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ABSTRACT Ligand-protein binding processes are essential in biological systems. A well-studied system is the binding of cyclic
adenosine monophosphate to the cyclic nucleotide binding domain of the bacterial potassium channel MloK1. Strikingly, the
measured on-rate for cyclic adenosine monophosphate binding is two orders of magnitude slower than a simple Smoluchowski
diffusion model would suggest. To resolve this discrepancy and to characterize the ligand-binding path in structural and ener-
getic terms, we calculated 1100 ligand-binding molecular dynamics trajectories and tested two scenarios: In the first scenario,
the ligand transiently binds to the protein surface and then diffuses along the surface into the binding site. In the second scenario,
only ligands that reach the protein surface in the vicinity of the binding site proceed into the binding site. Here, a binding funnel,
which increasingly confines the translational as well as the rotational degrees of freedom, determines the binding pathways and
limits the on-rate. From the simulations, we identified five surface binding states and calculated the rates between these surface
binding states, the binding site, and the bulk. We find that the transient binding of the ligands to the surface binding states does
not affect the on-rate, such that this effect alone cannot explain the observed low on-rate. Rather, by quantifying the translational
and rotational degrees of freedom and by calculating the binding committor, our simulations confirmed the existence of a binding
funnel as the main bottleneck. Direct binding via the binding funnel dominates the binding kinetics, and only ~10% of all ligands
proceed via the surface into the binding site. The simulations further predict an on-rate between 15 and 40 ms�1ðmol=lÞ�1, which
agrees with the measured on-rate.
INTRODUCTION
Ligand-protein binding is essential for many biological sys-
tems, e.g., immune response (1,2), enzymatic activity, or
signaling (3,4). An important class of ligands involved in
many signaling pathways are cyclic nucleotides, such as
cyclic adenosine monophosphate (cAMP) (4–7), which
bind to a cyclic-nucleotide-binding domain (CNBD) and
regulate cyclic-nucleotide-gated (CNG) channels (4,8).

An experimentally well characterized system is the
potassium channel MloK1 and its CNBD of the bacterium
Mesorhizobium loti (9–13). X-ray (14) and NMR (15,16)
structures revealed two different conformations for the
cAMP-bound and cAMP-free CNBDs. This conformational
change controls ion conductivity, which has been shown to
be higher in the ligand-bound conformation (14). The com-
plete binding process thus involves the ligand-protein
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encounter, including the ligand’s path into the binding
site, and a conformational change of the protein. Here, we
focus on the ligand-protein encounter and, in particular,
the kinetics of this process.

The on-rate of the ligand-binding process has been
measured by Peuker et al. (17) via stopped-flow experiments
using the CNBD of MloK1 and a dye-labeled analog of
cAMP, 8-NBD-cAMP. The fluorescence of 8-NBD-cAMP
is low in aqueous solvents and high in the hydrophobic envi-
ronment of a binding pocket. The increase of fluorescence
after rapid mixing yielded an on-rate coefficient of
kon ¼ 26 ms�1ðmol=lÞ�1 (17). This on-rate is strikingly
slow. In fact, a simple radial diffusion model (18) would
predict an on-rate that is faster by more than two orders of
magnitude. Vice versa, for a diffusion model to agree with
the observed on-rate, an unrealistically small radius of the
binding site of ~10 pm would be required.

To resolve this striking discrepancy, and to develop a
theoretical model of the binding process, we considered
two possible scenarios. First, the ligand may initially bind
to the protein surface (or at least certain parts thereof) and
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subsequently, in a second step, diffuse along the surface to-
ward and into the binding site. In this scenario, the low on-
rate would be caused by transient and unproductive ligand
trapping at the surface and governed by the rates for surface
diffusion and surface detachment. In the second scenario,
only ligands that reach the protein surface in the vicinity
of the binding site proceed into the binding site. We assume
here that a binding funnel, which increasingly confines the
translational and rotational degrees of freedom of the ligand,
determines the binding pathways and the on-rate. Such
binding funnels have been discussed and observed previ-
ously (19,20), as have various models of ligand binding
within the scope of enzyme reaction kinetics (21–23). How-
ever, no quantitative theory that connects simulation, exper-
iment, and structure has so far been achieved.

To differentiate between these two possibilities, we car-
ried out 1100 spontaneous ligand-binding molecular dy-
namics (MD) simulations (20,24–27) to the ligand-free
CNBD, each starting from unbound solvated cAMP. From
these simulations, we estimated rates for transitions between
the bulk phase, surface states, and the binding site. Taken
together, this set of rates establishes that transient surface
binding and diffusion does not markedly slow down
binding kinetics. Rather, transitions from the bulk directly
into the binding site via a narrow funnel constitute the domi-
nant binding pathway. We characterized this pathway by
translational and rotational ligand confinement as well as
by the committor function for ligand binding. This model
predicts a ligand-binding on-rate, which agrees with the
measured rate. Thus, a quantitative microscopic picture of
cAMP binding to the CNBD of MloK1 is obtained that ex-
plains the measured on-rate and resolves the above
discrepancy.
MATERIALS AND METHODS

