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1 Introduction

In the past few decades, computer simulations achieved increasing acceptance in natural

science as the third major tool linking theory and experiment.

The growing performance of available computer technology has render it possible to

examine, relate and characterize large and complex data records from experiments on

biomolecular systems. It led to the formulation of models of biomolecular processes,

which can be validated and studied utilizing computer simulations. Additionally, com-

puter simulations cannot only simulate biomolecular experiments that can be under-

taken in a laboratory, but also experiments whose setup is too sophisticated and costly

or that would require time and spacial resolutions that cannot be achieved with existing

experimental methods and equipment.

Before the emerging of computer technology the outcome of biomolecular experiments

could only be predicted by an approximated or a corse description of the considered

system. Analytic solutions existed only for a small number of simple problems. Tradi-

tionally, a problem was approached by applying a number of analytical techniques and

approximations to find solutions based on physical theories. In comparison, computa-

tional techniques are able to tackle more complex system by using numerical methods.

For instance, the n-body problem is the problem of finding the dynamics of n bodies

as determined by Newton’s equation; given the initial positions, masses, and velocities.

For more than 2 bodies there is no general analytic solution available but it can be

solved numerically. A biomolecule such as lysozyme can have a couple of hundred atoms
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and hence biological processes are modeled most promisingly on atomic or molecular

level. Addressing questions on the atomic and molecular level by using first principles

such as newton dynamics is one of the strengths of computer experiments. Likewise,

they have the capability to answer questions why a process occurs by studying possible

driving forces.

Numerous biological effects are driven by the free energy F = U − TS, composed

of the internal energy U , the temperature T , and the entropy S. Minima of the free

energy surface correspond to the most probable configurations in phase space. For that

reason, decreasing the free energy leads to a more stable configuration.

In the focus of biophysics are mainly proteins surrounded by a solvent such as water.

Proteins are biomolecules characterized by a unique sequence of of amino acids (pri-

mary structure) and the spatial arrangement of this chain of amino acids (secondary

structure) [5]. Solvent entropy is assumed to be the driving force for the arrangement of

side chains according to their hydrophilicity. The more the protein exposes hydrophilic

side chains to the surrounding solvent molecules the more configurational freedom they

have – in other words, solvent entropy increases. In contrast, hydrophobic side chains

put constraints on the solvent molecules by forcing an alignment, hence yielding a lower

solvent entropy.

Although, the solvent density is analytically known it is impossible to compute the

entropy analytically since it requires to determine high dimensional integrals, hence,

we rely on numerical methods. Two major problems occur when treating solvents.

First, the diffusive motion of the solvent leads to a large configurational space that

has to be sampled. Second, the motion of the solvent molecules is governed by a very

shallow energy landscape. Hence, the configurational density has a complex topology

excluding it from a straightforward analytical estimation.

Tackling the sampling problem was approached by F. Reinhard. He developed a

transformation (Permuted Reduction Component Analysis (PRCA)), exploiting the
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1 Introduction

permutation symmetry of the solvent [18]. Whereas this permutation algorithm pro-

vides a promising method to locally condense the configurational density, the topology

stays complex. Thus, the transformed configurational density cannot be optimally

fitted by Gaussian distribution allowing a simple entropy estimation.

Therefore, we aim at developing a new method to improve Reinhard’s permutation

reduction by deforming the density such that we can make use of established entropy

estimations. With this method we want to contribute to the understanding of biological

processes such as protein folding. The goal of this work is to elucidate the problem

of solvent densities and to develop a method that lays the ground for solvent entropy

calculations and likewise enables to estimate entropies from highly unharmonic system.
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2 Theory

2.1 Canonical Ensemble

Classical statistical mechanics is the major tool in molecular dynamics simulations

to describe thermodynamic quantities. Though quantum mechanics is the appropri-

ate tool to model on the molecular level it turns out that for many problems classi-

cal mechanics gives good results that are in agreement with experiments (reference).

Therefore, to introduce the underlying principles we will give a brief elucidation how

a many-particle system evolves in time. An example for such a system is a protein

surrounded by water molecules. In classical mechanics the time evolution of a system

is given by Hamilton’s equation

ẋα = ∂H/∂pα, (2.1)

ṗα = −∂H/∂xα,

with the Hamiltonian H (p, x). xα are the positions and pα the momenta of all N

particles in three dimensions, labeled by the coordinate index α = 1, . . . , 3N .

A typical Hamiltonian of N particles interacting by a potential energy V and kinetic

energy K is
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2 Theory

H (p, x) =
3N∑
α

p2
α

2mα︸ ︷︷ ︸
K(p)

+V (x1, ..., x3N). (2.2)

The 3N -dimensional space of all possible positions X = {x} is called configuration

space. The 3N -dimensional space of all momenta P = {p} is called momentum space.

All possible states of a system are represented by the 6N -dimensional phase space Γ =

(P,X). In a Molecular Dynamics (MD) simulation a sequence of points (p (tn) , x (tn))

in phase space is generated, approximating the thermodynamic behavior of the system.

Treating real systems, like proteins in their environment, requires to take into account

that they interact with the environment. To mimic energy exchange a heat bath

with a given temperature T is employed. Once the system is in equilibrium with

its environment, the average behavior is determined by statistical mechanics. If the

number of particles N , the volume V , and the temperature T (NV T -ensemble) is

constant, then the probability of finding the system in a state in the vicinity of (p, x)

is described by the canonical ensemble [17]

ρ (p, x) dΓ =
1

Z
exp (−βH (p, x)) dΓ, (2.3)

where β = 1/kBT , kB is the Boltzmann constant, T the system temperature and

H(p, x) its Hamiltonian. dΓ ∼ dpdx is the phase space volume [17].

The normalization factor in equation 2.3, the so-called partition function, is

Z =

∫
Γ

exp (−βH (p, x)) dΓ. (2.4)
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2.2 Free Energy

2.2 Free Energy

Three dimensional structures or so-called conformations of proteins are in the focus of

structural biology, since they affect their function (reference). Free energy determines

the stability of conformational preferences of proteins. To the free energy one considers

domains in configurational space within which the protein stays sufficiently long before

it explores other parts of configurational space. One refer to these domains as protein

conformations. Hence, the set of all possible protein conformations can be described

by a family of disjoint finite subsets Xi of the configuration space X.

As illustrated in figure 2.1 the native state of the protein XN and the unfolded state

XU are described by an ensemble of configurations with a statistical weight given by

the Boltzmann factor.

X

XN

XU

Figure 2.1: Two possible conformations of ?(ask Martin Stumpe) are displayed. The

folded conformation corresponds to the subset XN , and the unfolded to XU . Each

subset is encircled by a contour.
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2 Theory

Which of all possible conformations is preferred by the protein can be answered by

calculating their probabilities. To start with, we define the partition function of con-

formation Xi

Zi =

∫
Xi

exp (−βV (x)) dx. (2.5)

The probability of conformation Xi is given by

Pi =
Zi
Z
, (2.6)

where Z is the partition function. We introduce the free energy of this conformation

Fi = −kBT lnZi. (2.7)

For free energy differences between state i and j we obtain

∆Fij = Fj − Fi = kBT ln
Zi
Zj

(2.8)

If ∆Fij >> 0 it is more likely to find protein in conformation Xi, whereas ∆Fij = 0

tells us that both conformations Xi and Xj occur with the same probability.

2.3 Total and configurational Entropy

Entropy is in the focus of our work. In this section we want to elaborate important

features of entropy. The entropy is defined as expectation value of the logarithm of the

probability density ρ (equation 2.3)

S[ρ(p, x)] = −kB
∫

Γ

ρ (p, x) ln ρ (p, x) dΓ, (2.9)

where kB is the Boltzmann constant. dΓ is the phase space volume. Often we refer to

it as total entropies since it involves the momentum contribution.
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2.3 Total and configurational Entropy

Mathematically speaking, the entropy is a functional mapping S[.] of a probability

density function ρ to a real number. For physically meaningful densities [24] the entropy

is always positive.

A way to conceive the meaning of entropy, is to consider it as a measure of the volume

of phase space that is accessible to the system. Regions of phase space with ρ = 0 do

not affect the entropy. A large S implies that a large region of phase space can be

accessed by the system, low value signifies that system is constrained. Alternatively,

it reflects our ignorance of the exact state of the system.

The nonlinear dependence of S[.] on ρ does n permit a convenient additivity property.

If the density ρ can be written as a product of two other densities functions ρ(x, y) =

ρ(x)ρ(y), the entropy split into subspace entropies, hence, it is additive

S [ρ(x)ρ(y)] = S[ρ(x)] + S[ρ(y)] (2.10)

The N-body Hamiltonian (equation 2.2) splits into two uncoupled components,

namely the kinetic energy K and potential energy V , consequently, the phase space

density (equation 2.3) factorizes ρ(p, x) = ρ(p)ρ(x), with

ρ(x) =
1

ZX
exp (−βV (x)) (2.11)

ρ(p) =
1

ZP
exp (−βK(x)) (2.12)

ZX and ZP are the normalization factors. Total entropy splits into

S[ρ(p, x)] = S[ρ(x)] + S[ρ(p)] (2.13)

S[ρ(p)] is the momentum entropy and S[ρ(x)] is the configurational entropy. The

momentum entropy can be effortlessly obtained [17]; since it is not relevant for our

work, we will concentrate in the following chapters on the configurational density,

which cannot not be computed in a straightforward manner.
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2 Theory

Experiments have proven that the configurational entropy of the solvent plays a crucial

role in protein folding and other processes like the formation of lipid bilayers [5] [11] [6].

Thus, for a protein in a solvent the configurational entropy S[ρ(x)] may be further slit

into the contributions from the solvent and protein by partitioning the configurational

space into a protein and solvent subspace: X = (XS,XP). The probability density can

be reduced to one subspace by integrating the configurational density over the other

subspace, hence

ρ(xS) =

∫
XP

ρ(xS, xP )dxP , (2.14)

ρ(xP ) =

∫
XS

ρ(xS, xP )dxS. (2.15)

where x = (xS, xP ) is the configurational vector of the protein-solvent system con-

sisting of xS the the configurational vector of the the solvent and xP the configurational

vector of the protein. However, splitting entropy into protein entropy S[ρ(xP )] and sol-

vent entropy S[ρ(xS)] – we skip the term configurational entropy, and refer to it simply

as entropy – can not be carried out in a physically meaningful way since correlations

between both subspaces are neglected. Because S[ρ(x, y)] ≤ S[ρ(x)] + S[ρ(y)] [7], a

correction term is required

S[ρ(xS, xP )] = S[ρ(xS)] + S[ρ(xP )] + ∆corr. (2.16)

Knowledge of the subspace densities ρ(xS) and ρ(xP ) is not sufficient to determine the

entropy of the whole protein-solvent system S[ρ(xS, xP )]. Figure 2.3 illustrates that the

product of the subspace densities ρ(xS)ρ(xP ) give rise to a different density as the orig-

inal density ρ(xS, xP ). Furthermore, the product of the subspace densities ρ(xS)ρ(xP )

yields a smaller entropy as the one obtained from the original density ρ(xS, xP ), since

correlations are not accounted. Correlations between the atom constrain the the part

of phase space they can access, hence lower the entropy.
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2.3 Total and configurational Entropy

ρ(x) =
∫

ρ(x, y)dy

x

ρ(x, y)

x

y

ρ(y) =
∫

ρ(x, y)dx

y

ρ(x)ρ(y)

y

x

Figure 2.2: For a given joint density ρ(x, y), we can get by integrating over one coor-

dinate the according marginal densities ρ(x) and ρ(y), their product ρ(x)ρ(y) does not

in general reconstruct ρ(x, y). Only if x and y are statistically independent, they don’t

correlate, then ρ(x, y) = ρ(x)ρ(y). A theorem in mathematics states that the sum of

the entropy of the marginal densities is always greater than the entropy from the joint

density ρ(x, y): S[ρ(x)] + S[ρ(y)] ≥ S[ρ(x, y)] [7].
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3 Entropy Estimation

3.1 Protein Entropy Calculated from the Covariance

Matrix

If we try finding an analytic ansatz for the system consisting of protein and solvent, the

obstacle we face, is the different behavior of both. Fluctuating in the vicinity of a single

stable, well-defined structure the protein sticks to a small part of its configurational

space, lysozyme gives a illustrative example (figure 3.1). In contrast, the motion of

solvent molecule is utterly diffusive exploring a large part of configurational space.

