
Best bang for your buck: GPU nodes for GROMACS

biomolecular simulations

Carsten Kutzner,∗,† Szilárd Páll,‡ Martin Fechner,† Ansgar Esztermann,† Bert L.

de Groot,† and Helmut Grubmüller†

Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am

Fassberg 11, 37077 Göttingen, Germany, and Theoretical and Computational Biophysics, KTH

Royal Institute of Technology, 17121 Stockholm, Sweden

E-mail: ckutzne@gwdg.de

Abstract

The molecular dynamics simulation package GROMACS runs efficiently on a wide vari-

ety of hardware from commodity workstations to high performance computing clusters. Hard-

ware features are well exploited with a combination of SIMD, multi-threading, and MPI-based

SPMD / MPMD parallelism, while GPUs can be used as accelerators to compute interactions

offloaded from the CPU. Here we evaluate which hardware produces trajectories with GRO-

MACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked com-

pute nodes with various CPU / GPU combinations to identify optimal compositions in terms of

raw trajectory production rate, performance-to-price ratio, energy efficiency, and several other

criteria. Though hardware prices are naturally subject to trends and fluctuations, general ten-

dencies are clearly visible. Adding any type of GPU significantly boosts a node’s simulation

∗To whom correspondence should be addressed
†Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11,

37077 Göttingen, Germany
‡Theoretical and Computational Biophysics, KTH Royal Institute of Technology, 17121 Stockholm, Sweden

1

ar
X

iv
:1

50
7.

00
89

8v
1

 [
cs

.D
C

]
 3

 J
ul

 2
01

5

ckutzne@gwdg.de

performance. For inexpensive consumer-class GPUs this improvement equally reflects in the

performance-to-price ratio. Although memory issues in consumer-class GPUs could pass un-

noticed since these cards do not support ECC memory, unreliable GPUs can be sorted out with

memory checking tools. Apart from the obvious determinants for cost-efficiency like hard-

ware expenses and raw performance, the energy consumption of a node is a major cost factor.

Over the typical hardware lifetime until replacement of a few years, the costs for electrical

power and cooling can become larger than the costs of the hardware itself. Taking that into

account, nodes with a well-balanced ratio of CPU and consumer-class GPU resources produce

the maximum amount of GROMACS trajectory over their lifetime.

1 Introduction

Many research groups in the field of molecular dynamics (MD) simulation and also computing

centers need to make decisions on how to set up their compute clusters for running the MD codes.

A rich variety of MD simulation codes is available, among them CHARMM,1 Amber,2 Desmond,3

LAMMPS,4 ACEMD,5 NAMD,6 and GROMACS7,8. Here we focus on GROMACS, which is

among the fastest ones, and provide a comprehensive test intended to identify optimal hardware in

terms of MD trajectory production per investment.

One of the main benefits of GROMACS is its bottom-up performance-oriented design aimed

at highly efficient use of the underlying hardware. Hand-tuned compute kernels allow utilizing

the single instruction multiple data (SIMD) vector units of most consumer and HPC processor

platforms, while OpenMP multi-threading and GROMACS’ built-in thread-MPI library together

with non-uniform memory access (NUMA)-aware optimizations allow for efficient intra-node par-

allelism. By employing a neutral-territory domain decomposition implemented with MPI, a sim-

ulation can be distributed across multiple nodes of a cluster. Beginning with version 4.6, the

compute-intensive calculation of short-range non-bonded forces can be offloaded to graphics pro-

cessing units (GPUs), while the CPU concurrently computes all remaining forces such as long-

range electrostatics, bonds, etc., and updates the particle positions.9 Additionally, through multiple

2

program multiple data (MPMD) task-decomposition the long-range electrostatics calculation can

be offloaded to a separate set of MPI ranks for better parallel performance. This multi-level het-

erogeneous parallelization has been shown to achieve strong scaling to as little as 100 particles

per core, at the same time reaching high absolute application performance on a wide range of

homogeneous and heterogeneous hardware platforms.10,11

A lot of effort has been invested over the years in software optimization, resulting in GRO-

MACS being one of the fastest MD software engines available today.7,12 GROMACS runs on a

wide range of hardware, but some node configurations produce trajectories more economically

than others. In this study we ask: What is the ‘optimal’ hardware to run GROMACS on and how

can optimal performance be obtained?

Using a set of representative biomolecular systems we determine the simulation performance

for various hardware combinations, with and without GPU acceleration. For each configuration

we aim to determine the run parameters with the highest performance at comparable numerical

accuracy. Therefore, this study also serves as a reference on what performance to expect for a

given hardware. Additionally, we provide the GROMACS input files for own benchmarks and the

settings that gave optimum performance for each of the tested node types.

Depending on the projects at hand, every researcher will have a somewhat different definition

of ‘optimal,’ but one or more of the following criteria C1 – C5 will typically be involved:

C1 – the performance-to-price ratio,

C2 – the achievable single-node performance,

C3 – the parallel performance or the ‘time-to-solution,’

C4 – the energy consumption or the ‘energy-to-solution,’

C5 – rack space requirements.

If on a fixed total budget for hardware, electricity, and cooling, the key task is to choose the

hardware that produces the largest amount of MD trajectory for the investment.

3

Here we focus on the most suitable hardware for GROMACS MD simulations. Due to the

domain-specific requirements of biomolecular MD and in particular that of algorithms and im-

plementation employed by GROMACS, such hardware will likely not be the best choice for a

general-purpose cluster that is intended to serve a broad range of applications. At the same time,

it is often possible to pick a middle-ground that provides good performance both for GROMACS

and other applications.

In the next section we will describe the key determinants for GROMACS performance, and

how GROMACS settings can be tuned for optimum performance on any given hardware. Using

two prototypic MD systems, we will then systematically derive the settings yielding optimal per-

formance for various hardware configurations. For some representative hardware setups we will

measure the power consumption to estimate the total MD trajectory production costs including

electrical power and cooling. Finally, for situations where simulation speed is crucial, we will look

at highly parallel simulations for several node types in a cluster setting.

2 Key determinants for GROMACS performance

GROMACS automatically detects a node’s hardware resources such as CPU cores, hardware thread

support, and compatible GPUs, at run time. The main simulation tool, mdrun, makes an educated

guess on how to best distribute the computational work onto the available resources. When exe-

cuted on a single node using its integrated, low-overhead thread-MPI library, built-in heuristics can

determine essentially all launch configurations automatically, including number of threads, ranks,

and GPU to rank assignment, allowing to omit some or all of these options. We use the term ‘rank’

for both MPI processes and thread-MPI ranks here; both have the same functionality, whereas

thread-MPI ranks can only be used within the same node. Additionally we use the term ‘threads’

or ‘threading’ to refer to OpenMP threads; each rank may thus comprise a group of threads. mdrun

optimizes the thread layout for data locality and reuse also managing its own thread affinity set-

tings. Default settings typically result in a fairly good simulation performance, and especially in

4

single-node runs and on nodes with a single CPU and GPU often optimal performance is reached

without optimizing settings manually. However, tuning a standard simulation setup with particle-

mesh Ewald13 (PME) electrostatics for optimum performance on a compute node with multiple

CPUs and GPUs or on a cluster of such nodes typically requires optimization of simulation and

launch parameters. To do this it is important to understand the underlying load distribution and

balancing mechanisms.14 The control parameters of these allow optimizing for simulation speed,

without compromising numerical accuracy.

Load distribution and balancing mechanisms

GROMACS uses domain decomposition (DD) to split up the simulation system into NDD = DDx×

DDy × DDz initially equally-sized domains and each of these is assigned to an MPI rank. If

dynamic load balancing (DLB) is active, the sizes of the DD cells are continuously adjusted during

the simulation to balance any uneven computational load between the domains.

In simulations using PME, MPMD parallelization allows dedicating a group of NPME ranks to

the calculation of the long-range (reciprocal space) part of the Coulomb interactions, while the

short-range (direct space) part is computed on the remaining NDD ranks. A particle-mesh eval-

uation is also supported for the long-range component of the Lennard-Jones potential with the

Lennard-Jones PME (LJ-PME) implementation available since the 5.0 release.11,15 The coarse

task-decomposition based on MPMD allows reducing the number of ranks involved in the costly

all-to-all communication during 3D-FFT needed by the PME computation, which greatly reduces

the communication overhead.7,14 For a large number of ranks Nrank � 8, peak performance is

therefore usually reached with an appropriate separation Nrank = NDD +NPME. The number NPME

of separate PME ranks can be conveniently determined with the g_tune_pme tool,1 which is dis-

tributed with GROMACS since version 4.5.

When a supported GPU is detected, the short-range part of Coulomb and van der Waals inter-

actions are automatically offloaded, while the long-range part, as needed for PME or LJ-PME, as

1From version 5.0 the tune_pme command of the gmx tool.

5

well as bonded interactions are computed on the CPU. For the PME computation, a fine PME grid

in combination with a short Coulomb cutoff results in a numerical accuracy comparable to that

of a coarse grid with a large cutoff. Therefore, by increasing short-range interaction cutoff while

also increasing the PME grid spacing, GROMACS can gradually shift computational load between

particle-particle (PP) and PME computation when the two are executed on different resources. This

is implemented in form of an automated static load-balancing between CPU and GPU or between

PP and PME ranks, and it is carried out during the initial few hundreds to thousands of simulation

steps.

By default, the GROMACS heterogeneous parallelization uses one GPU per DD cell, mapping

each accelerator to a PP rank. If explicit threading parameters are omitted, it also automatically

distributes the available CPU cores among ranks within a node by spawning the correct number

of threads per rank. Both thread count and order takes into account multiple hardware threads

per core with Hyper-Threading (HT). Using fewer and larger domains with GPU acceleration

allows reducing overhead associated to GPU offloading like CUDA runtime as well as kernel

startup and tail overheads.2 On the other hand, since the minimum domain size is limited by cutoff

and constraint restrictions, using larger domains also ensures that both small systems and systems

with long-range constraints can be simulated using many GPUs. Often however, performance

is improved by using multiple domains per GPU. In particular, with more CPUs (or NUMA

regions) than GPUs per node and also with large-core count processors, it is beneficial to reduce

the thread count per rank by assigning multiple, ‘narrower’ ranks to a single GPU. This reduces

multi-threading parallelization overheads, and by localizing domain data reduces cache coherency

overhead and inter-socket communication. Additional benefits come from multiple ranks sharing

a GPU as both compute kernels and transfers dispatched from each rank using the same GPU can

overlap in newer CUDA versions.

CPU-GPU and domain-decomposition load balancing are triggered simultaneously at the be-

ginning of the run, which can lead to unwanted interaction between the two. This can have a

2Kernel ‘tail’ is the final, typically imbalanced part of a kernel execution across multiple compute units (of a GPU),
where some units already ran out of work while others are still active.