MD simulations

Simulation parameters

All simulations were carried out using the Gromacs 4.6 simulation package

(28–30). In all simulations, the Amber99sb (31) force field was used

together with the TIP3P water model (32). Electrostatic interactions

were calculated using particle-mesh Ewald (33) with a real-space cut-off

distance of 1.2 nm, a grid spacing of 0.145 nm, and cubic interpolation.

van der Waals interactions were cut off at 1.2 nm. Nonbonded interactions

were calculated using Verlet neighbor lists (34). The Verlet buffer

was chosen such that the maximal error for pair interactions was

<0:005 kJ mol�1 ps�1. All simulations were performed in the constant

temperature, pressure, and particle-number ensemble using the velocity-re-

scaling method (35) for temperature coupling with a heat-bath temperature

of 300 K and a coupling time constant of 0.1 ps, and Berendsen pressure

coupling (36) with a reference pressure of 1000 hPa and a respective

time constant of 1 ps. Cubic simulation boxes and periodic boundary con-

ditions were used for all simulations. All atom bonds were constrained us-

ing the LINCS algorithm (37). Additionally, fast fluctuations of angles

defined by at least one hydrogen atom were removed by changing the

respective hydrogen atoms into virtual sites and fixing the angle (38).

The equations of motion were integrated using the Verlet algorithm (34)
with a 4 fs time step. In all simulations, sodium chloride ions were added

at a concentration of 113 mM.

Ligand parametrization

Force-field parameters for unprotonated cAMP were calculated using the

general Amber force field (39) and the antechamber toolkit (40). Atomic

point charges were obtained in a restrained fitting procedure such that the

resulting electrostatic potential fits best to the electrostatic potential gener-

ated by the electronic wave function (restrained-electrostatic-potential

charges) (41). The wave function was calculated with Gaussian03 software

(42) at a Hartree-Fock level using the 6-31G* basis set. A convergence cri-

terion of 10�8 was applied for the self-consistent field calculations; six

points per unit area were calculated in the electrostatic potential fit. Before

the calculation of the electronic wave function, a geometry optimization of

the molecule was performed.

Modeling of the protein structure

All simulations of ligand binding to the CNBD were based on the R384A

mutant (PDB: 1U12) (14) of the CNBD. The mutation was reverted by re-

placing residue Ala384 with Arg384 and the missing atoms were added us-

ing the Modeler 9v10 software (43).

Simulation setup

A total of 900 ‘‘high-ligand-concentration’’ simulations, each 200 ns long,

of solvated cAMP and CNBD were carried out using a cubic simulation box

with a box length of 7 nm. In each of the simulations, a single cAMP mole-

cule was placed in random orientation at a random position, avoiding over-

lap with the protein. In addition, 99 simulations, each 300 ns long, and 99

simulations, each 200 ns long, were carried out using a cubic simulation

box with a box length of 14 nm. In the latter two sets of simulations

(‘‘low-ligand-concentration simulations’’), ligand molecules were placed

in random orientation on random points on a sphere at a distance of

6.5 nm around the center of the protein.
Data analysis

Surface-flow model

Markov state model. The stationary probability distribution of the positions

of the ligand centers of mass (COMs) was determined from a Markov state

model (44,45). To build this model, the set of high-ligand-concentration

simulations was used. To that aim, all ligand trajectories were translated

and rotated such that the position and orientation of the CNBD was fixed.

Subsequently, the ligand’s COM position space was discretized, using

303 ¼ 27; 000 bins, each with a volume of V ¼ ð0:4 nmÞ3.
The count matrix was calculated using a lag time of 60 ns as an empirical

trade-off between statistical convergence and small memory effects. After

converting this count matrix into a transition matrix, the first left eigen-

vector, representing the stationary probability distribution, was calculated.

Neighboring bins in which the COM position probability was >1.1% were

identified as surface binding states. This cutoff was chosen as a trade-off

between separability of the states and high population coverage. The cutoff

distance, dsurface=bulk, which separates surface states from bulk states, was

considered as a free parameter, and therefore, all rates were calculated

for several values of this parameter.

Determination of rates and rate coefficients. From the set of high-ligand-

concentration simulations, rates were calculated for transition between the

surface states (including the binding site) via the rest of the protein surface

(i.e., without intermediate unbinding or transitions through other surface

states) as well as for unbinding into the bulk. All rates were determined

from the average waiting time of the respective transition. The rate coeffi-

cients, fkig, for transitions from the bulk into the surface states, fig,
including the binding site, were estimated from the product of the sur-

face-attachment rate coefficient,
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kbulk/surface ¼ 4pNADr ; (1)

and the probabilities, pi, of entering state i. Here,D ¼ 0:44 � 10�9 m2 s�1

is the diffusion coefficient of cAMP (46), r ¼ 2:2 nm is the protein radius,
estimated from the structure, and NA is the Avogadro constant.