In this section we will present a straightforward method to compute the configura-

tional entropy of the protein from the covariance matrix, which can be obtained readily

from cartesian coordinates of an ensemble of protein structures. These structures might

come from an MD simulation or be generated by a Monte Carlo Simulation (reference).

In the following, for clarity reasons, we skip the notation xS and use x instead not

to confuse with the configurational vector x = (xS, xP ) of the protein-solvent system.

Moreover, with entropy S we refer to the configurational entropy of the protein subspace

SXS
.

Karplus developed a method to estimate the entropy S by fitting the density with

an analytic ansatz [1] [9]. His ansatz based on the following motivation: Attention

centers mostly on the entropy of stable conformations of proteins, like, for example

the folded conformation. Fortunately, these conformations occur in the close vicinity
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3.1 Protein Entropy Calculated from the Covariance Matrix

Figure 3.1: Depicted is the trajectory of lysozyme from a MD simulation, to demon-

strate the localized configurational space explored by a protein. Plotted is the average

structure (orange cartoon plot) and the structure at each time frame (transparent light

orange)

of local or even global minima of the free energy surface. Hence, a quasi-harmonic

approximation of free energy [9] allows to assume that configurational density of protein

can be approximated sufficiently accurate by a Gaussian

ρ(x) =
1

(2π)3N/2
√

det C
exp

[
−(x− µ)TC−1(x− µ)

2

]
(3.1)

C is the covariance matrix, and µ the midpoint.

For a given ensemble of M protein structures (generated by MD or MC simulations)

{x(m)}m=1,...,M – where x = (x1, ...x3N) denotes the position of the N atoms of a protein

written as a 3N -dimensional vector. The parameters of the density (equation 3.1) can

be estimated simply as follows
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3 Entropy Estimation

Cαβ = 〈xαxβ〉 − 〈xα〉〈xβ〉, (3.2)

µ = 〈x〉. (3.3)

xα are the coordinates of the atom positions and the angular brackets 〈.〉 represent

the ensemble average, which can be calculated with ease by the time average since we

assume ergodicity of our system [15]. Consequently, the ensemble average of a function

f(x) is

〈f (x)〉 =
1

M

M∑
m=1

f(x(m)) (3.4)

.

Using density approximation (equation 3.1), the configurational entropy (equation ??)

is

S =
kB
2

(
3N + ln

[
(2π)3N det C

])
(3.5)

However, technical problems come up when equation 3.5 is applied to a protein trajec-

tory, since the covariance matrix C turns out to be practically singular, in other words

has eigenvalues approaching zero as it can be seen in figure 3.1. Very small eigenvalues

give rise to negative entropies, which are physically not meaningful. However, entropy

differences between two states X1 and X2 turned out to be estimated accurately [9] [1].

∆S = SX1 − SX1 = kB ln
det CX2

det CX1

(3.6)

To circumvent the singularity problem of the covariance matrix, Schlitter [19] [20]

suggested an ad-hoc approach utilizing the quantum mechanical harmonic oscillator

in the quasi-harmonic approximation. The essence of his approach is to employ the

solution of the quantum harmonic oscillator to each vibration mode and to obtain an

upper limit of the total entropy (configurational entropy plus momentum entropy).
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3.1 Protein Entropy Calculated from the Covariance Matrix
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Figure 3.2: First hundred largest eigenvalues of covariance matrix C from lysozyme

trajectory. The covariance matrix is virtually singular (det C ∼= 0)

SPS
+ SXS

.
kB
2

ln det

[(
1 +

kBTe
2

~2
C̃

)]
, (3.7)

where C̃ = M1/2CM1/2 is mass-weighted covariance matrix obtained from the co-

variance matrix C (equation 3.2) and the mass matrix Mαβ = mαδαβ. mα is the mass

of protein atom with coordinate xα.

His approach is widely used, however, is should be noted that it is only tailored for

proteins. A drawback of Schlitter’s method is that it gives only good entropy estimates

if the positional fluctuation of the protein obeys at least nearly to a Gaussian distri-

bution. As we will demonstrate later, however, the solvent contribution to the entropy

is not accessible to this method.
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3 Entropy Estimation

3.2 Estimation of Solvent Entropies via Permutation

Reduction

While several methods exists to compute the protein entropy, it is challenging to de-

termine the solvent entropy, since the solvent density may not be approximated by

a Gaussian distribution. Figure 3.3 illustrates a simple hard sphere example, which

cannot be described by a Gaussian distribution. Hence, Schlitter’s straightforward

approach cannot be applied.

A completely novel and promising approach to compute solvent entropies was de-

veloped by F. Reinhard [18]. In this section we will outline his idea how to estimate

solvent entropies via permutation reduction from a given trajectory. His approach was

motivated by two major problems associated with solvent entropies:

First, it is infeasible to find an analytic ansatz to describe the solvent density, since it

exhibits a too complex analytic structure. Due to the repulsive potential for overlapping

solvent parts of the configurational space are inaccessible, hence creating holes in the

density distribution (figure 3.3). Even larger holes come from the interaction with the

protein.

Second, the configurational space explored by the diffusive motion of the solvent

molecules is too large to be sampled within a reasonable time by current simulation

techniques.

Reinhard’s approach tackles the second problem and significantly contributes to the

solution of the first one. In a brief description we want to provide the mathematical

background of permutation reduction — a term we will use in the following to refer

to Reinhard’s method. Permutation reduction based is on the idea to exploit the

permutation symmetry of the solvent interaction potential and neglects the coupling

between protein and solvent.

To start with, in many cases we can assume that the solvent interaction potential is
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3.2 Estimation of Solvent Entropies via Permutation Reduction

(a) Configurational density (b) Gaussian estimate

Figure 3.3: Two dimensional projection (on first two eigenvectors of covariance matrix

of sample points) of the configurational density of a system consisting of three two-

dimensional hard spheres trapped in a box. (a) The repulsive interaction of the spheres

will yield parts of configurational space that are not accessible (holes). (b) A gaussian

estimate of the density will fail since it not accounts for the hole in the middle.

described by the term

V (x) =
∑
i<j

Vss(xi, xj) (3.8)

Where x = (x1, ..., xN) denotes the configurational vector of all N solvent molecules.

Each single solvent molecule labeled by i may described by 3m dimensional vector xi =

(xi,1, ..., xi,m) consisting of the three-dimensional positions of its m atoms. Accordingly,

the configurational space X is 3mN -dimensional. The mutual interaction of solvent

molecules is described by a symmetric potential function Vss(xi, xj) with Vss(xi, xj) =

Vss(xj, xi).

Obviously, the solvent molecules are indistinguishable, and consequently, we can

interchange the (i.e. relabel them) them without changing the value of the total poten-

tial (equation 3.8). With this in mind, we introduce a permutation operator on solvent
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3 Entropy Estimation

molecules

Pπx = xπ =
(
xπ(1), ..., xπ(N)

)
(3.9)

π is a permutation of the numbers {1, ..., N}. These permutations form a finite group

denoted by Π with N ! elements.

Since the solvent molecules are interchangeable, the potential (equation 3.8) is per-

mutational invariant. And hence, the density (equation 2.11) posses the same invari-

ance

ρ(x) = ρ(xπ) ∀π ∈ Π, (3.10)

Figure 3.4: Configurational density of a two particle system, whose interaction is de-

scribed by a Lennard-Jones potential. Due two the permutation symmetry of the

potential, the configurational space can be decomposed into 2! subspaces. Regions

with vanishing density occur a little bit blurred at the surface of hyper-plane. If there

is additionally a protein-solvent interaction, holes will appear within the subspace.
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3.2 Estimation of Solvent Entropies via Permutation Reduction

in other words, the solvent configurations xπ and x occur equally likely. As a result, we

can relabel solvent molecules without changing thermodynamic quantities as entropy

or free energy.

A powerful feature of symmetries is to split the considered space in subsets with equal

properties. Here, the permutation symmetry, allows us to split the configurational

space X into N ! slices, each having the same thermodynamic properties. We can

generate these slices by the following procedure

ξ ∈ X

X (ξ) = {x ∈ X : ‖xπ − ξ‖ > ‖x− ξ‖ ∀π ∈ Π \ {1}}

Xπ = X (ξπ) ∀π ∈ Π

X =
⋃
π∈Π

Xπ (3.11)

In the above construction the configuration ξ can be chosen arbitrarily (Appendix).

It serves as a generator to define the slice X (ξ), an arbitrary representative of the

decomposition, from which we produceN ! slices Γπ by applying all permutations π ∈ Π,

splitting the configurational space X into N ! slices Xπ.

Let us consider an illustrative example of two one-dimensional particles interacting by

an Lennard-Jones Potential. In figure 3.4, we have plotted the resulting configurational

density. The configurational space is split into 2 slices due to the permutation symmetry

of the density. For one slice we have denoted the boundary by a dashed orange line.

A consequence of equation 3.11 is that for each x ∈ X there is a permutation π such

that x ∈ Xπ, likewise, and more important, for a fixed slice Xσ we can always find a

permutation π such that xπ ∈ Xσ.

In other words, exploiting the permutation symmetry, for a given configuration ξ we

can compress an ensemble of solvent configurations into a small slice X(ξ) of its configu-
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3 Entropy Estimation

rational space X without changing any thermodynamic quantity. The remaining space

configurational space does not provide any additional thermodynamic information.

(a) Before relabeling (b) After relabeling

Figure 3.5: (a) Ensemble of configurations in a 3-dimensional space before relabeling.

(b) After relabeling the ensemble is compressed into 1/3! fraction of the space (blue)

Accordingly, Reinhard suggested to transform a solvent trajectory via permuting (by

relabeling each frame) into one slice, we will also refer to as reduced space, such that it

renders the trajectory more compact and improves significantly the sampling problem.

