to the theoretical limit, allows one to estimate the decrease in computer
time one would expect in going from a single Transputer to, say, S0 Transputers, i.e.
a decrease from 339.7 to 7.6 s. These times should be compared to the computer times
spent for the generation of the same output by running XPLOR on conventional
machines, i.e. the times presented in Table 2. Our computations showed that our
program on a single Transputer runs 20 times faster than XPLOR on a Vax 11-750
and about half as fast as XPLOR on a Convex C!. 24 Transputers show a perfor-
mance nearly ten times faster than a Convex Cl and two times slower than a
Cray-XMP. 50 Transputers are likely to beat the performance of XPLOR on a
Cray-XMP.

At this point of our comparison the question of relative costs of computational
equipment arises. This question will be addressed now.

6.2 Costs

Costs for dynamics simulations of biopolymers can become rapidly prohibitive and
dominate approaches taken for most molecular dynamics studies. We like to demon-
strate now that molecular dynamics calculations on Transputer-based parallel com-
puters are extremely cost-effective. We provide in Table 3 the cost of the components
needed for the building of one computational node. The prices quoted include the costs

Table 3 Costs for one node

article company costs {[DM]
Transputer IMS T800G20S E2000, Miinchen 1042.25
dynamic RAM, HB561409B-10 Termotrol, Miinchen 471.75
power supply type LFS-49-5 Lambda, Achern 46.25
fan, type V72AB-220VAC Bedeke, Dinkelsbiihl 496
diverse ICs various 28.57
passive components various 33.67
rack Multimechanik, Filderstadt 391
bus bars MPS, Feldkirchen-Westerham 67.22
boards HFW, Miinchen 198.48
carriers various 42.35

total 193941
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for parts on the boards as well as the fraction of cost for chassis, power supply etc.,
i.e. one needs to multiply the numbers given in the Table by the number of nodes to
arrive at the approximate total cost for a parallel computer.

Table 3 shows that a single node costs about $1 000. A computer with 50 nodes,
i.e. one which would equal a Cray-XMP in computational through-put would cost
about $50 000. It must be noted, of course, that the parallel computer at this stage of
development lacks universality in treating different computational tasks’. However,
this does not seem to be a problem for molecular dynamics simulations. The simula-
tions for most investigations require computer time of such magnitude that a com-
puter devoted solely to simulations will be welcomed by many researchers.

7. RESULTS

In this section we will present simulations of two proteins, the small protein bovine
pancreatic trypsin inhibitor, which has been investigated many times before and serves
as a test bed for our program, and a large protein complex, the photosynthetic
reaction center of Rhodopseudomonas viridis comprised of 12 600 atoms which is
probably the largest protein simulated to this day.

7.1 Simulation of Bovine Pancreatic trypsin inhibitor

The simulation of the protein bovine pancreatic trypsin inhibitor had been based on a
structure equilibrated at 300 K [24]. An integration step of 1fs had been adopted. In
contrast to conventional procedures our simulation started with vanishing velocities.

300. T T T T

250.

200. 4

150. | A

100. | b

temperature [K]

50. | 7

0 . 1 1 1

0. 200. 400. 600. 800. 1000.

time steps

Figure 6 Time development of the temperature (defined by Equation (15)) of Pancreatic Trypsin Inhibitor
during 1000 integration steps. The integration step size assumed was 1 fs.

®We have also carried out calculations on percolating systems, on the simulation of Magnetic Resonance
Imaging and on Computational Neural Science on our computers. Some of these applications were
programmed in Par. C.
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Following the equipartition theorem the temperature of a system with quadratic
kinetic energy degrees of freedom is given by the expression

l N

"= e 3
In the following we assume this as our definition of temperature. The time develop-
ment of T is shown in Figure 6. T measured initially 0K and approached rapidly a
value close to 260 K. This behaviour of the temperature is due to the flow of energy
from the potential energy degrees of freedom into the kinetic energy degrees of
freedom. The reason why the temperature does not reach 300 K is due to the consider-
able cooling effect experienced by the protein when the kinetic energy had been
quenched initially.