We estimated the uncertainty of the protein radius as sr ¼ 0:3 nm and

that of the diffusion coefficient as sD ¼ 0:03 � 10�9 m2 s�1. The latter un-

certainty was derived from the difference between the measured and

geometrically expected diffusion coefficients (46). The resulting error range

of kbulk/surface is thus

skbulk/surface
¼ 4pNA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2s2

r þ r2s2
D

q
: (2)

All transition probabilities, pi, were determined from the frequencies of

transitions, as observed in the trajectories, from the bulk (pbulk/state ,
i
pbulk/surface rest) and from the remaining surface (psurface rest/statei ,

psurface rest/bulkÞ. Using these counts,

ki ¼ kbulk/surface

�
�
pbulk/statei þ pbulk/surface rest � psurface rest/surface statei

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pi

:

(3)

Comparison of surface binding and diffusion. To test whether transitions

of the ligand from the bulk phase to the protein surface are controlled by
diffusion, we determined for all low-concentration MD simulations the

time of the first ligand-protein contact. To this aim, the simulation time-

dependent fraction, ~pnonbindingðtÞ, of no-surface-contact occurrence was

determined. The probability predicted by a Smoluchowski model (18)

was calculated via

pnonbindingðtÞ ¼ exp

�
� 4pDr

V
� t

�
1þ 2rffiffiffiffiffiffiffiffi

pDt
p

�	
: (4)

Here, D ¼ 1:42 � 10�9 m2 s�1 is the diffusion coefficient of cAMP in

TIP3P water observed in the MD simulations, r ¼ 2:2 nm is the approxi-
mate protein radius, and V ¼ 2744 nm3 is the simulation box volume.

D was determined independently using the average squared COM displace-

ment in bulk water over time during the simulations.

Determination of the effective on-rate coefficient. The mean first-passage

time for transitions from the bulk phase to the binding site was calculated

using the group general inverse (47) for different ligand concentrations.

This calculation was carried out 1) for the full set of rates, 2) for an alter-

native scenario in which the rate for direct transitions from the bulk to the

binding site is zero (meaning binding is limited to the surface diffusion

pathway), and 3) for an alternative scenario in which the rate for direct tran-

sitions from the bulk to the binding site equals the Smoluchowski rate. The

effective rates kon and ksurface diffusion were calculated as the inverse of the

mean first-passage time.

Binding-funnel parameters

To describe how the ligand proceeds toward the binding site, the ligand root

mean-square deviation (RMSD) to the bound-state configuration (which we

refer to as the ‘‘binding-site RMSD’’) was chosen as a reaction coordinate,

subsequently denoted by x. The bound-state configuration was extracted

from the x-ray structure of the cAMP-bound CNBD (PDB: 1VP6) (14).

Translational confinement. To estimate the radius of the effective target

sphere, we identified those configurations for which similar configurations

were sampled in all other trajectories for which successful ligand binding

occurred. To that end, first a pairwise ligand RMSD matrix was calculated

for all pairs of trajectories for which ligand binding occurred. These

matrices were then used to identify, for every ligand-configuration snapshot

and for every ligand-binding trajectory, a ‘‘neighborhood cloud.’’ The latter
1670 Biophysical Journal 111, 1668–1678, October 18, 2016
thus consists of the set of ligand configurations—one for each binding tra-

jectory—that has the smallest RMSD from the reference configuration. The

spatial extension of each neighborhood cloud was defined as the maximal

pairwise distance between the COMs of two neighborhood-cloud members.

Finally, all ligand configurations were binned according to their RMSD

from the binding site. For each bin, a ‘‘target sphere radius’’, rðxÞ, was
determined from the smallest neighborhood-cloud radius.

Rotational confinement. The rotational confinement was estimated from

the scatter of the major orientation axis of the ligand: For every binding site,

the RMSD value of the corresponding structure ensemble was determined

from the ligand-binding trajectories, as well as the solid angle covered by

these configurations.

To that end, all structures with a particular reaction coordinate x were ex-

tracted from the ligand-binding trajectories, and the vector defined by the

phosphor atom and the nitrogen atom closest to the amino group was taken

to represent the major axis of the molecule. Of the resulting ensemble of

vectors, the central vector, as well as the angular deviation, aiðxÞ, from
the central vector, were determined as a function of the reaction coordinate.

The solid angle, UðxÞ, of the cone was then estimated from the mean of this

angle distribution, plus one standard deviation of the angle distribution,

UðxÞ ¼ sin2
EðfaigðxÞÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðfaigðxÞÞ

p
2

: (5)

Note that for an isotropic and uniform angle distribution, U ¼ 0:9. The

same procedure was applied to the whole set of trajectories, irrespective

of whether binding actually occurred. Also note that since the target sphere

is located on the protein surface, it is only accessible from half of all

possible access directions. This confinement, which corresponds to a rota-

tional confinement of the protein, is taken into account by introducing a fac-

tor of 0.5 into the rotational confinement.

Binding committor. Binding committors pðbind j xÞ along the reaction co-
ordinate x, i.e., the probability that binding occurs before unbinding from

the funnel, were calculated from the whole set of binding trajectories.

