
Research Paper

A CUDA fast multipole method with
highly efficient M2L far field evaluation

Bartosz Kohnke1 , Carsten Kutzner1 , Andreas Beckmann2,
Gert Lube3, Ivo Kabadshow2, Holger Dachsel2

and Helmut Grubmüller1

Abstract
Solving an N-body problem, electrostatic or gravitational, is a crucial task and the main computational bottleneck in many
scientific applications. Its direct solution is an ubiquitous showcase example for the compute power of graphics processing
units (GPUs). However, the naı̈ve pairwise summation has OðN 2Þ computational complexity. The fast multipole method
(FMM) can reduce runtime and complexity to OðNÞ for any specified precision. Here, we present a CUDA-accelerated,
Cþþ FMM implementation for multi particle systems with r�1 potential that are found, e.g. in biomolecular simulations.
The algorithm involves several operators to exchange information in an octree data structure. We focus on the Multipole-
to-Local (M2L) operator, as its runtime is limiting for the overall performance. We propose, implement and benchmark
three different M2L parallelization approaches. Approach (1) utilizes Unified Memory to minimize programming and
porting efforts. It achieves decent speedups for only little implementation work. Approach (2) employs CUDA Dynamic
Parallelism to significantly improve performance for high approximation accuracies. The presorted list-based approach
(3) fits periodic boundary conditions particularly well. It exploits FMM operator symmetries to minimize both memory
access and the number of complex multiplications. The result is a compute-bound implementation, i.e. performance is
limited by arithmetic operations rather than by memory accesses. The complete CUDA parallelized FMM is incorporated
within the GROMACS molecular dynamics package as an alternative Coulomb solver.

Keywords
Fast multipole method, Multipole-to-Local, molecular dynamics, electrostatics, CUDA

1 Introduction

The fast multipole method (FMM) was introduced by

Greengard and Rokhlin (1987) to efficiently evaluate pair-

wise, Coulombic or gravitational, interactions in many

body systems, which arise in many diverse fields like bio-

molecular simulation (Dror et al., 2012; Hansson et al.,

2002), astronomy (Arnold et al., 2013; Potter et al., 2017)

or plasma physics (Dawson, 1983). Moreover, the FMM

can improve iterative solvers for integral equations by

speeding up the underlying matrix-vector products

(Engheta et al., 1992; Gumerov and Duraiswami, 2006).

The originally proposed FMM uses a spherical harmo-

nics representation of the inverse distance r�1 between

particles. For distant interactions (far field), which can be

strictly defined, it uses multipole expansions built by clus-

tered particle groups. The expansions are shifted and then

transformed into Taylor moments by applying linear opera-

tors in a hierarchical manner to achieve linear scaling with

respect to the number of particles. The complexity of the

operators is Oðp4Þ, where p is the order of the multipole

expansion. White and Head-Gordon (1996) and Greengard

and Rokhlin (1997) proposed rotational operators, that

align the transformation axis to reduce the operator com-

plexity to Oðp3Þ. Cheng et al. (1999) used plain wave

expansions to further reduce the complexity of the opera-

tors to Oðp2Þ, however a few Oðp3Þ translations are still

required. The algorithm has been developed further to sup-

port oscillatory kernels eikr=r (Ying et al., 2004). Fong and

Darve (2009) parametrized the inverse distance function

1 Theoretical and Computational Biophysics, Max Planck Institute for

Biophysical Chemistry, Göttingen, Germany
2 Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich,

Germany
3 Institute for Numerical and Applied Mathematics, Georg-August

University of Göttingen, Göttingen, Germany

Corresponding author:

Helmut Grubmüller, Theoretical and Computational Biophysics, Max

Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077

Göttingen, Germany.

Email: hgrubmu@gwdg.de

The International Journal of High
Performance Computing Applications
2021, Vol. 35(1) 97–117
ª The Author(s) 2020

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1094342020964857
journals.sagepub.com/home/hpc

https://orcid.org/0000-0002-6000-5490
https://orcid.org/0000-0002-6000-5490
https://orcid.org/0000-0002-8719-0307
https://orcid.org/0000-0002-8719-0307
mailto:hgrubmu@gwdg.de
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1094342020964857
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342020964857&domain=pdf&date_stamp=2020-10-12

using Chebyshev polynomials and proposed a “black-box”

FMM, which uses a minimal number of coefficients to

represent the far field.

In atomistic molecular dynamics (MD) simulations,

Newton’s equations of motion are solved for a system of

N particles (Allen and Tildesley, 1989) in a potential that

accounts for all relevant interactions between the atoms.

The integration time step is limited to a few femtoseconds

such that the fastest atomic motions can be resolved. To

reach the time scales many biomolecules operate on, mil-

lions of time steps need to be computed (Bock et al., 2013;

Lane et al., 2013; Paul et al., 2017; Schwantes et al., 2014).

This can easily require weeks or even months of compute

time even on modern hardware (Kutzner et al., 2019).

Hence, to speed up the calculation of an MD trajectory, the

execution time for each individual time step has to be

reduced. This can be achieved with better algorithms, with

special-purpose hardware (Shaw et al., 2014), by introdu-

cing heterogeneous parallelization, e.g. harnessing SIMD,

multi-core, and multi-node parallelism (Abraham et al.,

2015; Hess et al., 2008; Páll et al., 2015) and by using

GPUs (Páll and Hess, 2013; Salomon-Ferrer et al., 2013).

Here, we utilize GPUs for our FMM implementation.

The electrostatic contribution to the inter-atomic forces

is governed by Coulomb’s law

Fij ¼
1

4pe0

qiqj

jjrijjj22
rij

jjrijjj2
ð1Þ

where rij ¼ xi � xj is a vector distance between atoms car-

rying partial charges qi, qj at positions xi, xj, e0 is the

vacuum permittivity and jj � jj2 is the Euclidean distance.

The calculation of nonbonded forces, i.e. Coulomb and van

der Waals forces, is usually by far the most time-

consuming part of an MD step. The van der Waals forces

decay very quickly with distance r, so calculating them up

to a cutoff distance suffices. The Coulomb forces, however,

decay only quadratically with r, and the use of a finite

Coulomb cutoff can therefore lead to severe simulation

artifacts (Patra et al., 2003; Schreiber and Steinhauser,

1992). Direct evaluation of the electrostatic interactions

in a typical biomolecular simulation system becomes pro-

hibitive for two reasons. First, theOðN 2Þ scaling of a direct

evaluation hinders its usage already at small system sizes,

e.g. for N � 50; 000 particles. Second, the usually

employed periodic boundary conditions (PBC) make such

calculation even impossible. Biomolecular simulation,

therefore, requires an efficient Coulomb solver that prop-

erly accounts for the full, long-range nature of the electro-

static interactions.

To this aim, several FMM implementations have been

developed. A standard FMM was included as an electro-

static solver for the NAMD package (Board et al., 1992;

Nelson et al., 1996). Ding et al. (1992a) proposed the Cell

Multipole Method (CMM) to simulate polymer systems of

up to 1.2 million atoms. In further work, they combined

CMM with the Ewald method showing a considerable

speedup with respect to a pure Ewald treatment (Ding

et al., 1992b). Niedermeier and Tavan (1994) introduced

a structure-adapted multipole method. Eichinger et al.

(1997) combined the structure-adapted multipole method

with a multiple-time-step algorithm. Andoh et al. (2013)

developed MODYLAS, a FMM adoption for very large

MD systems and benchmarked it on the K-computer using

65,536 nodes. Very recently, it was extended to support

rectangular boxes (Andoh et al., 2020). Yoshii et al.

(2020) developed a FMM for MD systems with two-

dimensional periodic boundary conditions. Shamshirgar

et al. (2019) implemented a regularization method for

improved FMM energy conservation. Gnedin (2019) com-

bined fast Fourier transforms (FFTs) and the FMM for

improved performance.

Considering efficient parallelization approaches,

Gumerov and Duraiswami (2008) pioneered the GPU

implementations of the spherical harmonics FMM with

rotational operators. Depending on accuracy they achieved

speedups of 30–70 with respect to a single CPU. Different

GPU parallelization schemes for the “black-box” FMM

(Fong and Darve, 2009) were implemented by Takahashi

et al. (2012). Yokota et al. (2009) parallelized ExaFmm on

a GPU cluster with 32 GPUs achieving a parallel efficiency

of 44% and 66% for 106 and 107 particles, respectively.

Even more GPUs (256) were used by Lashuk et al. (2009)

for a system of 256 million particles. Rotational based

Multipole-to-Local operators were efficiently parallelized

with GPUs by Garcia et al. (2016). Task-based paralleliza-

tion approaches to the FMM were proposed in Blanchard

et al. (2015) and Agullo et al. (2016). A review of fast

multipole techniques for calculation of electrostatic inter-

actions in MD systems can be found in Kurzak and Pettitt

(2006).

However, the early adoptions of FMMs in MD simula-

tion codes were mostly superseded by particle Mesh Ewald

(PME) (Essmann et al., 1995) due to its higher single-node

performance. As a result, PME currently dominates the

field. It is based on the FFT, which inherently provides the

PBC solution. Nevertheless, PME suffers from a scaling

bottleneck when parallelized over many nodes, as the

underlying FFTs require all-to-all communication (Board

et al., 1999; Kutzner et al., 2007, 2014). In addition, large

systems with nonuniform particle distributions become

memory intensive, since PME evaluates the forces on a

uniform mesh across the whole computational domain.

In the era of ever-increasing parallelism and exascale

computers, it is time to revisit the FMM, which does not

suffer from the above mentioned limitations. To this end,

we implemented and benchmarked a single-node full

CUDA parallel FMM. Our implementation has been tai-

lored for MD simulations, i.e. it targets a millisecond order

runtime for one MD step by careful GPU parallelization of

all FMM stages and by optimizing their flow to hide pos-

sible latencies. It was also meticulously integrated into the

GROMACS package to avoid additional FMM indepen-

dent performance bottlenecks. Here, we present three

98 The International Journal of High Performance Computing Applications 35(1)

different parallelization approaches. The implementation is

based on the ScaFaCos FMM (Arnold et al., 2013), which

utilizes spherical harmonics to describe the r�1 function.