Reinhard found that permutation reduction corresponds to a linear assignment prob-

lem, for which many elegant solutions exist. His algorithm works as follows: Find a

permutation π of the solvent molecules for each frame bringing the solvent close to a

chosen reference position ξ. In mathematical terms, find a π such that+

‖xπ − ξ‖ < ‖xσ − ξ‖ ∀σ ∈ Π (3.12)

After relabeling the trajectory is compressed into the reduced space X (ξ) depending

only on the chosen reference configuration ξ

As illustration of Reinhard’s permutation reduction we have applied his method to a
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3.2 Estimation of Solvent Entropies via Permutation Reduction

trajectory of a simulation of an argon gas trapped in box. The left picture of figure 3.6

shows the diffusive motion of argon atoms in box before relabeling. Each argon atom is

colored differently. Different spheres of the same color depict different locations of the

atom during diffusion. The right picture shows the atoms after relabeling. Relabeling

can be considered as changing the color of the atoms. Positions in the vicinity of a

reference atom are assigned to atoms which are close, thus changing their color. As a

result the motions of the relabeled atoms is restricted to a small part of the simulation

box.

(a) Before relabeling (b) After relabeling

Figure 3.6: Simulation of gas consisting of 216 argon atoms trapped in box (a) Diffussive

motion of argon atoms, each colored differently, before relabeling. (b) After relabeling

the argon atoms stay close to a reference position, hence, the colors cluster.

After relabeling the ensemble covers only a small fraction of configurational space. The

probability density of finding a configuration x in the reduced space X (ξ) is given by
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3 Entropy Estimation

the conditional density

ρ0(x) = ρ (x | x ∈ X (ξ)) =

N !ρ(x) x ∈ X (ξ)

0 otherwise

. (3.13)

Hence, ρ (equation 2.11) can be easily recovered by applying all possible permutations

ρ(x) =
1

N !

∑
π∈Π

ρ0 (xπ) (3.14)

Using the density of the relabeled ensemble (equation 3.13) the total configurational

entropy S[ρ(x)] (equation 2.11) is given by

S[ρ(x)] = S[ρ0(x)] + lnN !. (3.15)

Reinhard’s permutation reduction improves drastically the sampling problem, further

entropy estimation can be applied without the burden of exhaustive sampling, since

the density is compressed into a small slice of configurational space. Additionally, the

geometric form of the slice is known, what might be beneficial for further analysis.
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4 Entropy Preserving Transformation

Method

4.1 Holes - The Density-Fit Problem

The permutation reduction of Reinhard led to a representation formula (equation 3.14)

of the density ρ as the sum of permutations of a single relabeled density ρ0 (equation

3.13), which is nonzero on a small part of configurational space — the so-called reduced

space. From this the density ρ0 may be estimated by a Gaussian. However, Reinhard

found out that estimating ρ0 with a Gaussian is not the best choice to produce accurate

entropy estimates of a relabeled density. The reason is that the relabeled density —

though it is more localized than the original one — is still too anharmonic to be fitted

by a Gaussian.

In this section we will elucidate that holes, which are parts of configurational space

with vanishing density, cause anharmonicity. These holes are not eliminated by Rein-

hard’s method. Therefore, we suggest in the adjacent chapters a method, that deforms

the density such that the holes disappear and the entropy is preserved.

By means of a simple protein-solvent model we will show that holes render an easy

analytic ansatz infeasible and require another approach to determine the entropy. To

model the protein-solvent system, we will assume that the protein is fixed in configu-

rational space, motivated by the experience that proteins often assume a stable con-
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4 Entropy Preserving Transformation Method

formation (reference). The Protein consists of NP atom at positions yj, j = 1, ..., NP .

Whereas the solvent is assumed to move diffusively around the protein in the simu-

lation box, in which both are located. The positions of the NS solvent molecules are

xi, i = 1, ..., NS. The potential of the system is assumed to have the form

V (x) =
∑
i>j

Vss(xi, xj) +
∑
i,p

Vsp(xi, yp) + Vpp, (4.1)

where Vss describes the symmetric interaction potential between the solvent molecules.

The interaction of the solvent with the protein is modeled with a potential Vsp. Vpp

stands for the potential energy of the protein. Details of the potential functions are not

important for further consideration. To explain the coarse structure of the resulting

density, we assume that the interaction exhibit a repulsive character, because no two

atoms can be at the same place (Pauli principle), hence,

lim
xi→xk

Vss(xi, xk) =∞, (4.2)

lim
xi→yj

Vsp(xi, yj) =∞.

The repulsive character of the potentials tells us, that the total potential V (equation

4.1) tends to ∞, in other words the density (equation 2.11) vanishes, if either two

solvent molecules get converge or a solvent molecules gets the volume occupied by the

protein. Mathematically speaking

∀x ∈ XS with i 6= k, xi = xk : ρ(x) = 0, (4.3)

∀yp ∈ XP ∀x ∈ XS with xi = yj : ρ(x) = 0. (4.4)

Hence, the two-particle-interactions Vss of NS solvent molecules give rise to NS(NS−1)

holes. Likewise, the solvent-protein Vsp interaction leads to inaccessible parts of con-

figurational space. Obviously, the resulting holes in the configurational density ρ will
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4.1 Holes - The Density-Fit Problem
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Figure 4.1: (a) Sketch of a Gaussian estimate (purple line) of a density (blue line)

that has a hole in the middle and vanishes at its boundary. The Gaussian estimate is

maximal at the hole in the center, where the actual density vanishes. (b) Simple hard

sphere system to exemplify solvent entropy. Three two-dimensional hard spheres of

diameter d moving in a 2D square box with length a = 5, a protein was modeled by a

hard sphere of diameter dp = 3 located in the center of the box. We generated several

ensembles with diameters of the solvent disk ranging from 0 to 3. All ensembles were

relabeled according to Reinhard’s reduced permutation and the entropy was estimated

(blue) by fitting a Gaussian to the ensemble density. The real entropy was computed

with a Monte-Carlo Method (purple line).

still be present in the relabeled density ρ0 for symmetry reasons (equation 3.10). Con-

sequently, the density ρ0 is still not shaped in a way that would allow to approximate

it using a Gaussian since holes would be neglected (figure 4.1 (a)).

It can be proven (Appendix) that the repulsive interactions between solvent molecules

give rise to holes in the relabeled density ρ0 at the surface of the reduced space and

that holes resulting from interaction with the protein can occur in the interior of the

reduced space.
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4 Entropy Preserving Transformation Method

For a simple system consisting of three hard spheres moving in a box and a protein,

modeled by a hard sphere in the center the (relabeled) density posses holes due to

the repulsive potential the of disks and the area excluded by the “protein”. These

holes render the relabeled density anharmonic, which means that it cannot be fit by

a Gaussian. Hence, estimating the entropy by fitting the relabeled density with a

Gaussian (blue curve in figure 4.1 (b)) leads to overestimation of the real entropy

(purple line in figure 4.1 (b)).

4.2 Entropy Preserving Transformations

4.2.1 Analytical Representation by Incompressible Flow

We demonstrated that the relabeled density (equation 3.13) may be non-gaussian.

Hence, it renders a analytic fit ansatz, for example a Gaussian fit, infeasible. Therefore,

we will try to find “deforming transformations” f : XS → XS in the configurational

space of the solvent that warp the density into a more Gaussian one without changing

the entropy of the considered system. To this end, it is desirable to “close holes”.

If we apply an arbitrary smooth and invertible transformation f to the configurational

vector x of the solvent — mathematically, a random variable — the corresponding

transformation of the density (equation 3.13) is (reference)

f [ρ0](y) ≡ ρ0(x) det [Jf (x)]−1 , with x = f−1(y), (4.5)

where f [ρ0] denotes the transformed density and Jf is the Jacobian matrix of the

transformation f . The transformed density f [ρ0] has the configurational entropy

S [f [ρ0]] = −kB
∫

f [ρ0](y) ln f [ρ0](y)dy, (4.6)

changing variables y = f(x) with dy = det Jf (x)dx and using equation 4.5 yields the
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4.2 Entropy Preserving Transformations

entropy transformation

S [f [ρ0]] = −kB
∫
ρ0(x) ln

(
ρ0(x) det [Jf (x)]−1) dx (4.7)

= S [ρ0] +

∫
ρ0(x) ln (det [Jf (x)]) dx︸ ︷︷ ︸

entropy change

. (4.8)

Transformations f that compress (det [Jf (x)] > 1) or expand (det [Jf (x)] < 1) the

density ρ0 are too complicated to handle, since it would be computationally expen-

sive to correct the entropy change. Equation 4.8 indicates that transformations with

unit Jacobian are entropy-preserving, since the logarithm of the Jacobian determinate

vanishes. Hence,

det [Jf (x)] = 1⇒ S [f [ρ0]] = S [ρ0] . (4.9)

Consequently, we focus on transformations f with unit Jacobian as possible candi-

dates for deforming the density in such a way that the entropy is not preserved. These

class of transformations is referred to as volume-preserving maps. In the following we

use the terms volume- and entropy preserving transformations (maps) interchangeably.

A construction of smooth volume-preserving maps is provided by the “density theo-

rem” [2]. According to this theorem smooth volume-preserving maps can be generated

from solutions of a first order ordinary differential equation (ODE)

dx

dt
= v (x) , (4.10)

describing the motion of a “particle” in an incompressible flow v. An incompressible

flow is described by a field in which the divergence of the velocity is zero,

∇ · v =
∑
i

∂vi
∂xi

= 0. (4.11)
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4 Entropy Preserving Transformation Method

(a) Initial density (b) Divergence-free field (c) Reshaped density

Figure 4.2: An initially non-gaussian density (a) is deformed by a velocity field (b)

such that the result (c) is more gaussian shaped. Both densities have the same entropy

as the deformation takes place in an incompressible flow.

We introduce the continuous transformation fv(t,x) denoting the solution of the the

ODE (equation 4.10) at t with x as initial condition at t = 0. We show that the

determinant of the Jacobian of fv(t, .) is equal to one. As shown in appendix 8.2 the

following identity holds

∂t ln det

(
∂fv(t,x)

∂x

)
= (∇ · v) (fv(t,x)) . (4.12)

The zero-divergence of v (equation 4.11) implies that the right side of equation 4.12

is zero, hence, the determinant of the Jacobian is time-independent. Employing the

initial condition fv(0, x) = x we obtain

det

(
∂fv(t,x)

∂x

)
= det

(
∂x

∂x

)
= 1, (4.13)

hence, fv(t, .) is a entropy-preserving (implication 4.9).

Furthermore, equation 4.10 describes the characteristic curve [21] of an advection

equation, a partial differential equation describing the propagation of the density ρ in
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4.3 Divergence Free Wavelets

the velocity field v.