Here, binding and unbinding were defined by crossing a lower threshold,

xbound, and an upper threshold, xunbound ¼ 1:0 nm, respectively. For xbound,

several values between 0.1 nm and 0.6 nm were considered. Binding and,

similarly, unbinding committors were calculated for several values of the

reaction coordinate x between xbound and xunbound, as well as for all trajec-

tories, by monitoring whether the system subsequently first crossed the

threshold xbound or xunbound.

Brownian dynamics in a one-dimensional model landscape

The committor functions determined from our MD simulations were

compared with committor functions obtained from Brownian dynamics

(BD) simulations in an inverted harmonic potential, U ¼ �ða=2Þ
ðx � xbarrierÞ2. All BD trajectories were generated by integrating the over-

damped stochastic dynamics equation of motion using the Euler-Maruyama

method. The BD simulations were aborted whenever xðtÞ exceeded

xunbound ¼ 1 nm or dropped below xbound. Starting positions, x0, were varied

between xbound and xunbound, and 5000 simulations were carried out for each

starting position. This procedure was repeated for 11 different values for

xbound between 0.1 nm and 0.6 nm.

Counts of how often xbound and xunbound were crossed (nbind and nunbind,

respectively) yielded committors in a similar way as done in the analysis

of the MD simulations. To quantify the similarity between MD and BD

committors, a measure

εða; xbarrierÞ ¼
X

lower cut�off

X
fxig

�
log

�
nunbindðxi;a; xbarrierÞ
nbindðxi;a; xbarrierÞ

�

� log

�
punbindðxiÞ
pbindðxiÞ

�	

(6)
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was calculated for force constants a ranging from 5 kJ mol�1 nm�2 to

30 kJ mol�1 nm�2, as well as for ‘‘transition state’’ maxima, xbarrier, be-

tween 0.2 nm and 0.8 nm. Finally, the pair a and xbarrier yielding the best

agreement with the acMD committors (smallest ε) was determined.
RESULTS AND DISCUSSION

Binding in a Smoluchowski model

A first analytical estimate for the on-rate of ligand binding is
given by the Smoluchowski model (18). This model as-
sumes only radial diffusion toward an absorbing spherical
surface and yields an on-rate coefficient of kon ¼ 4pNADr.
Here,D is the diffusion coefficient of the ligand, r is the pro-
tein radius, and NA is the Avogadro constant.

One critical assumption in this model is that all ligands
that reach the protein surface rapidly enter the binding
site, i.e., the entire protein surface represents the
absorbing sphere. With a protein radius of r ¼
ð2:250:3Þ nm and a cAMP diffusion coefficient of
D ¼ ð0:4450:03Þ � 10�9 m2 s�1 (46), the on-rate would
be kon ¼ ð730051100Þ ms�1ðmol=lÞ�1, by far exceeding
the experimentally obtained value of 26 ms�1ðmol=lÞ�1.
Vice versa, for the Smoluchowski model to yield the
measured on-rate, one would have to assume an absorbing
surface, representing the binding site, with a radius of
10 pm, which also seems unrealistic.
Mesoscopic binding model

To resolve this discrepancy, we developed a more detailed,
Markov-type model of the binding process, depicted sche-
matically in Fig. 1. Such a model should also enable us to
estimate the relative contributions of surface-diffusion path-
ways versus direct binding to the total on-rate coefficient.
As indicated in Fig. 1 A, the model involves several sub-
states and transitions (arrows) between these substates. As
relevant substates, we considered a) ligand in bulk (light
blue), b) ligand bound to one of several regions of the pro-
A

B

C

tein surface (dark gray), and c) ligand in the binding site.
The model also includes a ‘‘funnel’’ toward the binding
site (Fig. 1, B and C), which will be explained below. By
design, the model describes the two above scenarios as
limiting cases: in the surface-diffusion model, where the
ligand binds to surface regions and then diffuses along the
surface into the binding site, the flux through the funnel
should be small with respect to the flux through the surface
states; vice versa, in the funnel model, the flux via the direct
binding funnel should dominate. Comparison of these two
fluxes, therefore, should allow discriminating between these
two models. Comparison of a Smoluchowski model
including surface trapping and diffusion with the simple
Smoluchowski model should, further, identify the main
cause of the observed drastically reduced binding rate.

To calculate the required states and rates, 1100 binding
simulations from random starting positions in the bulk were
carried out as described in Materials and Methods. In these
simulations, many direct ligand-binding events, as well as
events of binding via the protein surface, were both observed,
indicating that our general model is indeed adequate.

To identify suitable surface states, we built a Markov
model (44,45) by binning the ligand’s COM position into
a grid of 30� 30� 30 cubes of 0.4 nm size and by counting
transition frequencies between pairs of these ‘‘microstates’’
as described in Materials and Methods. The first eigenvector
of the resulting transition matrix was used to estimate the
stationary probability distribution. Closer analysis of this
surface distribution revealed five major well-separated max-
ima, which we considered as relevant surface states, in addi-
tion to the binding site (Fig. 2).

