
Chapter 12
Protein Dynamics: From Structure
to Function
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Abstract Understanding protein function requires detailed knowledge about pro-
tein dynamics, i.e. the different conformational states the system can adopt. Despite
substantial experimental progress, simulation techniques such as molecular
dynamics (MD) currently provide the only routine means to obtain dynamical
information at an atomic level on timescales of nano- to microseconds. Even with the
current development of computational power, sampling techniques beyond MD are
necessary to enhance conformational sampling of large proteins and assemblies
thereof. The use of collective coordinates has proven to be a promising means in this
respect, either as a tool for analysis or as part of new sampling algorithms. Starting
from MD simulations, several enhanced sampling algorithms for biomolecular
simulations are reviewed in this chapter. Examples are given throughout illustrating
how consideration of the dynamic properties of a protein sheds light on its function.

Keywords Protein dynamics � Molecular dynamics � Conformational sampling �
Collective coordinates � Collective degrees of freedom � Enhanced sampling � Replica
exchange � Principal component analysis/PCA � Essential dynamics � TEE-REX �
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12.1 Molecular Dynamics Simulations

Over the last decades, experimental techniques have made substantial progress in
revealing the three-dimensional structure of proteins, in particular X-ray crystal-
lography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron
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microscopy. Going beyond the static picture of single protein structures has proven
to be more challenging, although, a number of techniques such as NMR relaxation,
fluorescence spectroscopy or time-resolved X-ray crystallography have emerged
(Kempf and Loria 2003; Weiss 1999; Moffat 2003; Schotte et al. 2003), yielding
information about the inherent conformational flexibility of proteins. Despite this
enormous variety, experimental techniques having spatio-temporal resolution in the
nano- to microsecond as well as the nanometre regime are not routinely available,
and thus information on the conformational space accessible to proteins in vivo
often remains obscure. In particular, details on the pathways between different
known conformations, frequently essential for protein function, are usually
unknown. Here, computer simulation techniques provide an attractive possibility to
obtain dynamic information on proteins at atomic resolution in the microsecond
time range. Of all ways to simulate protein motions (Adcock and McCammon
2006), molecular dynamics (MD) techniques are among the most popular.

Since the first report of MD simulations of a protein some 30 years ago
(McCammon et al. 1977), MD has become an established tool in the study of
biomolecules. Like all computational branches of science, the MD field benefits
from the ever increasing improvements in computational power. This progression
also allowed for advancements in simulation methodology that have led to a large
number of algorithms for such diverse problems as cellular transport, signal
transduction, allostery, cellular recognition, ligand-docking, the simulation of
atomic force microscopy and enzymatic catalysis.

12.1.1 Principles and Approximations

Despite substantial algorithmic advances, the basic theory behind MD simulations
is fairly simple. For biomolecular systems having N particles, the numerical solu-
tion of the time-dependent Schrödinger equation

i�h
@

@t
wðr; tÞ ¼ Hwðr; tÞ

for the N-particle wave function w(r, t) of the system is prohibitive. Several
approximations are therefore required to allow the simulation of solvated biomo-
lecules at timescales on the order of microseconds. The first of these relates to
positions of nuclei and electrons: due to the much lower mass and consequently
much higher velocity of the electrons compared to the nuclei, electrons can often be
assumed to instantaneously follow the motion of the nuclei. Thus, within the
Born-Oppenheimer approximation, only the nuclear motion has to be considered,
with the electronic degrees of freedom influencing the dynamics of the nuclei in the
form of a potential energy surface V(r).

The second essential approximation used in MD is to describe nuclear motion
classically by Newton’s equations of motion
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¼ �riVðr1; . . .; rNÞ;

where mi and ri are the mass and the position of the i-th nucleus. With the nuclear
motion described classically, the Schrödinger equation for the electronic degrees of
freedom has to be solved to obtain the potential energy V(r). However, due to the
large number of electrons involved, a further simplification is necessary.
A semi-empirical force field is introduced which approximates V(r) by a large
number of functionally simple energy terms for bonded and non-bonded interac-
tions. In its general form

VðrÞ ¼ Vbonds þVangles þVdihedrals þVimproper þVCoul þVLJ
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The simple terms are often harmonic (e.g. Vbonds, Vangles, Vimproper) or motivated by
physical laws (e.g. Coulomb VCoul, Lennard-Jones VLJ). They are defined by their
functional form and a small number of parameters, e.g. an atomic radius for van der
Waals interactions. All parameters are determined using either ab initio quantum
chemical calculations or comparisons of structural or thermodynamical data with
suitable averages of small molecule MD ensembles. Between different force fields
(Brooks et al. 1983; Weiner et al. 1986; van Gunsteren and Berendsen 1987;
Jorgensen et al. 1996) the number of energy terms, their functional form and their
individual parameters can vary considerably.

Given the above description of proteins as point masses (positions ri, velocities vi)
moving in a classical potential under external forces Fi, a standard MD simulation
integrates Newton’s equations of motion in discrete timesteps Dt on the femtosecond
timescale by some numerical scheme, e.g. the leap-frog algorithm (Hockney et al.
1973):

viðtþ Dt
2
Þ ¼ viðt � Dt

2
Þþ FiðtÞ

mi
Dt

riðtþDtÞ ¼ riðtÞþ viðtþ Dt
2
ÞDt:

Besides interactions with membranes and other macromolecules, water is the
principal natural environment for proteins. For a simulation of a model system that
matches the in vivo system as close as possible, water molecules and ions in
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physiological concentration are added to the system in order to solvate the protein.
Having a simulation box filled with solvent and solute, artefacts due to the
boundaries of the system may arise, such as evaporation, high pressure due to
surface tension and preferred orientations of solvent molecules on the surface. To
avoid such artefacts, periodic boundary conditions are often applied. In this way,
the simulation system does not have any surface. This, however, may lead to new
artefacts if the molecules artificially interact with their periodic images due to
e.g. long-range electrostatic interactions. These periodicity artefacts are minimized
by increasing the size of the simulation box. Different choices of unit cells, e.g.,
cubic, dodecahedral or truncated octahedral allow an optimal fit to the shape of the
protein, and, therefore, permit a suitable compromise between the number of sol-
vent molecules while simultaneously keeping the crucial protein-protein distance
high.

As the solvent environment strongly affects the structure and dynamics of pro-
teins, water must be described accurately. Besides the introduction of implicit
solvent models, where water molecules are represented as a continuous medium
instead of individual “explicit” solvent molecules (Still et al. 1990; Gosh et al.
1998; Jean-Charles et al. 1991; Luo et al. 2002), a variety of explicit solvent
models are used these days (e.g. Jorgensen et al. 1983). These models differ in the
number of particles used to represent a water molecule and the assigned static
partial charges, reflecting the polarity and, effectively, in most force fields, polar-
ization. Because these charges are kept constant during the simulation, explicit
polarization effects are thereby excluded. Nowadays, several polarizable water
models (and force fields) exist, see Warshel et al. (2007) and Huang et al. (2014)
for reviews.