6

detrimental effect on the performance in cases where DD cells are, or as a result of DLB become

close in size to the cutoff in any dimension. In such cases, especially with pronounced DD load

imbalance, DLB will quickly scale domains in an attempt to remove imbalance reducing the do-

main sizes in either of the x, y, or z dimensions to a value close to the original buffered cutoff. This

will limit the CPU-GPU load-balancing in its ability to scale the cutoff, often preventing it from

shifting more work off of the CPU and leaving the GPUs under-utilized. Ongoing work aims to

eliminate the detrimental effect of this load balancer interplay with a solution planned for the next

GROMACS release.

Another scenario, not specific to GPU acceleration, is where DLB may indirectly reduce per-

formance by enforcing decomposition in an additional dimension. With DLB enabled the DD

needs to account for domain resizing when deciding on the number of dimensions required by the

DD grid. Without DLB the same number of domains may be obtained by decomposing in fewer

dimensions. Although decomposition in all three dimensions is generally possible, it is desirable

to limit the number of dimensions in order to reduce the volumes communicated. In such cases, it

can be faster to switch off DLB, to fully benefit from GPU offloading.

Making optimal use of GPUs

In addition to the load distribution and balancing mechanisms directly controlled by GROMACS,

with certain GPU boards additional performance tweaks may be exploited. NVIDIA Tesla cards

starting with the GK110 micro-architecture as well as some Quadro cards support a so-called

‘application clock’ setting. This feature allows using a custom GPU clock frequency either higher

or lower than the default value. Typically, this is used as a manual frequency boost to trade available

thermal headroom for improved performance, but it can also be used to save power when lower

GPU performance is acceptable. In contrast, consumer GPUs do not support application clocks

but instead employ an automated clock scaling (between the base and boost clocks published as

part of the specs). This can not be directly controlled by the user.

A substantial thermal headroom can be available with compute applications because parts of

7

T

GPU freq

Figure 1: Thermal throttling of the GPU clock frequency on a GeForce GTX TITAN. Starting
from a cool, idle state at time t = 0, at about T = 36 ◦C, the GPU is put under normal GROMACS
load. The clock frequency is first scaled to 1,006 MHz, but with the temperature quickly increasing
due to the fan speed being capped at the default 60%, the GPU quickly reaches T = 80 ◦C, starts
throttling, gradually slowing down to 941 MHz.

the GPU board are frequently left under- or unutilized. Graphics-oriented functional units, part

of the on-board GDDR memory, and even the arithmetic units may idle, especially in case of

applications relying on heterogeneous parallelization. In GROMACS the CPU-GPU concurrent

execution is possible only during force computation, and the GPU is idle most of the time outside

this region, typically for 15 – 40% of a time step. This leaves enough thermal headroom to allow

setting the highest application clock on all GPUs to date (see Figure 4 on p. 24).

Increasing the GPU core clock rate yields a proportional increase in non-bonded kernel per-

formance. This will generally translate into improved GROMACS performance, but its magnitude

depends on how GPU-bound the specific simulation is. The expected performance gain is highest

in strongly GPU-bound cases (where the CPU waits for results from GPU). Here, the reduction

in GPU kernel time translates into reduction in CPU wait time hence improved application per-

formance. In balanced or CPU-bound cases the effective performance gain will often be smaller

and will depend on how well can the CPU-GPU load-balancing make use of the increased GPU

performance. Note that there is no risk involved in using application clocks; even if a certain

workload could generate high enough GPU load for the chip to reach its temperature or power

8

limit, automated frequency throttling will ensure that the limits will not be crossed. The upcoming

GROMACS version 5.1 will have built-in support for checking and setting the application clock of

compute cards at runtime.

Indeed, frequency throttling is more common in case of the consumer boards, and factory-

overclocked parts can be especially prone to overheating. Even standard clocked desktop-oriented

GeForce and Quadro cards come with certain disadvantages for compute use. Being optimized

for acoustics, desktop GPUs have their fan limited to approximately 60% of the maximum rotation

speed. As a result, frequency throttling will occur as soon as the GPU reaches its temperature limit,

while the fan is kept at ≤ 60%. As illustrated on Figure 1, a GeForce GTX TITAN board installed

in a well-cooled rack-mounted chassis under normal GROMACS workload starts throttling already

after a couple of minutes, successively dropping its clock speed by a total of 7% in this case. This

behavior is not uncommon and can cause load-balancing issues and application slowdown as large

as the GPU slowdown itself. The supporting information shows how to force the GPU fan speed

to higher value.

Another feature, available only with Tesla cards, is the CUDA multi-process server (MPS)

which provides two possible performance benefits. The direct benefit is that it enables the overlap

of tasks (both kernels and transfers) issued from different MPI ranks to the same GPU. As a result,

the aggregate time to complete all tasks the assigned ranks will decrease. E. g. in a parallel run

with 2000 atoms per MPI rank, using 6 ranks and a Tesla K40 GPU with CUDA MPS enabled

we measured 30% reduction in the total GPU execution time compared to running without MPS.

A secondary, indirect benefit is that in some cases the CPU-side overhead of the CUDA runtime

can be greatly reduced when, instead of the pthreads-based thread-MPI, MPI processes are used

(in conjunction with CUDA MPS to allow task overlap). Although CUDA MPS is not completely

overhead-free, at high iteration rates of < 1 ms/step quite common for GROMACS, the task launch

latency of the CUDA runtime causes up to 10−30% overhead, but this can decreased substantially

with MPI and MPS. In our previous example using 6-way GPU sharing the measured CUDA

runtime overhead was reduced from 16% to 4%.

9

3 Methods

We will start this section by outlining the MD systems used for performance evaluation. We will

give details about the employed hardware and about the software environment in which the tests

were done. Then we will describe our benchmarking approach.

Benchmark input systems

Table 1: Specifications of the two MD systems used for benchmarking.

MD system membrane protein (MEM) ribosome (RIB)
symbol used in plots • F

particles 81,743 2,136,412
system size (nm) 10.8×10.2×9.6 31.2×31.2×31.2
time step length (fs) 2 4
cutoff radiia (nm) 1.0 1.0
PME grid spacinga (nm) 0.120 0.135
neighborlist update freq. CPU 10 25
neighborlist update freq. GPU 40 40
load balancing time steps 5,000 – 10,000 1,000 – 5,000
benchmark time steps 5,000 1,000 – 5,000

aTable lists the initial values of Coulomb cutoff and PME grid spacing. These are adjusted for optimal load balance
at the beginning of a simulation.

We used two representative biomolecular systems for benchmarking as summarized in Table 1.

The MEM system is a membrane channel protein embedded in a lipid bilayer surrounded by water

and ions. With its size of ≈ 80 k atoms it serves as a prototypic example for a large class of setups

used to study all kinds of membrane-embedded proteins. RIB is a bacterial ribosome in water

with ions16 and with more than two million atoms an example of a rather large MD system that is

usually run in parallel across several nodes.

Software environment

The benchmarks have been carried out with the most recent version of GROMACS 4.6 available

at the time of testing (see 5th column of Table 2). Results obtained with version 4.6 will in the

10

Table 2: Overview of the tested node types with the used software stack. These nodes were com-
bined with various GPUs from Table 3.

Hardware per node Software stack (versions)

Processor(s) total RAM IB net- GRO- MPIa

cores (GB) work MACS GCC library CUDA

Intel Core i7-4770K 4 8 – 4.6.7 4.8.3 – 6.0
Intel Core i7-5820K 6 16 – 4.6.7 4.8.3 – 6.0
Intel Xeon E3-1270v2 4 16 QDR 4.6.5 4.4.7 Intel 4.1.3 6.0
Intel Xeon E5-1620 4 16 QDR 4.6.5 4.4.7 Intel 4.1.3 6.0
Intel Xeon E5-1650 6 16 QDR 4.6.5 4.4.7 Intel 4.1.3 6.0
Intel Xeon E5-2670 8 16 QDR 4.6.5 4.4.7 Intel 4.1.3 6.0
Intel Xeon E5-2670v2 10 32 QDR 4.6.5 4.4.7 Intel 4.1.3 6.0
Intel Xeon E5-2670v2 ×2 20 32 QDR 4.6.5 4.4.7 Intel 4.1.3 6.0
Intel Xeon E5-2680v2 ×2 20 64 FDR-14 4.6.7 4.8.4 IBM PE 1.3 6.5
Intel Xeon E5-2680v2 ×2 20 64 QDR 4.6.7 4.8.3 Intel 4.1.3 6.0
AMD Opteron 6380 ×2 32 32 – 4.6.7 4.8.3 – 6.0
AMD Opteron 6272 ×4 64 32 – 4.6.7 4.8.3 – –

aFor benchmarks across multiple nodes. On single nodes, GROMACS’ built-in thread-MPI library was used.

majority of cases hold for version 5.0 since the performance of CPU and GPU compute kernels

have not changed substantially. Moreover, as long as compute kernel, threading and heterogeneous

parallelization design remains largely unchanged, performance characteristics and optimization

techniques described here will translate to future versions, too.3

If possible, the hardware was tested in the same software environment by booting from a com-

mon software image; on external high performance computing (HPC) centers the provided soft-

ware environment was used. Table 2 summarizes the hard- and software situation for the various

node types. The operating system was Scientific Linux 6.4 in most cases with the exception of the

FDR-14 Infiniband-connected nodes that were running SuSE Linux Enterprise Server 11.

For the tests on single nodes, GROMACS was compiled with OpenMP threads and its built-in

thread-MPI library, whereas across multiple nodes Intel’s or IBM’s MPI library was used. In all

cases, FFTW 3.3.2 was used for computing fast Fourier transformations. This was compiled using

–enable-sse2 for best GROMACS performance.4 For compiling GROMACS, the best possible
3This is has been verified for version 5.1 which is in beta phase at the time of writing.
4Although FFTW supports the AVX instruction set, due to limitations in its kernel auto-tuning functionality, en-

11

SIMD vector instruction set implementation was chosen for the CPU architecture in question, i. e.

128-bit AVX with FMA4 and XOP on AMD and 256-bit AVX on Intel processors.

GROMACS can be compiled in mixed precision (MP) or in double precision (DP). DP treats

all variables with double precision accuracy, whereas MP uses single precision (SP) for most vari-

ables, as e. g. the large arrays containing positions, forces, and velocities, but double precision for

some critical components like accumulation buffers. It was shown that MP does not deteriorate

energy conservation.7 Since it produces 1.4 – 2× more trajectory in the same compute time, it is

in most cases preferable over DP.17 Therefore, we used MP for the benchmarking.