In order to test the accuracy of our simulation we used the time reversal symmetry
of the classical equations of motion. The integration scheme chosen, the Verlet
algorithm, obeys time reversal symmetry. This can be demonstrated by considering
the one-dimensional case which gives rise to the three term recursion equation
connecting x-coordinates at times 1,_,,¢,,%,,,

F,
Xppy = 2xn_xn——l+’—nﬂ‘(At)2 (16)

where F, denotes the force at position x,. Time reversal is expressed by reversing
velocities while keeping positions fixed. In the framework of the discrete Verlet
recursion equation, time reversal involves a switching of old and new coordinates. The
next Verlet integration step can implement time reversal by the replacements x,, , , —
Xn, X, = X, . and leads to the new position

F 2
xn+2 = 2xn—_xn+l+'n_:.(At) (17)
F =T T T T
0.0003 | 8
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Figure 7 Temperature difference between corresponding points of a forward and backward trajectory of
the simulation represented in Figure 6. The differences are due to numerical round-off errors. The
integration step size assumed was 1 fs.
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Figure 8 Behavior of the different energy contributions during the dynamics simulation of Pancreatic
Trypsin Inhibitor; the following energy contributions are shown: total energy (total), angular energy (angle),
bond stretching energy (bond), van der Waals interactions (vdW), and electrostatic energy (el.). The
integration step size assumed was 1 fs.

Inserting the expression for x, , ; as given by Equation (16) yields the identity x, , ,
= x, _, which is equivalent to time reversal symmetry.

In order to test to which extent time reversal symmetry is reproduced we have
evaluated a 1 ps (forward) trajectory of PTI involving 1000 integration steps. At the
end of this trajectory the last and second last positions were switched and the
calculation continued for a further 1000 steps (backward trajectory). The temperature
during the forward run, determined according to Equation (15), is presented in Figure
6. In order to facilitate comparison of temperature values of the forward and the
backward trajectory we have actually plotted the temperature difference at equivalent
times of the forward and the backward trajectory (Figure 7). This difference does not
exceed a value of 0.0004 K demonstrating that time reversal symmetry is reproduced
well. It can be concluded that round-off errors during the molecular dynamics
simulation, at least for self-averaged quantities like temperature, can be safely neglect-
ed.

A further test of our algorithm is furnished by energy conservation. We have
monitored the main energy contributions for pancreatic trypsin inhibitor during a
trajectory lasting over 40 ps. Figure 8 presents the contributions of the electrostatic
interactions, van der Waals interactions, angular forces, bond stretching forces and
the total energy of the protein. The data presented in Figure 8 are averaged over ten
successive integration steps. Figure 8 shows that the total energy remains constant
over the whole time interval, The absolute energy values are in agreement with values
determined in [4), except for the lowering of energy due to the cooling from 300K to
260 K mentioned above. '

Pancreatic trypsin inhibitor, being a rather small protein, is certainly not the kind
of biopolymer for which the parallel computer developed by us has been intended. In
fact, one aim of our development has been to specifically study the photosynthetic
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Table 4 Integration step sizes adopted during the equilibration

time [fs] 0-35 35-205 205-
integration step number 1-3499 3500-5199 5200-
integration step size [fs] 0.01 0.1 0.25

reaction center, a very large protein complex with 12 637 atoms. A simulation of this
protein will be presented now.

7.2 Photosynthetic Reaction Center of Rhodopseudomonas viridis

Starting point of our simulation of the photosynthetic reaction center of Rhodop-
seudomonas viridis was the X-ray structure of Deisenhofer and Michel [5]. The
structure was completed by us placing hydrogen atoms in a conventional way [25].
The resulting coordinates were chosen as a starting set for a molecular dynamics
relaxation.

X-ray structures are obtained by fitting a given amino acid primary sequence into
the electron density, the latter being directly derived from the scattering data. The
fitting procedure is usually carried out assuming equilibrium values for the bond
lengths and bond angles of the amino acid side groups, altering solely the dihedral
angles. In a second step often a limited, i.e. local, energy optimization is carried out.
The resulting structure has low energy in the bond lengths and bond angles, but in
most cases less than optimal van der Waals (sterical) and Coulomb energy. When the
atoms of such a structure are free to move in a molecular dynamics simulation one
expects energy to flow from sterical and electrostatic interactions into bond interac-
tions and into kinetic energy. Such energy flow, in fact, is born out by our simulation
of the photosynthetic reaction center.

It should be emphasized that we have not introduced in our calculations an artificial
cut-off of pair interactions. This yields a faithful representation of biopolymers, but
implies very long computation times. The time required for a single step for an
integration of the equation of motion of the complete photosynthetic reaction center,
i.e. one application of the Verlet formula Equation (3), on a parallel computer with
24 Transputers was 191s.

For a simulation of a relaxation process of the photosynthetic reaction center we
have adopted a scheme which is described by Table 4 and 5. Table 4 lists the
integration step sizes adopted. In a first period, during which strong forces arise
because of sterical strain in the initial structure, we have chosen a small integration
step size of 0.01 fs. This period lasted 3 500 integration steps. In the period extending
from step 3 500 to step S5 200 we chose a longer step size, namely 0.1fs. All later
integration steps had a size of 0.25 fs.