In solving Newton’s equations of motion, the total energy of the system is
conserved, resulting in a microcanonical NVE ensemble having constant particle
number N, volume V and energy E. However, real biological subsystems of the size
studied in simulations constantly exchange energy with their surrounding.
Furthermore, a constant pressure P of usually 1 bar is present. To account for these
features, algorithms are introduced which couple the system to a temperature and
pressure bath (Anderson 1980; Nose 1984; Berendsen et al. 1984), leading to a
canonical NPT ensemble.

12.1.2 Applications

Molecular Dynamics simulations have become a standard technique in protein
science and are routinely applied to a wide range of problems. Conformational
dynamics of proteins, however, is still a demanding task for MD simulations since
functional conformational transitions often occur at timescales of microseconds to
seconds which are not routinely accessible with current algorithms and computer
power.
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12.1.2.1 Nuclear Transport Receptors

Despite their computational demands, MD simulations have been successfully
applied to study functional modes of proteins. As an illustration, we will discuss in
some detail the work of Zachariae et al. (Zachariae and Grubmüller 2006) that
revealed a strikingly fast conformational transition of the exportin CAS (Cse1p in
yeast) from the open to the closed state. CAS/Cse1p is a nuclear transport receptor
consisting of 960 amino acids that binds importin-a and RanGTP in the nucleus.
The heterotrimeric complex (Fig. 12.1) can cross nuclear pores and dissociates by
catalyzed GTP hydrolysis in the cytoplasm and, thus, represents an important part
of the nucleocytoplasmic transport cycle in cells.

For the function of the importin-a/CAS system it is essential that, after disso-
ciation of the complex in the cytoplasm, CAS/Cse1p undergoes a large confor-
mational change that prevents reassociation of the complex. X-ray structures of
Cse1p show that the cargo bound conformation adopts a superhelical structure with
curls around the bound RanGTP (Fig. 12.2 left), whereas the cytoplasmic form
exhibits a closed ring conformation that leads to occlusion of the RanGTP binding
site (Fig. 12.2 right). In order to understand the mechanism of this conformational
switch, Zachariae et al. carried out MD simulations of Cse1p starting from the cargo
bound conformation. They found that, mainly driven by electrostatic interactions,
the structure of Cse1p spontaneously collapses and adopts a conformation close to
the experimentally determined cytoplasmic form within a relatively short timescale
of 10 ns. Simulations of mutants with different electrostatic surface potentials did
not reveal a significant conformational change but remained in an open confor-
mation which is in good agreement with experimental findings (Cook et al. 2005).
This example shows that functionally relevant conformational changes that occur
on short time scales can be studied by MD simulations. However, in this particular
case the simulation has—due to the removal of importin-a and RanGTP—not been

Fig. 12.1 Heterotrimeric
complex of Cse1p (blue),
RanGTP (yellow) and
importin-a (red). Cse1p
adopts a superhelical structure
and binds RanGTP and
importin-a. The complex can
cross nuclear pores and
dissociates by catalyzed GTP
hydrolysis in the cytoplasm
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started from an equilibrium conformation and thus, presumably, no significant
energy barrier had to be overcome to reach the closed conformation. When simu-
lations are started from a free energy minimum, which is usually the case, the
accessible time scales are often too short to overcome higher energy barriers and,
thus, to observe functionally relevant conformational transitions. This is known as
the “sampling problem” and is a general problem for MD simulations.

12.1.2.2 Lysozyme

MD simulations of bacteriophage T4-lysozyme (T4L), an enzyme which is six
times smaller than Cse1p, impressively illustrate this sampling problem for rela-
tively long MD trajectories. T4L has been extensively studied with X-ray crystal-
lography (Faber and Matthews 1990; Kuroki et al. 1993) and, since it has been
crystallized in many different conformations, represents one of the rare cases where
information about functionally relevant modes can be directly obtained at atomic
resolution from experimental data (Zhang et al. 1995; de Groot et al. 1998). The
domain character of this enzyme is very pronounced (Matthews and Remington
1974) and from the differences between crystallographic structures of various
mutants of T4L it has been suggested that a hinge-bending mode of T4L (Fig. 12.3)
is an intrinsic property of the molecule (Dixon et al. 1992). Moreover, the domain
fluctuations are predicted to be essential for the function of the enzyme, allowing
the substrate to enter and the products to leave the active site in the open config-
uration, with the closed state presumably required for catalysis.

Fig. 12.2 Nucleoplasmic (left) and cytoplasmic (right) form of Cse1p. In the nucleoplasmic form,
Cse1p is bound to RanGTP and importin-a (both not shown) and adopts a superhelical structure.
After dissociation in the cytoplasm, Cse1p undergoes a large conformational change and forms a
ring conformation that occludes the RanGTP binding site and prevents reassociation of the
complex. The structures are coloured in a spectrum from blue (N-terminus) to red (C-terminus)
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The wealth of experimental data also provides the opportunity to assess the
reliability and sampling performance of simulation methods. Two MD simulations
have been carried out using a closed (simulation 1) and an open conformation
(simulation 2) as starting points, respectively. In order to assess the sampling
efficiency a principal components analysis (PCA, see Sect. 12.2 below) has been
carried out on the ensemble of experimentally determined structures and the X-ray
ensemble and the two MD trajectories have been projected onto the first two
eigenvectors. The first eigenvector represents the hinge-bending motion, whereas
the second eigenvector represents a twist of the two domains of T4L. The pro-
jections are shown in Fig. 12.4. The X-ray ensemble is represented by dots, each
dot representing a single conformation. Movement along the first eigenvector
(x-axis) describes a collective motion from the closed to the open state. It can be
seen that neither of the individual the MD trajectories, represented by lines, fully
samples the entire conformational space covered by the X-ray ensemble, although
the simulation times (184 ns for simulation 1 and 117 ns for simulation 2) are one
order of magnitude larger than in the previously discussed Cse1p simulation. From
the phase space density one can assume that an energy barrier exists between the
closed and the open state and neither simulation achieves a full transition, from the
closed to the open state, or vice versa.

Fig. 12.3 Hinge-bending motion in bacteriophage T4-lysozyme. Domain fluctuations (domains
are coloured differently) are essential for enzyme function, allowing the substrate to enter and the
products to leave the active site
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12.1.2.3 Aquaporins

Aquaporins present a prime example of how MD simulations have contributed to
the understanding of protein function both in terms of dynamics and energetics.
Aquaporins facilitate efficient and selective permeation of water across biological
membranes. Related aquaglyceroporins in addition also permeate small neutral
solutes like glycerol. Available high-resolution structures provided invaluable
insights in the molecular mechanisms acting in aquaporins (Fu et al. 2000; Murata
et al. 2000; de Groot et al. 2001; Sui et al. 2001). However, mostly static infor-
mation is available from such structures and we can therefore not directly observe
aquaporins “at work”. So far, there is no experimental method that offers sufficient
spatial and time resolution to monitor permeation through aquaporins on a
molecular level. MD simulations therefore complement experiments by providing
the progression of the biomolecular system at atomic resolution. As permeation is
known to take place on the nanosecond timescale, spontaneous permeation can be
expected to take place in multi-nanosecond simulations, allowing a direct obser-
vation of the functional dynamics. Hence, such simulations have been termed
“real-time simulations” (de Groot and Grubmüller 2001).