We use octree grouping to describe the interaction hierar-

chy. Such grouping is achieved by recursive subdivision of

the cubic simulation box into eight equal subboxes. It has a

major advantage: the far field operators can be precom-

puted for the whole simulation box, allowing for efficient

parallelization. Additionally, the PBC computation

becomes negligible as the PBC operators reduce to a single

operator appliance. Moreover, a strict error control of the

approximation (Dachsel, 2010) can be applied.

Here, we focus on the CUDA parallelization of the

Multipole-to-Local (M2L) operator, which is most limiting

to the overall FMM far field performance. An overview of

the parallelized FMM, including all stages and complete

runtimes, can be found in Kohnke et al. (2020b).

2 The fast multipole method

We consider a system of N � 1 particles. Following Hock-

ney and Eastwood (1988), the challenge is to most effi-

ciently evaluate

FðxjÞ ¼
XN�1

k¼0

k 6¼ j

qk

jjxj � xk jj2
; j ¼ 0; :::;N � 1 ð2Þ

where xj and xk are positions of particles j and k, respec-

tively and qk is the charge of the k-th particle. For a direct

solution of Eq. (2), interactions between all pairs of parti-

cles ðj; kÞwith j 6¼ k need to be computed. This leads to two

nested loops and OðN 2Þ calculation steps.

2.1 Mathematical foundations

Expansion of the inverse distance between arbitrary parti-

cles xj and xk , j 6¼ k yields

1

jjxj � xk jj2
¼
X1
l¼0

Xl

m¼�l

jjxjjjl2
jjxk jjlþ1

2

Y �lmðqj; �jÞY lmðqk ; �kÞ ð3Þ

where

Y lmðq; �Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

4p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl � mÞ!
ðl þ mÞ!

s
Plmðcos qÞeim� ð4Þ

are spherical harmonics and Y � their complex-conjugate, q
and � are polar and azimuthal angle, respectively, and Plm

are the associated Legendre polynomials

PlmðyÞ :¼ ð�1Þmð1� y2Þm=2 dm

dym
PlðyÞ ð5Þ

where Pl are ordinary Legendre polynomials

PlðyÞ :¼ 1

2ll!

dl

dyl
ðy2 � 1Þl ð6Þ

The normalized associated Legendre polynomials form

an orthonormal set of basis functions on the surface of a

sphere. The j-th and k-th dependent parts of the right hand

side of Eq. (3) are chargeless multipole moments

!
� j

lm :¼ !� j

lmðxjÞ :¼ jjxjjjl2
ðl þ mÞ! Plmðcos qjÞeim�j ð7Þ

and chargeless local moments

�
� k

lm :¼ �� k

lmðxkÞ :¼ ðl � mÞ!
jjxk jjlþ1

2

Plmðcos qkÞeim�k ð8Þ

respectively. The moments weighted with corresponding

charges qj and qk, respectively, can be summed yielding

charged multipole moments

!lm :¼
XJ�1

j¼0

qj !
� j

lm ð9Þ

and charged local moments

�lm :¼
XK�1

k¼0

qk �
� k

lm ð10Þ

This allows to evaluate the potential at arbitrary parti-

cles at xj, j ¼ 0; :::; J � 1 due to a distant discrete charge

distribution of K particles with positions xk ,

k ¼ 0; :::;K � 1 in terms of charged local moments and

chargeless multipole moments with

FðxjÞ ¼
X1
l¼0

Xl

m¼�l

�lm !
� j

lm ð11Þ

This calculation is referred to as far field. To achieve

convergence in Eq. (3),

jjxjjj2 < jjxk jj2 ð12Þ

has to be fulfilled for all distinct index pairs j and k. Appli-

cation of addition theorems for regular and irregular solid

harmonics (Tough and Stone, 1977) yields translation and

transformation operators for the expansions. The moments

!lm of a multipole expansion about a common origin a

!ðaÞ :¼
X1
l¼0

Xl

m¼�l

!lm ð13Þ

of particles xj, j ¼ 0; :::; J � 1 can be translated to a new

origin a0 with

!lmða0Þ ¼
Xl

j¼0

Xj

k¼�j

!jkðaÞAl�j;m�kða� a0Þ ð14Þ

where A � !� is the Multipole-to-Multipole operator.

Further, the multipole expansion !ðaÞ can be transformed

into a local expansion �ðrÞ at r with jjrjj2 > jjxjjj2,

j ¼ 0; :::; J � 1 with

�lmðrÞ ¼
X1
j¼0

Xj

k¼�j

!jkðaÞMlþj;mþkða� rÞ ð15Þ

Kohnke et al. 99

where M � �� is the Multipole-to-Local operator. Finally, the

local expansions �ðrÞ can be translated to any point r0 with

�lmðr0Þ ¼
X1
j¼l

Xj

k¼�j

�jkðrÞCj�l;k�mðr� r0Þ ð16Þ

where C � !� is the Local-to-Local operator.

2.2 Algorithm

Applying the operators defined in the previous section

requires truncation of Eq. (3) to a finite multipole order p,

which controls the accuracy of the solution approximation.

Such expansions have a triangular shape with indexing

shown in Figure 1. The truncation yields

!; �;A;C 2 Kp	p :¼ ðalmÞl¼0;:::;p;m¼�l;:::;l j alm 2 C
n o

ð17Þ

and M 2 K2p	2p. The translations and transformations

defined in the Mathematical foundations section are per-

formed on moments expanded for clusters of particles. The

clustering is based on a hierarchical partition of the computa-

tional domain O :¼ ½0; ‘
3 2 R3 into 8d boxes for

d ¼ 0; :::;D, where D is a predefined parameter. It leads to

an octree of depthD shown in Figure 2. Figure 3 illustrates the

six main stages of the FMM and their execution order. In the

Particle-to-Multipole (P2M) stage, the particles occupying

boxes on the deepest level D of the octree are expanded to

multipoles ! with respect to the center of the boxes. In the

Multipole-to-Multipole (M2M) stage, the expanded moments

0,0

1,0

2,0

1,11,-1
2,1

2,22,-2
2,-1

Figure 1. Indexing of triangular shaped matrices. The used index-
ing scheme is based on standard matrix index notation: The first
subscript is a row number, the second one is a column number,
which can be negative. In case of ðl;mÞ notation, l � jmj and l � p.

L2L: local-to-local

f&E

forces & energyP2M
M2M

M2L

L2L

P2P: direct summationP2M: particle-to-multipole

M2M: multipole-
to-multipole

P2P

M2L: multipole-to-local

typical
runtime

distribution

1

2

3
4

5

near field
far field

Figure 3. The six different stages of the FMM with an exemplary execution time distribution at the center. The near field part (P2P, top
right corner) can be executed concurrently with the far field (stages 1–5) in a parallel implementation. Green squares indicate the
representation by multipoles, light brown squares a representation by local moments, blue squares indicate direct summation.

FM
M

 tr
ee

bo
x

su
bd

iv
is

io
n

depth 0 depth 1 depth 2

Figure 2. 2D example of FMM tree depth and resulting box sub-
division for depthsD ¼ 0; 1; and 2. AtD ¼ 1, the whole simulation
box (green) is split into four subboxes (blue). AtD ¼ 2, each of the
subboxes is split again into four smaller boxes (red).

100 The International Journal of High Performance Computing Applications 35(1)

! are distributed to all boxes of the octree by translating them

level-wise from d to d � 1, d ¼ D; :::; 1 with the A operator.

Subsequently, during the Multipole-to-Local (M2L) stage,

the multipole moments! are transformed into local moments

� by applying the operator M. A detailed description follows

in the next section. After M2L, in the Local-to-Local (L2L)

stage, the local moments � are shifted from the octree root to

the leaves with the C operator. The interactions between par-

ticles occupying the same lowest level boxes and between

neighboring boxes (near field) are evaluated directly (P2P),

Eq. (2). Finally, the far field forces and potentials are evalu-

ated at particle positions in the tree leaves. Additionally, the

number of directly interacting boxes can be defined with a

wellseparationcriterion, which controls how many

layers of adjacent boxes interact directly on the lowest tree

depth. In the following we will only discuss the case with one

well separated layer of boxes.

2.3 The Multipole-to-Local (M2L) transformation

We will now explain the M2L transformation and its execu-

tion hierarchy. Let D be a fixed depth of an octree and p a

multipole order. The multipole or local expansions in box i at

depth d ¼ 0; :::;D will be denoted by !d
i and �d

i , respec-

tively. For each �d
i there exists an interaction set Ld

i ,

jLd
i j ¼ 208. Figure 4 shows the interaction set Ld

i , which

contains the indices of multipole expansions!d
j in all children

boxes of the direct neighbors of �d
i ’s parent box. The direct

neighbors share at least one common vertex, edge or face with

each other. A particular �d
i is calculated from all !d

j , j 2 Ld
i ,

omitting �d
i ’s direct neighbor boxes in order to satisfy Eq.

(12). This results in 189 Oðp4ÞM2L transformations.

Let M :¼ Md
� �D

d¼1
be the set of level-wise operator

setsMd :¼ fMd
j!i jM transforms j-th multipole moment to

i-th local moment at level dg. All M2L operations per-

formed in the FMM octree yield

�d
i ¼

X
j2Ld

i

Md
j 2M

d

Md
j!i!

d
j ; i ¼ 1; :::; 8d ; d ¼ 1; :::;D: ð18Þ

Figure 5 shows one Oðp4Þ M2L transformation. It con-

tains Oðp2Þ dot products between an ! and a part of the

corresponding operator M.

3 Implementation

We focus our GPU parallelization efforts on the M2L opera-

tor, as it is the most time-consuming FMM far field operator

(see Figure 3 above and Figure 12 in Kohnke et al., 2020b). In

PBC, it requires 189 transformations per box, whereas both

M2M and L2L, which translate the moments between differ-

ent tree levels, require only a single transformation per octree

box (except for the root box). Since these transformations are

of the same complexity, M2L involves 94:5	 the number of

operations as M2M and L2L combined. The second most

time-consuming part is the P2P near field computation, which

will not be discussed in this paper, was optimized as laid out in

Páll and Hess (2013). Proper choice of D and p allows to

balance the near and far field contribution, which minimizes

the overall runtime. In case of parallel implementation these

stages can run concurrently.

3.1 CUDA implementation considerations

We will now briefly outline the CUDA programming model,

see Nickolls et al. (2008) for details. A typical GPU consists

of a few thousand cores that are grouped into larger units

called multiprocessors. CUDA threads are organized in

blocks. Threads within a block are grouped into subunits

called warps, each consisting of 32 threads. For optimal

performance, threads within the same warp should execute

the same instruction, otherwise the execution is serialized.