GPU acceleration

Table 3: Some GPU models that can be used by GROMACS. The upper part of the table lists HPC-
class Tesla cards, below are the consumer-class GeForce GTX cards. Checkmarks (3) indicate
which were benchmarked. For the GTX 980 GPUs, cards by different manufacturers differing in
clock rate were benchmarked (+ and ‡ symbols).

NVIDIA architec- CUDA clock rate memory SP throughput ≈ price
model ture cores (MHz) (GB) (Gflop/s) (e) (net)

Tesla K20Xa Kepler GK110 2,688 732 6 3,935 2,800 3

Tesla K40a Kepler GK110 2,880 745 12 4,291 3,100 3

GTX 680 Kepler GK104 1,536 1,058 2 3,250 300 3

GTX 770 Kepler GK104 1,536 1,110 2 3,410 320 3

GTX 780 Kepler GK110 2,304 902 3 4,156 390 3

GTX 780Ti Kepler GK110 2,880 928 3 5,345 520 3

GTX TITAN Kepler GK110 2,688 928 6 4,989 750 3

GTX TITAN X Maxwell GM200 3,072 1,002 12 6,156 –
Quadro M6000 Maxwell GM200GL 3,072 988 12 6,070 Fig. 5
GTX 970 Maxwell GM204 1,664 1,050 4 3,494 250 –
GTX 980 Maxwell GM204 2,048 1,126 4 4,612 430 3

GTX 980+ Maxwell GM204 2,048 1,266 4 5,186 450 3

GTX 980‡ Maxwell GM204 2,048 1,304 4 5,341 450 3

aSee Figure 4 for how performance varies with clock rate of the Tesla cards, all other benchmarks have been done
with the base clock rates reported in this table.

GROMACS 4.6 and later supports CUDA-compatible GPUs with compute capability 2.0 or

higher. Table 3 lists a selection of modern GPUs (of which all but the GTX 970 were benchmarked)

abling AVX support deteriorates performance on the tested architectures.

12

including some relevant technical information. The SP column shows the GPU’s maximum the-

oretical SP flop rate, calculated from the base clock rate (as reported by NVIDIA’s deviceQuery

program) times the number of cores times two floating-point operations per core and cycle. GRO-

MACS exclusively uses single precision floating point (and integer) arithmetic on GPUs and can

therefore only be used in mixed precision mode with GPUs. Note that at comparable theoretical SP

flop rate the Maxwell GM204 cards yield a higher effective performance than Kepler generation

cards due to better instruction scheduling and reduced instruction latencies.

Since the GROMACS CUDA non-bonded kernels are by design strongly compute-bound,9

GPU main memory performance has little impact on their performance. Hence, peak performance

of the GPU kernels can be estimated and compared within an architectural generation simply from

the the product of clock rate × cores. SP throughput is calculated from the base clock rate, but

the effective performance will greatly depend on the actual sustained frequency a card will run

at, which can be much higher. At the same time, frequency throttling can lead to performance

degradation as illustrated in Figure 1.

The price column gives an approximate net original price of these GPUs as of 2014. In general,

cards with higher processing power (Gflop/s) are more expensive, however the TITAN and Tesla

models have a significantly higher price due to their higher DP processing power (1,310 Gflop/s

in contrast to at most 210 Gflop/s for the 780Ti) and their larger memory. Note that unless an

MD system is exceptionally large, or many copies are run simultaneously, the extra memory will

almost never be used. For MEM, ≈ 50 MB of GPU memory is needed, and for RIB ≈ 225 MB.

Even an especially large MD system consisting of ≈ 12.5 M atoms uses just about 1,200 MB and

does therefore still fit in the memory of any of the GPUs found in Table 3.

Benchmarking procedure

The benchmarks were run for 2,000 – 15,000 steps, which translates to a couple of minutes wall

clock runtime for the single-node benchmarks. Balancing the computational load takes mdrun up to

a few thousand time steps at the beginning of a simulation. Since during that phase the performance

13

is neither stable nor optimal, we excluded the first 1,000 – 10,000 steps from measurements using

the -resetstep or -resethway command line switches. On nodes without a GPU, we always

activated DLB, since the benefits of a balanced computational load between CPU cores usually

outweigh the small overhead of performing the balancing (see for example Figure 3, black lines).

On GPU nodes the situation is not so clear due to the competition between DD and CPU-GPU

load balancing mentioned in Section 2. We therefore tested both with and without DLB in most of

the GPU benchmarks. All reported MEM and RIB performances are the average of two runs each,

with standard deviations on the order of a few percent (see Figure 4 for an example of how the data

scatter).

Determining the single-node performance

We aimed to find the optimal command-line settings for each hardware configuration by testing

the various parameter combinations as mentioned in Section 2. On individual nodes with Nc cores,

we tested the following settings using thread-MPI ranks:

(a) Nrank = Nc

(b) a single process with Nth = Nc threads

(c) combinations of Nrank ranks with Nth threads each, with Nrank × Nth = Nc (hybrid paralleliza-

tion)

(d) for Nc ≥ 20 without GPU acceleration, we additionally checked with g_tune_pme whether

separate ranks for the long-range PME part do improve performance

For most of the hardware combinations, we checked (a) – (d) with and without HT, if the processor

supports it. The supporting information contains a bash script that automatically performs tests

(a) – (c).

To share GPUs among multiple DD ranks, current versions of mdrun require a custom -gpu_id

string specifying the mapping between PP ranks and numeric GPU identifiers. To obtain opti-

mal launch parameters on GPU nodes, we automated constructing the -gpu_id string based on

14

the number of DD ranks and GPUs and provide the corresponding bash script in the supporting

information.

Determining the parallel performance

To determine the optimal performance across many CPU-only nodes in parallel, we ran g_tune_pme

with different combinations of ranks and threads. We started with as many ranks as cores Nc in

total (no threads), and then tested two or more threads per rank with an appropriately reduced

number of ranks as in (c), with and without HT.

When using separate ranks for the direct and reciprocal space parts of PME (N = NDD+NPME)

on a cluster of GPU nodes, only the NDD direct space ranks can make use of GPUs. Setting

whole nodes aside for the PME mesh calculation would mean leaving their GPU(s) idle. To pre-

vent leaving resources unused with separate PME ranks, we assigned as many direct space (and

reciprocal space) ranks to each node as there are GPUs per node, resulting in a homogeneous,

interleaved PME rank distribution. On nodes with two GPUs each, e. g., we placed N = 4 ranks

(NDD = NPME = 2) with as many threads as needed to make use of all available cores. The num-

ber of threads per rank may even differ for NDD and NPME. In fact, an uneven thread count can

be used to balance the compute power between the real and the reciprocal ranks. On clusters

of GPU nodes, we tested all of the above scenarios (a) – (c) and additionally checked whether a

homogeneous, interleaved PME rank distribution improves performance.

4 Results

This section starts with four pilot surveys that assess GPU memory reliability (i), and evaluate

the impact of compiler choice (ii), neighbor searching frequency (iii), and parallelization settings

(iv) on the GROMACS performance. From the benchmark results and the hardware costs we

will then derive for various node types how much MD trajectory is produced per invested e. We

will compare performances of nodes with and without GPUs and also quantify the performance

15

dependence on the GPU application clock setting. We will consider the energy efficiency of several

node types and show that balanced CPU-GPU resources are needed for a high efficiency. We

will show how running multiple simulations concurrently maximizes throughput on GPU nodes.

Finally, we will examine the parallel efficiency in strong scaling benchmarks for a selected subset

of node types.

GPU error rates

Opposed to the GeForce GTX consumer GPUs, the Tesla HPC cards offer error checking and

correction (ECC) memory. ECC memory, as also used in CPU server hardware, is able to detect

and possibly correct random memory bit-flips that may rarely occur. While in a worst-case scenario

such events could lead to silent memory corruption and incorrect simulation results, their frequency

is extremely low.18,19 Prior to benchmarking, we performed extensive GPU stress-tests on a total

of 297 consumer-class GPUs (Table 4) using tools that test for ‘soft errors’ in the GPU memory

subsystem and logic using a variety of proven test patterns.20 Our tests allocated the entire available

GPU memory and ran for ≥ 4,500 iterations, corresponding to several hours of wall-clock time.

The vast majority of cards were error-free, but for 8 GPUs, errors were detected. Individual error

rates differed considerably from one card to another with the largest rate observed for a 780Ti,

where during 10,000 iterations > 50 Million errors were registered. Here, already the first iteration

of the memory checker picked up > 1,000 errors. On the other end of the spectrum were cards

exhibiting only a couple of errors over 10,000 iterations, including the two problematic 980+.

Error rates were close to constant for each of the four repeats over 10,000 iterations. All cards with

detected problems were replaced.

Impact of compiler choice

The impact of the compiler version on the simulation performance is quantified in Table 5. From

all tested compilers, GCC 4.8 provides the fastest executable on both AMD and Intel platforms. On

GPU nodes, the difference between the fastest and slowest executable is at most 4%, but without

16

Table 4: Frequency of consumer-class GPUs exhibiting memory errors.

NVIDIA GPU memory # of cards # memtest # cards
model checker20 tested iterations with errors

GTX 580 memtestG80 1 10,000 –
GTX 680 memtestG80 50 4,500 –
GTX 770 memtestG80 100 4,500 –
GTX 780 memtestCL 1 50,000 –
GTX TITAN memtestCL 1 50,000 –
GTX 780Ti memtestG80 70 4×10,000 6
GTX 980 memtestG80 4 4×10,000 –
GTX 980+ memtestG80 70 4×10,000 2

GPUs it can reach 20%. Table 5 can also be used to normalize benchmark results obtained with

different compilers.

Impact of neighbor searching frequency

With the advent of the Verlet cutoff scheme implementation in version 4.6, the neighbor searching

frequency has become a merely performance-related parameter. This is enabled by the automated

pair list buffer calculation based on the a maximum error tolerance and a number of simulation

parameters and properties of the simulated system including search frequency, temperature, atomic

displacement distribution and the shape of the potential at the cutoff.9

Adjusting this frequency allows trading the computational cost of searching for the compu-

tation of short-range forces. As the GPU is idle during list construction on the CPU, reducing

the search frequency also increases the average CPU-GPU overlap. Especially in multi-GPU runs

where DD is done at the same step as neighbor search, decreasing the search frequency can have

considerable performance impact. Figure 2 indicates that the search frequency optimum is between

20 and 70 time steps. The performance dependence is most pronounced for values ≤ 20, where

performance quickly deteriorates. In our benchmarks we used a value of 40 on GPU nodes (see

Table 1).