Indeed, spontaneous permeation events were observed in MD simulations of
aquaporin-1 and the aquaglyceroporin GlpF. These simulations identified that the
efficiency of water permeation is accomplished by providing a hydrogen bond

Fig. 12.4 Principal components analysis of bacteriophage T4-lysozyme. The X-ray ensemble is
represented by dots, MD trajectories by lines. A movement along the first eigenvector (x-axis)
represents a collective motion from the open to the closed state. Neither simulation 1 started from a
closed conformation—, nor simulation 2 started from an open conformation—show a full
transition due to an energy barrier that separates the conformational states
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complementarity inside the channel comparable to bulk water, thereby establishing
a low permeation barrier (de Groot and Grubmüller 2001; Tajkhorshid et al. 2002).
The simulations furthermore identified that the selectivity in these channels is
accomplished by a two-stage filter. The first stage of the filter is located in the
central part of the channel at the conserved asparagine/proline/alanine
(NPA) region; the second stage is located on the extracellular face of the channel
in the aromatic/arginine (ar/R) constriction region (Fig. 12.5). As water permeation
takes place on the nanosecond timescale, permeation coefficients can be directly
computed from the simulations, and compared to experiment. Quantitative agree-
ment was found between permeation coefficients from experiment and simulation,
thereby validating the simulations.

A long standing question in aquaporin research has been the mechanism by
which protons are excluded from the aqueous pores. The MD simulations
addressing water permeation revealed a pronounced water dipole orientation pattern
across the channel, with the NPA region as its symmetry center (de Groot and

Fig. 12.5 a Water molecules are strongly aligned inside the aquaporin-1 channel, with their
dipoles pointing away from the central NPA region (de Groot and Grubmüller 2001). The water
dipoles (yellow arrows) rotate by approx. 180° while permeating though the AQP1 pore. The red
and blue colours indicate local electrostatic potential, negative and positive, respectively.
b Hydrogen bond energies per water molecule (solid black lines) in AQP1 (left) and GlpF (right).
Protein-water hydrogen bonds (green) compensate for the loss of water-water hydrogen bonds
(cyan). The main protein-water interaction sites are the ar/R region and the NPA site
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Grubmüller 2001). In the simulations, the water molecules were found to rotate by
180° on their path through the pore (Fig. 12.5a). In a series of simulations
addressing the mechanism of proton exclusion it was found that the pronounced
water orientation is due to an electric field in the channel centred at the NPA region
(de Groot et al. 2003; Chakrabarti et al. 2004; Ilan et al. 2004). Electrostatic effects
therefore form the structural basis of proton exclusion. A debate continues about the
origin of the electrostatic barrier, where both direct electrostatic effects caused by
helix dipoles has been suggested (de Groot et al. 2003; Chakrabarti et al. 2004), as
well as a specific desolvation effects (Burykin and Warshel 2003). Some results
suggest that both effects contribute approximately equally (Chen et al. 2006).

Recently, MD simulations allowed for the elucidation of the mechanism of
selectivity of neutral solutes in aquaporins and aquaglyceroporins. Aquaporins were
found to be permeated solely by small polar molecules like water, and to some
extent also ammonia, whereas aquaglyceroporins are also permeated by apolar
molecules like CO2 and larger molecules like glycerol, but not urea (Hub and de
Groot 2008). For aquaporins, an inverse relation was observed between perme-
ability and solute hydrophobicity—solutes competing with permeating water
molecules for hydrogen bonds with the channel determine the permeation barrier.
A combination of size exclusion and hydrophobicity therefore underlies the
selectivity in aquaporins and aquaglyceroporins.

12.1.3 Limitations—Enhanced Sampling Algorithms

Although molecular dynamics simulations have become an integral part of struc-
tural biology and provided numerous invaluable insights into biological processes
at the atomic level, limitations occur due to both methodological restrictions and
limited computer power. Methodological limitations arise from the classical
description of atoms and the approximation of interactions by simple energy terms
instead of the Schrödinger equation. This means that chemical reactions (bond
breaking and formation) can not be described. Also polarization effects and proton
tunnelling lie out of the scope of classical MD simulations.

The second class of limitations arises from the computational demands of MD
simulations. Although bonds are usually treated as constraints thereby eliminating
the highest frequency motions, the timestep length in MD simulations usually
cannot be chosen longer than 4 fs. Hence, a nanosecond simulation requires
250,000 force calculations and integration steps. Despite the rapid progress in
algorithm techniques, the development of special purpose hardware and the uti-
lization of graphics processing units (GPUs) as calculation engines, the simulation
of timescales at which biological phenomena occur are not routinely accessible.

Biologically relevant protein motions like large conformational transitions,
folding and unfolding usually take place on the micro- to (milli)second timescale.
Thus it becomes evident that, despite ever increasing computer power, which
roughly grows by a factor of 100 per decade, MD simulations will not solve the
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“sampling problem” anytime soon by just waiting for faster computers. Therefore,
alternative methods—partly based on MD—have been developed to specifically
address the problem of conformational sampling and to predict functionally relevant
protein motions.

Reducing the number of particles is one approach. Since proteins are usually
studied in solution most of the simulation system consists of water molecules. The
development of implicit solvent models is therefore a promising means to reduce
computational demands (Still et al. 1990; Gosh et al. 1998; Jean-Charles et al.
1991; Luo et al. 2002). Another possibility to reduce the number of particles is the
use of so-called coarse-grained models (Bond et al. 2007; Saunders and Voth
2013). In these models, atoms are grouped together, for instance typically four
water molecules are treated as one pseudo-particle (bead). These groupings have
two effects. First, the number of particles is reduced and, second, the timestep,
depending on the fastest motions in the system, can be increased. However,
coarse-graining is not restricted to water molecules. Representations of several
atoms up to complete amino acids by a single bead are nowadays used. This allows
for a drastic reduction of computational demands, thereby enabling the simulation
of large macromolecular aggregates on micro- to millisecond timescales. An even
coarser model, collapsing entire protein domains into single interaction sites, has
recently been introduced to study intermolecular interactions in solutions of anti-
bodies. Here viscosity at high concentrations poses a severe challenge on antibody
development and reliable viscosity predictions would be a major step forward in the
field of computational biotechnology (Chaudhri et al. 2012).

The gain in efficiency due to coarse graining, however, comes with an inherent
reduction of accuracy compared to all-atom descriptions of proteins, restricting
current models to semi-quantitative statements. Essential for the success of
coarse-grained simulations are the parameterizations of force fields that are both
accurate and transferable, i.e. force fields capable of describing the general
dynamics of systems having different compositions and configurations. As the
graining becomes coarser, this process becomes increasingly difficult, since more
specific interactions must effectively be included in fewer parameters and functional
forms. This has led to a variety of models for proteins, lipids and water, repre-
senting different compromises between accuracy and transferability (see e.g.
Marrink et al. 2004).

Other MD based enhanced sampling methods, which retain the atomistic
description, include replica exchange molecular dynamics (REMD) and essential
dynamics (ED) which are discussed in subsequent sections. Moreover, a number of
non-MD based methods are discussed that aim towards the prediction of functional
modes of proteins.