This type of parallelization is called Single Instruction Mul-

tiple Threads (SIMT). Once a block of threads is spawned,

it occupies the multiprocessor until the respective computa-

tions are completed. Dynamic scheduling is performed

multipoles

local
moment

Figure 4. 2D interaction set Ld (green) of an arbitrary box with a
local moment md (light brown). The white boxes do not belong to
interaction set Ld. The interactions with the light blue boxes need
to be skipped as well because they are nearest neighbors.

Mμlm ω
= ×

= ×

= ×

= ×

= ×

Figure 5. One M2L transformation. The matrix-vector like multi-
plication requires a part of the M operator (red) to calculate one
element mlm (light brown) of a target expansion.

Kohnke et al. 101

warp-wise, thus thread blocks should consist of at least

several warps to hide memory and arithmetic latencies

within a multiprocessor. Blocks are organized in grids.

Each block of a grid and thread of a block is identified with

its unique 1D, 2D or 3D index. The dimensions of the grid

and the blocks can be chosen independently. To identify

threads, CUDA provides the 3D structures gridDim,

blockDim, blockIdx and threadIdx.

We will use the following abbreviations: Ba :¼
blockDim.a, Ga :¼ gridDim.a, Bida :¼ blockIdx.a
and tida :¼ threadIdx.a, a 2 fx; y; zg. The hierarchy of

threads described above affects the memory access and com-

munication between threads. Whereas all threads can access

global memory, this access should be minimized as it has a

latency of a few hundred cycles. The memory within ablock

can be shared viasharedmemory. If no bank conflicts occur

fetchingsharedmemory is only slightly slower than register

access (20–40 cycles). Synchronization of threads is possible

only within a block. Since CUDA-6.0, threads within the

same warp are able to share their content via the shuffle

instruction by directly sharing their registers.

3.2 Sequential FMM and data structures

Our CUDA implementation is based on a Cþþ11 version of

the sequential ScaFaCos FMM (Arnold et al., 2013). It pro-

vides class templates with a possibility to use diverse mem-

ory allocators. With CUDA Unified Memory (Knap and

Czarnul, 2019) the usage of original data structures became

feasible by harnessing the Cþþ memory allocators.

To allow for an efficient manipulation of triangular shaped

data (see Figures 1 and 5), we have implemented a dedicated

triangular_matrix class that stores the moments and

operators. It provides the indexing logic and utilizes a 1D

vector of complex values (std:: vector<complex>) for

this purpose. For symmetry reasons, it suffices to store one

half of the triangular matrix for the moments, as the entries on

the left (m < l) and right side (m > l) are identical except for

the signs. The signs are computed on the fly at negligible costs

from the parity of indices. The overall size of the matrices

depends on the multipole order p. Exploiting symmetry,

ðp2 þ pÞ=2 complex values are stored for the expansions and

ðð2pÞ2 þ 2pÞ=2 for the M operator.

Let D be a fixed depth of the tree. Thus, there are

d ¼ 0; :::;D levels in an octree. For Multipole-to-Local

operations, as described in The Multipole-to-Local (M2L)

transformation section, an underlying tree implementation

is needed. Listing 1 shows a very basic approach for traver-

sing an octree of depth D. The function indexðx; y; z; dÞ
applies the lexicographic approach to compute a unique 1D

box index in the octree:

zdimðdÞdimðdÞ þ ydimðdÞ þ xþ nbðd � 1Þ ð19Þ

where dimðdÞ :¼ 2d is the number of boxes in each ortho-

gonal direction and nbðdÞ :¼
PD

d¼08d ¼ ºð8dþ1Þ=7ß is the

number of all boxes in an octree of depth d. The parent box

index is easily obtained as indexðx=2; y=2; z=2; d � 1Þ.

Listing 2 shows the sequential form of the M2L trans-

formation. The first four for-loops (lines 3–9) traverse the

octree as shown in Listing 1. omega and mu store the poin-

ters to triangular_matrix objects for the multipole

and local moments, respectively. The next three for-loops

determine all multipole expansions !d
j 2 Ld

i that are

needed for the calculation of �d
i , i¼ 1; :::; 8d . Figure 6

shows the complete 2D operator set M for the WELL

separation criterion w ¼ 1. For each d ¼ 1; :::;D
the set Md requires storing 343 pointers. A unique

Listing 1. Loops for traversing an octree in 3D space
(pseudocode).

Listing 2. The loops that start the M2L operators in the octree
traverse the whole tree, compute the M2L interaction set and
launch one M2L translation for each interaction in the computed
set (pseudocode).

102 The International Journal of High Performance Computing Applications 35(1)

mapping function opindexðx; y; zÞ returns a 1D index for

each Md
j 2Md , j ¼ 0; :::; 343� 1, d ¼ 1; :::;D with

xþ 3þ ðyþ 3Þd þ ðzþ 3Þd2 ð20Þ

where x ¼ x! � x�, y ¼ y! � y�, z ¼ z! � z� are the relative

positions of ! and � in 3D and d ¼ 3þ 4s. Here, s denotes

the number of directly interacting box layers according to

the wellseparationcriterion. In PBC, any !d
j 2 Ld

i

with an out-of-box position is remapped from the

corresponding periodic position with the period-

ic_remapping(�) function. Listing 3 shows a basic

implementation of the M2L (�) function, which computes

Eq. (15) up to order p in four nested for-loops.

3.3 Three CUDA parallelization approaches

The previous section described the basic sequential FMM.

We will now present three different parallelization

approaches. Approach (i) is conceptually straightforward,

nevertheless it achieves decent speedups compared to a

sequential CPU implementation with only minor paralleli-

zation work. It directly maps for-loops to CUDA threads,

leaving the sequential program structure nearly unmodi-

fied. Approach (ii) performs well for high accuracy

demands (high multipole orders pT12, double precision),

however it scales poorly for smaller p. Approach (iii) mini-

mizes the number of arithmetic operations by exploiting the

symmetry of the M operator. It scales well in the broad

range 0 � p � 20, however it requires additional data

structures to minimize bookkeeping and to utilize

symmetries.

3.3.1 Naı̈ve parallelization approach (1). The complete M2L

operation in 3D requires 11 loops as shown in Listing 2.

Listing 4 shows the comparison of the FMM loop structure

and its naı̈ve CUDA parallelization counterpart. Since

CUDA provides a 3-component vector threadIdx to con-

trol the parallel execution of the threads, the main idea is to

map the loops directly to the CUDA structures. To this end,

we use a transformation between 1D and 3D indices. Any

sequence of n indices i ¼ 0; ::; n� 1 can be transformed

into n m-dimensional tuples of indices ðx0 ; :::; xm�1Þ with

xj ¼ ði=mjÞmod m; j ¼ 0; :::;m� 1. As our FMM operates

on cubic domains, the number of boxes is dim(d) in each

orthogonal direction for depths d ¼ 1; ::;D. The loop over

the M2L interaction set L is of a fixed size ð6	 6	 6Þ on

each depth d. The M2L operation contains four for-loops of

size � p. The iteration over the tree levels is performed by

multipoles
local moment

Figure 6. 2D representation of the operator setM. In 3D, there
are 342 possible positions (green) relative to the central box (light
brown). Since the nearest neighbors (white) and self-interactions
are excluded, the number of active operators reduces to 316.

Listing 3. Basic implementation of the M2L operato
(pseudocode).

Listing 4. Direct mapping of FMM octree and M2L loops (top
part, lines 1–20) to CUDA threads (bottom part, lines 22–43)
(pseudocode).

Kohnke et al. 103

the CPU. Since the M2L operations are level independent,

the kernels are spawned asymmetrically for each level

of the octree enabling overlapped execution. The last for-

loop in Listing 3 is performed sequentially by each thread.

It accumulates partial sums

�lmðjÞ ¼
Xj

k¼�j

Mlþj;mþk!jk ð21Þ

of the complete dot product

�lm ¼
Xp

j¼0

Xj

k¼�j

Mlþj;mþk!jk ¼
Xp

j¼0

�lmðjÞ ð22Þ

This reduces the number of atomic writes by a factor of

OðpÞ.
The naı̈ve strategy allows a rapid FMM parallelization.

Replacing the existing serial FMM loops with the correspond-

ing CUDA index calculations leads to speedups that make the

FMM algorithm applicable for moderate problem sizes. No

additional data structures and code modification are required.

However, the achieved bandwidth and parallelization effi-

ciency is still far from optimal on the tested hardware.

3.3.2 CUDA dynamic parallelism approach (2). A substantial

performance issue of the naı̈ve approach is integer calcula-

tion, which introduces a significant overhead even for large

p. For d ¼ 1; :::;D, p3 	 216	 8d threads are started,

where each computes a valid pair of 3D source and target

box indices to perform OðpÞ complex multiplications and

additions �lm ¼ �lm þMlþj;mþk!jk . This leads to Oðp3Þ
redundant source and target box index computations. A

possible mitigation of the expensive index computations

is Dynamic Parallelism (Jones, 2012). It allows to spawn

kernels recursively, what simplifies hierarchical calcula-

tions. The dynamic approach exploits Dynamic Parallelism

to avoid the expensive bookkeeping calculations of the

naı̈ve approach.

The determination of �d
i for i¼ 0; :::; 8d and

d ¼ 1; :::;D is done on the host as given in Listing 1. To

this aim, the octree is traversed in 3D to precompute the

coordinates ðx�; y�; z�Þ of �d
i and the origin coordinates

ðxL; yL; zLÞ of Ld
i . Together with 1D index i of �d

i , they are

passed as arguments to a parent kernel spawned for each

�d
i . LetPd

J :¼ fj0; :::; j7g be the set of indices of all boxes at

depth d contained in the parent box of !d
j . Thus, for an

arbitrary �d
i it holds: Ld

i ¼ [25
J¼0Pd

J , Pd
J \ Pd

J
0 ¼:, for

any distinct pair J 6¼ J
0
. Listing 5 shows the parent kernel,

that is engaged only in octree operations. To better utilize

concurrency, it is started with Bx ¼ By ¼ Bz ¼ 3 for

6	 6	 6 interaction sets Ld
i . The parent kernel consists

of threads that can be uniquely identified with

ðtidx; tidy; tidzÞ tuples. Each thread precomputes one 3D

source positions ðx!; y!; z!Þ of !d
j0

, j0 2 Pd
J , J ¼ 0; :::; 25

(lines 4–6). The index j0 of the proper operator Md
j0!i is

calculated from the relative 3D coordinates of �d
i and !d

j0

(line 12). Since the parent box index I of �d
i contains only

its direct neighbors (Pd
I ?Ld

i), the direct neighbors in Pd
I

are omitted. Figure 7 illustrates the dynamic kernel. Each

parent kernel spawns 26 child kernels with

Gx ¼ Gy ¼ Gz ¼ 2 and 2D blocks

Bx ¼ pþ 1;By ¼ pþ 2;Bz ¼ 1. One child kernel com-

putes eight Oðp4ÞM2L transformations between one target

�d
i and all !d

j , j 2 Pd
J .