∂ρ

∂t
+ v · ∇ρ = 0 (4.14)

As a result, given the divergence-free field v and flow time t > 0, we can construct

an entropy-preserving transformation fv(t,x) by moving the configurational vector x

for a certain time t along the streamline of an incompressible — divergence-free —

velocity field. However, this construction does not work satisfactorily, since we do not

have a tool to build every possible smooth divergence-free velocity field to generate all

entropy-preserving maps

G = {fv(t, .) | ∇ · v = 0} , (4.15)

which form a group, meaning that the composition of two arbitrary elements of G

is also entropy-preserving, hence a member of the set G. Later, we will exploit the

group property to decompose a entropy-preserving transformation into a composition

of low-dimensional transformations, since it is infeasible to find a high-dimensional

transformation, warping the density into a more Gaussian one.

4.3 Divergence Free Wavelets

The construction of entropy-preserving transformations depends strongly on divergence

free fields. Therefore, we will explain in this section how to construct a basis of

divergence-free vector fields. In the following we concentrate merely on mathemati-

cal aspects and therefore, instead of speaking of a particular configurational space we

will switch to the n-dimensional euclidian space Rn but keeping in mind that we are

seeking for a divergence-free vector field in the configurational space of the solvent XS.
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4 Entropy Preserving Transformation Method

The linear vector space (reference) of divergence-free vector fields is

Hdiv,0 (Rn) =
{
u ∈

(
L2 (Rn)

)n | ∇ · u = 0
}
, (4.16)

where (L2 (Rn))
n

indicates the space of square integrable n-dimensional vector func-

tions, for which
∫
‖u (x) ‖dnx < ∞ holds. The linearity of the function space Hdiv,0

allows us to write every divergence-free field as a simple linear combination of this

basis. Consequently, we can easily parametrize the group of entropy-preserving trans-

formations (equation 4.15).

P.G. Lemarie-Rieusset designed a compactly supported and divergence-free wavelet

base for Hdiv,0 (Rn) by an algebraic construction based on tensor products and biorthog-

onal Multiresolution analyses. Wavelets are functions that allow to expand arbitrary

functions into integer scaled and translated copies of a single waveform, the so-called

(mother-) wavelet [13].

In recent years divergence-free wavelets became a popular tool in hydrodynamics.

They are used to analyze two-dimensional flows and as well to compute the Navier-

Stokes solution for the driven cavity problem [22]. We propose to use divergence-free

wavelets to construct smooth entropy-preserving transformations.

In the following we will provide the basics of the construction principle originally

developed by Lemarie-Rieusset and Urban [23] [3] [4]. We will focus on the implemen-

tation of two-dimensional divergence-free vector wavelets base since we will use them

later.

4.3.1 Multiresolution Analysis (MRA)

To begin with, we briefly review the concept of multiresolution analyses, that are

necessary to construct a wavelets base of a functions space. Multiresolution analyses

(MRA) are function approximation spaces, in the one-dimensional case, defined by a

sequence of closed subspaces (Vj)j∈Z fulfilling the following conditions
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4.3 Divergence Free Wavelets

∀j, Vj ⊂ Vj+1, (4.17)⋂
j∈Z Vj = {0},

⋃
j∈Z Vj = L2 (R) , (4.18)

f ∈ Vj ⇔ f(2.) ∈ Vj+1, (4.19)

There exists a function φ ∈ V0 such that V0 = span{φ(.− k), k ∈ Z}, (4.20)

where φ is called scaling function of the MRA. The index j can be understood as a

refinement level. From condition 4.19 and 4.20 we can deduce that

Vj = span{2j/2φ
(
2j.− k

)
, k ∈ Z}. (4.21)

Equation 4.20 means that every function of Vj can be written as a linear combination of

integer shifted scaling functions φ. Wavelets appear as the relative complement space

Wj of Vj in Vj+1

Vj+1 = Vj ⊕Wj (4.22)

where ⊕ is a direct sum. However, equation 4.22 not necessarily mean that both

summands are orthogonal. It is possible to find a wavelet function ψ such that

W0 = span{ψ(.−k), k ∈ Z}. Likewise, we can deduce thatWj = span{ψj,k, k ∈ Z},

where ψj,k = 2j/2ψ (2j.− k). A repeated decomposition of Vj yields the wavelet de-

composition of the function space

L2 (R) =
⊕
j∈Z

Wj. (4.23)

Consequently, every function f in L2 (R) can be written as

f(x) =
∑
j∈Z

∑
k∈Z

cj,kψj,k(x) (4.24)
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4 Entropy Preserving Transformation Method

4.3.2 Multivariate MRA

The above consideration can be extended to multi-dimensions. A way to obtain

multivariate wavelets is to use products of one-dimensional functions. For the two-

dimensional case we elucidate the construction of two-dimensional wavelets from two

different one-dimensional MRAs
(
V 0
j

)
j∈Z and

(
V 1
j

)
j∈Z.
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Figure 4.3: Scaling and wavelet functions of two MRAs
(
V 0
j

)
and

(
V 1
j

)
related by

φ1(x)′ = φ0(x)− φ0(x− 1) and ψ1(x)′ = 4ψ0(x).

We start with constructing an MRA of (L2 (R2))
2

from two different MRAs
(
V 0
j

)
j∈Z

and
(
V 1
j

)
j∈Z — with scaling and wavelet functions (φ0, ψ0) and (φ1, ψ1) respectively —
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by

[
Vj =

(
V 1
j ⊗ V 0

j

)
×
(
V 0
j ⊗ V 1

j

)]
j∈Z (4.25)

Due to the function space Vj is spanned by two vector-valued scaling functions

φ(1,0)(x, y) = φ1(x)φ0(y)

1

0

, φ(0,1)(x, y) = φ0(x)φ1(y)

0

1

 (4.26)

Hence, Vj = span{φ(1,0),j,k, k ∈ Z2} ⊕ span{φ(0,1),j,k, k ∈ Z2}, where φe,j,k(x, y) =

2jφe (2jx− kx, 2jy − ky) with e ∈ {(1, 0), (0, 1)}. Employing the decomposition of both

one-dimensional MRAs V 0
j and V 1

j (equation 4.22) the complement of Vj in Vj+1 — the

wavelet space Wj — becomes a direct sum of tensor spaces consisting of combinations

of V 0
j ,W

0
j and V 1

j ,W
1
j

Wj =

V 1
j ⊗W 0

j

V 0
j ⊗W 1

j

⊕
W 1

j ⊗ V 0
j

V 0
j ⊗W 1

j

⊕
W 1

j ⊗W 0
j

W 0
j ⊗W 1

j


j∈Z

. (4.27)

The wavelet space W0 is spanned by six wavelets functions which are obtained by

building tensor products of the appropriate functions

ψ(1,0)
(0,1)(x, y) = φ1(x)ψ0(y)

1

0

, ψ(0,1)
(0,1)(x, y) = φ0(x)ψ1(y)

0

1

,
ψ(1,0)

(1,0)(x, y) = ψ1(x)φ0(y)

1

0

, ψ(0,1)
(1,0)(x, y) = ψ0(x)φ1(y)

0

1

,
ψ(1,0)

(1,1)(x, y) = ψ1(x)ψ0(y)

1

0

, ψ(0,1)
(1,1)(x, y) = ψ0(x)ψ1(y)

0

1

.
(4.28)

By integer scaling and shifting we obtain the family of wavelets

{ψε
i,j,k(x) = 2jψε

i

(
2jx− k

)
} (4.29)
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with j ∈ Z, k = (kx, ky) ∈ Z2, ε ∈ E = {(0, 1), (1, 0), (1, 1)}, where i denotes all

possible directions i = {(0, 1), (1, 0)}. The function family (equation 4.29) constitutes

a basis of (L2 (R2))
2
. Hence, every vector field u in the function space (L2 (R2))

2
can

be expanded into wavelet vector functions

u(x) =
∑
i,ε,j,k

aj,k
(i,ε)ψε

i,j,k(x) (4.30)

4.3.3 Two-Dimensional Divergence-Free Wavelets

The key to construct divergence-free vector wavelets lies in constructing a multivariate

wavelet basis from two MRAs related by differentiation and integration, as explained

above. If the MRAs are related by differentiation and integration Lemarie-Rieusset

proved [12] [23] that it is possible to design a divergence-free vector wavelet basis

of (L2 (R2))
2

from the multivariate wavelet basis of (L2 (R2))
2

(equation 4.29). He

provided a constructive proof of the the following proposition: Let
(
V 1
j

)
j∈Z be a one-

dimensional MRA with differentiable scaling function φ1 and a wavelet ψ1, one can

build a second MRA
(
V 0
j

)
j∈Z with the scaling function φ0 and wavelet ψ0. Both MRA

are related by

φ1(x)′ = φ0(x)− φ0(x− 1)

ψ1(x)′ = 4ψ0(x) (4.31)

In figure 4.3 we show the scaling and wavelet functions of two such MRAs.

A basis change of the two-dimensional wavelet basis (equation 4.29) constructed

from tensor products of two different MRAs verifying equation 4.31 allow to find a

divergence-free basis consisting of three divergence-free vector wavelets [3] [4]. They

are
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(a) ψdiv
1 (b) ψdiv

2

(c) ψdiv
3

Figure 4.4: Two-dimensional divergence-free wavelets generated from two different

MRAs related by differentiation and integration. In (a), (b), and (c) we depict the

euclidian norm of the three divergence-free wavelets ‖ψe,i
div‖. Piecewise defined spline

polynomials [13] were used for the scaling and wavelet functions of the underlying

MRAs, hence, the divergence-free wavelets are piecewise multivariate vector polynomi-

als. Red lines indicated the piecewise defined polynomials.
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ψdiv
1 (x, y) =

−1/4ψ1(x)φ′1(y)

ψ0(x)φ1(y)

 , (4.32)

ψdiv
2 (x, y) =

 φ1(x)ψ0(y)

−1/4φ0(x)ψ1(y)

 , (4.33)

ψdiv
3 (x, y) =

 ψ1(x)ψ0(y)

−ψ0(x)ψ1(y)

 . (4.34)

In figure 4.4 we depict the three divergence-free wavelets from which one may ob-

tain a basis by shifting and scaling. Every divergence-free field in Hdiv,0 (R2) can be

decomposed into divergence-free vector wavelets

u(x) =
∑
j∈Z

∑
k∈Z2

∑
ε=1,2,3

cε,j,kψ
div
ε,j,k(x) (4.35)

The basis is derived from the wavelets by

ψdiv
ε,j,k(x) = 2jψdiv

ε (2jx− k) (4.36)

4.3.4 n-Dimensional Divergence-Free Wavelets

For the n-dimensional case Lemarie-Rieusset derived the following construction prin-

ciple for a divergence-free wavelet basis [12] [23] [23] [3] [4]. For the construction he

used two indices e and i

(
ψdiv
e,i

)
j
(x) =


ξ

(i)
e (x), j = i

−1
4
∂xi
ξ

(i,ie)
e (x) j = ie

0, otherwise

(4.37)

where e ∈ E∗ = {0, 1}n\{(0, ..., 0)}. The integer ie stands for the index of the first non-

vanishing component of the binary vector e, thus, ie = min {l, el 6= 0}. i ∈ {1, ..., n} \

40



4.3 Divergence Free Wavelets

{ie}. j = 1, ..., n is the component index of ψe,i
div. By means of a five-dimensional

example, we elucidate how to build the functions ξ
(i,ie)
e in equation 4.37 from the

scaling and wavelet functions (φ0, ψ0) and (φ1, ψ1) of two different one-dimensional

MRAs related by equation 4.31. The meaning of the sub and the super index of ξ can

be understood exemplarily

ξ(0,1,0,1,1)
(2,4)(x) = φ0(x1)ψ1(x2)φ0(x3)ψ1(x4)ψ0(x5) (4.38)

As mnemonic, e is an n-dimensional binary vector consisting of the elements 0 and 1,

where 0 = φ and 1 = ψ. The superscript index vector of ξ denotes the positions of

factors of the product of ψ and φ functions (equation 4.38) which have subindex 1. In

n dimensions we have (n − 1)(2n − 1) different basis divergence-free wavelet vectors.