12.1.3.1 Replica Exchange

The aim of most computer simulations of biomolecular systems is to calculate
macroscopic behaviour from microscopic interactions. Following equilibrium
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statistical mechanics, any observable that can be connected to macroscopic
experiments is defined as an ensemble average over all possible realizations of the
system. However, given current computer hardware, a fully converged sampling of
all possible conformational states with the respective Boltzmann weight is only
attainable for simple systems comprising a small number of amino acids (see
e.g. Kubitzki and de Groot 2007). For proteins, consisting of hundreds to thousands
of amino acids, conventional MD simulations often do not converge and reliable
estimates of experimental quantities can not be calculated.

This inefficiency in sampling is a result of the ruggedness of the systems’ free
energy landscape, a concept put forward by Frauenfelder (Frauenfelder et al. 1991;
Frauenfelder and Leeson 1998). The global shape is supposed to be funnel-like,
with the native state populating the global free energy minimum (Anfinsen 1973).
Looking in more detail, the complex high-dimensional free energy landscape is
characterized by a multitude of almost iso-energetic minima, separated from each
other by energy barriers of various heights. Each of these minima corresponds to
one particular conformational substate, with neighboring minima corresponding to
similar conformations. Within this picture, structural transitions are barrier cross-
ings, with the transition rate depending on the height of the barrier. For MD sim-
ulations at room temperature, only those barriers are easily overcome that are
smaller than or comparable to the thermal energy kBT and the observed structural
changes are small, e.g. side chain rearrangements. Therefore the system will spend
most of its time in locally stable states (kinetic trapping) instead of exploring
different conformational states. This wider exploration is of greater interest, due to
its connection to biological function, but requires that the system be able to over-
come large energy barriers. Unfortunately, since MD simulations are mostly
restricted to the nanosecond timescale, functionally relevant conformational tran-
sitions are rarely observed.

A plethora of enhanced sampling methods have been developed to tackle this
multi-minima problem (see e.g. van Gunsteren and Berendsen 1990; Tai 2004;
Adcock and McCammon 2006 and references therein). Among them, generalized
ensemble algorithms have been widely used in recent years (for a review, see
e.g. Mitsutake et al. 2001; Iba 2001). Generalized ensemble algorithms sample an
artificial ensemble that is either constructed from combinations or alterations of the
original ensemble. Algorithms of the second category (e.g. Berg and Neuhaus
1991) basically modify the original bell-shaped potential energy distribution p(V)
of the system by introducing a so-called multicanonical weight factor w(V), such
that the resulting distribution is uniform, p(V)w(V) = const. This flat distribution
can then be sampled extensively by MD or Monte-Carlo techniques because
potential energy barriers are no longer present. Due to the modifications introduced,
estimates for canonical ensemble averages of physical quantities need to be
obtained by reweighting techniques (Kumar et al. 1992; Chodera et al. 2007). The
main problem with these algorithms, however, is the non-trivial determination of
the different multicanonical weight factors by an iterative process involving short
trial simulations. For complex systems this procedure can be very tedious and
attempts have been made to accelerate convergence of the iterative process
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(Berg and Celik 1992; Kumar et al. 1996; Smith and Bruce 1996; Hansmann 1997;
Bartels and Karplus 1998).

The replica exchange (REX) algorithm, developed as an extension of simulated
tempering (Marinari and Parisi 1992), removes the problem of finding correct
weight factors. It belongs to the first category of algorithms where a generalized
ensemble, built from several instances of the original ensemble, is sampled. Due to
its simplicity and ease of implementation, it has been widely used in recent years.
Most often, the standard temperature formulation of REX is employed (Sugita and
Okamoto 1999), with the general Hamiltonian REX framework gaining increasing
attention (Fukunishi et al. 2002; Liu et al. 2005; Sugita et al. 2000; Affentranger
et al. 2006; Christen and van Gunsteren 2006; Lyman and Zuckerman 2006).

In standard temperature REX MD (Sugita and Okamoto 1999), a generalized
ensemble is constructed from M + 1 non-interacting copies, or “replicas”, of the
system at a range of temperatures {T0, …, TM} (Tm � Tm+1; m = 0, …, M), e.g.
by distributing the simulation over M + 1 nodes of a parallel computer (Fig. 12.6
left). A state of this generalized ensemble is characterized by S = {…, sm, …},
where sm represents the state of replica m having temperature Tm. The algorithm
now consists of two consecutive steps: (a), independent constant-temperature
simulations of each replica, and (b), exchange of two replicas S = {…, sm, …, sn,
…}! S′ = {…, sn′, …,sm′, …} according to a Metropolis-like criterion. The
exchange acceptance probability is thereby given by

PðS ! S0Þ ¼ min 1; exp ðbm � bnÞ½Vm � Vn�f gf g ð1:1Þ

with Vm being the potential energy and b�1
m ¼ kBTm. Iterating steps a and b, the

trajectories of the generalized ensemble perform a random walk in temperature
space, which in turn induces a random walk in energy space. This facilitates an
efficient and statistically correct conformational sampling of the energy landscape
of the system, even in the presence of multiple local minima.

The choice of temperatures is crucial for an optimal performance of the algo-
rithm. Replica temperatures have to be chosen such that (a) the lowest temperature
is small enough to sufficiently sample low-energy states, (b) the highest temperature
is large enough to overcome energy barriers of the system of interest, and (c) the
acceptance probability P(S ! S′) is sufficiently high, requiring adequate overlap of
potential energy distributions for neighboring replicas. For larger systems simulated
with explicit solvent the latter condition presents the main bottleneck. A simple
estimate (Cheng et al. 2005; Fukunishi et al. 2002) shows that the potential energy
difference DV * NdfDT is dominated by the contribution from the solvent degrees
of freedom Nsol

df , constituting the largest fraction of the total number of degrees of
freedom Ndf of the system. Obtaining a reasonable acceptance probability therefore
relies on keeping the temperature gaps DT = Tm+1 − Tm small (typically only a few
Kelvin) which drastically increases computational demands for systems having
more than a few thousand particles. Despite this severe limitation, REX methods
have become an established tool for the study of peptide folding/unfolding
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(Zhou et al. 2001; Rao and Caflisch 2003; García and Onuchic 2003; Pitera and
Swope 2003; Seibert et al. 2005); structure prediction (Fukunishi et al. 2002;
Kokubo and Okamoto 2004), phase transitions (Berg and Neuhaus 1991) and free
energy calculations (Sugita et al. 2000; Lou and Cukier 2006).

Going beyond conventional MD, another class of enhanced sampling algorithms
is successfully applied to the task of elucidating protein function. These algorithms
make use of the fact that fluctuations in proteins are generally correlated. Extracting
such collective modes of motion and their application in new sampling algorithms
will be the focus of the following two sections.

12.2 Principal Component Analysis

Principal component analysis (PCA) is a well-established technique to obtain a
low-dimensional description of high-dimensional data. Its applications include data
compression, image processing, data visualization, exploratory data analysis, pat-
tern recognition and time series prediction (Duda et al. 2001). In the context of
biomolecular simulations PCA has become an important tool in the extraction and
classification of relevant information about large conformational changes from an
ensemble of protein structures, generated either experimentally or theoretically
(García 1992; Gō et al. 1983; Amadei et al. 1993). Besides PCA, a number of
similar techniques are nowadays used, most notably normal mode analysis
(NMA) (Brooks and Karplus 1983; Gō et al. 1983; Levitt et al. 1983),
quasi-harmonic analysis (Karplus and Kushick 1981; Levy et al. 1984a, b; Teeter
and Case 1990) and singular-value decomposition (Romo et al. 1995; Bahar et al.
1997).

