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We uncover an unforeseen asymmetry in relaxation: for a pair of thermodynamically equidistant
temperature quenches, one from a lower and the other from a higher temperature, the relaxation at the
ambient temperature is faster in the case of the former. We demonstrate this finding on hand of two exactly
solvable many-body systems relevant in the context of single-molecule and tracer-particle dynamics. We
prove that near stable minima and for all quadratic energy landscapes it is a general phenomenon that also
exists in a class of non-Markovian observables probed in single-molecule and particle-tracking experi-
ments. The asymmetry is a general feature of reversible overdamped diffusive systems with smooth single-
well potentials and occurs in multiwell landscapes when quenches disturb predominantly intrawell
equilibria. Our findings may be relevant for the optimization of stochastic heat engines.
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Relaxation processes are a paradigm for condensed matter
[1,2], single-molecule experiments [3] and tracer-particle
transport in complex media [4-8]. Relaxation close to equi-
librium was described by the mechanical Onsager-Casimir
[9,10] and thermal Kubo-Yokota-Nakajima [11] linear laws.
These pioneering ideas were consistently generalized in
numerous ways, most notably, to thermodynamics along
individual stochastic trajectories driven far from equilibrium
at weak [12,13] and strong [14—18] coupling with the bath,
anomalous diffusion phenomena [19-22], and the so-called
“frenesis” focusing on the dynamical activity—a dynamic
counterpart to changes in entropy [23,24]. Many of these
new concepts have been verified by and/or successfully
applied in experiments in colloidal systems [25-27] and
single-molecule experiments on nucleic acids [28-30] and
larger biomolecular machines [31].

Not as much is known about transients, in particular
those evolving from nonstationary initial conditions. Our
present understanding of thermodynamics and in parti-
cular the kinetics in transient systems, reversible as
well as irreversible, is mostly limited to small deviations
from equilibrium [9,10], nonequilibrium steady states
[23,32-35], and statistics of the “housekeeping” heat
[36,37] and entropy production [38]. The role of initial
conditions in relaxation was recently studied in the context
of the “Mpemba effect’—the phenomenon where a hot
system can cool down faster than the same system initiated at
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a lower temperature [39,40]. Notable recent advances
include an information-theoretic bound on the entropy
production during relaxation far from equilibrium [41]
and a spectral duality between relaxation and first passage
processes [42,43].

It is meanwhile possible to probe the transient, non-
equilibrium dynamics of colloids and single molecules, e.g.,
by temperature-modulated particle tracking [4] and time-
modulated [44], temperature-modulated [45], temperature-
jump [46], and holographic [47] optical tweezers, as well as
optical pushing [48]. These experiments allow for systematic
investigations of the dependence of relaxation on the
direction of the displacement from equilibrium, which is
the central question of the present Letter.

Notwithstanding all progress in the field, the dependence
of relaxation on the direction of the displacement from
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FIG. 1. Nonequilibrium free energy after a temperature quench
T - Te at time =0 in units of kzTeq, AF7 = D[Pz(r=
0M)[|P}] [see Eq. (3)], as a function of the relative prequench
temperature 7 = T/ Ty (note the logarithmic scale); (a) refers to
the end-to-end distance of a Gaussian chain with 100 beads and
(b) to the 7th in a single file of 10 particles in a linear potential
with slope 10 confined to a unit box. The blue and red points
depict a pair of thermodynamically equidistant temperature
quenches, 7~ and 7%, with corresponding excess potential
energies (AU)7+ = (U(07))5+ — (U),.
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equilibrium (see Fig. 1) remains elusive. Moreover, as a
result of the projection to a lower-dimensional subspace, it
is expected that observables in many experiments, in
particular those tracking individual particles [4] and single
molecules [46,47], relax in a manner that is not
Markovian [8].