Table § Equilibration of the photosynthetic reaction center. In the entries of the Table below ‘friction’
refers to a rescaling of velocities by a factor 0.9999 after each integration step, ‘7 = 300K’ refers to a
rescaling of velocities as to keep the temperature defined through Equation 15 constant; ‘free motion’ refers
to a solution of the Verlet equation (Equation 3).

time [f5] 0-6 6-160 160-580 580-668 668~

integration step number  0-599  600-4749 4750-6699 6700-7049  7050-
method applied friction T = 300K freemotion T = 300K free motion
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Our relaxation scheme also involved some measures to control the excess energy
contained in the initial structure. The respective procedures are presented in Table 5.
In order to prevent the protein from becoming too hot in its kinetic energy degrees
of freedom we have assumed, in the initial phase of the simulation, dissipative forces
(friction) which slow down atomic motion.

When the temperature of the photosynthetic reaction center after the first 600
integration steps reached 300K, we switched our procedure. For the following 4150
integration steps we scaled atomic velocities after each step by a common factor such
that the temperature as defined through Equation (15) remained constant at 300 K.
This procedure amounts to the coupling of the system to a large heat reservoir which,
under realistic circumstances, is actually provided by the surrounding solvent. In
order to test if equilibrium had been reached, we allowed the system to move freely
for 1 950 steps, i.e. to move solely according to the integration scheme given by
Equation (3). Monitoring the temperature T of the kinetic energy degrees of freedom
we found, in fact, that T increased only by 16K, i.e. the further flux of energy into
the kinetic energy degrees of freedom was only minor. After this test period we
resumed enforced equilibration at 300 K by rescaling of velocities. This period lasted
another 350 time steps. From then on the photosynthetic reaction center was left to
move freely.

The equilibrium schedule described had been devised to shorten the computational
route to thermal equilibrium. A short route to equilibration is necessitated by the
large size of the reaction center protein complex. The computing times for this
complex make it presently impossible to apply a conventional Monte Carlo annealing
scheme.
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Figure 9 Time dependence of van der Waals energy, electrostatic energy, bond energy, and kinetic energy
during a simulation of the photosynthetic reaction center of Rhodopseudomonas viridis; the simulation
involved all 12 600 atoms of the photosynthetic reaction center. The details of this simulation, in particular,
conditions regarding the kinetic energy degrees of freedom, are explained in the text.
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Figure 10 Velocity distribution of the simulation of the photosynthetic reaction center represented in
Figure 9 at five different time instances: 2.5fs, 6.0 fs, 12fs, 35fs, 580 fs.

Figure 9 presents the van der Waals energy, the Coulomb energy, the bond energy,
and the kinetic energy of the photosynthetic reaction center as determined during a
1.5 ps simulation on our parallel computer. The results show that the van der Waals
energy representing sterical interactions decreases rapidly, the Coulomb energy de-
creases slowly, and that the bond energy and kinetic energy increase. As explained
above, the kinetic energy was kept from rising above a 300K value by applying
friction and by rescaling atomic velocities. The rescaling events are clearly discernable
in Figure 9 in the short time regime. After 150 fs we did not scale velocities anymore
and let the reaction center complex move freely. The resulting energies shown in
Figure 9 are found, except for the Coulomb energy, to remain approximately con-
stant, indicating that the complex reached equilibrium. The relaxation of the Cou-
lomb energy is slower than the relaxation of the other degrees of freedom because of
the relatively weak strength of the Coulomb forces and because the long range
character requires a high degree of concertedness for protein motions to be effective
in relaxing the Coulomb energy.

A more detailed test of equilibrium is furnished by the distribution of atomic
velocities. We have monitored this distribution during the relaxation process. This
distribution at representative instances in time, namely at 2.5fs, 6.0fs, 12fs, 35fs and
580fs, is shown in Figure 10. Since we start with vanishing atomic velocities and, by
rescaling, keep kinetic energy temperature constant at 300 K one expects the average
velocities to increase monotonously to their 300 K value. This is born out, in fact, by
the results shown in Figure 10.

The question arises to what extent the calculated asymptotic velocity distribution
resembles a Maxwell distribution. A comparison between the velocity distribution of
the reaction center atoms at 917 fs and a Maxwell distribution at 300K for a single
mass (13.2 amu, resulting from a numerical fit to the simulated velocity distribution),
is shown in Figure 11. There is an obvious discrepancy between the two distributions.
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Figure 11 Comparison of the velocity distribution (at time ¢ = 917 fs) resulting from a simulation of the
photosynthetic reaction center and of a Maxwell distribution for a mass of 13.2amu. This mass had been
chosen to minimize the difference between the two distributions shown.