We label all (n − 1)(2n − 1) basis wavelets by ε ∈ En ≡ {1, ..., (n− 1)(2n − 1)}, thus,

we have the family

{
ψdiv
ε

}
ε∈En

, (4.39)

from which by integer scaling and translating in an n-dimensional integer lattice we

can construct a function basis. Hence, every n-dimensional divergence-free field u has

the following wavelet decomposition

u(x) =
∑
j∈Z

∑
k∈Zn

∑
ε∈E

cε,j,kψ
div
ε,j,k(x), (4.40)

where ψdiv
ε,j,k(x) = 2jn/2ψdiv

ε (2jx− k)

4.3.5 Parametrization of G

As a result, we have a tool to construct every possible n-dimensional smooth divergence-

free vector field. With this in mind, we can parametrize the group of entropy-preserving
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4 Entropy Preserving Transformation Method

smooth maps (equation 4.15), such that each element corresponds to a sequence of real

numbers.

According to the wavelet decomposition (equation 4.35) every div-free field can be

represented uniquely by its wavelet coefficients c, therefore, instead of parametrizing an

entropy-preserving transformation by a divergence-free field v, we may use a sequence

of wavelet coefficients c = (cε,j,k). For convenience, we will turn to a more readable

index notation by introducing the index vector

l = (ε, j,k) ∈ I ≡ En × Z× Zn (4.41)

Hence, given an arbitrary flow time t > 0 we define a smooth entropy-preserving

transformation fc(t,x) as the solution of the following ODE at t

dx

dt
= vc (x)

vc =
∑

l

clψ
div
l (x),

x(0) = x. (4.42)

The group of entropy-preserving transformations (equation 4.15) becomes

G =
{
fc(t, .) | c = (cl)l∈L ∈ l

2
}
. (4.43)

where l2 is the linear space of square integrable sequences.

4.4 Optimization

In section 4.1 we showed by a coarse model that the densities we are dealing with

may have holes and be not very localized. Their complex topology excludes them from

simple entropy estimation methods. Therefore, deforming the densities in a entropy-
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preserving way, such that they assume a simpler topology is a promising approach

allowing to use already established entropy estimation methods.

The wavelet representation (equation 4.42) of entropy-preserving transformations

renders it possible to find wavelet coefficients c resulting in the “optimal deformation”

fc(t, .) of the density. As “optimal” we consider transformations fc(t, .) deforming the

density such that simple entropy estimation methods become applicable. To this end,

we will introduce objective functions serving to find the optimal transformation fc(t, .)

by applying the steepest descent algorithm.

Lucas Parra et al. proposed a technique for finding entropy-preserving nonlinear

maps producing a statistically independent representation of a probability density [14].

That means to find a nonlinear map f transforming a given density ρ0 such that the

resulting density ρ = f [ρ0] has the following factor representation

ρ(x) =
n∏
i=1

ρi(xi), (4.44)

where ρi(xi) =
∫
ρ(x)

∏
j 6=i dxj are the marginal densities of the transformed joint

density ρ. In order to make f [ρ0] “as factorial as possible”, Parra et al. minimized its

mutual information by deforming the density using implicit symplectic maps.

A factor representation of a density (equation 4.44) allows to decompose the entropy

into a sum of single coordinate entropies,

S [ρ(x)] =
n∑
i=1

S [ρi(xi)] . (4.45)

Hence, the factorization reduces substantially the complexity of determining a multi-

dimensional entropy problem to determining the entropy of single coordinates.

Another approach is to warp the density into a Gaussian, whose entropy can be

readily estimated from its covariance matrix (reference). With this in mind, we can

formulate two objectives. Either we deform the density such that it becomes “as gaus-

sian as possible” (subsection 4.4.1) or we change its shape in a way that it becomes “as
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4 Entropy Preserving Transformation Method

factorial as possible ” (subsection 4.4.2). On this account, we introduce two objective

functions that will render it possible to find a deformation resulting in densities that

achieve our before mentioned objectives sufficiently well.

4.4.1 Negentropy - Gaussianity

The fact that a Gaussian density has the largest entropy among all densities of equal

covariance (reference) suggests to define a nonnegative anharmonicity measure as fol-

lows

J [ρ] = S [ρGauss]− S [ρ] ≥ 0. (4.46)

The quantity J is called negentropy. ρGauss is a gaussian density with same covari-

ance as ρ. It can be understood as a measure of the distance between an arbitrary

density ρ and its Gaussian estimate. Since J [ρ] is zero if and only if ρ is a Gaussian,

we assume that minimizing J [f [ρ]] by deforming the density with entropy-preserving

transformations f will yield a Gaussian-like density, which can be optimally described

by a Gaussian.

The problem of deforming a given density ρ “as gaussian as possible” using entropy-

preserving transformations can hence be formulated as the minimization problem

fmin = arg

(
min
f∈G
J [f [ρ]]

)
, (4.47)

where G is the set of all smooth entropy-preserving transformations (equation 4.43).

Since we only allow entropy-preserving transformations, S[f [ρ]] is constant for all f ∈ G,

hence, we can neglect this term in the negentropy minimization. Furthermore, ρGauss

can be computed explicitly by the covariance C of ρ

Ci,j[ρ] ≡ 〈xixj〉ρ − 〈xi〉ρ〈xj〉ρ, (4.48)
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where the angular brackets 〈.〉ρ denote the expectation value in respect to the probabil-

ity density ρ. Consequently, 〈f(x)〉ρ =
∫
f(x)ρ(x)dnx. Using the entropy expression

of a Gaussian with covariance C (reference in text) leads to the optimization problem

fmin = arg

(
min
f∈G

det C [f [ρ]]

)
. (4.49)

4.4.2 Mutual Information - Factorizable Densities

Mutual information is a measure of statistical independence [7] [14], it is defined as

follows

I [ρ] =
n∑
i=1

S [ρi]− S[ρ] ≥ 0, (4.50)

where ρi(xi) are the marginal densities of the joint density ρ(x) and S[ρ] is the entropy

of ρ. Mutual information vanishes if and only if all components of the random variable

x are statistically independent according to density ρ(x). Equivalently, statistical

independence occurs when the joint density factorizes in a product of its marginal

densities

ρ(x) =
n∏
i=1

ρi(xi)⇔ I[ρ] = 0. (4.51)

In order to transform a given density ρ to a density that is “as factorial as possible”,

we have to search a transformation minimizing mutual information

fmin = arg

(
min
f∈G
I [f [ρ]]

)
. (4.52)

Lucas Parra et al. suggested to minimize an upper bound to avoid the computationally

intensive task of measuring single coordinate-entropies [14]. An upper bound that is

easy to minimize is
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I[ρ] ≤ −S[ρ] +
n

2
ln(2πe) +

1

2

n∑
i=1

σ2
i (4.53)

Instead of minimizing the individual coordinate entropies S[ρ(xi)] the problem simpli-

fies to the minimization of the variance σ2
i . Using only second moments might seem as

a strong simplifications. It leads, however, to a computationally efficient solution.

Using the identity tr C =
∑n

i=1 σ
2
i and neglecting the constant terms in equation 4.53

simplifies the minimizing of the upper bound of mutual information to

fmin = arg

(
min
f∈G

tr C [f [ρ]]

)
. (4.54)

It can be proven that a circular shaped Gaussian extremizes the above minimization

problem [14], hence, if the transformations are flexible enough, the minimization tends

to produce circular Gaussian shaped functions.

4.4.3 Approximation of Objective Functions

An MD simulation yields a sampled trajectory that can be considered as a series of

snapshots of possible solvent configurations each drawn from the configurational density

ρ (reference). We denote the trajectory by

X =
{
x(m) | m = 1, ...,M

}
. (4.55)

We transform each configuration by an entropy-preserving transformation f and denote

it by

Y = f (X) ≡
{
f
(
x(m)

)
| m = 1, ...,M

}
. (4.56)

Therefore, each transformed snapshot ym = f(xm) is drawn from the transformed

density f [ρ](y) = ρ (f−1(y)) (reference).
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With this we may approximate the covariance C[ρ] (reference) from sample points of

the trajectory by

Covij (X) ≡ 〈xixj〉 − 〈xi〉〈xj〉 (4.57)

where 〈f(x)〉 = 1
M

∑M
i=1 f

(
x(m)

)
.

Given the trajectory X, we estimate the objective functions (equation 4.54 and

equation 4.49) using the approximated covariance Cov

min
c∈l2

tr [Cov (fc (t,X))] (4.58)

or

min
c∈l2

det [Cov (fc (t,X))] . (4.59)

Additionally, we exploit the fact that each entropy preserving map corresponds

uniquely to a l2-sequence c (equation 4.43).

For a given trajectory X we may find an entropy-preserving transformation by search-

ing the corresponding sequence of wavelet coefficients that transforms X to a trajectory

Y whose underlying density is more Gaussian.

4.4.4 Wavelet Coefficients - Compression Effects

Obtaining a more gaussian shaped trajectory requires to find an infinite number of

square integrable wavelet coefficients c = {cl}l∈I corresponding to an entropy-preserving

transformation fc(t, .) minimizing equation 4.58 or 4.59. However, it is infeasible to

numerically perform a minimization process in an infinite parameter space of wavelet

coefficients. Therefore, we will present a heuristic method for choosing a finite num-

ber of wavelet coefficients corresponding to an entropy-preserving fc(t, .). We make a

choice on the wavelet coefficients such that we take the length scale and the size of the

given trajectory into account.
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Figure 4.5: Density plot of the norm of two divergence-free spline wavelet ψdiv
1,1,(1,1) and

ψdiv
1,2,(11,11) with compact support (reference). The basic wavelet ψ1 is translated to

the grid points 2−1(1, 1) and 2−2(11, 11) (green dots). The length scale of ψdiv
1,1,(1,1) is

smaller than the length scale of ψdiv
1,2,(11,11) indicated by their support (orange square).

To start with, we elucidate the meaning of the wavelet indices. Every vector index

l (equation 4.41) of a wavelet coefficient cl = cε,j,k corresponds to an n-dimensional

divergence-free wavelet ψdiv
ε,j,k. This wavelet is constructed by scaling and translating a

basic wavelet

ψdiv
ε,j,k (x) = 2jn/2ψdiv

ε

(
2jx− k

)
, (4.60)

hence, the support of ψdiv
ε,j,k — the domain where this wavelet is non-zero — is

suppψdiv
ε,j,k = 2−jsuppψdiv

ε + 2−jk. (4.61)
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Figure 4.6: (a) Illustrated are the grid of k values for a fixed j for a given two-

dimensional trajectory (blue dots) The resolution level of wavelets j is chosen such

that 2−j = 20rNN, where rNN is the mean nearest neighbor distance of the trajectory.