17

Table 5: GROMACS 4.6 single-node performance with thread-MPI (and CUDA 6.0) using differ-
ent compiler versions on AMD and Intel hardware with and without GPUs. The last column shows
the speedup compared to GCC 4.4.7 calculated from the average of the speedups of the MEM and
RIB benchmarks.

Hardware Compiler MEM (ns/d) RIB (ns/d) av. speedup (%)

AMD 6380 × 2 GCC 4.4.7 14 0.99 0
GCC 4.7.0 15.6 1.11 11.8
GCC 4.8.3 16 1.14 14.7
ICC 13.1 12.5 0.96 −6.9

AMD 6380 × 2 GCC 4.4.7 40.5 3.04 0
with 2× GTX 980+ GCC 4.7.0 38.9 3.09 −1.2

GCC 4.8.3 40.2 3.14 1.3
ICC 13.1 39.7 3.09 −0.2

Intel E5-2680v2 × 2 GCC 4.4.7 21.6 1.63 0
GCC 4.8.3 26.8 1.86 19.1
ICC 13.1 24.6 1.88 14.6
ICC 14.0.2 25.2 1.81 13.9

Intel E5-2680v2 × 2 GCC 4.4.7 61.2 4.41 0
with 2× GTX 980+ GCC 4.8.3 62.3 4.69 4.1

ICC 13.1 60.3 4.78 3.5

18

MEM 10 ranks × 2 threads
MEM 4 ranks × 5 threads
MEM 2 ranks × 10 threads
RIB 4 ranks × 5 thr. (ns/d ×10)

Figure 2: Impact of neighbor searching frequency on the performance on a node with 2×E5-
2680v2 processors and 2×K20X GPUs. In the MEM benchmark the number of ranks and threads
per rank was also varied.

Influence of hybrid parallelization settings and DLB

The hybrid (OpenMP / MPI) parallelization approach in GROMACS can distribute computational

work on the available CPU cores in various ways. Since the MPI and OpenMP code paths exhibit

a different parallel scaling behaviour,10 the optimal mix of ranks and threads depends on the used

hardware and MD system, as illustrated in Figure 3.

For the CPU-only benchmarks shown in the figure (black lines), pure MPI parallelization yields

the highest performance, which is often the case on nodes without GPUs (see Fig. 4 in Ref.10).

For multi-socket nodes with GPU(s) and for nodes with multiple GPUs, the highest performance

is usually reached with hybrid parallelism (with an optimum at about 4 – 5 threads per MPI rank,

colored curves). The performance differences between the individual parallel settings can be con-

siderable: for the single-GPU setting of the MEM system, e. g., choosing 40 MPI ranks results in

less than half the performance of the optimal settings, which are 4 MPI ranks and 10 threads each

(24 ns/d compared to 52 ns/d, see blue line in Figure 3). The settings at the performance optimum are

19

threads
ranks

1
40

2
20

4
10

5
8

8
5

10
4

20
2

1
40

2
20

4
10

5
8

8
5

10
4

20
2

MEM RIB

no GPU

1 GPU

2 GPUs
3 GPUs

4 GPUs

with DLB
no DLB

Figure 3: Single-node performance as a function of the number of GPUs (color coded) and of how
the 40 hardware threads are exploited using a combination of MPI ranks and OpenMP threads.
Solid lines show performance with, dotted lines without DLB. Test node had 2× E5-2680v2
processors and 4× GTX 980+ GPUs. Left panel MEM, right panel RIB benchmark system.

20

provided in the benchmark summary Tables 6, 7, 11, and 12.

As described in Section 2, especially with GPUs, DLB may in some cases cause performance

degradation. A prominent example is the right plot of Figure 3, where the highest RIB perfor-

mances are recorded without DLB when using GPUs. However, there are also cases where the

performance is similar with and without DLB, as e. g. in the 4-GPU case of the left plot (light

blue).

Fitness of various node types

Tables 6 and 7 list single-node performances for a diverse set of hardware combinations and the

parameters that yielded peak performance. ‘DD grid’ indicates the number of DD cells per dimen-

sion, whereas ‘Nth’ gives the number of threads per rank. Since each DD cell is assigned to exactly

one MPI rank, the total number of ranks can be calculated from the number of DD grid cells as

Nrank = DDx ×DDy ×DDz plus the number NPME of separate PME ranks, if any. Normally the

number of physical cores (or hardware threads with HT) is the product of the number of ranks and

the number of threads per rank. For MPI parallel runs, the DLB column indicates whether peak

performance was achieved with (symbol 3) or without DLB (symbol 7) or whether the benchmark

was done exclusively with enabled DLB (symbol (3)).

The ‘cost’ column for each node gives a rough estimate on the net price as of 2014 and should

be taken with a grain of salt. Retail prices can easily vary by 15 – 20% over a relatively short

period. In order to provide a measure of ‘bang for buck,’ using the collected cost and performance

data we derive a performance-to-price ratio metric shown in the last column. We normalize with

the lowest performing setup to get ≥ 1 values. While this ratio is only approximate, it still provides

insight into which hardware combinations are significantly more competitive than others.

When a single CPU with 4 – 6 physical cores is combined with a single GPU, using only thread-

ing without DD resulted in the best performance. On CPUs with 10 physical cores, peak perfor-

mance was usually obtained with thread-MPI combined with multiple threads per rank. When

using multiple GPUs, where at least Nrank = NGPU ranks is required, in most cases an even larger

21

Table 6: Single-node performance P of the MEM benchmark on various node types. U = rack
space requirements in units per node, D for desktop chassis. Prices do not include IB network
adapter.

U processor(s) CPUs × GPUs DD grid NPME Nth DLB P ≈ cost ns/d per
clock rate cores x y z (ns/d) (e net) 205 e

D i7-4770K 1 × 4 – 2 3 1 2 1 (3) 7.4 800 1.9
(3.4–3.9 GHz) 980‡ 1 1 1 – 8 – 26.1 1,250 4.3

D i7-5820K 1 × 6 – 3 3 1 3 1 3 10.1 850 2.4
(3.3–3.6 GHz) 770 1 1 1 – 12 – 26.5 1,170 4.6

980‡ 1 1 1 – 12 – 32 1,390 4.7

1 E3-1270v2 1 × 4 – 1 1 1 – 8 – 5.3 1,080 1
(3.5 GHz) 680 1 1 1 – 8 – 20 1,380 3

770 1 1 1 – 8 – 20.5 1,400 3

1 E5-1620 1 × 4 680 1 1 1 – 8 – 21 1,900 2.3
(3.6–3.8 GHz) 770 1 1 1 – 8 – 21.7 1,900 2.3

780 1 1 1 – 8 – 21.8 1,970 2.3
780Ti 1 1 1 – 8 – 23.4 2,100 2.3
TITAN 1 1 1 – 8 – 23.8 2,330 2.1

1 E5-1650 1 × 6 680 1 1 1 – 12 – 22.6 2,170 2.1
(3.2–3.8 GHz) 770 1 1 1 – 12 – 23.4 2,170 2.2

780 1 1 1 – 12 – 25 2,240 2.3
780Ti 1 1 1 – 12 – 27 2,370 2.3
680×2 2 1 1 – 6 (3) 24.8 2,470 2.1
770×2 2 1 1 – 6 (3) 25.1 2,470 2.1

1 E5-2670 1 × 8 770 1 1 1 – 16 – 26.9 2,800 2
(2.6–3.3 GHz) 780 1 1 1 – 16 – 28.3 2,870 2

780Ti 1 1 1 – 16 – 29.6 3,000 2
TITAN 1 1 1 – 16 – 29.3 3,230 1.9
770×2 2 1 1 – 8 (3) 27.6 3,120 1.8

1 E5-2670v2 1 × 10 – 4 5 1 – 1 3 11.2 2,480 0.9
(2.5–3.3 GHz) 770 1 5 1 – 4 7 29 2,800 2.1

780 1 1 1 – 20 – 29.8 2,870 2.1
780Ti 1 5 1 – 4 (3) 31.5 3,000 2.2
TITAN 1 1 1 – 20 – 32.7 3,230 2.1
980 1 5 1 – 4 (3) 33.6 2,900 2.4
770×2 10 1 1 – 2 3 33.7 3,120 2.2
780Ti×2 10 1 1 – 2 (3) 35.7 3,520 2.1
980×2 10 1 1 – 2 (3) 36.8 3,330 2.3

4 E5-2670v2 2 × 10 – 8 5 1 – 1 3 21.4 3,360 1.3
(2.5–3.3 GHz) 770 8 1 1 – 5 7 35.9 3,680 2

770×2 10 1 1 – 4 3 51.7 4,000 2.6
2 780Ti 8 1 1 – 5 (3) 45.5 4,100 2.3

780Ti×2 10 1 1 – 4 3 56.9 4,620 2.5
780Ti×3 10 1 1 – 4 (3) 61.1 5,140 2.4
780Ti×4 10 1 1 – 4 (3) 64.4 5,660 2.3

2 E5-2680v2 2 × 10 – 8 2 2 8 1 3 26.8 4,400 1.2
(2.8–3.6 GHz) K20X×2 8 1 1 – 5 7 55.2 10,000 1.1

K40×2 8 1 1 – 5 7 55.9 10,600 1.1
980+ 4 1 1 – 10 3 52 4,850 2.2
980+ ×2 10 1 1 – 4 3 62.3 5,300 2.4
980+ ×3 10 1 1 – 4 3 65.1 5,750 2.3
980+ ×4 8 1 1 – 5 7 66.9 6,200 2.2

1 AMD 6272 (2.1) 4 × 16 – 5 5 2 14 1 3 23.7 3,670 1.3

4 AMD 6380 2 × 16 – 5 5 1 7 1 3 16 2,880 1.1
(2.5 GHz) TITAN 8 1 1 – 4 7 32.5 3,630 1.8

770×2 8 1 1 – 4 3 35.8 3,520 2.1
980+ 8 1 1 – 4 7 35.6 3,330 2.2
980+ ×2 8 1 1 – 4 7 40.2 3,780 2.2

22

Table 7: Same as Table 6, but for the RIB benchmark.