Here, we address relaxation from an instantaneous
temperature quench 7" — T, at time ¢ =0 with respect
to its directionality, that is, T~ 1T, versus T+¢Teq. We
uncover an unforeseen dependence on the direction of the
quench: For a given pair of temperatures 7~ < T¢q < T at
which the thermodynamic displacement from equilibrium
at t =0" in the sense of D= (0"), the nonequilibrium
free energy difference or “lag” [49-55], is equal, i.e.,
Dr+(07) = Dy-(0%) (see Fig. 1), relaxation evolves,
contrary to intuition, faster “uphill” ((AU),- < 0) than
“downhill” ((AU);- > 0) in the energy landscape.
This always holds for single-well potentials and occurs
in near degenerate multiwell potentials with high energy
barriers under Markovian dynamics, as well as for a class of
non-Markovian observables probed by single-molecule and
particle-tracking experiments. We demonstrate the asym-
metry on the hand of the Gaussian polymer chain [56],
single-file diffusion in a tilted box [8], and for diffusion in
nearly degenerate multiwell potentials. For relaxation near
a stable minimum and thus for all reversible Ornstein-
Uhlenbeck processes, we prove that the asymmetry, albeit
counterintuitive, is general.

Theory.—We  consider d-dimensional Markovian
diffusion with a d x d symmetric positive-definite diffusion
matrix D and mobility tensor My = D/kpT in a drift
field F(x) such that M7'F(x) = —=VU(x) is a gradient
flow. The evolution of the probability density at
temperature 7" is governed by the Fokker-Planck operator
Ly =V-DV-V.-M;F(x). We let G7(x,[xy) be the
Green’s function of the initial value problem (0, —
L7)Gr(x,1x9) =0 and assume that the potential U(x)
is confining (i.e., limy ., U(X) = 00). This assures
the existence of an invariant Maxwell-Boltzmann
measure with density lim,_Gr(x,1]xq) = P (x) =
Q‘le‘ (x)/ksT v x, with partition function Q =
[e v/ BT g,

The system is prepared at equilibrium with a temperature
T, P™(x), whereupon an instantaneous temperature
quench is performed to the ambient temperature T,
at 1 = 0. The relaxation evolves at T, according to [ITeq
and for a given system it is uniquely characterized by 7.
For convenience we define 7 =T/ Teq [57] such that

fwxnz/wrmeo Uxg) = PR(x). (1)

The instantaneous entropy and mean energy are
given by Si(t) =—kp [dxP7(x,t)InP;(x,t) and
(U(1))7 = [ dxP3(x,1)U(x), respectively, where ()7

denotes an average over all paths x(7) starting from
P I%W(XQ).

Let the measured physical observable be q = I'(x). Its
probability density function corresponds to [§]

A
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which in general displays non-Markovian dynamics
as soon as q corresponds to a low-dimensional pro-
jection [8]. Once equilibrium is reached, we have
lim,_P7(q, 1) = P{%(q), or, expressed via the so-called
potential of mean force U(q) [58], Pii(q) = e Putf@)
[14,17,59]. Obviously, when TI'(x)=x, we have
Pr(q.1) = P(x,1).

We quantify the instantaneous displacement from equi-
librium with the Kullback-Leibler divergence [49-55]:

memWﬁ—/memnmemﬁmwm.o>

Writing this out for the Markovian case, we find, upon
identifying S7(7) and (Uj(1)),

DIPr()||PY] = =S5(1)/ kg + Peg(U ()7 +1n Q. (4)

Recalling the definition of free energy F = —/} InQr_
and defining the instantaneous generalized free energy
(GFE) [52] or “lag” [55] as F7(t) = (U(1))7 — TeqS7(1),
we see, upon multiplying through by ﬁgq' = kpT¢q, that in
the Markovian case Eq. (3) is the excess GFE in units
of kBTeqs Le., 'DI%/I(Z) = ID[PT(I)HPTq] = ﬂeq[FT(t) - F]
[51,52]. Writing out Eq. (3) for the non-Markovian case
and identifying S5 (#) and U(q) (calligraphic letters denote
potentials of projected observables), we find

r(OIIPY] = =S5(1)/ kg + feg UD))7. ()

which is the non-Markovian GFE DM (1) = g F7(t).
Note that U(q) itself is an effective free energy,
ic.  fold()=—In(s[(x) - ql), = —In [ dx6[0(x) -

‘/56<1 q>—|—1n Qr,, and S;=—(U),. We henceforth
express energies in “units of kgTeq. If (and only if) latent
degrees of freedom (i.e., those integrated out) relax much
faster than q(z), Eqs. (4) and (5) are equivalent and q(¢)
is a Markovian diffusion in the free energy landscape
U(q) [8]. In the absence of a time-scale separation,
however, both S;7(¢) and (U(t))7 contain contributions
from the (hidden) relaxation of the latent degrees of
freedom.