The blue transparent box is the bounding box of trajectory, the red square is the

support of a single wavelet, and the black and gray points indicate the grid 2−jk. (b)

When the length scale of wavelets is much smaller than nearest neighbor distance of the

trajectory, the resulting entropy-preserving transformation moves single points closer

together.

The above formula reveals that the basic wavelet ψdiv
ε is located at the grid point 2−jk

and its spatial resolution is determined by j. The larger j the smaller the length scale

of the basic wavelet ψdiv
ε and vice versa. In figure 4.5 we have illustrated the meaning

of j and k for two divergence-free spline wavelet with compact support.

The choice of the index j depends on the considered trajectory X. For a given

trajectory X we suggest to determine the nearest neighbor distance rNN of X to obtain

a measure of the length scale of the trajectory and to choose the resolution level j of the

wavelets larger than the length scale of X. If the length scale of the wavelets is much
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smaller than the length scale of the trajectory we may have compression effects, as we

illustrate in figure 4.6. The reason is that the wavelet “sees” the trajectory as points

and not as a continuous density. Hence, a minimization with wavelets of a length scale

smaller than the length scale of the trajectory would compress the trajectory, since

minimizing the variances (equation 4.58) favors a more dense trajectory. To avoid such

artifact, we suggest to choose a fixed resolution level j such that it satisfies

2−j > rNN (4.62)

In a more general consideration, we may can choose jmin ≤ j ≤ jmax. jmax accounts

for the length scale of X and jmin for the size of X. It does not make sense to choose

resolution levels that exceed the geometric scale of the trajectory, as they would give

rise to simple rotations and translations, which don not lead to deformation. However,

different j would increase the computational costs, since more wavelet coefficient has

to be considered for minimization.

Once the resolution level j is determined, we choose all grid points k such that they

are within the bounding box of the given trajectory X as depicted in figure 4.6. In

case of two dimensions and if [x1,min, x1,max]× [x2,min, x2,max] is the bounding box of X,

we choose

k1,min =
⌊
2jx1,min

⌋
,

k2,min =
⌊
2jx2,min

⌋
,

k1,max =
⌈
2jx1,max

⌉
,

k2,max =
⌈
2jx2,max

⌉
, (4.63)

where dxe indicate the smallest integer n with n ≥ x, and bxc the largest integer n

such that n ≤ x. We select all grid points k with k1 = k1,min, ..., k1,max and k2 =

k2,min, ..., k2,max.
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We always choose all possible basic wavelets, hence we don’t make a specific choice

on the index ε since each of the (n− 1)(2n− 1) divergence-free basis wavelets ψdiv
ε acts

in different directions of the considered configurational space.

As we have seen, we can choose indices l = (ε, j,k) and, hence, wavelet coefficients cl

such that the corresponding divergence-free field vc (equation 4.42) consists of a finite

number of wavelets ψdiv
l taking the length scale and the size of the given trajectory

X into consideration. We will denote these indices by Λ. For instance, for the two

dimensional case we have

Λ = {(ε, j, (k1, k2)) | ε = 1, ..., 3 k1 = k1,min, ..., k1,max k2 = k2,min, ..., k2,max} , (4.64)

where j is fixed and satisfies condition 4.62 and k1,min, k1,max, k2,min and k2,max are

determined according to equation 4.63.

4.4.5 Steepest Descent

By means of steepest descent we will exemplarily show how to minimize the objective

function equation 4.58 with a gradient based optimization scheme. For convenience Q

will refer to the objective function

Q(c) ≡ tr [Cov (fc (X))] (4.65)

The idea of steepest descent is to construct a convergent sequence of wavelet coefficient

sets
{
c(1), c(2), ...

}
satisfying Q

(
c(n+1)

)
≤ Q

(
c(n)
)
. Each c(n) is iteratively defined by

c(n+1) = c(n) − γn∇cQ
(
c(n)
)
. (4.66)

γn is chosen such that gn(γ) = Q
(
c(n) − γ∇cQ

(
c(n)
))

assumes its minimum at γn.

Finding a minimum of gn(γ) is left to a simple line search algorithm [16]. The sequence
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of wavelet coefficient sets will converge to the wavelet coefficients at which Q has a

(local) minimum.

A crucial part of gradient based minimum search algorithms is to have the gradient

of the objective function preferably as analytic expression. Using the short notation

∂l = ∂
∂cl

and the transformed trajectory Y = fc(t,X) the gradient of Q is

∂lQ(c) = tr [∂lCov (Y)] (4.67)

By simple algebra we ca easily derive the gradient of Cov(Y).

Let ∂lY =
{
∂ly

(m), m = 1, ...,M
}

be the set of gradients of the M transformed

configurational vectors of the trajectory X. The Gradient of the covariance matrix in

respect to the wavelet coefficient cl is

∂lCov (Y) ≡ A (Y, ∂lY) + A (Y, ∂lY)T , (4.68)

where the matrix A is defined as follows

A (Y, ∂lY) ≡ 〈∂lY ⊗Y〉 − 〈∂lY〉 ⊗ 〈Y〉 . (4.69)

The angular brackets denote the average. On the right side of equation 4.69, the tensor

product ⊗ of the first term is to be understood as follows

{a1, ..., aM} ⊗ {b1, ...,bM} ≡ {a1 ⊗ b1, ...,bM ⊗ bM} . (4.70)

The time evolution of the gradient ∂ly (equation 4.41) is described by the following

ordinary differential equation (appendix 8.3)

∂t∂ly = ψdiv
l (y) + Jvc (y) · ∂ly (4.71)
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where Jvc is the Jacobian matrix of the divergence-free field vc. And ψdiv
l is the

divergence-free wavelet that corresponds with the wavelet coefficient cl in the wavelet

expansion of vc (equation 4.42). At time t = 0 the gradient is initialized with

∂ly |t=0= 0. (4.72)

The analytical expression of the gradient enables us to employ a gradient based mini-

mization scheme we apply to the objective function to determine the wavelet coefficients

of an entropy-preserving transformation that yield a trajectory whose entropy can be

simply estimated by its covariance matrix.

4.5 Algorithm

Given a trajectory X, where each snapshot is n dimensional, we need n dimensional

entropy-preserving maps to deform the whole trajectory. However, the mere number of

(n− 1)(2n − 1) basic wavelets {ψε}ε∈{1,...,(n−1)(2n−1)} that serve to build n-dimensional

entropy-preserving maps, renders it infeasible to perform an optimization process in

the resulting huge parameter space of wavelet coefficients (reference to how to chose

wavelet coefficients). Therefore, we will develop an iterative optimization algorithm,

that only performs optimization in two dimensions, where we have only 3 basis wavelets.

We follow and idea developed by Oliver Lange in the framework of Full Correlation

Analysis (reference). His algorithm aims to decrease the correlation between atomic

displacements by minimizing mutual information using rotations. He suggested to split

the multidimensional minimization problem into many two-dimensional minimization

problems. For this purpose we introduce two dimensional entropy-preserving maps

that transform the configuration vector x = (x1, ..., xi, ..., xj, ..., xN)T as follows

f (i,j)
c (t,x) ≡ (x1, ..., yi, ..., yj, ..., xN)T (4.73)
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with the two-dimensional transformation fc(t, .) affecting only the ith and the jth com-

ponent of x denoted by plane (i, j)

(yi, yj) = fc

(
t, (xi, xj)

T
)
. (4.74)

Having in mind that the set of entropy-preserving transformations G (equation 4.43) is

a group, we try to find an entropy-preserving transformation that minimizes the upper

bound of mutual information (equation 4.58) by composing the transformation of a

multitude of two-dimensional entropy-preserving maps

f(t, .) =
Kmax∏
k=1

f (ik,jk)
ck

(t, .). (4.75)

The idea is to render the initial trajectory X more Gaussian at every iteration step k

using two-dimensional entropy preserving transformations, such that the entropy of X

eventually can be approached by a gaussian. We suggest to obtain each f
(ik,jk)
ck (t, .) by

the following iterative scheme: We start by choosing a “promising” plane (i1, j1) of the

trajectory X, and determine c1 by minimizing the upper bound of mutual information

in this plane. Finally, we apply the thus obtained transformation f
(i1,j1)
c1 (t, .) to the

trajectory yielding the transformed trajectory X1. Then we repeat the process and

obtain a sequence {X2,X3, ...} until proceeding does not yield further minimization.

The iteration scheme is

Xk = f (ik,jk)
ck

(t,Xk−1) , (4.76)

where k = 1, ..., Kmax and X0 = X. f
(ik,jk)
ck (t, .) is chosen such that it minimizes

the upper bound of mutual information, hence, we obtain a sequence of deformed

trajectories Xk satisfying

0 ≤ tr {Cov(Xk+1)} ≤ tr {Cov(Xk)} (4.77)
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what implies that

0 ≤ tr {Cov(Xk)} ≤ tr {Cov(X)} (4.78)

We choose the planes (ik, jk) heuristically such that we keep the number of two-

dimensional minimizations small in equation 4.75. Kmax denotes the number of itera-

tions that are carried out until not further minimization is possible. Since we except

that minimization will yield a high loss of mutual information, we start with planes

(i, j) featuring high pairwise mutual information

Iij ≡ I
[
ρ(i,j)

]
, (4.79)

where ρ(i,j) is the marginal density

ρ(i,j)(xi, xj) =

∫
ρ(x)

∏
l 6=i,j

dxl (4.80)

The heuristic selection of planes requires to numerically determine pairwise mutual

information from a transformed trajectory. We can efficiently estimate the occurring

one and two-dimensional densities, which are required for the entropy estimate, simply

using an histogram estimator [8] [10].

Additionally, redundant minimization evaluations of already visited planes is avoided

by using a marker matrix m. Each entry mij indicates the degree of necessity to

minimize plane (i, j). We initialize each entry of m with 1. We set mij to zero after

minimization. Since applying a deformation f
(i,j)
c to plane (i, j) increases the probability

that an already marked plane (i, k) or (k, j), k 6= i, j needs further minimization, all

respective markers are increased by the norm of the wavelet coefficients ‖c‖ ≡
√∑

l c
2
l ,

to put this planes in the waiting queue for further minimization. Finally, at every

iteration step k we chose (ik, jk) = argmax
i,j

(mijIij)
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For a clear comprehension we summarize the algorithm in a pseudo code. The in-

put parameters are a trajectory X =
{
x(m), m = 1, ...,M

}
of M snapshots. Each

snapshot x(m) is D-dimensional. With Xi =
{
x

(m)
i , m = 1, ...,M

}
we denote the pro-

jection of X on ith unit vector. The pairwise mutual information can be approximated

with an histogram estimator [10] from the sample points denoted by I [Xi,Xj]

Initialize pairwise mutual information matrix I

and marker matrix m

for i = 1 to D do

for = 1 to D do

mij = 1

Iij = I [Xi,Xj]

end for

end for

while
∑

i,jmijIij > ε do

Choose “promising” plane

(i, j) = argmax
i 6=j

(mijIij)

Find wavelet coefficients of entropy-preserving transformation minimizing

upper bound of mutual information of X

cmin = min
c

{
tr
(

Cov
[
f

(i,j)
c (X)

])}

Deform plane such that it gets more gaussian

X = f
(i,j)
cmin(X)

Update marker matrix m

for k = 1 to D do
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mik = mik + ‖cmin‖

mkj = mkj + ‖cmin‖

end for

mi,j = 0

Update pairwise mutual information matrix I

for k = 1 to D do

if k 6= i then

Iik = I [Xi,Xk]

end if

if k 6= j then

Ikj = I [Xk,Xj]

end if

end for

end while

In following we will refer to the algorithm of searching an entropy-preserving transfor-

mation to as EPTM (Entropy Preserving Transformation Method).