Next, we calculated from the set of MD trajectories all
rates and rate coefficients between bulk phase, the five sur-
face states, and the binding site, from the respective average
waiting times (see Materials and Methods). Note that the
exact definition of a surface-bound state is somewhat arbi-
trary, and the calculated rates will vary depending on the
particular choice of the cutoff value, dsurface=bulk. To capture
FIGURE 1 (A) Mesoscopic binding model

(schematic) consisting of the bulk (light blue),

the binding site, and multiple surface (light gray)

substates, as well as transitions between them

(black arrows). Ligands bind either via the surface

states or directly to the binding site. For the latter

option, a binding funnel (blue sketch) is proposed.

(B and C) In the funnel model, the on-rate is given

by diffusion toward a translationally (blue) and

rotationally (green) confined target volume (blue

circle) near the binding site, combined with the

probability, pbindðxÞ, of crossing the remaining

free-energy barrier (red arrow). The rate is inde-

pendent of the position, x, of the target volume

(blue circle) if the lower rate to reach a smaller

target volume (C, blue circle) is compensated by

a higher probability of overcoming the remaining

barrier (C, thick red arrow). To see this figure in

color, go online.
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FIGURE 3 Surface binding is dominated by diffusion. Shown are the

fraction of trajectories where, until the specified time, no surface contact

occurred, ~pnonbindingðtÞ (blue dashed line); the expected fraction from the

full Smoluchowski model, pnonbindingðtÞ (yellow; cf. Eq. 4); and the fraction

predicted by the long-time approximation of the Smoluchowski model,

expð�kbulk/surface � tÞ (brown). The depicted error ranges indicate the sta-

tistical uncertainty due to the finite number of MD trajectories. To see this

figure in color, go online.
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to what extent this ambiguity affects the obtained rates,
we treated this surface-bulk cutoff as a free parameter
and determined all rates for various values in the range
0.7–1.35 nm, centered around the approximate size of the
ligand.

As described in Materials and Methods, each of these rate
coefficients, ki, was calculated as the product of the surface
attachment rate coefficient, kbulk/surface, and the transition
probability, pi, to the respective state i. The former,
kbulk/surface ¼ ð730051100Þ ms�1ðmol=lÞ�1, was calcu-
lated from the Smoluchowski model (compare Eqs. 1 and
2) assuming a protein radius of 2:250:3 nm, which was
estimated from the structure. To test whether the (long-
time) behavior is actually described by a single rate coeffi-
cient, we first tested whether the binding from the bulk to the
entire surface is determined by diffusion only, in which case
the Smoluchowski model should provide an accurate
description.

To that end, Fig. 3 compares the (time-dependent) frac-
tion, ~pnonbindingðtÞ, of molecules that have not yet bound to
the protein surface at time t, determined from all binding
trajectories of the low-concentration simulations, with the
probability, pnonbindingðtÞ, expected from Eq. 4. Given that
no fit parameters were used (the diffusion coefficient, D,
was determined from independent simulations), the agree-
ment is remarkable and justifies the use of the Smoluchow-
ski model for calculating kbulk/surface.

Notably, because our simulations capture the binding sta-
tistics only on relatively short timescales, inclusion of the
initial influx term in Eq. 4 beyond the long-time limit,
kbulk/surfacez4pNADr (Fig. 3, brown line), is essential.
Combined with transition frequencies, pi, which were also
FIGURE 2 Locations of the binding site (red) and surface-binding states.

The stationary probability distribution of the ligand position revealed six

distinct maxima. These maxima were identified as the binding site (red)

and surface-binding states (yellow, green, blue, cyan, and magenta). To

see this figure in color, go online.
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calculated from the binding trajectories, the effective rate
coefficients, ki, were estimated.

With these rates and their dependence on dsurface=bulk at
hand, we can now compare the contributions of surface
diffusion and direct binding to the total on-rate coefficient.
To that end, all rates and rate coefficients were combined
into an effective on-rate coefficient, konðdsurface=bulkÞ (more
precisely, a reciprocal mean binding time, as described in
Materials and Methods), from the bulk into the binding
site (Fig. 4, green line). To quantify the contributions of
surface diffusion to kon, the figure also shows the effective
on-rate coefficient excluding the rate coefficient for direct
bulk-to-binding-site transitions, ksurface diffusion (Fig. 4,
dashed blue line). Finally, to estimate the effect of only
the surface-bound states on the binding rate, we have
calculated from the Markov-type model by how much the
Smoluchowski rate is affected by the presence of the sur-
face-bound states (Fig. 4, dashed orange line)

As expected, both kon and ksurface diffusion vary within a
factor of 3 for the different values of dsurface=bulk. Notably,
the best agreement with the measured on-rate coefficient
(Fig. 4, magenta line) is seen for the most restrictive
definition of the surface state. Importantly, and independent
of the particular choice of the surface-state definition,
ksurface diffusion is consistently almost 10 times smaller than
kon. Apparently, the contribution of surface diffusion to
the overall on-rate is small, such that the dominant process
is direct binding via the funnel. Further, because the binding
rate of the Smoluchowski model is essentially unchanged by
inclusion of the surface binding states and surface diffusion