Listing 6 shows child kernel computations, which can be

divided in two parts. In the first part, !d
j , j 2 Pd

J and the

operator Md
j!i are determined. Since indices of ! and M are

provided by the parent kernel, the ð2	 2	 2Þ grid facilitates

a straightforward way to determine eight different!d
j , j 2 Pd

J

with j ¼ j
0 þ Bidx þ Bidy � dimðdÞ þ Bidz � dimðdÞ2,

where j
0
is the index passed by the parent kernel. The opera-

tors Md
j are obtained correspondingly, by replacing dimðdÞ

with 7 and j
0

with the operator index passed by the parent

kernel.

To decrease the number of global memory accesses,

shared memory is used to cache ! and M. This is advan-

tageous, since one M2L operation executes Oðp4Þ steps on

Oðp2Þ data structures. The triangular shaped matrices are

converted to 1D arrays in shared memory, allowing con-

secutive addressing in the for-loops performing the reduc-

tion step. The shared memory storage index si of each

moment !lm 2 !d
j is calculated with si ¼ l2 þ l þ m, where

l :¼ tidy and m :¼ tidx. A similar approach holds for the

operator Md
j , however, since M 2 Oð2p2Þ, threads need to

be reused to write the elements into shared memory .

In our implementation, the direct neighbor operator is

given the size p ¼ 0. This allows to skip the remaining

nearest neighbor interactions of �d
i for Pd

J �Ld
i by check-

ing for the condition p ¼ 0.

In the second part, the j_k_reduction() function

computes the M2L operation. To mitigate the waste of

Listing 5. Parent kernel in the dynamic approach. It determinates
valid ! coordinates and spawns child kernels performing M2L
computations (pseudocode).

104 The International Journal of High Performance Computing Applications 35(1)

threads due to the triangular shape of the �, ! and M and to

minimize the number of atomic global memory writes, each

thread executes the two innermost loops, Eq. (22), sequen-

tially. However, a straightforward approach leads to warp

divergence, since threads that correspond to m > l

indices of the target moments need to be skipped. Splitting

the innermost loop, such that it is partly performed by

threads m > l circumvents this issue. Figure 8 and Listing

7 show a possible splitting scheme of the M2L operation. It

uses ðpþ 1Þ � ðpþ 2Þ threads, where some unique thread

pairs are mapped to the same target index tuple ðl;mÞ of a

target element�lm 2 �d
i . These compute a distinct part of the

reduction. The described dynamic approach allows for fur-

ther optimization, as it splits the computation in two inde-

pendent parts. The parent kernels handle the octree position

evaluation, whereas the child kernels implement the M2L

computation. The efficiency of the this approach is satisfac-

tory for high multipole orders. The necessity of an efficient

parallelization also for small p leads to the next approach.

3.3.3 Presorted list-based approach with symmetric operators
(3). In this approach, the FMM interaction pattern is pre-

computed for higher efficiency. Additionally, operator

symmetries are exploited to reduce both the number of

complex multiplications as well as global memory access.

3.3.4 Octree interactions precomputation. The pattern of inter-

actions between the octree boxes is static, hence it can be

precomputed and stored. This step does not need to be

performance-optimal, as it is done only once at the start

of a simulation that typically spans millions of time steps.

In a PBC octree configuration, for each !d
i , d ¼ 1; :::;D,

i¼ 0; :::; 8d � 1 there exists an interaction set Rd
i ,

jRd
i j ¼ 208. It consists of all the indices j of local moments

�d
j that a multipole !d

i is contributing to. Note that the

index sets Rd
i and Ld

i (defined in section The Multipole-

Figure 7. Dynamic M2L scheme. The CPU computes a md
i and the corresponding Ld

i . The parent kernel determines all valid Pd
J �Ld

i

sets, whereas the child kernel performs the M2L operations for !d
jk
, jk 2 Pd

J , k ¼ 0; :::; 7 and the target md
i .

Listing 6. Child kernel in the dynamic approach (pseudocode).

Kohnke et al. 105

to-Local (M2L) transformation) are identical. For higher

efficiency, the sets Rd
i are precalculated and stored as

lists R̂ d

i ¼ ðj0 ; :::; j188Þ (with nearest neighbors skipped)

with an arbitrary but fixed order. In addition, the corre-

sponding operators are determined and stored as lists

M̂ d

i ordered in a way that

�jk
¼Mjk

!i; k ¼ 0; :::; 188 ð23Þ

describes all valid M2L transformations of the i-th multipole

moment. The precalculation of R̂ d

i and M̂ d

i is achieved by

sequentially traversing the octree as shown in Listings 1–2.

Within the omega class, each !i stores 189 pointers to its

targets �jk
and the corresponding pointers to M2L operators.

We make sure that the internal list orders preserve the valid-

ity of Eq. (23), so that it suffices to store direct pointers to the

target moments and operators instead of their indices. We

will use the index list notation R̂ d

i andM̂ d

i , keeping in mind

that the lists actually store pointers.

The precomputed interaction lists R̂ d

i and M̂ d

i enable

the following kernel configuration. The number of distinct

M2L transformations for each !d
i is set with Gz ¼ 189.

Gx ¼ Gy ¼ p, thus Oðp2Þ CUDA blocks are spawned to

handleOðp4Þ interactions. The remainingOðp2Þ operations

are executed sequentially by each thread. Bx¼ 8d�1 is the

number of boxes on octree level d � 1. This value fits

CUDA architecture requirements for the blocksize par-

ticularly well, as it is always an even multiple of warp-

size. For d > 4, Bx exceeds the largest allowed

blocksize of 1024, so we replicate kernel launches for

consecutive ! in strides of size 1024.

Figure 8. Thread splitting scheme to minimize warp divergence. Example of 12 threads performing six reductions. Threads are
allocated in a 2D block. Each target ðl;mÞ is shared by two threads (same color) performing a different part of the dot product.

Listing 7. Reduction function. It computes new target indices
ll;mm from arguments l;m in a way that innermost loop is split to
be performed by all threads in the block (pseudocode).

106 The International Journal of High Performance Computing Applications 35(1)

Figure 9 illustrates that for each position of !d
i within its

parent box a specific interaction set Rd
i results. Therefore,

the precomputed lists R̂ d

i and M̂ d

i require reshuffling to

facilitate the straightforward indexing within the kernel.

Let Gs, s ¼ 0; :::; 7 denote the eight possible groups gov-

erned by the position of ! within the parent box. The 8d

pointers to ! are reshuffled such that eight consecutive

sequences of 8d�1 pointers in memory belong to the same

group Gs. Rigorously, for !d
i where d ¼ 1; :::;D and

i¼ 0; :::; 8d it holds !d
ik
2 Gs; k ¼ s8d�1 ; :::; ðsþ 1Þ

8d�1 � 1; s ¼ 0; :::; 7. With reshuffled ! pointers the

CUDA parallelization proceeds as shown in Figure 10. One

kernel is started for each Gs, s ¼ 0; :::; 7. Each thread tidx

within a block evaluates one dot product (Eq. (22)). The

pointers to the targets �d
jk

and to Md
jk

are accessed with

precomputed and presorted lists R̂ d

i and M̂ d

i without any

additional integer operation, hence Bidz � jk . The particu-

lar moments ð�lmÞdjk , jk 2 Gs are evaluated in a parallel

CUDA block with l ¼ Bidx and m ¼ Bidy. As these are

block variables, skipping of the m > l part does not lead to

warpdivergence . Additionally, only the relevant part of

the triangular operator matrix (Figure 5) needs to be loaded

into shared memory to be accessed by all threads tidx

within the block.

A further improvement of the kernel is gained by rear-

ranging the moments in memory. Threads tidx of an l;m
block access the same moments !lm of consecutive !i,

with i ¼ tidx. For warpwise coalesced memory access,

the arrangement of the moments in memory is switched

from Array of Structures (AoS) to Structure of Arrays

(SoA). The moments ð!lmÞdi , i¼ 0; :::; 8d � 1 are stored in

SoA triangular matrices such that for fixed l;m, the i

indexed elements are contiguous in memory.

3.3.5 Operator symmetry. The symmetry of associated

Legendre polynomials

Plmð�xÞ ¼ ð�1Þlþm
PlmðxÞ ð24Þ

local moment

multipoleω
μ

M2L operation

non-existent op.

ω

ωω

ω

Figure 9. Different operator groups. The groups are represented
by arrows of distinct color, depend on the position of ! within its
parent (red squares). Four possible 2D operator groups Gs are
shown. In 3D, there are eight different operator groups.

local moment M2Lmultipoleω μ

Figure 10. Parallelization of M2L operations for the operator
groups shown in Figure 9. Each single operator is processed in
parallel for all boxes on a level by starting one CUDA block for
each !i 2 Gs (arrows of same color show one example for each
operator group). The kernels are replicated for s ¼ 0; :::; 7.

local moment M2L op.multipoleω μ

ω ω

Figure 11. Reduction of the M2L operator set. The complete
operator set Md (left) and a reduced operator set ~Md
 Md

(right) in 2D. Each black arrow symbolizes one M2L operator.

Kohnke et al. 107

emerges directly from their definition (Eqs.5–6). It allows

to reduce the size of the operator set Md , as shown in

Figure 11.