PCA is based on the notion that by far the largest fraction of positional fluc-
tuations in proteins occurs along only a small subset of collective degrees of
freedom. This was first realized from NMA of a small protein (Brooks and Karplus
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Fig. 12.6 Schematic comparison of standard temperature REX (left panel) and the TEE-REX
algorithm (right panel) for a three-replica simulation. Temperatures are sorted in increasing order,
Ti+1 > Ti. Exchanges ($) are attempted (…) with frequency mex. Unlike REX, only an essential
subspace {es} (red boxes) containing a few collective modes is excited within each TEE-REX
replica. Reference replica (T0, T0), containing an approximate Boltzmann ensemble, is used for
analysis
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1983; Gō et al. 1983; Levitt et al. 1983). In NMA (see Sect. 12.4.1), the potential
energy surface is assumed to be harmonic and collective variables are obtained by
diagonalization of the Hessian1 matrix in a local energy minimum. Quasi-harmonic
analysis, PCA and singular-value decomposition of MD trajectories of proteins that
do not assume harmonicity of the dynamics, have shown that indeed protein
dynamics is dominated by a limited number of collective coordinates, even though
the major modes are frequently found to be largely anharmonic. These methods
identify those collective degrees of freedom that best approximate the total amount
of fluctuation. The subset of largest-amplitude variables form a set of generalized
internal coordinates that can be used to effectively describe the dynamics of a
protein. Often, a small subset of 5–10% of the total number of degrees of freedom
yields a remarkably accurate approximation. As opposed to torsion angles as
internal coordinates, these collective internal coordinates are not known beforehand
but must be defined either using experimental structures or an ensemble of simu-
lated structures. Once an approximation of the collective degrees of freedom has
been obtained, this information can be used for the analysis of simulations as well
as in simulation protocols designed to enhance conformational sampling
(Grubmüller 1995; Zhang et al. 2003; He et al. 2003; Amadei et al. 1996).

In essence, a principal component analysis is a multi-dimensional linear least
squares fit procedure in configuration space. The structure ensemble of a molecule,
having N particles, can be represented in 3N-dimensional configuration space as a
distribution of points with each configuration represented by a single point. For this
cloud, always one axis can be defined along which the maximal fluctuation takes
place. As illustrated for a two-dimensional example (Fig. 12.7), if such a line fits
the data well, all data points can be approximated by only the projection onto that
axis, allowing a reasonable approximation of the position even when neglecting the
position in all directions orthogonal to it. If this axis is chosen as coordinate axis,
the position of a point can be represented by a single coordinate. The procedure in
the general 3N-dimensional case works similarly. Given the first axis that best
describes the data, successive directions orthogonal to the previous set are chosen
such as to fit the data second-best, third-best, and so on (the principal components).
Together, these directions span a 3N-dimensional space. Mathematically, these
directions are given by the eigenvectors li of the covariance matrix of atomic
fluctuations

C ¼ xðtÞ � xh ið Þ xðtÞ � xh ið ÞT� �
,with the angle brackets 〈�〉 representing an

ensemble average. The eigenvalues ki correspond to the mean square positional
fluctuation along the respective eigenvector, and therefore contain the contribution
of each principal component to the total fluctuation (Fig. 12.8). Applications of
such a multidimensional fit procedure on protein configurations from MD
simulations of several proteins have proven that typically the first ten to twenty
principal components are responsible for 90% of the fluctuations of a protein

1second derivative (∂2V)/(∂xi∂xj) of the potential energy.
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(Kitao et al. 1991; García 1992; Amadei et al. 1993). These principal components
correspond to collective coordinates, containing contributions from every atom of the
protein. In a number of cases these principal modes were shown to be involved in the
functional dynamics of the studied proteins (Amadei et al. 1993; van Aalten et al.
1995a, b; de Groot et al. 1998). Hence, the subspace responsible for the majority of
all fluctuations has been referred to as the essential subspace (Amadei et al. 1993).

The fact that a small subset of the total number of degrees of freedom (essential
subspace) dominates the molecular dynamics of proteins originates from the
presence of a large number of internal constraints and restrictions defined by the
atomic interactions present in a biomolecule. These interactions range from strong
covalent bonds to weak non-bonded interactions, whereas the restrictions are given
by the dense packing of atoms in native-state structures.

Overall, protein dynamics at physiological temperatures has been described as
diffusion among multiple minima (Kitao et al. 1998; Amadei et al. 1999; Kitao and
Gō 1999). The dynamics on short timescales is dominated by fluctuations within a
local minimum, corresponding to eigenvectors having low eigenvalues. On longer
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Fig. 12.7 Illustration of PCA in two dimensions. Two coordinates (x, y) are required to identify a
point in the ensemble in panel (a), whereas one coordinate x′ approximately identifies a point in
panel (b)
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Fig. 12.8 Typical PCA eigenvalue spectrum (MD ensemble of guanylin backbone structures).
The first five eigenvectors (panel a) cover 80% of all observed fluctuations (panel b)
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timescales large fluctuations are dominated by a largely anharmonic diffusion
between multiple wells. These slow dynamical transitions are usually represented
by the largest-amplitude modes of a PCA. In contrast to normal mode analysis,
PCA of a MD simulation trajectory does not rest on the assumption of a harmonic
potential. In fact, PCA can be used to study the degree of anharmonicity in the
molecular dynamics of the simulated system. For proteins, it was shown that at
physiological temperatures, especially the major modes of collective fluctuation that
are frequently functionally relevant, are dominated by anharmonic fluctuations
(Amadei et al. 1993; Hayward et al. 1995).

12.3 Collective Coordinate Sampling Algorithms

Analyzing MD simulations in terms of collective coordinates (obtained e.g. by
PCA or NMA) reveals that only a small subset of the total number of degrees of
freedom dominates the molecular dynamics of biomolecules. As protein function
could in many cases been linked to these essential subspace modes (e.g. Brooks and
Karplus 1983; Gō et al. 1983; Levitt et al. 1983), the dynamics within this
low-dimensional space was termed “essential dynamics” (ED). This not only aids
the analysis and interpretation of MD trajectories but also opens the way to en-
hanced sampling algorithms that search the essential subspace in either a systematic
or exploratory fashion (Grubmüller 1995; Amadei et al. 1996).

12.3.1 Essential Dynamics

The first attempts in this direction were aimed at a simulation scheme in which the
equations of motion were solely integrated along a selection of primary principal
modes, thereby drastically reducing the number of degrees of freedom (Amadei
et al. 1993). However, these attempts proved problematic because of non-trivial
couplings between high- and low-amplitude modes, even though after diagonal-
ization the modes are linearly independent (orthogonal). Therefore, instead, a series
of techniques has prevailed that take into account the full-dimensional simulation
system and enhance the motion along a selection of principal modes. The most
common of these techniques are conformational flooding (Grubmüller 1995) and
ED sampling (Amadei et al. 1996; de Groot et al. 1996a, b). In conformational
flooding, an additional potential energy term that stimulates the simulated system to
explore new regions of phase space is introduced on a selection of principal modes,
whereas in ED sampling a similar goal is achieved by geometrical constraints along
a selection of principal modes. With these techniques a sampling efficiency
enhancement of up to an order of magnitude can be achieved, provided that a
reasonable approximation of the principal modes has been obtained from a con-
ventional simulation. However, due to the applied structural or energetic bias on the
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system, the ensemble generated by ED sampling and conformational flooding is not
canonical, restricting analysis to structural questions.