FIGURE 4 Surface diffusion versus direct binding. Shown are binding

rates kon (green line) and ksurface diffusion (blue dash-dotted line) as a function

of the surface-state cut-off, dsurface=bulk. For comparison, kbulk/surface from

the simple Smoluchowski model (yellow dashed line) and a Smoluchowski

model including transient surface-binding states (orange dashed line), as

well as the measured on-rate coefficient (magenta dash-dotted line), are

also shown. To see this figure in color, go online.
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(Fig. 4, orange line), we conclude that the funnel is the main
cause for the slow measured on-rate.
Binding-funnel model

This finding suggests that the observed slow binding should
be accounted for by an appropriate funnel model. We
will therefore derive such a funnel model from our MD
simulations and test whether it correctly predicts the
measured on-rate.

Visual inspection of ligand ensembles at three different
binding reaction coordinates x (defined by RMSD to the
bound configuration; see Fig. 5) readily reveals that during
binding, the configurations of the ensembles become
increasingly restricted and oriented. Apparently, binding oc-
FIGURE 5 Ligand ensembles for three different distances to the binding site,

0.3 nm (C). The ligand configurations are drawn as colored sticks, showing the

decreasing RMSD, increasing translational and rotational confinement was obser
curs via gradual translational and rotational confinement,
motivating the funnel model.

This translational and rotational confinement implies an
entropic cost. Combined with the enthalpic contribution
from interactions with the binding site, this entropic cost
leads to a free-energy barrier that may explain the experi-
mental slow on-rate. To calculate the on-rate coefficient,
kon;funnel, via the funnel from our simulations, we expressed
the on-rate as a product of two factors, 1) the (diffusive) rate
to reach a translationally and rotationally confined volume
(Fig. 1, B and C, blue and green sketches), and 2) the prob-
ability, pðbindÞ, of overcoming the remaining free-energy
barrier toward the binding site (Fig. 1 B, red arrows).

A study by �Solc and Stockmayer (48) showed that the rate
coefficient to reach such a translationally and rotationally
confined volume adopts the same form as that of the simple
Smoluchowski model, albeit with an additional factor,
UðxÞ< 1, which describes the effect of the rotational
confinement,

kon;funnel ¼ 4pNAD rðxÞ � UðxÞ � pðbind j xÞ: (7)

Here, the translational confinement within the binding fun-

nel is described by a Smoluchowski term, 4pNADrðxÞ,
where rðxÞ (Fig. 1 B, blue circle radius) is the effective
radius of the target volume at a given reaction coordinate
x, here defined as the above RMSD of the ligand from its
bound conformation.

�Solc and Stockmayer (49) also showed that rotational
confinement of fast rotational degrees of freedom does not
affect the on-rate. Because cAMP is roughly six times
more extended along its main axis, we assume that rotation
around the main ligand axis is fast with respect to the mean
first-passage time from the target volume to the free-energy
barrier and can thus be neglected. Hence, in Eq. 7, only the
confinement of the orientation of the main axis (Fig. 1 B,
green) is considered, approximated by the solid angle,
UðxÞ, sampled by the ligand axis at a given reaction coordi-
nate x within the binding funnel.
measured by their binding-site RMSD values of 0.8 nm (A), 0.6 nm (B),and

ir main orientation. The bound ligand configuration is shown in red. With

ved, as described by the funnel model. To see this figure in color, go online.
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A B FIGURE 6 Translational (A) and rotational (B)

confinement of the ligand during binding.

(A) The blue line indicates the target radii, rðxÞ
(compare Fig. 1 B, blue circle), during binding,

estimated from the binding trajectories, as

described in the text. The turquoise and gray lines

show the same estimate using only 50% and

20%, respectively, of the binding trajectories as

data. (B) Available rotational space, measured by

the estimated solid angle, UðxÞ, formed by the

major axes of an ensemble of ligand configura-

tions. The accessible solid angle is shown for

the subset of trajectories for which ligand binding

occurs (green), as well as for the full set of

trajectories (black dashed line). Due to the construction, a value of U ¼ 0:9 corresponds to no rotational confinement. For a reaction coordinate value of

x < [0.8] nm, a rapidly increasing rotational confinement was observed. To see this figure in color, go online.
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FIGURE 7 Ratio of unbinding and binding committor functions,

pðunbind j xÞ=pðbind j xÞ. Different color intensities represent different

values of the lower threshold, xbound. To see this figure in color, go online.
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So far, no specific choice of x has been made. Indeed, we
will assume that the on-rate given by Eq. 7 is independent of
x for values of x outside the maximum of the binding
free energy. Comparing Fig. 1, B and C, this assumption
is plausible as long as, within this uphill part, there are no
other contributions to the free-energy barrier. In this case,
the slower rate to the more confined volume shown in
Fig. 1 C is compensated by the increased probability of
crossing the barrier.