In 3D, the complete operator set spans a cube with the

operators originating from its center to all 73 � 33 sub-

cubes. The reduced operator ~Md
contains 56 M2L opera-

tors !i ! �jx
(x ¼ 0; :::; 55) of one of the octants. Let

the octant of the cube with parameters q; � 2 ½0; 1
2
p
 in

spherical coordinates be the reference octant. The genera-

tion of particular operator moments with symmetrical

functions

Mlm ¼
ðl � mÞ!
jjxjjlþ1

2

Plmðcos qÞeim� ð25Þ

where

eim� ¼ cosðm�Þ þ isinðm�Þ ð26Þ

yields three operator symmetry groups containing orthogo-

nal operators that differ only by their sign. Figure 12 shows

the symmetry groups in ~Md
.

Depending on the relative position of !i in its parent

box, the interaction set Ri requires a different subset of

operators in M, see Figure 9. Hence, for each Gs,

s ¼ 0; :::; 7 on each depth d ¼ 0; :::;D, the operator set

Md and the corresponding index set I ¼ f0; :::188g can

be split in disjunct subsets T such that

T a1
¼ f Mj j� Mi 2 M : absðMiÞ

¼ absðMjÞ 8j 2 I g
T a2
¼ f Mi0

;Mi1
jabsðMixÞ

¼ absðMiy
Þ 8x; y 2 f0; 1gg

T a3
¼ f Mi0

; :::;Mi3
jabsðMix

Þ
¼ absðMiy

Þ 8x; y 2 f0; 1; 2; 3gg
T a4
¼ f Mi0

; :::;Mi7
jabsðMix

Þ
¼ absðMiy

Þ 8x; y 2 f0; 1; 2; 3; 4; 5; 6; 7gg

ð27Þ

where absðX Þ :¼ absðX l;mÞ; l ¼ 0; :::; p;m ¼ �l; :::; l and

a1 ¼ ð0; :::; 6Þ, a2 ¼ ð7; :::; 27Þ, a3 ¼ ð28; :::; 48Þ,
a4 ¼ ð49; :::; 55Þ. This property allows to reduce the

Gz ¼ 189 to Gz ¼ 56, however further kernel modifica-

tions are required.

To make efficient usage of the operator symmetry, the

lists M̂ d

i for each !i are again reordered such that

M̂ d

i ¼ ðT a1
; T a2

; T a3
; T a4

Þ ð28Þ

The corresponding lists R̂ i need to be resorted as well,

to preserve Eq. (23). A bitset B is added to the M operator

class to store signs of its elements. As these are complex

values, it takes two bits to store the signs. The bitset is

indexed in an array like manner with the most significant

bit as the zero-th element. With u ¼ 2ðl2 þ lÞ þ 2m, BðuÞ
and Bðuþ 1Þ represents the sign of the real and complex

part of Mlm, respectively. Since bitsets are precomputed

during the operator initialization phase, they do not

introduce any performance degradation whereas their

additional memory footprint is negligible. Figure 13

shows an example of an M2L computation with bitsets.

A single operator access from global memory computes 1,

2, 4, or 8 target moments � depending on the operator

type T as given in Eq. (27). The target moments �tg
,

with g ¼ 0; :::; b, b ¼ 1; 2; 4; 8 for any source ! are

z

x
y

Figure 12. Grouping of the M2L operators according to their
symmetry properties. The reduced operator set as shown in black
in the upper left panel (a 2D version is shown in the right panel of
Figure 11) is sorted into three groups (red, blue, green) depending
on whether the operator is aligned with an axis (red), or within
one of the xy; xz; or yz planes (blue), or none of that (green). Each
of the red operators (in x, y, and z direction) has one symmetrical
counterpart (in �x, �y, and �z direction, respectively). Each of
the blue operators has four symmetrical counterparts each (one
in each quadrant of the plane). Each of the remaining operators
has eight symmetrical counterparts each (one in each octant of
the cube).

Mi1
Mi4

Mi3 Mi2

μi4
μi1

μi2
μi3

Mi1
Bi4

Bi3 Bi2

μi4
μi1

μi2
μi3

ω ω

local moment M2L op.multipoleω μ

Figure 13. M2L operator symmetry exploitation. Left: Computa-
tion of four M2L operations with four orthogonal operators M
(black arrows). Right: The use of bitsets B (orange) minimizes the
redundant memory accesses and reduces the number of complex
multiplications.

108 The International Journal of High Performance Computing Applications 35(1)

computed as follows. The intermediate products �lm;jk :¼
Mlþj;mþk !jk of the complete dot product Eq. (22) are

split in

ac ¼ RðMlþj;mþkÞRð!jkÞ
bd ¼ IðMlþj;mþkÞIð!jkÞ
ad ¼ RðMlþj;mþkÞIð!jkÞ
bc ¼ IðMlþj;mþkÞRð!jkÞ

ð29Þ

where Mlþj;mþk are the elements of the reference operator

Mt0
. The split products change their signs for ð�lm;jkÞtg ,

g 6¼ 0 according to B̂ tg ¼ Btg � Bt0
, where Bt0

is the bitset

of the reference operator,� is the binary XOR operator and

g ¼ 0; :::; b, b ¼ 0; 2; 4; 8 depending on the operator sym-

metry group T ax
, x ¼ 1; 2; 3; 4. For x ¼ 1 there is no sym-

metric counterpart of the operator M. For x > 1 the

intermediate moments calculation is

ð�lm;jkÞtg ¼ signðac; B̂ tg ; uÞ � signðbd; B̂ tg ; uþ 1Þ

þiðsignðad; B̂ tg ; uÞ þ signðbc; B̂ tg ; uþ 1ÞÞ
ð30Þ

with

signðx; B̂ ; uÞ ¼ x; if B̂ ðuÞ ¼ 0

�x; if B̂ ðuÞ ¼ 1

(
ð31Þ

The sign function changes the sign of x by shifting the

u-th bit of the bitset B̂ to the left most bit position and by

evaluating the x� B̂ shif ted subsequently. This creates no

warp divergence since the sign change is a result of the

arithmetic and logical operations.

The constant size of the lists, see Eq. (28), allows to

implement the M2L kernel for the symmetry groups T ax
,

x ¼ 1; 2; 3; 4 as a function template, resulting in a single

kernel that efficiently treats different groups T ax
. Listing 8

shows the kernel configuration for different symmetry

groups. For different operator groups Gs, s ¼ 0; :::; 7, the

kernels are replicated. The computation of the index i of !i

is straightforward as pointers to !i are contiguous for any

Gs. For each symmetry group T ax
, x ¼ 1; 2; 3; 4 one kernel

with distinct template parameters is started, where the first

parameter describes the cumulative offset of a particular

T ax
in M̂ d

i and the second one is the number of symme-

trical operators within the current T ax
. The size of ax,

x ¼ 1; 2; 3; 4 is set to Gz. The kernels are launched for all

configurations T ax
	 Gs asymmetrically to utilize concur-

rency. Listing 9 shows the implementation of the sym-

metric kernel. At the beginning, the reference operator

Mt0
and the bitsets of all orthogonal operators Btg are

loaded into shared memory . Depending on the group

T ax
, x ¼ 1; 2; 3; 4 different number of bitsets is loaded.

The if statement, that tests the value of the template

Listing 8. Configuration and launches of the symmetric M2L
kernel (pseudocode).

Listing 9. The symmetrical M2L kernel (pseudocode).

Kohnke et al. 109

parameter group_type, is resolved at compile time. The

second part of Listing 9 shows the split complex multi-

plication implementation. The double nested for-loop com-

putes 1; 2; 4 or 8 ð�lmÞtg depending on the symmetry group

T ax
. The if statement within the innermost loop is resolved

at compile time as well.

4 Benchmarks and discussion

We will now benchmark the performance and analyze the

scaling behavior of the three different parallelization

approaches described above.

4.1 General FMM scaling behavior

Figure 14 sketches the FMM scaling behavior with respect

to the number of particles N, which is OðNÞ when the tree

depth D is chosen properly. However, locally the FMM

scales like Oðn2Þ, with n being the average number of

particles in the boxes at the lowest level D. For a fixed

multipole order p, at constant depth, a fixed number of

Oðp4Þ far field operations are performed. In the regime

of small N, the Oðp4Þ far field part completely dominates

the FMM runtime, which is therefore essentially indepen-

dent of N. At some critical N, the scaling curve switches to

a quadratic behavior, because the P2P computations start to

dominate the overall runtime. To benefit from the optimal

linear scaling for growing N, the depth needs to be chosen

properly. Varying p affects the slope of the overall linear

scaling.

4.2 Benchmarking procedure

All performance tests were executed on a workstation with an

Intel Xeon CPU E5-1620@3.60 GHz with 16 GB physical

memory and a Pascal NVIDIA GeForce GTX 1080 Ti with

3584 CUDA Cores. This GPU has a theoretical single preci-

sion peak performance of 11.6 TFLOPS and maximal band-

width of 484 GB/s. The device code was compiled with

NVCC 9.1. All kernel timings were measured with the

help of cudaEvent s and represent the average runtime of

100 runs.

In our performance comparisons we focus on D ¼ 3, as

it provides sufficient parallelism to get proper performance

metrics, which are also valid for D ¼ 4. For higher depths,

the computation requires more kernel spawns due to lim-

itations of blocksize, which leads to performance

decrease. On the tested GTX 1080 Ti GPU a depth of

D ¼ 3 is suitable for particle counts of 4	 104–3	 105,

whereas higher N requires D ¼ 4 and D ¼ 5 for optimum

performance. The current implementation of the symmetric

parallelization approach allows for a maximum depth of

D ¼ 5 at which up to N � 1:2	 106 particles can be

handled efficiently. The limitation is caused by memory

optimization, in which redundant pointers are stored to

minimize the costs of scattered global memory writes. It

can be switched off allowing forD ¼ 6 and system sizes up

to N � 108. On the tested Pascal GPU this optimization

increases performance by about 10%, while on a Turing

GPU the effect of the optimization is negligible (Kohnke

et al., 2020a).

4.3 Microbenchmarking

To evaluate the different parallelization approaches in con-

text of the underlying hardware, we estimated the GPU

performance bounds for the M2L transformation operation.

To this aim, we implemented two benchmarking microker-

nels, which execute exactly the number of arithmetic oper-

ations and memory accesses as the M2L operation does.