U processor(s) CPUs × GPUs DD grid NPME Nth DLB P ≈ cost ns/d per
clock rate cores x y z (ns/d) (e net) 3600 e

D i7-4770K 1 × 4 – 2 3 1 – 1 (3) 0.51 800 2.3
(3.4–3.9 GHz) 980‡ 8 1 1 – 1 7 1.3 1,250 3.7

D i7-5820K 1 × 6 – 3 3 1 3 1 3 0.69 850 2.9
(3.3–3.6 GHz) 770 4 1 1 – 3 – 1.54 1,170 4.7

980‡ 1 1 1 – 12 – 1.8 1,390 4.7

1 E3-1270v2 1 × 4 – 1 1 1 – 8 – 0.3 1,080 1
(3.5 GHz) 680 1 1 1 – 8 – 0.89 1,380 2.3

770 1 1 1 – 8 – 0.91 1,400 2.3

1 E5-1620 1 × 4 680 1 1 1 – 8 – 1.03 1,900 2
(3.6–3.8 GHz) 770 1 1 1 – 8 – 1.02 1,900 1.9

780 1 1 1 – 8 – 1.06 1,970 1.9
780Ti 1 1 1 – 8 – 1.14 2,100 2
TITAN 1 1 1 – 8 – 1.11 2,330 1.7

1 E5-1650 1 × 6 680 1 1 1 – 12 – 1.09 2,170 1.8
(3.2–3.8 GHz) 770 1 1 1 – 12 – 1.13 2,170 1.9

780 1 1 1 – 12 – 1.17 2,240 1.9
780Ti 1 1 1 – 12 – 1.22 2,370 1.9
680×2 2 1 1 – 6 (3) 1.4 2,470 2
770×2 2 1 1 – 6 (3) 1.41 2,470 2.1

1 E5-2670 1 × 8 770 1 1 1 – 16 – 1.39 2,800 1.8
(2.6–3.3 GHz) 780 8 1 1 – 2 (3) 1.6 2,870 2

780Ti 1 1 1 – 16 – 1.64 3,000 2
TITAN 4 1 1 – 4 (3) 1.67 3,230 1.9
770×2 2 1 1 – 8 (3) 1.72 3,120 2

1 E5-2670v2 1 × 10 – 4 2 2 4 1 3 0.79 2,480 1.1
(2.5–3.3 GHz) 770 10 1 1 – 2 7 1.78 2,800 2.3

780 1 1 1 – 20 – 1.6 2,870 2
780Ti 5 1 1 – 4 (3) 2.06 3,000 2.5
TITAN 1 1 1 – 20 – 1.75 3,230 2
980 5 1 1 – 4 (3) 2.22 2,900 2.8
770×2 10 1 1 – 2 7 2.16 3,120 2.5
780Ti×2 4 1 1 – 5 (3) 2.31 3,520 2.4
980×2 5 1 1 – 4 (3) 2.34 3,330 2.5

4 E5-2670v2 2 × 10 – 8 2 2 8 1 3 1.54 3,360 1.7
(2.5–3.3 GHz) 770 20 1 1 – 2 7 2.71 3,680 2.7

770×2 8 5 1 – 1 7 3.41 4,000 3.1
2 780Ti 8 5 1 – 1 (3) 3.3 4,100 2.9

780Ti×2 8 1 1 – 5 7 4.02 4,620 3.1
780Ti×3 8 5 1 – 1 (3) 4.17 5,140 2.9
780Ti×4 8 5 1 – 1 (3) 4.17 5,660 2.7

2 E5-2680v2 2 × 10 – 10 3 1 10 1 3 1.86 4,400 1.5
(2.8–3.6 GHz) K20X×2 20 1 1 – 2 7 3.99 10,000 1.4

K40×2 20 1 1 – 2 7 4.09 10,600 1.4
980+ 20 1 1 – 2 7 3.99 4,850 3
980+ ×2 20 1 1 – 2 7 4.69 5,300 3.2
980+ ×3 20 1 1 – 2 7 4.85 5,750 3
980+ ×4 20 1 1 – 2 7 4.96 6,200 2.9

1 AMD 6272 (2.1) 4 × 16 – 5 5 2 14 1 3 1.78 3,670 1.7

4 AMD 6380 2 × 16 – 5 5 1 7 1 3 1.14 2,880 1.4
(2.5 GHz) TITAN 16 2 1 – 1 7 2.58 3,630 2.6

770×2 16 1 1 – 2 7 2.74 3,520 2.8
980+ 16 1 1 – 2 7 2.81 3,330 3
980+ ×2 16 1 1 – 2 7 3.14 3,780 3

23

number of ranks (multiple ranks per GPU) was optimal.

Speedup with GPUs

Tables 6 and 7 show that GPUs increase the performance of a compute node by a factor of 1.7 – 3.8.

In case of the inexpensive GeForce consumer cards, this also reflects in the node’s performance-

to-price ratio, which increases by a factor of 2 – 3 when adding at least one GPU (last column).

When installing a significantly more expensive Tesla GPU, the performance-to-price ratio is nearly

unchanged. Because both the performance itself (criterion C2, as defined in the introduction) as

well as the performance-to-price ratio (C1) are so much better for nodes with consumer-class

GPUs, we focused our efforts on nodes with this type of GPU.

When looking at single-CPU nodes with one or more GPUs (see third column of Tables 6 and

7), the performance benefit obtained by a second GPU is < 20 % for the 80 k atom system (but

largest on the 10-core machine), and on average about 25 % for the 2 M atom system, whereas the

performance-to-price ratio is nearly unchanged.

The dual-GPU, dual-socket E5-2670v2 nodes are like the single-GPU, single-socket E5-2670v2

nodes with the hardware of two nodes combined. The dual-CPU nodes with several GPUs yielded

the highest single-node performances of all tested nodes, up to ≈ 67 ns/d for MEM and ≈ 5 ns/d for

RIB on the E5-2680v2 nodes with four GTX 980+. The performance-to-price ratio (C1) of these

20-core nodes seems to have a sweet spot at two installed GPUs.

GPU application clock settings

For the Tesla K20X and K40 cards we determined how application clock settings influence the

simulation performance (as mentioned previously, GeForce cards do not support manual adjust-

ment of the clock frequency). While the default clock rate of the K20X is 732 MHz, it supports

seven clock rates in the range of 614 – 784 MHz. The K40 defaults to 745 MHz and supports four

rates in the range of 666 – 875 MHz. Application clock rates were set using NVIDIA’s system

management interface tool. E. g., nvidia-smi -ac 2600,875 -i 0 sets the GPU core clock rate to

24

600 650 700 750 800 850 900
GPU MHz

40

45

50

55
p
e
rf

o
rm

a
n
ce

 (
n
s/

d
)

2x K20X

2x K40

1x K20X

1x K40

600 650 700 750 800 850 900
GPU MHz

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

p
e
rf

o
rm

a
n
ce

 (
n
s/

d
)

RIBMEM

2x K20X

2x K40

1x K20X

1x K40

Figure 4: Performance as a function of the GPU application clock rate on a node with 2×E5-
2680v2 processors and K20x (dark blue, dark green) or K40 (light blue, light green) GPUs. Grey
vertical lines indicate default clock rates. MEM, circles (RIB, stars) benchmarks were run using
the settings found in Table 6 (Table 7).

875 MHz and the memory clock rate to 2600 MHz on interface 0.

Fig. 4 shows measured performances as a function of the clock rate as well as linear fits (lines).

For the K40, the maximum clock rate is about 17% higher than the default, and performance

increases about 6.4% when switching from the default to the maximum frequency using a single

GPU. The maximum clock rate of the K20X is about 7% higher than the default, resulting in a

2.8% performance increase. For two K40 or K20X GPUs, using the maximum clock rate only

results in a 2.1% increased performance, likely because this hardware/benchmark combination is

not GPU-bound. Highest performance is in all cases reached with the GPU application clock set

to the highest possible value.

Energy efficiency

For a given CPU model, the performance/Watts ratio usually decreases with increasing clock rate

due to disproportionately higher energy dissipation. CPUs with higher clock rates are therefore

25

Table 8: Electric power consumption for nodes with up to 4 GPUs when running the RIB bench-
mark. Assuming 5 years of continuous operation and a price of 0.2e per kWh including cooling,
the yield in produced trajectory per invested 1,000e is given in the last column.

CPU installed RIB power energy node 5 yr yield
cores GPUs (ns/d) draw (W) costs (e) costs (e) (ns/ke)

E5-2670v2 – (node idle) 120 1,051 3,360
2 × 10 c. – 1.38 252 2,208 3,360 453

2.5–3.3 GHz 780Ti 3.3 519 4,546 3,880 714
(GCC 4.4.7) 780Ti × 2 3.87 666 5,834 4,400 690

780Ti × 3 4.17 933 8,173 5,430 559
780Ti × 4 4.17 960 8,410 5,950 530

980 3.68 408 3,574 3,780 914
980 × 2 4.18 552 4,836 4,200 844
980 × 3 4.2 696 6,097 5,130 683
980 × 4 4.2 840 7,358 5,550 594

E5-2680v2 – (node idle) 150 1,314 4,400
2 × 10 c. – 1.86 446 3,907 4,400 408

2.8–3.6 GHz 980+ 3.99 622 5,449 4,850 707
(GCC 4.8.3) 980+ × 2 4.69 799 6,999 5,300 696

980+ × 3 4.85 926 8,112 5,750 638
980+ × 4 4.96 1,092 9,566 6,200 574

both more expensive and less energy efficient. On the GPU side, there has been a redesign for en-

ergy efficiency with the Maxwell architecture, providing significantly improved performance/Watt

compared to Kepler generation cards.

For several nodes with decent performance-to-price ratios from Tables 6 – 7 we determined the

energy efficiency by measuring the power consumption when running the benchmarks at optimal

settings (Tables 8 and 9). On the E5-2670v2 nodes, we measured the average power draw over

an interval of 300 seconds using a Voltcraft ‘EnergyCheck 3000’ meter. On the E5-2680v2 nodes,

the current energy consumption was read from the power supply with ipmitool.5 We averaged

over 100 readouts one second apart each. Power measurements were taken after the initial load

balancing phase. For the power consumption of idle GPUs, we compared the power draw of idle

nodes with and without four installed cards, resulting in ≈ 27 W (≈ 24 W) for a single idle 780Ti

5http://ipmitool.sourceforge.net/

26

http://ipmitool.sourceforge.net/

Table 9: As Table 8, but for the MEM benchmark
.

CPU installed MEM power energy node 5 yr yield
cores GPUs (ns/d) draw (W) costs (e) costs (e) (µs/ke)

E5-2680v2 – 26.8 446 3,907 4,400 5.89

2 × 10 c. 980+ 52.05 547 4,792 4,850 9.85
2.8–3.6 GHz 980+ × 2 62.34 725 6,351 5,300 9.77
(GCC 4.8.3) 980+ × 3 65.1 824 7,218 5,750 9.16

980+ × 4 66.92 899 7,875 6,200 8.68

(980).