To test whether the rate estimate (Eq. 7) is indeed inde-
pendent of x, we quantified the confinement by determining
rðxÞ, UðxÞ, and pðbind j xÞ from our simulation data as
functions of x; subsequently, we will calculate kon;funnel via
Eq. 7. Further, it will be tested whether a one-dimensional
coordinate suffices to describe the binding kinetics.

Translational and rotational confinement

To quantify the translational confinement, we determined
for every ligand configuration the most similar configura-
tion, in terms of RMSD, among the other binding trajec-
tories. The radius of the ensemble of COMs of these
ligand configurations (see Materials and Methods), subese-
quently referred to as the ‘‘neighborhood-cloud’’ radius,
serves as an estimate for rðxÞ (Fig. 6 A, blue line). As can
be seen, rðxÞ decreases monotonously with decreasing bind-
ing-site RMSD x, which is consistent with the picture of a
binding funnel.

To test whether the estimate of the target radius is subject
to potentially insufficient sampling, we performed the same
analysis using only every second and every fifth binding tra-
jectory (Fig. 6, turquoise and gray lines). Apparently, the
estimated target radius depends only weakly on sample
size and thus can be considered sufficiently converged.

To quantify the rotational confinement, Fig. 6 B (solid
line) shows the solid angle, UðxÞ, covered by an ensemble
of ligand configurations from those trajectories for which
successful binding occurred as a function of their reaction
coordinate x (see Materials and Methods). As can be
seen, the ligand is free to assume almost any orientation
for x > 0:8 nm, whereas for smaller RMSD values, the
1674 Biophysical Journal 111, 1668–1678, October 18, 2016
available rotational space abruptly narrows down within a
relatively short reaction coordinate interval. Interestingly,
when also including in the analysis those trajectories that
do not proceed toward binding (Fig. 6 B, dashed line), a
weaker rotational confinement is seen, which commences
at smaller x. Apparently, correct ligand orientation increases
the probability for subsequent binding.

Barrier-crossing probability

Next, we determined the binding committor, pðbind j xÞ
(Fig. 1 B, red arrow). Here, successful binding was defined
as reaching a lower threshold, xbind (resembling the point at
which the ligand becomes fluorescent in the experiments),
before reaching a larger threshold, xunbound.

Fig. 7 shows ratios of the unbinding committor and the
binding committor as a function of x. Because the experi-
mental value of xbound is not known, the ratios are shown
for six different values of xbound chosen from a large range.
As expected, the ratio increases monotonously with
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increasing x. A similar log-linear dependency is seen for all
choices of xbound, albeit with a horizontal displacement.
Such displacement may be due to recrossing events, which
are more likely for smaller xbound, or, alternatively, to the
fact that a single one-dimensional time-independent free-
energy barrier does not describe the binding kinetics
properly.

To distinguish between these two cases and to test
whether a funnel model with a one-dimensional reaction co-
ordinate is indeed an accurate description of the binding
observed in the atomistic simulations, we compared the
above binding committors with binding committors from
BD simulations in a one-dimensional diffusion model. To
that end, we generated BD trajectories in an inverse har-
monic potential, UðxÞ ¼ �ða=2Þðx � xbarrierÞ2, with two
free parameters, a and xbarrier, representing the position
and curvature of the barrier, respectively. From these trajec-
tories, committor curves were calculated similarly to those
in the MD simulations, i.e., by counting how often identical
lower and upper thresholds were crossed (Fig. 8). Best
agreement between all MD and BD committor ratios simul-
taneously was obtained for a ¼ 18 kJ mol�1 nm�2 and
xbarrier ¼ 0:45 nm.
FIGURE 8 Comparison of pðunbind j xÞ=pðbind j xÞ ratios derived from M

potential BD model (black). With only two fitting parameters (barrier top positi

dinate values, x, and binding thresholds, xbound, is achieved. To see this figure i
As can be seen, all committor functions of the one-dimen-
sional diffusion model and the MD simulations agree
remarkably well, despite the choice of the simplest possible
potential function. This result shows that the observed
binding kinetics can indeed be described well by a one-
dimensional binding-funnel model with a harmonic
shaped free-energy barrier. Already, at the barrier top
(x ¼ 0:45 nm), considerable orientational restriction of the
ligand ensemble is observed (Fig. 9), underscoring the rele-
vance of orientational restriction for the free-energy barrier
and, hence, the binding kinetics.

Determination of on-rate estimate

With rðxÞ,UðxÞ, and pðbind j xÞ at hand, Eq. 7 can be used to
calculate the binding on-rate coefficient, kon;funnel. Prerequi-
site for the description of the binding kinetics with a single
rate coefficient is that the rate is independent—at least over
a certain range—of the particular choice of x. To test whether
this is actually the case, Fig. 10 shows kon;funnel as a function
of x for different bound-state threshold values, xbound.

As can be seen, the on-rate estimate is indeed essentially
independent of x between 0.6 nm and 0.8 nm, supporting the
notion of a single rate. For positions x < 0:55 nm of the
D simulations (red) with those obtained for a simple inverted harmonic

on, xbarrier, and curvature, a), simultaneous agreement for all reaction coor-

n color, go online.
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FIGURE 9 Barrier top ensemble with a binding-site RMSD of

x ¼ 0:45 nm. The protein (cyan) is shown as an average structure. To see

this figure in color, go online.