However, additional possible performance bottlenecks

(Nickolls et al., 2008) like warp divergence,

Number of particles N

T
im

e

f (N) ∝ N 2

f (N) ∝ N
f (N) ∝ N log(N)

Figure 14. Qualitative sketch of the FMM scaling behavior. The
optimal linear scaling (black dashes) with particle number N is
achieved if and only if the tree depth D (as indicated by the
colored numbers) is properly chosen for each N. For a constant
D, for small N, FMM run time is dominated by the far field com-
putations, whereas for growing N, ultimatelyOðN2Þ scaling results
(red dashes).

1 2 4 8 16
multipole order p

2−12

2−8

2−4

20

24

tim
e

(s
)

memory access
memory access

Figure 15. Runtime of the memory-bound microkernel (orange)
and of the compute-bound microkernel (green) for two tree depths
D ¼ 3 and D ¼ 4, as indicated by the encircled numbers. The run
times of the implemented M2L kernels are expected in the shaded
area between memory-bound and compute-bound microkernels.

110 The International Journal of High Performance Computing Applications 35(1)

noncoalesced memory accesses, shared memory bank

conflicts and atomic writes are eliminated. The microker-

nels were then used to determine the effective runtime

bounds for our three different parallelization approaches.

Figure 15 shows the absolute runtimes of the microker-

nels. To get the maximal theoretical throughput of the M2L

kernel, we assumed the execution of three global memory

accesses, eight bytes each, to perform one complex multi-

plication and one global addition, i.e. Oðp4Þ memory

accesses for Oðp4Þ arithmetic operations. This results in a

clearly memory-bound kernel with Oðp4Þ scaling in the

examined range of p. For the lower bound we assumed

an idealized scenario: for each box in the octree, Oðp2Þ
memory accesses are performed for the moments and

operators, whereas the data needed for Oðp4Þ operations

is assumed to be available in registers. The full Oðp4Þ
memory access approach utilizes nearly the full bandwidth

of the GPU, achieving 370 Gb/s. However, the computation

performance is only about 89 GFLOPS, which is� 0:8% of

the GPU’s peak performance. The second, Oðp2Þ memory

access approach, varies depending on p. For p < 10 we

observe subquadratic scaling of the execution time, indi-

cating that theOðp4Þ arithmetic operations are fully hidden.

For p > 10 the curve shifts to the Oðp4Þ regime, achieving

up to 8 TFLOPS, i.e. 70% of the GPU’s peak performance.

Compute and memory utilization are balanced at p ¼ 10,

which is where the curve switches from Oðp2Þ to the

Oðp4Þ slope.

4.4 Performance comparison

We will now discuss the efficiency of the three proposed

parallelization approaches.

4.4.1 Naı̈ve kernel. Figure 16 shows the absolute executions

times of the different kernels for D ¼ 3 and D ¼ 4. In the

whole p range, the naı̈ve kernel’s theoretical arithmetic

intensity (see Roofline model, Williams et al., 2009), is a

lot smaller than the ratio R ¼ 23:95 FLOPS/byte obtained

from the GPU’s FLOP rate (11.6 TFLOPS) divided by its

memory transfer rate (484 GB/s). This indicates that the

kernel is bandwidth limited. However, additional integer

computation is required for the calculation of 3D octree

indices of the interaction sets L. Figure 17a shows that for

the naı̈ve kernel, much less than 10% of the issued instruc-

tions are useful floating point operations. A large computa-

tional overhead emerges from a high number of integer

operations in the innermost for-loop. Here, each of OðpÞ
complex multiplications requires 31 integer additions, 16

integer multiplications, 9 modulo operations and 11 integer

divisions. In addition, performance is significantly reduced

by warp divergence, since different threads in a block

0 5 10 15 20
multipole order p

10−4

10−3

10−2

10−1

100

tim
e

(s
)

depth 3

symmetric
dynamic

naive

10−3

10−1

101

tim
e

(s
)

0 5 10 15 20
multipole order p

symmetric

dynamic

naive

depth 4

Figure 16. Runtime comparison of the three different M2L
implementations. For each multipole order, 8D 	 189 single
M2L operations are computed for D ¼ 3 (top) and D ¼ 4 (bot-
tom). The gray area marks the gap between the memory bound
and the compute-bound reference microkernel shown in
Figure 15.

0 2 4 6 8 10 12 14 16 18 20
multipole order p

0

20

40

60

80

100(a)

(b)

In
st

ru
ct

io
n

co
un

t(
%

) floating point
integer
memory
no operation

0.0

0.2

0.4

0.6

0.8

1.0

U
til

iz
at

io
n

compute
memory

0 2 4 6 8 10 12 14 16 18 20
multipole order p

Figure 17. Performance analysis of the naı̈ve M2L kernel. (a)
Instructions distribution. (b) Memory and compute utilization.

Kohnke et al. 111

resolve the condition m > l (line 36 of Listing 4). This

effect is labeled as nooperation in Figure 17a. Avoiding

warp divergence would require different kernels for

each 0 � p � 20, since mapping of indices to threads dif-

fers at each p. Figure 17b shows, how well the GPU is

utilized by the naı̈ve kernel. As both memory and compute

achieve roughly 50% of maximal possible utilization, the

performance is likely limited by the latency of arithmetic or

memory operations.

The maximum number of achieved FLOPS (p¼19) is at

2% of the GPU capability, see Figure 18 (top). The effec-

tive bandwidth reaches nearly 500 GB/s, which is more

than the maximum memory throughput of the GPU. As

seen in Figure 16, the naı̈ve kernel achieves runtimes sim-

ilar to the memory-bound microkernel. For values p > 6,

the kernel is slightly faster than the memory-bound refer-

ence kernel, and that is for the following reason. The fact

that the innermost for-loop of the naı̈ve kernel is executed

sequentially allows cache reuse. Each element !lm can be

reused 189 times for a different M2L transformation and

each element of the operator M is reused 8d times at tree

depth d. This leads to local cache throughput of roughly

3,500 GB/s, which approaches the maximal theoretically

possible cache bandwidth of the GPU.

Additionally, the achieved occupancy per each Stream-

ing Multiprocessor (SM) is at 46% of a possible maximum

of 50% at this kernel configuration, a limit caused by the

number of registers (64) used in the kernel.

4.4.2 Dynamic kernel. This kernel utilizes Dynamic Paralle-

lism to minimize the index overhead computation intro-

duced by the naı̈ve kernel. The sizes of the child kernels

ð2; 2; 2Þ allow for utilization of concurrency on the GPU,

since the work in the child kernels is fully independent. On

the underlying hardware the maximum number of resident

grids per device is limited to 32.

Figure 19a shows the relative costs emerging from

launching the child kernels, which become irrelevant only

for large p. At small p, the latencies dominate the computa-

tion time, leading to an almost constant runtime for p � 10

that can be seen in Figure 16 for the dynamic kernel.

Figure 19b shows the instruction distribution for the

dynamic kernel. From p � 3 on, the fraction of floating

point operations is significantly larger than for the naı̈ve

kernel. However, the large number of integer operations

and warp divergence still limits the performance.

Another issue is the small block size of the child kernels,

which limits the SM occupancy for different p values. For

p < 5, e.g. each block consists of only one warp . This

limits the SM utilization, as 32 blocks but 64 warps can be

executed simultaneously. For p � 5, the occupancy is only

limited by the register usage, achieving nearly 100% of the

theoretical possible occupancy. Limiting the register usage,

however, increases the local memory traffic and does not

further enhance the performance.

0

500

1000

1500
G

FL
O

PS

symmetric
dynamic

naive

0 5 10 15 20
multipole order p

0.7

ra
tio

global memory

shared memory

floating point
operations

0 5 10 15 20
multipole order p

0.6

0.5

Figure 18. M2L kernel performance comparison by two different
metrics. Top: FLOPS achieved by different kernels. Bottom: Ratio
of global and shared memory accesses and floating point opera-
tions for the symmetric kernel with respect to the non-symmetric
approach.

0.0

0.2

0.4

0.6

0
(a)

(b)

.8

co
st

s
fra

ct
io

n

0 2 4 6 8 10 12 14 16 18 20
multipole order p

floating point
integer
memory
no operation

0 2 4 6 8 10 12 14 16 18 20
multipole order p

0

20

40

60

80

100

In
st

ru
ct

io
n

co
un

t(
%

)

Figure 19. Performance analysis of the dynamic M2L kernel. (a)
Kernel launching latencies. (b) Instructions distribution.

112 The International Journal of High Performance Computing Applications 35(1)

As shared memory usage is an essential part of the

dynamic kernel, we tested how its utilization affects the over-

all performance. Figure 20a and Figure 20b show theshared

memory throughput and the GPU utilization of the dynamic

kernel, respectively. For p < 12 the kernel is clearly

compute-bound, hence the shared memory operations are

fully hidden. At p¼ 12–15 we can observe a balance between

memory and compute operations. Shared memory is limit-

ing only for p > 15, however the achieved throughput of

6000 GB/s is at the limit of the underlying GPU.

The overall performance of the kernel gets considerably

higher compared to the naı̈ve kernel for p > 6, achieving a

maximum of 1600 GFLOPS for p ¼ 20, see Figure 18

(top). Nevertheless, memory and FLOPS peaks are

achieved only for p > 15. At p < 5, the dynamic kernel

performs worse than the Oðp4Þ benchmarking microkernel

mainly due to kernel launch latencies mentioned above.

4.4.3 Symmetric kernel. The symmetric M2L kernel is com-

posed of four subkernels started asynchronously for each

symmetry group T ax
, x ¼ 1; 2; 3; 4 (see Eq. (27)). Figure 21

shows the achieved speedup compared to the standard

implementation. Additionally, it also shows the speedups

of each symmetric part T ax
. As expected, the eight-way

symmetric kernel performs best, followed by the four-way

and then the two-way symmetric kernel. The overall

speedup of the symmetric kernel combines the speedups

of the subkernels. However, the achieved overall speedup

is not directly proportional to the number of the symme-

trical counterparts, because the additional bit shifting and

sign changing operations introduce a growing overhead for

larger symmetry. In addition, register utilization is larger

for the kernels with higher symmetry, harming the achieved

SM occupancy. From here on, we will combine the metrics

for all subkernels, referring to them as one symmetric ker-

nel. These metrics take into account the overlapping

0 5 10 15 20
multipole order p

0

2000

4000

6000(a)

(b)

G
B/

s

shared memory
compute

0 2 4 6 8 10 12 14 16 18 20
multipole order p

0.0

0.2

0.4

0.6

0.8

1.0

U
til

iz
at

io
n

Figure 20. Performance analysis of the dynamic M2L kernel. (a)
Shared memory throughput. (b) Shared memory and compute
utilization.