57



5 Applications

In section 4.1 we characterized the topology of solvent-protein densities and showed

that the repulsive interaction between solvent molecules and the interaction between

the solvent and the protein gives to parts of the configurational space with vanishing

density to which we refer as holes. Applying Reinhard’s permutation reduction (section

3.2) to densities with holes yields a more compact density that still has holes at the

surface and in the interior. Hence, a simple Gaussian approximation of the density is

not possible. To assess our newly developed EPTM we will apply it to a few artificial

densities with features typical for solvent densities (section 4.1) and whose entropies

are analytically known. We will show that we can deform these densities such that

they become more Gaussian shaped while at the same time the entropy is conserved.

To this end we have developed a command line tool — g entropyestimate — that

read in a trajectory and searches via conjugated gradient descent [16] for an entropy-

preserving transformation that renders the trajectory more Gaussian and finally applied

the found transformation to the trajectory and estimated the entropy using a Gaussian.

Since constructing entropy-preserving maps requires to solve a differential equation

(equation 4.42) we used a simple implicit midpoint scheme [16] to approximate the

solution of the differential equation.
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5.1 Two-Dimensional Densities

In the next two sections we will prove that entropy-preserving maps can remove holes in

the density away and deforming the density into a circular Gaussian. For this purpose,

we will apply EPTM to two different densities, one characterized by a hole within the

density and another by a hole at the surface.

5.1.1 Hole in the Center

(a) X0 (b) X1 (c) X2

(d) X3 (e) X4 (f) X5 (g) X6

Figure 5.1: Density estimates of transformed trajectories Xi. The initial trajectory X0

is iteratively transformed by EPTM. The trajectories converge to a circular Gaussian

shaped trajectory. For better visualization we additionally display the cross sections

of the densities (light blue) by using an according plot range.
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We commence with a two-dimensional density featuring a hole in the center:

ρ(x, y) =

√
e

2π

exp
(
−x2+y2

2

)
, x2 + y2 > 1

0, otherwise

. (5.1)

The entropy S is 1 + ln (2π) ≈ 2.838. From this density we chose 50, 000 random

vectors constituting the trajectory X0. We iteratively applied EPTM to the initial

trajectory and obtained a sequence of trajectories {X0, ...,X6} that converges towards

a Gaussian (figure 5.1).

To avoid compression artifacts (subsection 4.4.4) we chose wavelets that allow to

construct entropy-preserving maps with a length scale much larger than the mean

nearest neighbor distance rNN of the trajectory (inequality 4.62). Instead of choosing

an integer value for the wavelet index j (equation 4.41) we allow it to be a real number

since we want to have continuous values for the length scale s = 2−j.

rNN s = 2−j SGauss SGauss − S

X0 1.132× 10−2 80× 10−2 3.249 4.11× 10−1

X1 1.133× 10−2 60× 10−2 3.020 1.82× 10−1

X2 1.129× 10−2 80× 10−2 2.940 1.02× 10−1

X3 1.127× 10−2 80× 10−2 2.921 0.84× 10−1

X4 1.141× 10−2 80× 10−2 2.916 0.78× 10−1

X5 1.163× 10−2 80× 10−2 2.917 0.79× 10−1

X6 1.158× 10−2 80× 10−2 2.916 0.78× 10−1

Table 5.1: Entropy and mean nearest neighbor distances of transformed trajectories.

S is the real entropy and SGauss the entropy estimate using a Gaussian. s is the length

scale of the used entropy-preserving transformations.

Table 5.1.1 the mean nearest neighbor distances rNN revealed a negligible dilatation
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5.1 Two-Dimensional Densities

between the initial trajectory X0 and the converged trajectory X6 of ∆rNN = 2.6×10−4.
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E
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Figure 5.2: Entropy estimate with covariance matrix at each iteration step k (blue line).

The real entropy is S = 2.838 (red line). At each iteration step we have minimized the

upper bound of mutual information

We estimated the entropy using a Gaussian density approximation of the trajectories

(equation 4.57) at each iteration step k:

SGauss(X) = 1 +
1

2
ln
(
4π2 det Cov(X)

)
. (5.2)

Applying EPTM iteratively to X0 renders the given density more gaussian and, thus,

significantly improves the entropy estimate as it can be observed in figure 5.2. The

deviation of the estimated entropy from the analytic value drops down (table 5.1.1).

However, the method fails to reproduce the exact analytic value of the entropy S =

1 + ln(2π) ≈ 2.838. Estimating the entropy with an histogram estimator with optimal

bin size as described in [10] gives Shist = 2.926. EPTM with an Gaussian entropy
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estimate converges to SGauss = 2.916 (figure 5.2).
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5.1 Two-Dimensional Densities

5.1.2 Hole at the Surface

(a) X0 (b) X1 (c) X2

(d) X3 (e) X4 (f) X5

Figure 5.3: Density estimates of transformed trajectories Xi each consisting of 50, 000

two-dimensional sample points. The initial trajectory X0 is iteratively transformed by

entropy-preserving maps such that the upper bound of mutual information is minimized

(equation 4.58). The trajectories converges to a circular Gaussian shaped trajectory.

A simple two-dimensional function exemplifying a density with a hole at the surface is

ρ(x, y) =

√
e

π

exp
(
−x2+y2

2

)
, x2 + y2 > 1 ∧ x < y

0, otherwise

. (5.3)

The analytically calculated entropy is S[ρ] = 1+ln (π) ≈ 2.145. We iteratively applied

EPTM to the initial trajectory X0 consisting of 50, 000 random vectors drawn from

density 5.3 and obtained a sequence of trajectories {X0, ...,X5}. EPTM improves the
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Figure 5.4: Gaussian entropy estimate of iteratively transformed trajectory.

entropy estimate since it deforms the initial trajectory to a more Gaussian shaped one

(figure 5.3 and 5.4). The difference of the mean nearest neighbor distance between

the initial trajectory X0 and the transformed trajectory X5 is negligible (table 5.2).

EPTM fails to transform the initial trajectory such that we can extract the exact

analytic value with a Gaussian entropy estimate. Estimating the entropy using an

histogram estimator yields Shist = 2.241. With EPTM we obtain from a Gaussian

entropy estimate of SGauss = 2.221 (figure 5.4).

5.2 Hard Disk Model

5.2.1 Theory

Here we apply EPTM to a more physical model with a 6-dimensional configurational

space, namely a simple hard disk model (figure 5.5) describing approximately the be-
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5.2 Hard Disk Model

rNN s = 2−j SGauss SGauss − S

X0 0.810× 10−2 80× 10−2 2.565 4.21× 10−1

X1 0.822× 10−2 80× 10−2 2.271 1.26× 10−1

X2 0.832× 10−2 80× 10−2 2.235 0.91× 10−1

X3 0.827× 10−2 80× 10−2 2.229 0.84× 10−1

X4 0.824× 10−2 80× 10−2 2.228 0.83× 10−1

X5 0.810× 10−2 80× 10−2 2.221 0.76× 10−1

Table 5.2: Entropy and mean nearest neighbor distances of transformed trajectories.

S is the real entropy and SGauss the entropy estimate using a Gaussian. s is the length

scale of the used entropy-preserving transformations.

havior of a Lennard-Jones fluid. For simplicity the two-dimensional system consists

of three hard disks with diameter ds, we refer to as solvent, moving freely in a square

box of length a. An immobile disk of diameter dp is in the center of the square box,

exemplarily considered as protein. The interaction-potential between two hard disks is

described by

VHD (xi,xj) =

∞, ‖xi − xj‖ < di+dj

2

0, otherwise

(5.4)

where di and dj are the diameters of the two interacting disks. The center of mass

positions are denoted by xi and xj. The potential function of the considered system is

V (x) =
3∑

i,j=1(i>j)

VHD(xi,xj) +
3∑
i=1

VHD(xi,yp) + VΩ(x) (5.5)

where x = (x1,x2,x3) is the configurational vector of 3 solvent atoms. The protein is

fixed at position yp = a/2(1, 1), where a is the length of the square box.
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a

dp

ds

Figure 5.5: Simple hard disk model to simulate the behavior of a solvent-protein system.

The model system consist of three solvent atoms (blue) modeled by hard disks of

diameter ds and a protein (red), modeled by a disk of diameter dp fixed in the middle

of a square of length a.

The last term in equation 5.5, a square potential VΩ

VΩ(x) =

0 x ∈ Ω

∞ otherwise

, (5.6)

was added to constrain the solvent to the square [0, a]2. Ω = [0, a]6 is the configurational

space. Thus, the configurational density is

ρ(x) =


1
ξ|Ω| if V (x) = 0

0 if V (x) =∞
, (5.7)

where ξ denotes the fraction of configurational space where the potential (equation 5.5)
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5.2 Hard Disk Model

vanishes. The size of configurational space is |Ω| = a6. The entropy thus becomes

S[ρ] = kB(ln ξ + ln |Ω|). (5.8)

5.2.2 Simulation

Using the Monte-Carlo Method, we generated several ensembles, each consisting of

30, 000 random configurations drawn from the configuration density 5.7, with diame-

ters of the solvent disks ranging from ds = 0 to ds = 3 in steps of ∆ds = 0.5. We

denote these ensembles by X(ds). Permuting the center of masses of the disks in system

potential function (equation 5.5) yields the same value, hence, the configurational den-

sity is permutation invariant. Therefore, we applied Reinhard’s permutation reduction

algorithm (PR) to all these ensembles and obtained relabeled ensembles Y(ds). Finally,

we deformed the relabeled ensembles Y(ds) with entropy-preserving maps to Z(ds) such

that the corresponding densities are more Gaussian (EPTM).

X(ds) PR−→ Y(ds) EPTM−−−−→ Z(ds) (5.9)

For different ds we determined a nearly exact value of the configurational entropy 5.8 by

approximating the ξ with the fraction of accepted configurations during a Monte-Carlo

simulation. We denote the the approximation of the exact entropy by S. To compare

our newly develop method with Reinhard’s permutation reduction, we estimated the

entropy of the ensembles X(ds), Y(ds) and Z(ds) using Karplus’ formula (equation 3.5),

we refer to as Gaussian entropy estimate SGauss.