Consider now a pair of temperatures, 7+ > 1 and
T~ < 1, corresponding to equal displacements immediately
after the quench D;’I_’"M (07) = ’D%’”M (0T). The existence
of (at least) two such temperatures is guaranteed within an
interval T € (T pin, Trmax) Where Dly "M(0~) = f(T) has

Dy¥(1) = D[P
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FIG.2. D[Pz(1)||P}% (full lines) for the Gaussian chain [(a),(b)] and single file with 10 particles in a linear potential with slope g = 10
[(s),(d)]. (a) refers to the entire chain of 100 beads [Eq. (4)] and (b) to the end-to-end distance [Eq. (5)] for equidistant quenches from
T~ = 0.24 (blue) and T+ = 2.64 (red); (c) stands for the full single file for equidistant quenches from 7~ = 0.61 (blue) and 7+ = 1.52
(red); (d) the 7th particle for equidistant quenches from 7~ = 0.54 (blue) and 7+ = 1.69. The circles refer to (AU(t)) 7= and (AU(t)) 7=
in (a) and (c), and (b) and (d), respectively, and triangles denote AS;+ () and AS;(7). Note the second axes for (AU(¢) )5+, (AU(t) )5+

and AS; (1), AS7(t). Note that S7(00) = S| = —(U);.

no local maximum. The central question of this Letter
addresses the rate of the “uphill” (7~ < 1) versus “down-
hill” (7 > 1) relaxation.

Gaussian Chain.—In the context of single-molecule
experiments, we consider the overdamped dynamics
of a chain of N+ 1 beads with coordinates {r;} con-
nected by harmonic springs with potential U({r;}) =
SN (riyy — ;) (general harmonic networks are treated
in [60]). In the Markovian setting, we consider all mono-
mers, P5({r;},t) in Eq. (1), while single-molecule experi-
ments (e.g., Forster resonance energy transfer [73,74] or
optical tweezers [46,47]) typically track a single (e.g.,
end to end) distance within the macromolecule q =d =
Ir; — ry| with Pz(d, r) from Eq. (2), evolving according to
non-Markovian dynamics.

The excess GFE is given by (see derivation in [60])

AL —1-IAL())  (6)

k=1
iy 3 [AL () Ar (1)
P =3 e O

where AT () =1+ (T = 1)e 2! with Uy =
4sin?{kx/[2(N +1)]}, and we introduced A;j(t) =
N AL(1)CY /2, with C > 0 given explicitly in [60].

The initial excess free energies are both convex in 7 and
read

DY(0*) =3N(T - 1-1nT)/2 = NDM(0%). (8)

The instantaneous potential energy of the full system and
the potential of mean force in turn read (U(t)); =
3NN AL(r) and  U(d) = -In Pfq'gd), respectively.
Aside from specific values of y; and C}/, Egs. (6)—(8) hold
for any reversible Ornstein-Uhlenbeck™ process (OUp), that

is, for any 7, connectivity or stability matrix, and tagged
distance.

The results for DY (r) and their decomposition into
(U)s, (U(1))7, S7(), and S7(t) for a pair of equidistant
temperature quenches are shown in Fig. 2 and demonstrate
that the uphill relaxation is always faster than the downbhill
relaxation. As we prove below, this is true for any reversible
OUp quenched arbitrarily far from equilibrium.

The energy and entropy differences relative to their
equilibrium values (i.e., at = oo0) in Fig. 2(a) suggest that
the Markovian uphill and downhill relaxation are domi-
nated by (AU(r))7+ and ASj-, respectively. Surprisingly,
entropy pushing the system uphill against the deterministic
force is more efficient. Notably, the magnitude of individ-
ual contributions is smaller for uphill relaxation, i.e.,
(AU)5+ > —(AU)4- and AS7+ > —ASj7-. Thus, a larger
energy excess and entropy deficit are dissipated during
downhill relaxation. Conversely, the partitioning into S()
and (U(t))7 of the non-Markovian relaxation depends on
the details of the projection and is less intuitive [in our
example in Fig. 2(b) it is, in fact, reversed].