0 5 10 15 20
multipole order p

0.8

1.0

1.2

1.4

1.6

sp
ee

du
p

2-way symmteric
4-way symmteric
8-way symmteric
full M2L symmetric

Figure 21. Speedups due to symmetry properties for different
symmetry groups T ax

, x ¼ 2; 3; 4 (colored) and for the whole
symmetric M2L operator kernel (black) compared to a non-
symmetric implementation (cyan).

0 2 4 6 8 10 12 14 16 18 20
multipole order p

0.0

0.2

0.4

0.6

0.8

1.0(a)

(b)

U
til

iz
at

io
n

shared memory
memory
compute

0 2 4 6 8 10 12 14 16 18 20
multipole order p

0

20

40

60

80

100

In
st

ru
ct

io
n

co
un

t(
%

)

floating point
integer
memory
no operation

Figure 22. Performance analysis of the symmetric M2L kernel.
(a) Hardware utilization. (b) Instructions distribution.

Kohnke et al. 113

execution of the symmetric subkernels. Figure 22a shows

how the hardware is utilized by the symmetric kernel. This

kernel is compute-bound over nearly the complete p range.

As seen in Figure 22b, the fraction of floating point operations

is significantly larger than in both previous approaches. Warp

divergence is eliminated completely. The nooperation

part, resulting from pipeline latencies becomes negligible for

p > 6. In this range, the gridsizes (ðpþ 1Þ � ðpþ 2Þ=2,

7, 1) and (ðpþ 1Þ � ðpþ 2Þ=2, 21, 1) of particular symmetric

subkernels are too small to provide enough blocks to utilize

the complete device, so that pipeline latencies become an

issue. However, with larger p hardware utilization increases.

The register usage of the symmetric subkernels varies

between 48% and 71% (not shown). Based on the kernel

configuration, the theoretical maximum possible average

SM occupancy for all subkernels is 57%. The kernels

achieve 50% and are mainly limited by register usage.

Further occupancy optimization is unlikely to further

increase performance markedly, as kernels with a large

register usage do not require optimal occupancy (Volkov,

2010).

As Figure 18 (top) shows, the FLOP rate of the sym-

metric kernel is much higher in the range 1 < p < 16 com-

pared to the other two kernels. However, the FLOP rates

achieved by the symmetric and dynamical kernel for

p � 15 are similar. Nevertheless, the symmetric scheme

clearly outperforms the dynamic one when comparing the

absolute execution times, see Figure 16. Figure 18 (bottom)

demonstrates that, compared to the non-symmetric kernel,

the symmetric kernel needs fewer floating point operations

for the M2L stage. Figure 23 shows the absolute perfor-

mance ratio of the symmetric kernel compared to the

compute-bound reference microkernel. It achieves roughly

30% of the reference microkernel performance in

2 < p < 21. Additionally, for both depths, the kernel

shows an ideal scaling as the showed ratio remains nearly

constant for p > 5. Hence, the scaling of the symmetric

kernel follows the compute-bound reference microkernel

scaling. It achieves a subquadratic scaling for p < 10 and

switches slowly to Oðp4Þ regime, that is limited only by

arithmetic throughput, compare Figure 15 and Figure 16.

5 Conclusions

Here, we have presented three different CUDA paralleliza-

tion approaches for the Multipole-to-Local operator, which

is performance limiting for the overall FMM performance.

The first approach preserves the sequential loop structure

and does not require any special data structures. It makes

use of CUDA Unified Memory to achieve decent speedups

compared to a sequential CPU implementation. It is useful,

e.g. for rapid prototyping or for simulation systems with

small to moderate numbers of particles. However, it comes

with a large computational overhead due to additional inte-

ger operations.

The second approach, which exploits CUDA Dynamic

Parallelism, avoids this drawback and achieves very good

performance at high accuracy demands, i.e. for large multi-

pole orders. Its main drawback is a lack of performance at

low multipole orders, for which the first scheme performs

better.

The third approach uses abstractions of the underlying

octree and interaction patterns to allow for enhanced, effi-

cient GPU utilization and it exploits the symmetries of the

Multipole-to-Local operator. As a result, it scales perfectly

with growing multipole order p maintaining a very good

performance in the whole benchmarked multipole range

(0 < p < 20)

Our FMM implementation has been optimized for bio-

molecular simulations and has been incorporated into

GROMACS as an alternative to the established PME Cou-

lomb solver (Kohnke et al., 2020a). We anticipate that,

thanks to the inherently parallel structure of the FMM,

future multi-node multi-GPU implementations will eventu-

ally overcome the PME scaling bottlenecks (Board et al.,

1999; Kutzner et al., 2007, 2014).

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication of

this article: This project was supported by the DFG priority

programme Software for Exascale Computing (SPP 1648).

A special thanks goes to Jiri Kraus from NVIDIA who

supported this project in the early stage of its development

and to R. Thomas Ullmann who took part in writing the

FMM-GROMACS interface and unit tests.

ORCID iD

Bartosz Kohnke https://orcid.org/0000-0002-6000-5490

Carsten Kutzner https://orcid.org/0000-0002-8719-0307

0 5 10 15 20
multipole order p

0.2

0.4

0.6

0.8
pe

rf
or

m
an

ce
ra

tio
D =3
D =4

Figure 23. Absolute performance ratio of the symmetric M2L
kernel with respect to the compute-bound reference microkernel
with Oðp2Þ memory loads for D ¼ 3 and D ¼ 4.

114 The International Journal of High Performance Computing Applications 35(1)

https://orcid.org/0000-0002-6000-5490
https://orcid.org/0000-0002-6000-5490
https://orcid.org/0000-0002-6000-5490
https://orcid.org/0000-0002-8719-0307
https://orcid.org/0000-0002-8719-0307
https://orcid.org/0000-0002-8719-0307

References

Abraham MJ, Murtola T, Schulz R, et al. (2015) GROMACS:

high performance molecular simulations through multi-level

parallelism from laptops to supercomputers. SoftwareX 1–2:

19–25.

Agullo E, Bramas B, Coulaud O, et al. (2016) Task-based FMM

for heterogeneous architectures. Concurrency and Computa-

tion: Practice and Experience 280(9): 2608–2629.

Allen M and Tildesley D (1989) Computer Simulation of Liquids,

1987. Oxford: Clarendon Press, p. 385.

Andoh Y, Yoshii N, Fujimoto K, et al. (2013) MODYLAS: a

highly parallelized general-purpose molecular dynamics simu-

lation program for large-scale systems with long-range forces

calculated by fast multipole method (FMM) and highly scal-

able fine-grained new parallel processing algorithms. Journal

of Chemical Theory and Computation 90(7): 3201–3209.

Andoh Y, Yoshii N and Okazaki S (2020) Extension of the fast

multipole method for the rectangular cells with an anisotropic

partition tree structure. Journal of Computational Chemistry

41: 1–15.

Arnold A, Fahrenberger F, Holm C, et al. (2013) Comparison of

scalable fast methods for long-range interactions. Physical

Review E 88: 063308.

Blanchard P, Bramas B, Coulaud O, et al. (2015) ScalFMM: a

generic parallel fast multipole library. In: SIAM Conference on

Computational Science and Engineering (SIAM CSE 2015),

Salt Lake City, USA, 18 March 2015

Board JA, Causey JW, Leathrum JF, et al. (1992) Accelerated

molecular dynamics simulation with the parallel fast multipole

algorithm. Chemical Physics Letters 1980(1): 89–94.

Board JA, Humphres CW, Lambert CG, et al. (1999) Ewald and

multipole methods for periodic N-body problems. In: Deufl-

hard P, Hermans J, and Leimkuhler B, et al (eds) Computa-

tional Molecular Dynamics: Challenges, Methods, Ideas.

Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 459–471.

Bock L, Blau C, Schröder G, et al. (2013) Energy barriers and

driving forces in tRNA translocation through the ribosome.

Nature Structural & Molecular Biology 20: 1390–1396.

Cheng H, Greengard L and Rokhlin V (1999) A fast adaptive

multipole algorithm in three dimensions. Journal of Computa-

tional Physics 1550(2): 468–498.

Dachsel H (2010) An error-controlled fast multipole method. The

Journal of Chemical Physics 132: 119901.

Dawson JM (1983) Particle simulation of plasmas. Reviews of

Modern Physics 55: 403–447.

Ding H, Karasawa N and Goddard WA (1992a) Atomic level

simulations on a million particles: the cell multipole method

for Coulomb and London nonbond interactions. The Journal of

Chemical Physics 970(6): 4309–4315.

Ding H-Q, Karasawa N and Goddard WA (1992b) The reduced

cell multipole method for Coulomb interactions in periodic

systems with million-atom unit cells. Chemical Physics Letters

1960(1): 6–10.

Dror RO, Dirks RM, Grossman J, et al. (2012) Biomolecular

simulation: a computational microscope for molecular biol-

ogy. Annual Review of Biophysics 41: 429–452.

Eichinger M, Grubmüller H, Heller H, et al. (1997) FAMU-

SAMM: an algorithm for rapid evaluation of electrostatic

interactions in molecular dynamics simulations. Journal of

Computational Chemistry 180(14): 1729–1749.

Engheta N, Murphy WD, Rokhlin V, et al. (1992) The fast multi-

pole method (FMM) for electromagnetic scattering problems.

IEEE Transactions on Antennas and Propagation 400(6):

634–641.

Essmann U, Perera L, Berkowitz M, et al. (1995) A smooth par-

ticle mesh Ewald method. The Journal of Chemical Physics

103: 8577.

Fong W and Darve E (2009) The black-box fast multipole

method. Journal of Computational Physics 2280(23):

8712–8725.

Garcia AG, Beckmann A and Kabadshow I (2016) Accelerating

an FMM-Based Coulomb Solver with GPUs. Berlin, Heidel-

berg: Springer International Publishing, pp. 485–504.

Gnedin NY (2019) Hierarchical particle mesh: an FFT-

accelerated fast multipole method. Astrophysical Journal Sup-

plement Series 2430(2): 19.

Greengard L and Rokhlin V (1987) A fast algorithm for particle

simulations. Journal of Computational Physics 730(2):

325–348.