12.3.2 TEE-REX

Enhanced sampling methods such as ED (Amadei et al. 1996) achieve their sam-
pling power (Amadei et al. 1996; de Groot et al. 1996a, b) primarily from the fact
that a small number of internal collective degrees of freedom dominate the con-
figurational dynamics of proteins. Yet, systems simulated with such methods are
always in a non-equilibrium state, rendering it difficult to extract thermodynamic,
i.e. equilibrium properties of the system from such simulations. On the other hand,
generalized ensemble algorithms such as REX not only enhance sampling but yield
correct statistical ensembles necessary for the calculation of equilibrium properties
which can be subjected to experimental verification. However, REX quickly
becomes computationally prohibitive for systems of more than a few thousand
particles, limiting its current applicability to smaller peptides (Pitera and Swope
2003; Cecchini et al. 2004; Nguyen et al. 2005; Liu et al. 2005; Seibert et al.
2005). The newly developed Temperature Enhanced Essential dynamics Replica
EXchange (TEE-REX) algorithm (Kubitzki and de Groot 2007) combines the
favorable properties of REX with those resulting from a specific excitation of
functionally relevant modes, while at the same time avoiding the drawbacks of both
approaches.

Figure 12.6 shows a schematic comparison of standard temperature REX (left)
and the TEE-REX algorithm (right). TEE-REX builds upon the REX framework,
i.e. a number of replicas of the system are simulated independently in parallel with
periodic exchange attempts between neighbouring replicas. In contrast to REX, in
each but the reference replica, only those degrees of freedom are thermally stim-
ulated that contribute significantly to the total fluctuations of the system (essential
subspace {es}). This way, several benefits are combined and drawbacks avoided. In
contrast to standard REX, the specific excitation of collective coordinates promotes
sampling along these often functionally relevant modes of motion, i.e. the advan-
tages of ED are used. To counterbalance the disadvantages associated with such a
specific excitation, i.e. the construction of biased ensembles, the scheme is
embedded within the REX protocol. Thereby ensembles are obtained having
approximate Boltzmann statistics and the enhanced sampling properties of REX are
utilized. The exchange probability (1.1) between two replicas crucially depends on
the excited number of degree of freedom of the system. Since the stimulated number
of degrees of freedom makes up only a minute fraction of the total number of
degrees of freedom of the system, the bottleneck of low exchange probabilities in
all-atom REX simulations is bypassed. For given exchange probabilities, large
temperature differences DT can thus be used, such that only a few replicas are
required.
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Figure 12.9 shows a two-dimensional projection of the free energy landscape of
dialanine, calculated with MD (panel A) and TEE-REX (panel B). The thermo-
dynamic behaviour of a system is completely known once a thermodynamic
potential such as the relative Gibbs free energy DG is available. Comparing free
energies thus enables us to decide to which degree ensembles created by different
simulation methods coincide. In doing so, ensemble convergence is an absolute
necessity. For the dialanine test case, this requirement is met. A detailed analysis of
the shape of the free energy surfaces generated by MD and TEE-REX shows that
the maximum absolute deviations of 1.5 kJ/mol ≅ 0.6kBT from the ideal case
DGTEE-REX − GMD = 0, commensurate with the maximum statistical errors of
0.15kBT found for each method. The small deviations found for the TEE-REX
ensemble are presumably due to the exchange of non-equilibrium structures into the
TEE-REX reference ensemble.

The sampling efficiency of the TEE-REX algorithm compared to MD was
evaluated for guanylin, a small 13 amino-acid peptide hormone (Currie et al. 1992).
Trajectories generated with both methods-using the same computational effort-were
projected into (/, w)-space as well as different two-dimensional subspaces spanned
by PCA modes calculated from an MD ensemble of guanylin structures. From these
projections, the time evolution of sampled configuration space volume was mea-
sured. Overall, the sampling performance of MD is quite limited compared to
TEE-REX, the latter outperforming MD on average by a factor of 2.5, depending on
the subspace used for projecting.

12.3.2.1 Applications: Finding Transition Pathways in Adenylate
Kinase

Understanding the functional basis for many protein functions (Gerstein et al. 1994;
Berg et al. 2002; Karplus and Gao 2004; Xu et al. 1997) requires detailed
knowledge of transitions between functionally relevant conformations. Over the last
years X-ray crystallography and NMR spectroscopy have provided mostly static
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pictures of different conformational states of proteins, leaving questions related to
the underlying transition pathway unanswered. For atomistic MD simulations,
elucidating the pathways and mechanisms of protein conformational dynamics
poses a challenge due to the long timescales involved. In this respect, E. coli
adenylate kinase (ADK) is a prime example. ADK is a monomeric enzyme that
plays a key role in energy maintenance within the cell, controlling cellular ATP
levels by catalyzing the reaction Mg2+: ATP + AMP $ Mg2+: ADP + ADP.
Structurally, the enzyme consists of three domains (Fig. 12.10): the large central
“CORE” domain (light grey), an AMP binding domain referred to as “AMPbd”
(black), and a lid-shaped ATP-binding domain termed “LID” (dark grey), which
covers the phosphate groups at the active centre (Müller et al. 1996). In an unli-
gated structure of ADK the LID and AMPbd adopt an open conformation, whereas
they assume a closed conformation in a structure crystallized with the transition
state inhibitor Ap5A (Müller and Schulz 1992). Here, the ligands are contained in a
highly specific environment required for catalysis. 15N nuclear magnetic resonance
spin relaxation studies (Shapiro and Meirovitch 2006) have shown the existence of
catalytic domain motions in the flexible AMPbd and LID domains on the
nanosecond time scale, while the relaxation in the CORE domain is on the
picosecond time scale (Tugarinov et al. 2002; Shapiro et al. 2002). For ADK,
several computational studies have addressed its conformational flexibility (Temiz
et al. 2004; Maragakis and Karplus 2005; Lou and Cukier 2006; Whitford et al.
2007; Snow et al. 2007). However, due to the magnitude and timescales involved,
spontaneous transitions between the open and closed conformations have not been
achieved until now by all-atom MD simulations. Using TEE-REX, spontaneous
transitions between the open and closed structures of ADK are facilitated, and a
fully atomistic description of the transition pathway and its underlying mechan-
ics could be achieved (Kubitzki and de Groot 2008). To this end, different essen-
tial subspaces {es} were constructed from short MD simulations of either
conformation as well as from a combined ensemble holding structures from both
the open and closed conformation. In the latter case, {es} modes were excited
containing the difference X-ray mode connecting the open and closed experimental
structures.