To explain why uphill relaxation is faster, we inspect in
Fig. 3 local contributions to DY (r) for a one-dimensional
OUp. An uphill quench localizes P7-(x,0") near the
origin, whereas a downhill quench broadens Pz (x,0"),
rendering the integrand of Eq. (4) nonzero over a larger
domain [Fig. 3(a), red line]. The evolution of Pz (x, 1) is
driven by diffusion « 92P7 and advection « 9,xP7. By
forcing probability mass toward the origin, advection
seems to oppose uphill relaxation [triangles in Fig. 3(b)]
but thereby actually sustains an even faster diffusion rate
compared to free diffusion [compare circles and dashed line
in Fig. 3(b)]. The net effect is an overall relaxation nearly as
fast as free diffusion [compare full and dashed line in
Fig. 3(b)]. Downhill relaxation is advection-dominated and
weakly opposed by diffusion, which is almost unaffected
by the potential [Fig. 3(c)]. The overall dynamics is much
slower [compare full lines in Fig. 3(b), (c)]. Faster diffusion
from a localized initial distribution thereby renders uphill
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FIG. 3. (a) Integrand of Eq. (3) at # = 0.1 for a one-dimensional

OUp (full line) for uphill (blue) and downhill (red) relaxation
with the positive A, and negative A_ area under the curve. Inset:
The corresponding DY (r). (b), (c) Decomposition of d,Pz(x, 1)
into diffusive 8§PT (circles) and advective O,xP7 (triangles)
contribution for uphill (b) and downhill (c) relaxation. Dashed
lines correspond to free diffusion evolving from the same initial
condition.

relaxation faster—an effect that will exist in any confining
potential well with ruggedness < kzTeq. L of any
reversible OUp is diagonalizable and thus uniquely decom-
posable into one-dimensional OUps, extending our explan-
ation to arbitrary dimensions.

Non-Markovian relaxation displays the same asym-
metry, but the dominant driving forces, here S7 and
(Uz), may become reversed [see Fig. 2(b)]. Since Uz
contains entropic effects of latent degrees of freedom, the
partitioning between S3 and (U3 ) is in general projection-
dependent.

Tilted single file—In the context of tracer-particle
dynamics, we consider N hard-core Brownian point par-
ticles with positions {x;(7)} (the extension to a finite
diameter is straightforward [5,6]) diffusing in a box of
unit length in the presence of a linear potential (e.g., the
gravitational field), U({x;}) = >_¥, gx;. The probability
density of {x;(¢)} upon a quench from T, P7({x;(¢)}, 1),
evolves according to £; = ¥ (82 4 g,,) under non-
crossing conditions [7,8]. In [60] we solve the problem
exactly via the coordinate Bethe ansatz [7,8], both for
the Markovian complete single file and the non-
Markovian probability density of a tagged particle
Pz(z,1) (ie., q = x7 = 2).

DY (1) with corresponding (AU(z))z, (U(1))7, AS7(1),
and S;(t) for the complete and tagged particle dynamics
are shown in Fig. 2(c), (d). As for the Gaussian chain uphill
relaxation in the tilted single file, both full as well as for a
tagged particle seems to always be faster irrespective of
which particle we tag, and for any 7', N and tilting strength
g > 0 (see also [60]). The Markovian uphill relaxation is
dominated by AS;-(7) and downhill by (AU(t))7+, and a
larger energy and entropy difference must be dissipated
during downhill relaxation [see Fig. 2(c)]. For a tagged
particle, the partitioning between (U(f))7- and S(1)7-
varies depending on which particle we tag as a result of
the shape of U(z) and the dependence of P5(z,07) on T,

which in turn both depend on the tagged particle as well as
Ty, N, and g.