Greengard L and Rokhlin V (1997) A new version of the fast

multipole method for the Laplace equation in three dimen-

sions. Acta Numerica 6: 229–269.

Gumerov NA and Duraiswami R (2006) FMM accelerated BEM

for 3D Laplace & Helmholtz equations. In: Presentation for

the International Conference on Boundary Element Technique

BETEQ-7, Paris, France, September 2006.

Gumerov NA and Duraiswami R (2008) Fast multipole methods

on graphics processors. Journal of Computational Physics

2270(18): 8290–8313.

Hansson T, Oostenbrink C and van Gunsteren W (2002) Molecu-

lar dynamics simulations. Current Opinion in Structural Biol-

ogy 120(2): 190–196.

Hess B, Kutzner C, van der Spoel D, et al. (2008) GROMACS 4:

algorithms for highly efficient, load-balanced, and scalable

molecular simulation. Journal of Chemical Theory and Com-

putation 4(3): 435–447.

Hockney RW and Eastwood JW (1988) Computer Simulation

Using Particles. Abingdon: Taylor and Francis, Inc.

Jones S (2012) Introduction to dynamic parallelism. In: GPU

Technology Conference Presentation, Vol.338, March.

Knap M and Czarnul P (2019) Performance evaluation of Unified

Memory with prefetching and oversubscription for selected

parallel CUDA applications on NVIDIA Pascal and Volta

GPUs. The Journal of Supercomputing 750(11): 7625–7645.

Kohnke B, Kutzner C and Grubmüller H (2020a) A GPU-

accelerated Fast Multipole Method for GROMACS: per-

formance and accuracy. Journal of Chemical Theory and

Computation. Under review.

Kohnke B, Ullmann TR, Beckmann A, et al. (2020b) GRO-

MEX—a scalable and versatile fast multipole method for bio-

molecular simulation. In: Bungartz H-J, Reiz S, Uekermann B,

Neumann P, and Nagel WE, (eds) Software for Exascale

Kohnke et al. 115

Computing—SPPEXA 2016–2019. Berlin, Heidelberg:

Springer International Publishing, pp. 517–543.

Kurzak J and Pettitt BM (2006) Fast multipole methods for par-

ticle dynamics. Molecular Simulation 320(10–11): 775–790.

Kutzner C, van der Spoel D, Fechner M, et al. (2007) Speeding up

parallel GROMACS on high-latency networks. Journal of

Computational Chemistry 28(12): 2075–2084.

Kutzner C, Apostolov R, Hess B, et al. (2014) Scaling of the

GROMACS 4.6 molecular dynamics code on SuperMUC.

In: Bader M, Bode A, and Bungartz HJ (eds) Parallel Comput-

ing: Accelerating Computational Science and Engineering

(CSE). Amsterdam: IOS Press, pp 722–730.

Kutzner C, Páll S, Fechner M, et al. (2019) More bang for your

buck: improved use of GPU nodes for GROMACS 2018. Jour-

nal of Computational Chemistry 400(27): 2418–2431.

Lane TJ, Shukla D, Beauchamp KA, et al. (2013) To milliseconds

and beyond: challenges in the simulation of protein folding.

Current Opinion in Structural Biology 230(1): 58–65.

Lashuk I, Chandramowlishwaran A, Langston H, et al. (2009) A

massively parallel adaptive fast-multipole method on hetero-

geneous architectures. In: SC ‘09: Proceedings of the Confer-

ence on High Performance Computing Networking, Storage

and Analysis, Portland, OR, USA, 14–20 November 2009.

New York, NY: Association for Computing Machinery.

Nelson MT, Humphrey W, Gursoy A, et al. (1996) NAMD: a

parallel, object-oriented molecular dynamics program. The

International Journal of Supercomputer Applications and

High Performance Computing 100(4): 251–268.

Nickolls J, Buck I, Garland M, et al. (2008) Scalable parallel

programming with CUDA. Queue 60(2): 40–53.

Niedermeier C and Tavan P (1994) A structure adapted multipole

method for electrostatic interactions in protein dynamics. The

Journal of Chemical Physics 1010(1): 734–748.

Páll S and Hess B (2013) A flexible algorithm for calculating pair

interactions on SIMD architectures. Computer Physics Com-

munications 184: 2641–2650.

Páll S, Abraham MJ, Kutzner C, et al. (2015) Tackling exascale

software challenges in molecular dynamics simulations with

GROMACS. In: Markidis S, and Laure E, (eds) Lecture Notes

in Computer Science. EASC 2014, Vol. 8759. Switzerland:

Springer International Publishing Switzerland, pp. 1–25.

Patra M, Karttunen M, Hyvönen M, et al. (2003) Molecular

dynamics simulations of lipid bilayers: major artifacts due to

truncating electrostatic interactions. Biophysical Journal

840(6): 3636–3645.

Paul F, Wehmeyer C, Abualrous ET, et al. (2017) Protein-peptide

association kinetics beyond the seconds timescale from ato-

mistic simulations. Nature Communications 80(1): 1–10.

Potter D, Stadel J and Teyssier R (2017) PKDGRAV3: beyond

trillion particle cosmological simulations for the next era of

galaxy surveys. Computational Astrophysics and Cosmology

40(1): 2.

Salomon-Ferrer R, Götz AW, Poole D, et al. (2013) Routine

microsecond molecular dynamics simulations with AMBER

on GPUs. 2. Explicit solvent particle mesh Ewald. Journal

of Chemical Theory and Computation 90(9): 3878–3888.

Schreiber H and Steinhauser O (1992) Molecular dynamics stud-

ies of solvated polypeptides: why the cut-off scheme does not

work. Chemical Physics 1680(1): 75–89.

Schwantes CR, McGibbon RT and Pande VS (2014) Per-

spective: Markov models for long-timescale biomolecular

dynamics. The Journal of Chemical Physics 1410(9): 090901–

090907.

Shamshirgar DS, Yokota R, Tornberg A-K, et al. (2019) Regular-

izing the fast multipole method for use in molecular simula-

tion. The Journal of Chemical Physics 1510(23): 234113.

Shaw DE, Grossman J, Bank JA, et al (2014) Anton 2: raising the

bar for performance and programmability in a special-purpose

molecular dynamics supercomputer. In: SC’14: Proceedings

of the International Conference for High Performance Com-

puting, Networking, Storage and Analysis, New Orleans, LA,

USA, 16–21 November 2014, pp. 41–53. New York, NY:

IEEE.

Takahashi T, Cecka C, Fong W, et al. (2012) Optimizing the

Multipole-to-Local operator in the fast multipole method for

graphical processing units. International Journal for Numer-

ical Methods in Engineering 89: 105–133.

Tough RJA and Stone AJ (1977) Properties of the regular and

irregular solid harmonics. Journal of Physics A: Mathematical

and General 100(8): 1261.

Volkov V (2010) Better performance at lower occupancy. In:

Proceedings of the GPU Technology Conference, GTC, Vol.

10, San Jose, CA, p. 16.

White CA and Head-Gordon M (1996) Rotating around the quar-

tic angular momentum barrier in fast multipole method calcu-

lations. The Journal of Chemical Physics 1050(12):

5061–5067.

Williams S, Waterman A and Patterson D (2009) Roofline: an

insightful visual performance model for multicore architec-

tures. Communications of the ACM 520(4): 65–76.

Ying L, Biros G and Zorin D (2004) A kernel-independent adap-

tive fast multipole algorithm in two and three dimensions.

Journal of Computational Physics 1960(2): 591–626.

Yokota R, Narumi T, Sakamaki R, et al. (2009) Fast multipole

methods on a cluster of GPUs for the meshless simulation of

turbulence. Computer Physics Communications 1800(11):

2066–2078.

Yoshii N, Andoh Y and Okazaki S (2020) Fast multipole method

for three-dimensional systems with periodic boundary condi-

tion in two directions. Journal of Computational Physics

410(9): 940–948.

Author biographies

Bartosz Kohnke is a PhD student at the Max Planck Insti-

tute (MPI) for Biophysical Chemistry in Göttingen in the

department of Theoretical and Computational Biophysics.

He has been working on efficient parallelization of the fast

multipole method for molecular dynamics simulations. He

received a master’s degree in Applied Computer Science

with a specialization in Scientific Computing from the Uni-

versity of Göttingen, Germany in 2012.

116 The International Journal of High Performance Computing Applications 35(1)

Carsten Kutzner received his PhD in physics from the Uni-

versity of Göttingen in 2003. Since 2004 he is a member of

the Theoretical and Computational Biophysics department

at the MPI for Biophysical Chemistry. He develops effi-

cient methods for atomistic biomolecular simulations in

HPC environments.

Andreas Beckmann studied computer science at Martin

Luther University of Halle-Wittenberg. Aiming for perfor-

mance portability, he specialized on the design and devel-

opment of software abstractions for low-level hardware

characteristics. Currently he works at the Jülich Supercom-

puting Centre in Germany.

Gert Lube received his PhD in 1980 and his Habilitation in

1989 from Otto von Guericke University Magdeburg. From

1993 until his retirement in 2019, he worked as a professor for

Applied Mathematics at the Institute for Numerical

and Applied Mathematics of the Georg-August University

Göttingen. His main interests are the numerical solutions

of partial differential equations, in particular in fluid

mechanics.

Ivo Kabadshow studied electrical engineering at Chemnitz

University of Technology. During his PhD in applied

mathematics at University of Wuppertal he specialized on

fast multipole methods for HPC applications. Currently he

works at Jülich Supercomputing Centre on FMM-based

libraries for massively parallel HPC systems.

Holger Dachsel studied Chemistry at the University of

Leipzig. After receiving his PhD, he worked at the Univer-

sity of Vienna, at PNNL in Richland, WA, at the Free Uni-

versity Amsterdam, and at Q-Chem. Inc. in Pittsburgh, PA.

His area of expertise at Jülich Supercomputing Centre is the

fast multipole method, especially its mathematical aspects.

Helmut Grubmüller is scientific member of the Max Planck

Society and director at the MPI for Biophysical Chemistry

where he leads the department of Theoretical and Compu-

tational Biophysics. He is also honorary professor for phy-

sics at the University of Göttingen. His research aims at an

understanding of the physics and function of proteins, pro-

tein complexes and other biomolecular structures at the

atomic level.

Kohnke et al. 117

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