Voß et al.
target volume close to the barrier top, the rate coefficient
deviates from this constant value. Reconsidering the as-
sumptions of our model, we speculate that enthalpic interac-
tions between the ligand and the protein become relevant in
this region, such that the free-diffusion (Smoluchowski) es-
timate for the bulk-to-target-volume kinetics is no longer
valid. Vice versa, this result shows that before crossing the
barrier top, the free-energy landscape for ligand binding is
dominated by entropy, i.e., translational and orientational
restriction of the ligand. The decrease of kon;funnel for
x > 0:8 nm to zero results from our choice of the unbinding
threshold value, xunbound ¼ 1 nm and is irrelevant in this
context.

Depending on the particular choice of xbound, the esti-
mated on-rate between 15 and 40 ms�1ðmol=lÞ�1 varies by
less than a factor of 3, reflecting the fact that, in the
experiment, the bound state is defined by the complex
FIGURE 10 Comparison of the estimated on-rate coefficient, kon;funnel
(blue lines), with the measured one (magenta) as a function of the

target volume position, x, for multiple lower thresholds, xbound. For

0:6 nm< x< 0:8 nm, the estimated on-rate coefficient is almost indepen-

dent of x, justifying the assumption of the funnel model. Within the range

of considered values of xbound, the on-rate estimate varies only by a factor

of 3. To see this figure in color, go online.
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photophysics of the dye and, in the absence of a more
accurate quantum-mechanical treatment, is not precisely
defined. We should also note that the bound state
considered here and probed by the dye label differs from
the NMR bound structure (15,16) in that the latter is charac-
terized by a subsequent closure of the binding site, which
markedly enhances the affinity and slows down the ligand
dissociation rate, but does not severely affect the on-rate.
Given this experimental uncertainty, comparison with the
experimentally determined on-rate of 26ms�1ðmol=lÞ�1

(17) (Fig. 10, magenta line) shows that our model predicts
the binding kinetics quite accurately. Such quantitative
agreement is remarkable and underscores the accuracy of
the MD binding simulations as well as that of the funnel
model.
CONCLUSIONS

Motivated by the striking discrepancy between the slow
measured on-rate and an estimate from a simple Smolu-
chowski model, we have quantified the kinetics of cAMP
binding to the binding site of the CNBD of MloK1. Using
over 900 MD simulations of spontaneous ligand binding,
two possible models for the binding pathway were
considered.

According to the first model, the dominant process is tran-
sient and unspecific ligand binding to the protein surface,
with subsequent diffusion along the surface to the binding
site via several intermediate surface binding states. In this
scenario, the surface diffusion rates and the surface detach-
ment rates would determine the on-rate. According to the
second model, the ligand approaches the binding site
directly via a binding funnel which constrains the transla-
tional and rotational degrees of freedom. Here, these con-
straints would imply an entropic barrier, which in turn
would determine the on-rate.

Multiple binding events were observed in the simulations,
including both transient binding to five main surface binding
sites with subsequent diffusion and direct binding to the
ligand-binding site. From this trajectory set, all associated
surface diffusion, detachment, and binding rates were deter-
mined, thus providing a quantitative mesoscopic description
of the unexpectedly complex ligand-binding process. Ac-
cording to this model, the surface diffusion pathways—
taken together—contribute only ~10% to the total binding
rate, and most ligands bind directly to the binding site.
Further, the presence of the surface binding ‘‘traps’’ alone
leaves the Smoluchowski binding rate essentially un-
changed and therefore is not the main cause for the drasti-
cally reduced binding rate.

We therefore asked if the above discrepancy can be ex-
plained in terms of an appropriate funnel model, the key de-
terminants of which are a gradual confinement of the ligand
motion and an associated free-energy barrier. Quantifying
translational and rotational confinement and the binding
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committor from the MD trajectories, we estimated the on-
rate coefficient to be between 15 and 40 ms�1ðmol=lÞ�1.
This on-rate coefficient agrees well with the experimentally
determined value (17) of kon ¼ 26 ms�1ðmol=lÞ�1.

The exclusion of the surface diffusion model and the
agreement of the prediction from the funnel model with
the measured on-rate strongly supports the binding funnel
model. Further, the uphill part of its free-energy barrier
seems to be mainly entropic and caused by translational
and rotational confinement of the ligand.

Although only cAMP binding to the CNBD of MloK1
was studied here, we consider it likely that similar binding
models can properly describe the binding of other secondary
messengers such as cyclic guanosine monophosphate, as
well as many other ligand/receptor systems.

In the binding funnel model presented here, the on-rate is
mainly limited by the spatial and rotational confinement,
i.e., by entropic effects. Our funnel model therefore predicts
that the on-rate should only depend weakly on temperature,
and should mainly correlate with the temperature depen-
dency of the diffusion coefficient of the respective ligand.
This prediction suggests an experimental test for the pro-
posed funnel model.
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