Such discrepancy is not surprising due to the fact that the atoms in the photosynthetic
reaction center do not all have identical mass. The discrepancy appears to be par-
ticularly relevant for the hydrogen atoms since their mass differs most strongly from
the masses of the other atoms, and since 2 344 atoms of a total of 12 637 atoms are
hydrogens, i.e. over 20%. A better description of the simulated data results when one
averages over the 300 K Maxwell distribution of all reaction center atoms accounting
for their specific atomic masses m,; and evaluates

FO) = 3 an () e o 18
0 = Lon(ig) 7 9
Figure 12 compares F (v) with the simulated data. The distributions agree better than
those in Figure 11, in particular in the range of higher velocities (v > 0.015A/fs)
where mostly hydrogens contribute. However, F(v) is narrower than the simulated
distribution. The difference between the distributions in Figure 12 is due to a lack of
equilibration.

Finally, we investigated the location of the secondary quinone during the relaxation
of the photosynthetic reaction center. In vivo, i.e. for the reaction center embedded in
a cellular membrane, this chromophore can leave the reaction center and, therefore,
it is of interest to monitor its behaviour in this respect. Figure 13 shows the distance
between the center of mass of the photosynthetic reaction center and the secondary
quinone during the first 1.5 ps of the relaxation process. One can recognize a systemat-
ic drift of about 2.7 A. It is not possible to extrapolate the behaviour seen in Figure
13 to intermediate and long times, i.e. to predict if the quinone under the conditions
of our simulation would leave the reaction center. However, it might be of interest in
this respect to relate an observation of the behaviour of the secondary quinone during
another relaxation carried out by us. This relaxation started from an initial geometry
in which sterical strain existed in some part of the phytol chain of the secondary
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Figure 12 Comparison of the velocity distribution (at time ¢ = 917 fs) resulting from a simulation of the
photosynthetic reaction center and of the average Maxwell distribution evaluated according to Equation
(18) for all reaction center atoms.

quinone, the strain being due to unfavorable interaction with some atoms of the
protein. The strain was localized in a small section of the phytol chain, extending over
six carbon atoms, the remaining part of the chromophore assumed a relaxed geo-
metry. During the molecular dynamics simulation the secondary quinone was found
to leave the photosynthetic reaction center rather rapidly, much faster than a linear
extrapolation of Figure 13 would indicate. This finding seems to demonstrate that the
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Figure 13 Time dependence of the distance between the center of mass of the reaction center and the
center of the secondary quinone.
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photosynthetic reaction center accommodates docking, penetration and undocking of
the secondary quinone rather easily.

8. CONCLUSIONS

We have demonstrated in this paper that molecular dynamics calculations can be
carried out in a most cost-effective manner by parallel computation. We explored, in
particular, the performance of a parallel computer with a systolic ring topology and
Transputers as computational nodes. For this purpose we have built such a computer
and programmed it in occam II. The program’s input and output files have been
chosen identical to those of the well-known CHARMM and XPLOR molecular
simulation programs, guaranteeing that performance can be judged and that the
results of the program can be further analyzed on sequential computers by programs
well-developed for this purpose. We have tested the program carrying out some
representative molecular dynamics calculations on bovine pancreatic trypsin inhibitor.
We have also demonstrated that a parallel computer with 12 and 24 nodes can
simulate the dynamics of the photosynthetic reaction center, a protein complex with
12 637 atoms. No cut-off of pair interactions had been assumed in this simulation.

In closing we would like to comment on the prospects of molecular dynamics
simulations on parallel computers. The merit of a parallel approach to molecular
dynamics lies in its cost-effectiveness; one cannot claim at this point that the parallel
approach considerably extends the range of biopolymer simulations beyond what
conventional algorithms offer, except if one would invest in a massively parallel
computer with 1000 nodes, say, for a price of todays supercomputers. In the latter
case a rate of computation, which is twenty times higher than that of current
supercomputers, would result.

Because of its cost-effectiveness the parallel approach allows a more wide-spread
application of molecular dynamics simulations. For this purpose a parallel computer
dedicated to biopolymer simulations should be linked to a suitable high-end graphics
workstation, the latter serving for data analysis (using conventional molecular dyn-
amics programs) and for visualization. Such simulation workstations could compute
biopolymer systems of 10 000 atoms or more and allow docking of adsorbates to
proteins or nucleic acids, e.g. in drug design. A most promising area where such
workstations could serve a useful purpose would be in crystallographic refinement by
simulated annealing. This method, suggested recently by Briinger et al. [26, 27]
involves the simulation of a heating schedule for the molecules to be refined. These
molecules are subject to restraining forces which originate from the difference between
observed and calculated structure factor amplitudes. Because of the nature of the
Fourier transform involved in determining the structure factor these forces are
long-range multi-particle interactions for which one cannot assume cut-off approxi-
mations. Because of their multi-particle character the algorithm suggested here for
two-particle interactions would need to be modified.
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