While the total power consumption of nodes without GPUs is lowest, their trajectory costs are

the highest due to the very low trajectory production rate. Nodes with one or two GPUs produce

about 1.5 – 2× as much MD trajectory per invested e than CPU-only nodes (see last column in

Tables 8 and 9). While trajectory production is cheapest with one or two GPUs, due to the runs

becoming CPU-bound, the cost rises significantly with the third or fourth card, though it does

not reach the CPU-only level. To measure the effect of GPU architectural change on the energy

efficiency of a node, the E5-2670v2 node was tested both with GTX 780Ti (Kepler) and GTX

980 (Maxwell) cards. When equipped with 1 – 3 GPUs, the node draws >100 W less power under

load using Maxwell generation cards than with Kepler. This results in about 20% reduction of

trajectory costs, lowest for the node with two E5-2670v2 CPUs combined with a single GTX

980 GPU. Exchanging the E5-2670v2 with E5-2680v2 CPUs, which have ≈10% higher clock

frequency, yields a 52% (44%) increase in energy consumption and 30% (21%) higher trajectory

costs for the case of one GPU (two GPUs).

Well-balanced CPU / GPU resources are crucial

With GPUs, the short-range pair interactions are offloaded to the GPU, while the calculation of

other interactions like bonded forces, constraints, and the PME mesh, remains on the CPU. To

put all available compute power to optimum use, GROMACS balances the load between CPU and

GPU by shifting as much computational work as possible from the PME mesh part to the short-

27

Table 10: Dependence of simulation performance P, cutoff settings, and total power consumption
on the graphics processing power for the RIB system on a node with 2× 2680v2 CPUs and up
to 4 GTX 980+ GPUs. The ‘cost ratios’ indicate the floating point operations in this part of the
calculation relative to the CPU-only case.

installed P tot. power cutoff cost ratio cost ratio energy efficiency
GPUs (ns/d) draw (W) (nm) short range PME 3D FFT (W/ns/d)

0 1.86 446 1 1 1 240
1 3.99 622 1.16 2.6 0.65 156
2 4.69 799 1.38 3.75 0.46 170
3 4.85 926 1.45 4.22 0.42 191
4 4.96 1,092 1.61 5.36 0.36 220

range electrostatic kernels. As a consequence of the offload approach, the achievable performance

is limited by the time spent by the CPU in the non-overlapping computation where the GPU is left

idle, like constraints calculation, integration, neighbor search and domain-decomposition.

Table 10 shows the distribution of the PME and short-range non-bonded workload with in-

creasing graphics processing power. Adding the first GPU relieves the CPU from the complete

short-range non-bonded calculation. Additionally, load balancing shifts work from the PME mesh

(CPU) to the non-bonded kernels (GPU), so that the CPU spends less time in the PME 3D FFT cal-

culation. Both effects yield a 2.1× higher performance compared to the case without a GPU. The

benefit of additional GPUs is merely the further reduction of the PME 3D FFT workload (which

is just part of the CPU workload) by a few extra percent. The third and fourth GPU only reduce

the CPU workload by a tiny amount, resulting in a few percent extra performance. At the same

time, the GPU workload is steadily increased, and with it increases the GPU power draw, reflect-

ing in a significantly increased power consumption of the node (see also the other 3- and 4-GPU

benchmarks in Table 8).

Hence, GPU and CPU resources should always be chosen in tandem keeping in mind the needs

of the intended simulation setup. More or faster GPUs will have little effect when the bottleneck

is on the CPU side. The theoretical peak throughput as listed in Table 3 helps to roughly relate

different GPU configurations to each other in terms of how much SP compute power they provide

28

and of how much CPU compute power is needed to achieve a balanced hardware setup. At the

lower end of GPU models studied here are the Kepler GK104 cards: GTX 680 and 770. These are

followed by GK110 cards, in order of increasing compute power, GTX 780, K20X, GTX TITAN,

K40, GTX 780Ti. The GTX 980 and TITAN X, based on the recent Maxwell architecture, are

the fastest as well as most power-efficient GPUs tested. The dual-chip server-only Tesla K80 can

provide even higher performance on a single board.

The performance-to-price ratios presented in this study reflect the characteristics of the specific

combinations of hardware setups and workloads used in our benchmarks. Different types of simu-

lations or input setups may expose slightly different ratios of CPU to GPU workload. E. g., when

comparing a setup using the AMBER force-field with 0.9 nm cutoffs to a CHARMM setup with

1.2 nm cutoffs and switched van der Waals interactions, the latter results in a larger amount of pair

interactions to be computed, hence more GPU workload. This in turn leads to slight differences in

the ideal CPU-GPU balance in these two cases. Still, given the representative choices of hardware

configurations and simulation systems, our results allow for drawing general conclusions about

similar simulation setups.

Multi-simulation throughput

Our general approach in this study is using single-simulation benchmarks for hardware evaluation.

However, comparing the performance P on a node with just a few cores to P on a node with many

cores (and possibly several GPUs) is essentially a strong scaling scenario involving efficiency

reduction due to MPI communication overhead and/or lower multi-threading efficiency.

This is alleviated by partitioning available processor cores between multiple replicas of the

simulated system, which e. g. differ in their starting configuration. Such an approach is generally

useful if average properties of a simulation ensemble are of interest. With several replicas, the

parallel efficiency is higher, since each replica is distributed to fewer cores. A second benefit is

a higher GPU utilization due to GPU sharing. As the individual replicas do not run completely

synchronized, the fraction of the time step that the GPU is normally left idle is used by other

29

G
LC

7.0
27.3
39.1

19.3
55.8
66.6

A
R

N
A

Intel 5960X + Quadro M6000 - 4 repl

Intel 5960X + Quadro M6000

Intel 5960X

AMD 6376 + GTX TITAN - 8 repl

AMD 6376 + GTX TITAN

AMD 6376

64.4
225

389
205

507
700B

0 500 1000 1500 2000

V
IL

183
548

1353
549

1308
1950

P (ns/d)

0 10 20 30 40 50 60 70 80 90

M
E
M

26.82x E5-2680v2
52.0+ GTX 980

76.4+ GTX 980 - 5 repl
46.4+ 2x GTX 980 - auto

62.3+ 2x GTX 980 - optimized
87.0+ 2x GTX 980 - 5 repl

P (ns/d)

Figure 5: Maximizing throughput by running multiple simulations per node. A:
Single-simulation performance P of the MEM benchmark on a node with 2×E5-
2680v2 CPUs using 0, 1, or 2 GTX 980+ GPUs (blue colors) compared to the ag-
gregated performance of 5 replicas (red / black). B: Similar to A, but for differ-
ent node types and benchmark systems (available at http://www.gromacs.org/gpu and
ftp://ftp.gromacs.org/pub/CRESTA/CRESTA_Gromacs_benchmarks_v2.tgz). GLC – 144 k
atoms GluCL CRESTA benchmark, 1 nm cutoffs, PME grid spacing 0.12 nm. RNA – 14.7 k atoms
solvated RNAse, 0.9 nm cutoffs, PME grid spacing 0.1125 nm. VIL – 8 k atoms villin protein,
1 nm cutoffs, PME grid spacing 0.125 nm. In B a 5 fs time step and GROMACS 5.0.4 was used.

replicas. The third benefit, similar to the case of GPU sharing by ranks of a single simulation, is

that independent simulations benefit from GPU task overlap if used in conjunction with CUDA

MPS. In effect, CPU and GPU resources are both used more efficiently, at the expense of getting

multiple shorter trajectories instead of a single long one.

Figure 5 quantifies this effect for small to medium MD systems. Subplot A compares the

the MEM performance for a single-simulation (blue colors) to the aggregated performance of five

replicas (red / black). The aggregated trajectory production of a multi-simulation is the sum of the

produced trajectory lengths of the individual replicas. The single simulations settings are found in

Table 6; in multi-simulations we used one rank with 40 / Nrank threads per replica. For a single

30

GTX 980, the aggregated performance of a 5-replica simulation (red bar) is 47% higher than the

single simulation optimum. While there is a performance benefit of ≈25% already for two replicas,

the effect is more pronounced for ≥ 4 replicas. For two 980 GPUs, the aggregated performance of

five replicas is 40% higher than the performance of a single simulation at optimal settings or 87%

higher when compared to a single simulation at default settings (Nrank = 2, Nth = 20).

Subplot B compares single and multi-simulation throughput for MD systems of different size

for an octacore Intel (blue bars) and a 16-core AMD node (green bars). Here, within each replica

we used OpenMP threading exclusively, with the total number of threads being equal to the number

of cores of the node. The benefit of multi-simulations is always significant and more pronounced

the smaller the MD system. It is also more pronounced on the AMD Opteron processor as com-

pared to the Core i7 architecture. For the 8 k atom VIL example, the performance gain is nearly a

factor of 2.5 on the 16-core AMD node.

As with multi-simulations one essentially shifts resource use from strong scaling to the embar-

rassingly parallel scaling regime, the benefits increase the smaller the input system, the larger the

number of CPU cores per GPU, and the worse the single-simulation CPU-GPU overlap.

Section ?? in the supporting information gives examples of multi-simulation setups in GRO-

MACS and additionally quantifies the performance benefits of multi-simulations across many

nodes connected by a fast network.

Strong scaling

The performance P across multiple nodes is given in Tables 11 – 12 for selected hardware con-

figurations. The parallel efficiency E is the performance on m nodes divided by m times the per-

formance on a single node: Em = Pm/(m×P1). In the spirit of pinpointing the highest possible

performance for each hardware combination, the multi-node benchmarks were done with a stan-

dard MPI library, whereas on individual nodes the low-overhead and therefore faster thread-MPI

implementation was used. This results in a more pronounced drop in parallel efficiency from a

single to many nodes than what would be observed when using a standard MPI library throughout.

31

The prices in Tables 6 – 7 do neither include an Infiniband (IB) network adapter nor proportionate

costs for an IB switch port. Therefore, the performance-to-price ratios are slightly lower for nodes

equipped for parallel operation as compared to the values in the tables. However, the most impor-

tant factor limiting the performance-to-price ratio for parallel operation is the parallel efficiency

that is actually achieved.

The raw performance of the MEM system can exceed 300 ns/d on state-of-the-art hardware,

and also the bigger RIB system exceeds 200 ns/d. This minimizes the time-to-solution, however at

the expense of the parallel efficiency E (last column). Using activated DLB and separate PME

ranks yielded the best performance on CPU-only nodes throughout. With GPUs the picture is a bit

more complex. On large node counts, a homogeneous, interleaved PME rank distribution showed

a significantly higher performance than without separate PME ranks. DLB was beneficial only

for the MEM system on small numbers of GPU nodes. HT helped also across several nodes in

the low- to medium-scale regime, but not when approaching the scaling limit. The performance

benefits from HT are largest on individual nodes and in the range of 5 – 15%.