The observed transition pathway can be characterized by two phases. Starting
from the closed conformation (Fig. 12.10 left), the LID remains essentially closed
while the AMPbd, comprising helices a2 and a3, assumes a half-open conforma-
tion. In doing so, a2 bends towards helix a4 of the CORE by 15° with respect to a3.
This opening of the AMP binding cleft could facilitate an efficient release of the
formed product. For the second phase, a partially correlated opening of the LID
domain together with the AMPbd is observed. Compared to coarse-grained
approaches, all-atom TEE-REX simulations allow detailed analyses of inter-residue
interactions. For ADK, a highly stable salt bridge between residues Asp118 and
Lys136 forms during phase one, connecting the LID and CORE domains.
Estimating the total non-bonded interaction between LID and CORE, it was found
that this salt-bridge contributes substantially to the interaction of the two domains.
Breaking this salt bridge via mutation, e.g. Asp118Ala, should thus decrease the
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stability of the open state. From a comparison of fourteen Protein Data Bank
(PDB) structures from yeast, maize, human and bacterial ADK, eleven structures
feature such a salt-bridge motif at the LID-CORE interface.

Alternative transition pathways seem possible, however an analysis of all
TEE-REX simulations suggests a high free energy barrier obstructing the full
opening of the AMPbd after the LID has opened. Together with the observed larger
fluctuations in secondary structure elements, indicating high internal strain energies,
the enthalpic penalty along this route possibly renders it unfavourable as a transition
pathway of ADK.

12.4 Methods for Functional Mode Prediction

As discussed in the previous section, functional modes in proteins are usually those
with the lowest frequencies. Apart from molecular dynamics based techniques,
there are several alternative methods that focus on the prediction of these essential
degrees of freedom based on a single input structure.

12.4.1 Normal Mode Analysis

Normal mode analysis (NMA) is one of the major simulation techniques used to
probe the large-scale, shape-changing motions in biological molecules (Gō et al.
1983; Brooks and Karplus 1983; Levitt et al. 1983). These motions are often
coupled to function and a consequence of binding other molecules like substrates,
drugs or other proteins. In NMA studies it is implicitly assumed that the normal
modes with the largest fluctuation (lowest frequency modes) are the ones that are

CLOSED phase 1 phase 2 OPEN

LID

AMPbd

CORE

Fig. 12.10 Closed (left) and open (right) crystal structures of E. coli adenylate kinase
(ADK) together with intermediate structures characterizing the two phases of the closed-open
transition. ADK has domains CORE (light grey), AMPbd (black) and LID (dark grey). The
transition state inhibitor Ap5A is removed in the closed crystal structure (left)
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functionally relevant, because, like function they exist by evolutionary “design”
rather than by chance.

Normal mode analysis is a harmonic analysis. The underlying assumption is that
the conformational energy surface can be approximated by a parabola, despite the
fact that functional modes at physiological temperatures are highly anharmonic
(Brooks and Karplus 1983; Austin et al. 1975). To perform a normal mode analysis
one needs a set of coordinates, a force field describing the interactions between
constituent atoms, and software to perform the required calculations. The perfor-
mance of a normal mode analysis in Cartesian coordinate space requires three main
calculation steps.

1. Minimization of the conformational potential energy as a function of the atomic
coordinates.

2. The calculation of the so-called “Hessian” matrix

H ¼ @2V
@xi@xj

which is the matrix of second derivatives of the potential energy with respect to
the mass-weighted atomic coordinates.

3. The diagonalization of the Hessian matrix. This final steps yields eigenvalues
and eigenvectors (the “normal modes”).

Energy minimization can require quite a lot of CPU time. Furthermore, as the
Hessian matrix is a 3N � 3N matrix, where N is the number of atoms, the last step
can be computationally demanding.

12.4.2 Elastic Network Models

Elastic or Gaussian network models (Tirion 1996) (ENM) are basically a simpli-
fication of normal mode analysis. Usually, instead of an all atom representation,
only Ca atoms are taken into account. This means a ten-fold reduction of the
number of particles which decreases the computational effort dramatically.
Moreover, as the input coordinates are taken as representing the ground state, no
energy minimization is required.

The potential energy is calculated according to

V ¼ c
2

X

r0ijj j\RC

ðrij � r0ijÞ2

where c denotes the spring constant and RC the cut-off distance. Regarding the
drastic assumptions inherent in normal mode analysis, these simplifications do not
mean a severe loss of quality. This, together with the relatively low computational
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costs, explains the current popularity of elastic network models. ENM calculations
are also offered on web servers such as ElNemo (Suhre and Sanejouand 2004a, b)
(http://www.igs.cnrs-mrs.fr/elnemo/) and AD-ENM (Zheng and Doniach 2003;
Zheng and Brooks 2005) (http://enm.lobos.nih.gov/).

12.4.3 CONCOORD

CONCOORD (de Groot et al. 1997) uses a geometry-based approach to predict
protein flexibility. The three-dimensional structure of a protein is determined by
various interactions such as covalent bonds, hydrogen bonds and non-polar inter-
actions. Most of these interactions remain intact during functionally relevant con-
formational changes. This notion lies at the heart of the CONCOORD simulation
method: based on an input structure, alternative structures are generated that share
the large majority of interactions found in the original configuration. To this end, in
the first step of a CONCOORD simulation (Fig. 12.11) interactions in a single input
structure are analyzed and turned into geometrical constraints, mainly distance
constraints with upper and lower bounds for atomic distances but also angle con-
straints and information about planar and chiral groups. This geometrical descrip-
tion of the structure can be compared to a construction plan of the protein. In the
second step, starting from random atomic coordinates, the structure is iteratively
rebuilt based on the predefined construction plan, commonly several hundreds of
times. As each run starts from random coordinates, the method does not suffer from
sampling problems like MD simulations and the resulting ensemble covers the
whole conformational space that is available within the predefined constraints.
However, the method does not provide information about the path between two
conformational substates or about timescales and energies (Fig. 12.12).

12.4.3.1 Applications

CONCOORD and the extension tCONCOORD (t stands for transition) (Seeliger
et al. 2007) have been applied to diverse proteins. Adenylate kinase displays a
distinct domain-closing motion upon binding to its substrate (ATP/AMP) or an
inhibitor (see Fig. 12.13 left) with a Ca-RMSD of 7.6 Å between the ligand-bound
and the ligand-free conformation. Two tCONCOORD simulations were carried out
using a closed conformation (PDB 1AKE) as input. In one simulation the ligand
(Ap5A) was removed. Figure 12.13 (right) shows the result of a principal com-
ponents analysis (PCA) applied to the experimental structures. The first eigenvector
(x-axis) corresponds to the domain-opening motion indicated by the arrow in
Fig. 12.13 (left). Every dot in the plot represents a single structure. Red dots
represent the ensemble that has been generated using the closed conformation of
adenylate kinase without ligand as input. Green dots represent the ensemble that has
been generated using the ligand-bound structure as input. Whereas the simulation
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Fig. 12.11 Schematic representation of the CONCOORD method for generating structure
ensembles from a single input structure. In a first step (program dist) a single input structure is
analyzed and turned into a geometric description of the protein. In a second step (program disco)
the structure is rebuilt based on the predefined constraints, starting from random coordinates
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with inhibitor basically samples closed conformations around the ligand-bound
state, the ligand-free simulation samples both, open and closed conformations,
thereby reaching the experimentally determined open conformations with RMSD’s
of 2.4, 2.6, and 3.1 Å for 1DVR, 1AK2, and 4AKE, respectively. In structure-based
drug design, often the reverse problem, predicting ligand-bound structures from
unbound conformations, needs to be addressed. A tCONCOORD simulation
starting with an open conformation (4AKE) as input produced structures that
approach the closed conformations with RMSD’s of 2.5, 2.9, and 3.3 Å for 1DVR,
1AK2, and 1AKE, respectively. Thus, the functional domain-opening motion has
been predicted in both cases, when using a closed, ligand-bound conformation as
input and when using an open, ligand-free conformation as input.