5.2.3 Result

In figure 5.6 we displayed the different entropy estimates. The monte carlo method (red

line) provides nearly exact values and reveals the trend that with increasing diameter
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Figure 5.6: Entropy estimates for different diameters ds of the solvent disks.

ds of the disk the entropy drops down. This is the behavior we expect, an increasing

diameter excludes more volume and, hence, lower the volume of the accessible config-

urational space. Likewise and increasing diameter of the interacting disks renders the

resulting configurational density more anharmonic. A simple Gaussian estimation of

the entropy (purple) fails to qualitatively reproduce the trend of decreasing entropy

with increasing disk diameter. The Gaussian entropy estimate performed poorly and

increases slowly with increasing diameter. Whereas the Gaussian entropy estimate of

the relabeled ensemble (green line) reproduces the right trend but fails to give exact

values. When transforming the relabeled ensemble via EPTM (blue line) we can im-

prove the Gaussian entropy estimate and preserve the trend however also fail to give

exact results (table 5.3).
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5.3 Discussion

ds S SGauss(X) SGauss(Y) SGauss(Z)

0.0 9.24786 11.0736 11.3445 10.9753

0.5 8.89591 11.261 11.4562 10.8339

1.0 8.27552 11.4619 11.3641 10.6939

1.5 7.50074 11.5916 11.1685 10.2675

2.0 6.5323 11.6998 10.7867 9.47263

2.5 5.34661 11.8492 10.0498 8.84414

3.0 3.85853 12.1846 9.6511 7.00621

Table 5.3: S is the approximation of the exact entropy value of the hard disk system

where the solvent consists of disks with diameter ds. SGauss is the entropy estimate

using a Gaussian approximation of the density. X is the initial density, Y the relabeled

density and Z was obtained by applying EPTM to Y to render it more Gaussian.

5.3 Discussion

When we consider the projection of the ensemble of the hard disk system on the first

two eigenvector derived from its covariance matrix (figure 5.7), we see that for ds = 3

the projected densities of X and Y are quite unharmonic. Therefore, the Gaussian

entropy estimate will overestimate the real entropy. Applying EPTM to Y renders

the density more Gaussian ((c) and (f)) and improves the Gaussian entropy estimate.

However, EPTM fails to extract the analytic value.

So the question arises, how closed can we get to the analytic value? The result

from the simple two dimensional densities suggests that we can only get closed to an

estimate value that we might obtain from other estimation methods. Obviously, the

more points we have, the better we can reproduce the analytic value.
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(a) X, ds = 0 (b) Y, ds = 0 (c) Z, ds = 0

(d) X, ds = 3 (e) Y, ds = 3 (f) Z, ds = 3

Figure 5.7: We consider a system of three hard disks with diameter ds trapped in a

square box with an immobile hard disk with diameter dp = 2 in the center (figure 5.5).

From the Boltzmann distribution we draw trajectories X with disk diameters ranging

from ds = 0, ..., 3. We applied Reinhard’s relabeling algorithm to the trajectories and

obtain the relabeled trajectory Y. With an entropy-preserving map we transformed

Y to Z such that it becomes more Gaussian. In figure (a), (b) and (c) we depict the

densities of X, Y and Z for ds = 0 projected on the first two eigenvectors from their

covariance matrices. In figure (d), (e) and (f) we show the the projected densities

projections for the case ds = 3.
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6 Summery and Conclusion

In Molecular Dynamics simulations of a solvent-protein system the solvent and the

protein have both different dynamical behavior. Proteins behave quite harmonic, since

they fluctuate in the vicinity of a well-defined structure of the protein. Hence, the

protein is constrained to a small part of its configurational space. With Schlitter’s

formula we have a straightforward method to estimate the total entropy of proteins

using the covariance matrix. In contrast, when treating solvents we encounter two

major problems.

First, the solvent density exhibits a complex analytic structure that renders it infea-

sible to compute integral expressions involving the density such as the entropy. The

complex structure is due to the repulsive potential between overlapping molecules, that

give rise to parts of the configurational space that is inaccessible, hence, creating holes

in the density distribution. Second, the configurational space of the solvent can be

sampled only poorly because of the diffusive motion of the solvent molecules.

Tackling the sampling problem was approached by F. Reinhard. He developed a

transformation exploiting the permutation symmetry of the solvent. He showed that

the trajectory can be projected into a reduced space and the corresponding density

can be compressed by N!, where N is the number of solvent particles. Motivated by

the fact that the trajectory is more localized, he estimated the translational entropy

for different examples using a Gaussian approximation. However, he found out that

estimating the entropy with a Gaussian is not the best choice to produce accurate
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6 Summery and Conclusion

entropy estimates of a relabeled density. By a simple model we demonstrated that

relabeled a trajectory may still be too anharmonic to be fitted by a Gaussian.

In a new approach we tried to improve the Gaussian entropy estimate of the rela-

beled trajectory using entropy-preserving transformations warping the holes away and

rendering the trajectory more Gaussian. To this end, we first developed a theoreti-

cal framework that enabled us to easily construct arbitrary smooth entropy-preserving

transformations. Choosing the entropy-preserving transformation that could deform

the trajectory into a more harmonic one, turned out to be a minimization problem in

the space of entropy-preserving maps. We developed an iterative minimization algo-

rithm in a C program that finds the “optimal” entropy-preserving transformation for a

given trajectory and transform it into a more Gaussian trajectory. From the Gaussian

trajectory we can estimate the entropy simply using a Gaussian approximation of the

density.

As prove of principle, we finally applied our newly developed entropy-preserving

transformation method (EPTM) to three ensembles. The first two two-dimensional

ensembles whose densities feature holes at the surface o the interior served to demon-

strate that EPTM is able to find entropy preserving transformations that remove holes

and warp the density to a circular Gaussian distribution, whose entropy can be eas-

ily estimated. As a more physical example we mimicked a protein-solvent system

by considering a simple hard-disk system consisting of three solvent resulting in a 6-

dimensional configurational space. Applying EPTM to relabeled ensembles we could

improved the Gaussian entropy estimate preserving an important trend of the system,

entropy decreases with increasing coupling between the solvent.

EPTM in combination with Reinhard’s permutation reduction allows to determine

an upper bound of the entropy that is in case of an unharmonic system significantly

lower than an Gaussian entropy estimate. Furthermore, EPTM can not only be used

to determine solvent entropies but also can serve as a method to improve entropy
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estimates of proteins which exhibit in a few cases an high dimensional unharmonic

density (reference, ask ulf).
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7 Outlook

The algorithm present in the previous work is able to deform a given trajectory in

an entropy-preserving manner into a trajectory that is more Gaussian and enables to

estimate the entropy using a Gaussian approximation of the corresponding density.

However, there are three important theoretical aspects that we have to address to

further improve the entropy estimation.

First, we need further analysis on the length scale of the entropy-preserving transfor-

mations. A rigorous analytic criterion has to be elaborated how to choose the length

scale of entropy-preserving maps for a given trajectory. The situation is similar to

the problem of choosing the optimal bin size for a histogram of a data set, whose un-

derlying density we seek to determine. Is the bin length to small we obtain a spiky

histogram, is it too large we are smoothing too much and lose information. As for the

length scale of entropy-preserving transformations: A too large length scale produces

a simple translation or rotation of the trajectory without deforming it. In contrast, a

to too small length scale that would compresses the trajectory to a single point, end

hence underestimate the entropy.

Second, we have to develop a clear notion what entropy-preserving is or equivalently

what means volume-preserving in case of discrete points sets drawn from a density.

Intuitively, it seems to be lucid that somehow the nearest neighbor distance must

be preserved. Two simple volume-preserving transformations, both translation and

rotation preserve the mean nearest neighbor distance.
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Third, we need to consider the rotational entropy. A possible approach is using an

expansion of orientational correlation functions (reference). In real systems solvent

molecules such as water have rotational freedom. With Reinhard’s relabeling and

EPTM, however, we can only determine the translational entropy of the solvent.

Another aspect is, that EPTM needs to be tested on real systems. As a first simple

test,we will apply Reinhard’s permutation reduction and EPTM to an argon gas —

a Lennard-Jones fluid —, which features the behavior a solvent. We will estimate

its configurational entropy for different coupling constants between the argon atoms.

Corresponding to our simple disk model (reference) we expect a decrease of entropy

with increasing coupling parameter of the Lennard-Jones Potential. In a next step, we

will mimic the presence of a protein with dummy a simple soft-core potential in the

center of the simulation box.
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8 Appendix

8.1 Documentation of g entropyestimate

g entropyestimate is called from command line. It reads either a trajectory, binary

file or text file produced by an MD Simulation and searches for the entropy-preserving

transformation fc(t, .) minimizing the upper bound of mutual information as we have

described in chapter 4. The input syntax is

g_entropyestimate -xtc traj.xtc log_traj.bin t s

where t is the flow time and s = 2−j the spatial resolution of the wavelets that are

used to construct entropy-preserving transformations. log traj.bin is a binary file

containing the wavelet coefficients and according indices (equation 4.41) corresponding

to two-dimensional entropy-preserving transformation. Furthermore, it contains the

initial and the transformed trajectory as well as entropy estimates.

8.2 Volume preserving maps

We prove that the following identity holds for all continuous maps fv(t,x) which con-

stitute the solution at time t of the movement of x in a velocity field v (equation

4.10).

∂t ln det

(
∂fv(t,x)

∂x

)
= (∇v) (t, fv(t,x)) (8.1)
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8.3 Gradient ODE

Using Jacobi’s identity for an invertible square matrix C: d ln det (C) = tr (C−1dC)

the above equation can be proven easily equation

∂t ln det

(
∂fv(t,x)

∂x

)
= tr

[(
∂fv(t,x)

∂x

)−1

∂t
∂fv(t,x)

∂x

]
(8.2)

= tr

[(
∂fv(t,x)

∂x

)−1
∂∂tfv(t,x)

∂x

]
(8.3)

= tr

[(
∂fv(t,x)

∂x

)−1
∂v (t, fv(t,x))

∂x

]
(8.4)

= tr

[(
∂fv(t,x)

∂x

)−1
∂v

∂x
(t, ft,v(x))

∂fv(t,x)

∂x

]
(8.5)

= tr

[
∂v

∂x
(t, fv(t,x))

]
(8.6)

= (∇v) (t, fv(t,x)) (8.7)

8.3 Gradient ODE

We develop the time evolution of the gradient of the entropy-preserving map fc(t, .)

(definition 4.42) in respect to the wavelet coefficients c. For this end, we introduce the

notation ∂l ≡ ∂
∂cl

, where l is the wavelet coefficient index vector (equation 4.41). Let

y = fc(t,x). The time evolution of the gradient ∂ly is

∂t∂ly = ∂l∂ty

= ∂l {vc (y))}

= (∂lvc) (y) + Jvc (y) · ∂ly

= ψdiv
l (y) + Jvc (y) · ∂ly (8.8)
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8 Appendix

where Jfc is the Jacobian matrix of fc. As initial condition we obtain

∂ly = ∂lfc(0, = ∂lx = 0. (8.9)
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