The E3-1270v2 nodes with QDR IB exhibit an unexpected, erratic scaling behaviour (see Ta-

bles 11 – 12, top rows). The parallel efficiency is not decreasing strictly monotonic, as one would

expect. The reason could be the CPU’s limited number of 20 PCIe lanes, of which 16 are used

by the GPU, leaving only 4 for the IB adapter. However, the QDR IB adapter requires 8 PCIe 2.0

lanes to exploit the full QDR bandwidth. This was also verified in an MPI bandwidth test between

two of these nodes (not shown). Thus, while the E3-1270v2 nodes with GPU offer an attractive

performance-to-price ratio, they are not well suited for parallel operation. Intel’s follow-up model,

the E3-1270v3 provides only 16 PCIe lanes, just enough for a single GPU. For parallel usage, the

processor models of the E5-16x0, E5-26x0 and E5-26x0v2 are better suited as they offer 40 PCIe

lanes, enough for two GPUs plus IB adapter.

32

Table 11: Scaling of the MEM benchmark on different node types with performance P and par-
allel efficiency E. A black ‘ht’ symbol indicates that using all hyper-threading cores resulted in
the fastest execution, otherwise using only the physical core count was more advantageous. A
grey ‘(ht)’ denotes that this benchmark was done only with the hyper-threading core count (= 2×
physical).

No. of processor(s) GPUs, DD grid NPME / Nth DLB P E
nodes Intel Infiniband x y z node (ns/d)

1 E3-1270v2 770, 1 1 1 – 8 (ht) – 20.5 1
2 (4 cores) QDRa 2 1 1 – 8 (ht) (3) 27.2 0.66
4 4 1 1 – 8 (ht) (3) 22.1 0.27
8 8 1 1 – 8 (ht) (3) 68.3 0.42

16 16 1 1 – 8 (ht) (3) 85.7 0.26
32 8 4 1 – 8 (ht) (3) 119 0.18

1 E5-1620 680, 1 1 1 – 8 ht – 21 1
2 (4 cores) QDR 2 1 1 – 8 ht (3) 29 0.69
4 4 1 1 – 8 ht (3) 46.9 0.56

1 E5-2670v2 780Ti×2, 10 1 1 – 4 ht 3 56.9 1
2 (2×10 cores) QDR 4 5 1 – 2 3 74.2 0.65
4 8 1 1 2 5 7 103.4 0.45
8 8 1 2 2 5 7 119.1 0.26

16 8 4 1 2 5 7 164.8 0.18
32 8 8 1 2 5 7 193.1 0.11

1 E5-2670v2 980×2, 10 1 1 – 4 ht (3) 58 1
2 (2×10 cores) QDR 4 5 1 – 2 (3) 75.6 0.65
4 8 5 1 – 2 7 96.6 0.42

1 E5-2680v2 – 8 2 2 8 1 ht 3 26.8 1
2 (2×10 cores) FDR-14, 4 5 3 10 1 ht 3 42 0.78
4 8 5 3 10 1 ht 3 76.3 0.71
8 8 7 2 6 2 ht 3 122 0.57

16 8 8 4 4 1 3 162 0.38
32 8 8 8 4 1 3 209 0.24
64 10 8 6 2.5 2 3 240 0.14

1 E5-2680v2 K20X×2 8 1 1 – 5 ht 3 55.2 1
2 (2×10 cores) (732 MHz), 4 5 1 – 4 ht 3 74.5 0.67
4 FDR-14 8 1 2 – 5 3 118 0.53
8 8 1 2 2 5 7 163 0.37

16 8 4 1 2 5 7 226 0.26
32 8 8 1 2 5 7 304 0.17

aNote: these nodes cannot use the full QDR IB bandwidth due to insufficient number of PCI Express (PCIe) lanes,
see p. 32.

33

Table 12: Same as Table 11, but for the RIB benchmark.

No. of processor(s) GPUs, DD grid NPME / Nth DLB P E
nodes Intel Infiniband x y z node (ns/d)

1 E3-1270v2 770, 1 1 1 – 8 (ht) – 0.91 1
2 (4 cores) QDRa 2 1 1 – 8 (ht) (3) 1.87 1.03
4 4 1 1 – 8 (ht) (3) 2.99 0.82
8 8 1 1 – 8 (ht) (3) 4.93 0.68

16 16 1 1 – 8 (ht) (3) 4.74 0.33
32 16 2 1 – 8 (ht) (3) 10.3 0.35

1 E5-2670v2 780Ti×2, 8 1 1 – 5 (ht) 7 4.02 1
2 (2×10 cores) QDR 20 1 1 – 4 ht 7 6.23 0.77
4 8 5 1 – 4 ht 7 10.76 0.67
8 16 10 1 – 2 ht 7 16.55 0.51

16 16 10 1 – 2 7 23.78 0.37
32 16 10 2 – 2 7 33.51 0.26

1 E5-2670v2 980×2, 8 5 1 – 1 ht (3) 4.18 1
2 (2×10 cores) QDR 20 1 1 – 4 ht 7 6.6 0.79
4 8 5 1 – 4 ht 7 11 0.66

1 E5-2680v2 – 10 3 1 10 1 ht 3 1.86 1
2 (2×10 cores) FDR-14 10 3 1 5 2 ht 3 3.24 0.87
4 10 2 3 5 2 ht 3 6.12 0.82
8 8 5 3 5 2 ht 3 12.3 0.83

16 10 8 3 5 2 ht 3 21.8 0.73
32 10 7 7 4.69 2 ht 3 39.4 0.66
64 16 10 6 5 1 3 70.7 0.59

128 16 16 8 4 1 3 128 0.54
256 16 17 15 4.06 1 3 186 0.39
512 20 16 13 1.88 2 7 208 0.22

1 E5-2680v2 K20X×2 20 1 1 – 2 ht 7 3.99 1
2 (2×10 cores) (732 MHz), 10 8 1 – 1 ht 7 5.01 0.63
4 FDR-14 10 8 1 – 2 ht 7 9.53 0.6
8 16 10 1 – 2 ht 7 16.2 0.51

16 16 10 1 – 2 7 27.5 0.43
32 8 8 1 2 5 7 49.1 0.38
64 16 8 1 2 5 7 85.3 0.33

128 16 16 1 2 5 7 129.7 0.25
256 16 8 4 2 5 7 139.5 0.14

aNote: these nodes cannot use the full QDR IB bandwidth due to insufficient number of PCIe lanes, see p. 32.

34

ha
rd

w
ar

e
co

st
s

(€
)

performance (ns/d)

2x as good

Figure 6: Benchmark performances in relation to the total hardware investment (net) for invest-
ments up to 10,000e. MEM (circles) and RIB (stars) symbols colored depending on CPU type.
Symbols with white fill denote nodes without GPU acceleration. Dotted lines connect GPU nodes
to their CPU-only counterparts. The grey lines indicate constant performance-to-price ratio, they
are a factor of 2 apart each. For this plot, all benchmarks not done with GCC 4.8 (see Table 2) have
been renormalized to the performance values expected for GCC 4.8, i. e. plus ≈19% for GCC 4.7
benchmarks on CPU nodes and plus ≈4% for GCC 4.7 benchmarks on GPU nodes (see Table 5).
The costs for multiple node configurations include 370e for QDR IB adapters (600e per FDR-14
IB adapter) per node.

5 Discussion

A consequence of offloading the short-ranged non-bonded forces to graphics card(s) is that per-

formance depends on the ratio between CPU and GPU compute power. This ratio can therefore

be optimized, depending on the requirements of the simulation systems. Respecting that, for any

given CPU configuration there is an optimal amount of GPU compute power for most economic

trajectory production, which depends on energy and hardware costs.

Figures 6 and 7 relate hardware investments and performance, thus summarizing the results in

35

ha
rd

w
ar

e
co

st
s

(€
)

performance (ns/d)

M
EM R

IB

2x asgood

Figure 7: Same representation as in Fig. 6 (yellow box depicts section plotted there), now focusing
on the parallel performance across multiple nodes (the small number next to the data points indi-
cates the number of nodes used). The grey lines indicate perfect scaling and constant performance-
to-price ratio, they are a factor of 2 apart each. A number next to a data point indicates how many
compute nodes were used in that benchmark.

36

terms of our criteria performance-to-price (C1), single-node performance (C2), and parallel perfor-

mance (C3). The grey lines indicate both perfect parallel scaling as well as a constant performance-

to-price ratio; configurations with better ratios appear more to the lower right. Perhaps not unex-

pectedly, the highest single-node performances (C2) are found on the dual-CPU nodes with two or

more GPUs. At the same time, the best performance-to-price ratios (C1) are achieved for nodes

with consumer-class GPUs. The set of single nodes with consumer GPUs (filled symbols in the

figures) is clearly shifted towards higher performance-to-price as compared to nodes without GPU

(white fill) or with Tesla GPUs. Adding at least one consumer-grade GPU to a node increases its

performance-to-price ratio by a factor of about two, as seen from the dotted lines in the figures that

connect GPU nodes with their GPU-less counterparts. Nodes with HPC instead of consumer GPUs

(e. g. Tesla K20X instead of GeForce GTX 980) are however more expensive and less productive

with GROMACS (black dotted lines).

Consumer PCs with an Intel Core processor and a GeForce GPU in the low-cost regime at

around 1,000e produce the largest amount of MD trajectory per money spent. However, these

machines come in a desktop chassis and lack ECC memory. Even less expensive than the tested

Core i7-4770K and i7-5830K CPUs would be a desktop equivalent of the E3-1270v2 system with

i7-3770 processor, which would cost about 600e without GPU, or a Haswell-based system, e. g.

with i5-4460 or i5-4590, starting at less than 500e.

Over the lifetime of a compute cluster, the costs for electricity and cooling (C4) become a sub-

stantial or even the dominating part of the total budget. Whether or not energy costs are accounted

for therefore strongly influences what the optimal hardware will be for a fixed budget. Whereas the

power draw of nodes with GPUs can be twice as high as without, their GROMACS performance

is increased by an even larger factor. With energy costs included, configurations with balanced

CPU/GPU resources produce the largest amount of MD trajectory over their lifetime (Tables 8 and

9).

Vendors giving warranty for densely packed nodes with consumer-class GPUs can still be

difficult to find. If rack space is an issue (C5), it is possible to mount 2×Intel E26xx v2/3 processors

37

plus up to four consumer GPUs in just 2 U standard rack units. However, servers requiring less

than 3 U that are able to host GeForce cards are rare and also more expensive than their 3–4 U

counterparts. For Tesla GPUs however, there are supported and certified solutions allowing for up

to three GPUs and two CPUs in a 1 U chassis.

Small tweaks to reduce hardware costs is acquiring just the minimal amount of RAM proposed

by the vendor, which is normally more than enough for GROMACS. Also, chassis with redundant

power supply adapters are more expensive but mostly unnecessary. If a node fails for any rea-

son, the GROMACS built-in checkpointing support ensures that by default at most 15 minutes of

trajectory production are lost and that the simulation can easily be continued.