Fig. 12.12 Comparison of the sampling properties of Molecular Dynamics and CONCOORD on
hypothetic energy landscapes. A MD-trajectory (left) “walks” on the energy landscape, thereby
providing information about timescales and paths between conformational substates. The
(non-deterministic) CONCOORD-ensemble (right) “jumps” on the energy landscape, thereby
offering better sampling of the conformational space

Fig. 12.13 Left Overlay of X-ray structures of adenylate kinase. Right principal component
analysis. Two tCONCOORD ensembles are projected onto the first two eigenvectors of a PCA
carried out on an ensemble of X-ray structures. The ensemble represented by red dots has been
started from a closed conformation (1AKE) with removed inhibitor. The generated ensemble
samples both, closed and open conformations. The ensemble represented with green dots has also
been started from a closed conformation (1AKE) but with inhibitor present. The generated
ensemble only samples closed conformations around the ligand bound conformation
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Because of its computational efficiency, CONCOORD can be routinely applied
to extract functionally relevant modes of flexibility for molecular systems that are
beyond the size limitations of other atomistic simulation techniques like molecular
dynamics simulations. An application to the chaperonin GroEL-GroES complex
that contains more than 8000 amino acids revealed a novel form of coupling
between intra-ring and inter-ring cooperativity (de Groot et al. 1999). Each GroEL
ring displays two main modes of collective motion: the main conformational
transition upon binding of the co-chaperonin GroES, and a secondary transition
upon ATP binding (Fig. 12.14 upper right panel). CONCOORD simulations of a
single GroEL ring did not show any coupling between these modes, whereas
simulations of the double ring system showed a strict correlation between the two
modes, thereby providing an explanation for how nucleotide binding is coupled to
GroES affinity in the double ring, but not in a single ring.

Fig. 12.14 Asymmetric GroEL-GroES complex (left), together with CONCOORD simulation
results (right). The GroEL-GroES complex consists of the co-chaperonin GroES (blue), the
trans-ring of GroEL, bound to GroES (red), and the cis-ring (green). A principal component
analysis revealed two main structural transitions per GroEL ring, upon nucleotide binding (vertical
axis in the right panels) and GroES binding (horizontal axis), respectively. In simulations of the
double ring, but not in a single ring, these modes were found to be coupled, suggesting a coupling
between intra-ring and inter-ring cooperativity
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12.5 Summary and Outlook

Computational methods gain growing recognition in structural biology and protein
research. Protein function is usually a dynamic process involving structural rear-
rangements and conformational transitions between stable states. Since such
dynamic processes are difficult to study experimentally, in silico methods can
significantly contribute to the understanding of protein function at atomic resolu-
tion. The most prominent method to study protein dynamics is molecular dynamics
(MD), where atoms are treated as classical particles and their interactions are
approximated by an empirical force field. Newton’s equations of motion are solved
at discrete time steps, leading to a trajectory that describes the dynamical behaviour
of the system. Despite their growing popularity the scope of application for MD
simulations is limited by computational demands. Within the next 10 years the
accessible timescales for the simulation of average sized proteins will, in all like-
lihood, not exceed the low microsecond range for most biomolecular systems.
However, since functionally relevant protein dynamics is usually represented by
collective, low-frequency motions taking place on the micro- to millisecond
timescale, standard MD simulations are ill-suited to be routinely applied to study
conformational dynamics of large biomolecules.

Different methodologies have been developed to alleviate this sampling problem
that standard MD suffers from. One approach is to reduce the number of particles,
either by fusing groups of atoms into pseudo-atoms (coarse-graining), or by
replacing explicit solvent molecules with an implicit solvent continuum model. In
both cases the number of particles is significantly reduced, facilitating much longer
time scales than in all-atom simulations using explicit solvent. However, the loss of
“resolution” inherent to both methods may limit their accuracy and hence, their
applicability. Other approaches retain the atomistic description and pursue different
sampling strategies.

Generalized ensemble algorithms such as Replica Exchange (REX) make use of
the fact that conformational transitions occur more frequently at higher tempera-
tures. In standard temperature REX, several copies (replicas) of the system are
simulated with MD at different temperatures, with frequent exchanges between
replicas. Thereby, low-temperature replicas utilize the enhanced barrier-crossing
capabilities of high-temperature replicas. Although dynamical information gets lost
in this setup, each replica still represents a Boltzmann ensemble at its corresponding
temperature, providing valuable information about thermodynamics and thus the
stability of different conformational substates. Although often used in the context of
protein folding, REX simulations at full atomic resolution quickly become com-
putationally very demanding for systems comprising more than a few thousand
atoms.

Whereas REX is an unbiased sampling method, several other methods exist that
bias the system in order to enhance sampling predominantly along certain collective
degrees of freedom. Functionally relevant protein motions often correspond to those
eigenvectors of the covariance matrix of atomic fluctuations having the largest
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eigenvalues. If these eigenvectors are known from a principal component analysis
(PCA), either using experimental data or previous simulations, they can be used in
simulation protocols like Conformational Flooding or Essential Dynamics (ED).
However, in both methods the enhancement in sampling is paid for by losing the
canonical properties of the resulting trajectory.

The recently developed TEE-REX protocol combines the favourable properties
of REX with those resulting from a specific excitation of functionally relevant
modes (as e.g. in ED), while at the same time avoiding the aforementioned
drawbacks of each method. In particular, approximate canonical integrity of the
reference ensemble is maintained and sampling along the main collective modes of
motion is significantly enhanced. The resulting reference ensemble can thus be used
to calculate equilibrium properties of the system which allows comparison with
experimental data.

Although significant progress has been made in the development of enhanced
sampling methods, computational demands of MD based methods are still sub-
stantial. For many questions in structural biology it is already beneficial to have an
idea about possible protein conformations and functional modes without the need to
get detailed information about energetics and timescales. In this respect, elastic
network models offer a cheap way to get an estimate of possible functional protein
motions. Although drastic assumptions are made and no atomistic picture is
obtained the predicted collective motions are often in qualitatively good agreement
with experimental results. Another computational efficient way which retains the
atomistic description of protein structures is the CONCOORD method where a
protein is described with geometrical constraints. Based on a construction plan
derived from a single input structure, an ensemble of structures is generated which
represents an exhaustive sampling of conformational space that is available within
the predefined constraints. However, no information about timescales or energies is
obtained.

Right now there is no single method that is routinely applicable to predict
functionally relevant protein motions from a given three-dimensional structure.
However, there are a large number of methods available, capturing different aspects
of the problem and contributing to our understanding of protein function. Thus,
combinations of existing methods will presumably be the most straightforward way
of enhancing the predictive power of in silico methods.
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