Is the asymmetry universal?>—We first focus on dynam-
ics near a stable minimum at R, 6R(z) = R(7) — R,
which is well described by an OUp, ie., déR(r)=
HOR (t)dt + V2dW,, where (H);; = >_,; Or Og, U(R) g,
is the Hessian.

Theorem 1.—For a general diffusion sufficiently close to
a stable minimum and for any stable reversible OUp, the
relaxation from a pair of equidistant quenches of arbitrary
magnitude (as defined above) is always faster uphill.

Proof of Theorem 1.—Any pair 0 <7~ <1 and 1 <
T+ < oo with Dy, (0%) = D7 (0F) satisfies by construc-
tion 7+ =T~ =In(T*/T~). We first prove the claim
for the Markovian setting, where Eq. (6) has the struc-
ture DY(1) =3V D). We set o=T7/T" > 1,
5.=T*—1, and writt AD(f)=D;(t)-D;(t) =
InZ,(pt), such that

Zy(1) = ¢~ (1 +6_e7)/(1 +5,e7)
=[p(1 +6_e) 1" /(1 +6,e7)
> [p(1+62)/(1+8,)1" =1, ©)

where we have used both generalized Bernoulli inequa-
lities, i.e., foranyreal 0 <y_<1,y, >1and x > -1 we
have (14+x)>*>14+y,x and (1+x)-<14y_x
Recalling the definition of AD, () completes the proof.

To prove the claim in the non-Markovian setting for
projections of type g = [6R; — 6R |, we first realize that
AZ. (1) <0 and AY (1) >0, where f(r) = (d/dt)f(t).
Setting AD(t) = DY (1) — D3¥(t) and using Eq. (7) we
find, upon taking the derivative,

AL Al AW AL

AD : L z T~ (10
=0 e e arm Y

Eq. (10) implies AD(r) >0 because AY (1) > A7, (0)
while .A;j_(t) < A;ﬁ (0), which completes the proof.

The fact that tilted single file diffusion, being anhar-
monic and asymmetric with nonperturbative interactions,
displays the asymmetry for quenches of arbitrary magni-
tude and for any steepness of the potential hints that the
asymmetry might be more general. Note that tagging
different particles in different slopes g > 0, we can con-
struct (z) with arbitrary asymmetry. Alongside the physi-
cal principle underlying the asymmetry established for the
OUp and Theorem 1, this strongly suggests that uphill
relaxation in smooth single-well potentials could be uni-
versally faster (see [60]). Since the projection (2) is
independent of T, these statements should extend also to
non-Markovian observables, in particular those probed in
many single-molecule and particle-tracking experiments.
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As a corollary, uphill relaxation is faster also in multiwell
potentials for equidistant quenches that predominantly
disturb only the intrawell equilibria, in particular for nearly
degenerate basins separated by sufficiently high barriers
[75] (for reasoning and examples, see [60]). This is violated
in asymmetric multiwells, and examples with faster down-
hill relaxation are constructed in [60].

Conclusion.—We uncovered an unforeseen asymmetry
in the relaxation to equilibrium in equidistant temperature
quenches. Uphill relaxation was found to be faster—a
phenomenon we proved to be universal for quenches of
dynamics near stable minima. We hypothesize that it is a
general phenomenon in reversible overdamped diffusion in
single-well potentials extending to degenerate multiwell
potentials for quenches leaving interwell equilibria virtu-
ally intact. The dependence on the direction of the quench,
which so far seems to have been overlooked, implies a
systematic asymmetry in the dissipation of the system’s
entropy S7(t) versus heat (U(z))7 [12] and, for specific
projections, the modified entropy Sz(f) versus “strong
coupling heat” (U(t))7 [14,17], which seems to be relevant
for the efficiency of stochastic heat engines [44,76,77].
Implying that the hot isothermal step can be shorter than the
cold one, which reduces cycle times, the asymmetry may
also be relevant for the optimization of the engine’s
output power [44,76,77]. Our results can readily be tested
by single-molecule and particle-tracking experiments
[4,44-48]. To understand the asymmetry on the level of
individual trajectories, it would be interesting to analyze
relaxation from equidistant quenches in terms of occupa-
tion measures [7,8] and from the perspective of stochastic
thermodynamics [12,14].
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