For parallel simulations (Figure 7), the performance-to-price ratio mainly depends on the paral-

lel efficiency that is achieved. Nodes with consumer GPUs (e. g. E5-2670v2 + 2×780Ti) connected

by QDR IB network have the highest performance-to-price ratios on up to about eight nodes (dark

blue lines). The highest parallel performance (or minimal time-to-solution, C3) for a single MD

system is recorded with the lowest latency interconnect. This however comes at the cost of tra-

jectories that are 2 – 8× as expensive as on the single nodes with the best performance-to-price

ratio.

Figure 8 summarizes best practices helping to exploit the hardware’s potential with GRO-

MACS. These rules of thumb for standard MD simulations with PME electrostatics and Verlet

cutoff scheme hold for moderately parallel scenarios. When approaching the scaling limit of ≈

100 atoms per core, a more elaborate parameter scan will be useful to find the performance op-

timum. Unfavorable parallelization settings can reduce performance by a factor of two even in

single node runs. On single nodes with processors supporting HT, for the MD systems tested,

exploiting all hardware threads showed the best performance. However, when scaling to higher

node counts using one thread per physical core gives better performance. On nodes with Tesla

GPUs, choosing the highest supported application clock rate never hurts GROMACS performance

but will typically mean increased power consumption. Finally, even the compiler choice can yield

a 20% performance difference with GCC ≥4.7 producing the fastest binaries.

38

General hints concerning GROMACS performance

r Recent GCC compilers ≥ 4.7 with best SIMD instruction set supported by the CPU
produce the fastest binaries (Table 5)

r In single node runs with up to 12–16 cores, Nrank = 1 and Nth = Nc performs best, on
Intel even across sockets

r On single nodes, thread-MPI often offers better performance than a regular MPI library

r Hyper-threading is beneficial with high enough atoms/core count (& 2500) and in
OpenMP-only runs (Nrank = 1)

r Use Nrank×Nth =Nc and ensure that thread pinning works correctly (check the mdrun
log output)

r Check parallel efficiency E on multiple nodes by comparing to the single-node per-
formance (Tables 11–12)

r The time and cycle accounting table in the mdrun log file helps discovering perfor-
mance issues

Method and algorithmic tweaks21

r Neighbor search frequency of 20–80 is recommended, ≥ 50 values are typically
useful in parallel GPU runs (Figure 2)

r In highly parallel simulations, overhead due to global communication is reduced with
lower frequencies for energy calculation, temperature and pressure coupling

r Consider using h-bonds constraints with 2 fs time step to reduce computational and
communication cost

r Virtual sites allow 4–5 fs long time step

r Tweak LINCS settings at high parallelization

r Try increasing PME order to 5 (from the default 4) with a proportionally coarser grid22

On CPU nodes

r With high core count, Nrank = Nc and Nth = 1 performs best and g_tune_pme conve-
niently determines the optimal number of separate PME ranks.

On GPU nodes

r Try if switching DLB off improves performance (Figure 3)

r With NCPU ≥ 2, using Nrank ≥ NCPU often improves performance (Figure 3).

r On Tesla K20, K40, K80, highest application clock rate can be used (Figure 4)

r Multi-simulation increases aggregate performance (Figure 5)

r The parallel performance across many nodes can be improved by using a homoge-
neous, interleaved PME node separation (p. 15)

Figure 8: GROMACS performance checklist. Number of MPI ranks, Nrank; number of OpenMP
threads, Nth; number of CPU cores, Nc.

39

For the researcher it does not matter from which hardware MD trajectories originate, but when

having to purchase the hardware it makes a substantial difference. In all our tests, nodes with good

consumer GPUs exhibit the same (or even higher) GROMACS performance as with HPC GPUs —

at a fraction of the price. If one has a fixed budget, buying nodes with expensive HPC instead

of cheap consumer GPUs means that the scientists will have to work with just half of the data

they could have had. Consumer GPUs can be easily checked for memory integrity with available

stress-testing tools and replaced if necessary. As consumer-oriented hardware is not geared toward

non-stop use, repeating these checks from time to time helps catching failing GPU hardware early.

Subject to these limitations, nodes with consumer-class GPUs are nowadays the most economic

way to produce MD trajectories not only with GROMACS. The general conclusions concerning

hardware competitiveness may also have relevance for several other MD codes like CHARMM,1

LAMMPS,4 or NAMD,6 which like GROMACS also use GPU acceleration in an offloading ap-

proach.

Acknowledgments

Many thanks to Markus Rampp (MPG Rechenzentrum Garching) for providing help with the ‘Hy-

dra’ supercomputer, and to Nicholas Leioatts, Timo Graen, Mark J. Abraham and Berk Hess for

valuable suggestions on the manuscript. This study was supported by the DFG priority programme

‘Software for Exascale Computing’ (SPP 1648).

Supporting Information

The supporting information contains examples and scripts for optimizing GROMACS perfor-

mance, as well as the input .tpr files for the simulation systems.

40

References

(1) Brooks, B. R.; Brooks, C. L., III; Mackerell, A. D., Jr.; Nilsson, L.; Petrella, R. J.; Roux, B.;

Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Din-

ner, A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.;

Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. Z.; Schaefer, M.; Tidor, B.;

Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; York, D. M.; Karplus, M. J. Comput.

Chem. 2009, 30, 1545–1614.

(2) Salomon-Ferrer, R.; Case, D.; Walker, R. WIREs Comput. Mol. Sci. 2013, 198–210.

(3) Bowers, K. J.; Chow, E.; Xu, H.; Dror, R. O.; Eastwood, M. P.; Gregersen, B. A.;

Klepeis, J. L.; Kolossváry, I.; Moraes, M. A.; Sacerdoti, F. D.; Salmon, J. K.; Shan, Y.;

Shaw, D. E. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clus-

ters. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06). 2006.

(4) Brown, W. M.; Kohlmeyer, A.; Plimpton, S. J.; Tharrington, A. N. Comput. Phys. Commun.

2012, 183, 449–459.

(5) Harvey, M.; Giupponi, G.; Fabritiis, G. D. J. Chem. Theory Comput. 2009, 5, 1632–1639.

(6) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.;

Skeel, R. D.; Kale, L.; Schulten, K. J. Comput. Chem. 2005, 26, 1781–1802.

(7) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput. 2008,

(8) Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.; Smith, J.;

Kasson, P.; van der Spoel, D.; Hess, B.; Lindahl, E. Bioinformatics 2013,

(9) Páll, S.; Hess, B. Comput. Phys. Commun. 2013,

(10) Páll, S.; Abraham, M. J.; Kutzner, C.; Hess, B.; Lindahl, E. In Lecture Notes in Computer

Science 8759, EASC 2014; Markidis, S., Laure, E., Eds.; Springer International Publishing

Switzerland, 2015; pp 1–25.

41

(11) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. Soft-

wareX 2015,

(12) Shaw, D. E.; Grossman, J. P.; Bank, J. A.; Batson, B.; Butts, J. A.; Chao, J. C.; Den-

eroff, M. M.; Dror, R. O.; Even, A.; Fenton, C. H.; Forte, A.; Gagliardo, J.; Gill, G.;

Greskamp, B.; Ho, C. R.; Ierardi, D. J.; Iserovich, L.; Kuskin, J. S.; Larson, R. H.; Lay-

man, T.; Lee, L.-S.; Lerer, A. K.; Li, C.; Killebrew, D.; Mackenzie, K. M.; Mok, S. Y.-

H.; Moraes, M. A.; Mueller, R.; Nociolo, L. J.; Peticolas, J. L.; Quan, T.; Ramot, D.;

Salmon, J. K.; Scarpazza, D. P.; Ben Schafer, U.; Siddique, N.; Snyder, C. W.; Spengler, J.;

Tang, P. T. P.; Theobald, M.; Toma, H.; Towles, B.; Vitale, B.; Wang, S. C.; Young, C. Anton

2: Raising the bar for performance and programmability in a special-purpose molecular dy-

namics supercomputer. SC14: International Conference for High Performance Computing,

Networking, Storage and Analysis. 2014; pp 41–53.

(13) Essmann, U.; Perera, L.; Berkowitz, M.; Darden, T.; Lee, H. J. Chem. Phys. 1995,

(14) Kutzner, C.; Apostolov, R.; Hess, B.; Grubmüller, H. In Parallel Computing: Accelerating

Computational Science and Engineering (CSE); Bader, M., Bode, A., Bungartz, H. J., Eds.;

IOS Press: Amsterdam/Netherlands, 2014; pp 722–730.

(15) Wennberg, C. L.; Murtola, T.; Hess, B.; Lindahl, E. J. Chem. Theory Comput. 2013, 9, 3527–

3537.

(16) Bock, L.; Blau, C.; Schröder, G.; Davydov, I.; Fischer, N.; Stark, H.; Rodnina, M.; Vaiana, A.;

Grubmüller, H. Nature Structural and Molecular Biology 2013, 20, 1390–1396.

(17) Gruber, C. C.; Pleiss, J. J. Comput. Chem. 2010, 32, 600–606.

(18) Shi, G.; Enos, J.; Showerman, M.; Kindratenko, V. On testing GPU memory for hard and soft

errors. Symposium on Application Accelerators in High-Performance Computing. 2009.

42

(19) Walker, R.; Betz, R. An Investigation of the Effects of Error Correcting Code on GPU-

accelerated Molecular Dynamics Simulations. Proceedings of the Conference on Extreme

Science and Engineering Discovery Environment: Gateway to Discovery. New York, USA,

2013; pp 8:1–8:3.

(20) Haque, I. S.; Pande, V. S. Hard Data on Soft Errors: A Large-Scale Assessment of Real-World

Error Rates in GPGPU. Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM

International Conference on. 2010; pp 691–696.

(21) Abraham, M.; Van Der Spoel, D.; Lindahl, E.; Hess, B. The GROMACS development team.

GROMACS User Manual Version 5.0. 2014.

(22) Abraham, M. J.; Gready, J. E. J. Comput. Chem. 2011, 32, 2031–2040.

43

	1 Introduction
	2 Key determinants for GROMACS performance
	Making optimal use of GPUs

	3 Methods
	Benchmark input systems
	Software environment
	GPU acceleration
	Benchmarking procedure
	Determining the single-node performance
	Determining the parallel performance

	4 Results
	GPU error rates
	Impact of compiler choice
	Impact of neighbor searching frequency
	Influence of hybrid parallelization settings and DLB
	Fitness of various node types
	Speedup with GPUs
	Energy efficiency
	Well-balanced CPU/GPU resources are crucial

	Multi-simulation throughput
	Strong scaling

	5 Discussion

