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Introduction



2 1. INTRODUCTION

Evolution is the main driving force for the survival of organisms in changing environments.1

The information about adaptation of organisms to these environments is stored in the DNA

of their genome and is inherited to their offspring.

The human genome project2,3 as well as further projects to resolve the genome of organ-

isms like drosophila melanogaster or caenorhabditis elegans led to an abundant amount of

information about the amino acid sequences of proteins in these organisms. This infor-

mation about genetic sequences, and the implicit sequence of amino acids, is invaluable

for the modern taxonomic identification.4,5 Thus, such DNA bar coding complements the

classical way of determining the taxonomy of organisms by their phenotype with a close

inspection of also the genotype.

However, the amino acid sequence of proteins yields only limited information about the

structure and function of biological macromolecules. Processes such as the catalytic func-

tion of enzymes, gating mechanisms in ion channels, the assembly of virus capsids or

collagen fibres, and signal transduction or immune response pathways cannot be explained

by these sequences.

To gain insight into such processes, the three-dimensional structure of a folded amino

acid sequence, a functional protein, is necessary. The structure determination of proteins

or nucleic acids is based on experimental techniques such as X-ray crystallography6,7 or

nuclear magnetic resonance (NMR),8,9 which have made remarkable progress in solving

high-resolution structures over the past years. Such structures are archived and accessi-

ble via the RSCB Protein Data Bank.10 Furthermore, theoretical approaches for structure

prediction from amino acid sequences are under constant development and have been mon-

itored by CASP (Critical Assessment of Structure Prediction) over the last ten years.11

A particular snapshot of a protein structure is a point in configuration space. Accordingly,

a fluctuating structure of a protein is described by a region on a high-dimensional complex

free energy landscape, which is dynamically explored.12 Such protein structure dynamics

is the key to obtain insight into the function of biomolecules. A structure derived by

classical X-ray crystallography is just an average and thus lacks dynamics. Moreover,
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the free energy minimum of the structure derived with the help of such a protein crystal

is governed by the crystallization conditions and possibly changed by the typically low

temperature usage. However, experimental methods to probe the structural dynamics with

atomic detail are available, even though with intrinsic limitations. Time-resolved X-ray

crystallography13,14 reveals conformational protein motions on the picosecond time scale,

but wide-spread use is impeded due to the massive experimental effort involved. NMR

relaxation measurements15,16,17,18 have been used to probe protein dynamics on pico- to

nanosecond and micro- to millisecond time-scales, and thus fail to reveal dynamics on the

nano- to microsecond time scale.

Such time-resolved dynamics is needed to understand molecular recognition mechanisms

which enable specific binding of drugs to target proteins, or binding of polymerases to

specific DNA-sequences inducing the first step in protein synthesis. Moreover, as has been

shown in a recent study of ubiquitin with a combination of residual dipolar coupling (RDC)

NMR and Molecular Dynamics (MD) simulations,19 conformational changes in proteins,

and, in this context, the determination between induced fit and conformational selection

mechanisms can be observed on the nano- to microsecond time scale.

All aspects of the previously described protein dynamics can be understood as the explo-

ration of the high-dimensional complex free energy landscape, intrinsically accessible to the

protein. Thus, the free energy, like the directly related entropy, is an ensemble property.20

The biochemical processes in living organisms are driven by free energy gradients on such

a free energy landscape. The accurate calculation of the free energies is therefore essential

for understanding biomolecular functions like transport processes in cells. In contrast to

the enthalpy which can be computed by the systems total energies from a MD simulation

of arbitrary length, the calculation of the free energy and entropy requires a fully explored

configuration (phase) space. For larger biomolecules, the computationally accessible time

scales are limited and often insufficient to sample this complete phase space with MD sim-

ulations. Therefore, in these cases, the direct calculation of free energies and entropies

from such ensembles is nearly impossible.
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The accuracy in such free energy calculations from atomic-level simulations is often limited

for larger systems such as proteins due to the sampling problems, mentioned before, and

has been intensively reviewed.21,22,23,24 Despite the considerable amount of studies for the

different available methods, it is difficult to judge how these methods perform for larger

and more complex systems such as biological macromolecules. A systematic comparison of

the available methods with systems of different complexity will therefore help to develop

a more accurate method for calculating free energy differences if larger biomolecules are

involved.

Experimental techniques, such as fluorescence spectroscopy25 or surface plasmon resonance

spectroscopy26,27 are used to obtain binding affinities of receptor/ligand complexes via the

equilibrium dissociation constant (KD) which is directly related to the absolute free energy

difference of the binding process. However, measuring these binding affinities can be limited

by experimental conditions, especially if large ligand concentrations are needed.

Computational approaches to assess the binding affinity of receptor/ligand complexes are

thus very helpful when experimental measurements are brought to their limits, and there-

fore aim to have a predictive function to assess such binding affinities. They can be roughly

divided into two classes, docking and free energy calculations from MD simulations.

In the docking approach, a binding site is defined in a, typically, rigid protein. A ligand is

then fitted into this binding site by flexible rotation of functional groups within the ligand,

and rotation of the ligand itself. Electrostatic and van-der-Waals interactions are calculated

for the different conformations and a scoring function evaluates the ligand conformations,

which energetically fit best. Several applications with different scoring functions, such as

Autodock,28 FlexX,29 or Gold30 have been developed over the past years. It is common to

these applications, that an implicit solvent environment is used and the flexibility of the

protein is often neglected. Despite the advantage to screen large libraries of ligands in a

short amount of time, the different scoring functions often lead to different, inconsistent,

results, especially in cases where water molecules in the binding pocket are important.31,32

The class of free energy calculations from MD simulations can further be separated into
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three general fields: linear interaction energy (LIE), MM/PBSA, and thermodynamic per-

turbation. The LIE method33 is based on linear response theory.34,35 The binding free

energy difference is approximated by the interaction energy between the ligand and the

protein, derived from equilibrium MD simulations whereas these interaction energies are

modified by three constants. These constants have been derived from experimental ob-

servations. Despite the reasonable free energy estimates, derived by this method, it still

neglects the transfer free energy between different solvents (for details see Ref. 36). The

main difference between LIE and the MM/PBSA method37,38 is that in the latter, the sol-

vent is treated implicitly and the electrostatic components are obtained from a dielectric

continuum model with a dielectric constant for the solute and the solvent. Despite the

speedup in simulation time due to the missing explicit solvent electrostatics, this method

strongly depends on the dielectric constants which differ dramatically for most of the so-

lutes, and, additionally, are hard to obtain.

In contrast to the LIE and MM/PBSA methods, thermodynamic perturbation theory aims

to compute the free energy difference between two states instead of absolute free energies,

but without approximations such as continuum models or the need for empirical obser-

vations. The two basic ideas in thermodynamic perturbation theory are thermodynamic

integration39 and free energy perturbation.40 Over the years, several approaches to com-

pute free energies have been developed, assessed, and applied, often focusing on smaller

systems.41,42,43,44,45,46,47,48,49,50 For larger systems such as proteins, the sampling problem

becomes increasingly severe, mainly due to insufficient overlap of the involved thermo-

dynamic phase space densities. This problem also complicates the reliable assessment of

accuracy and convergence, simply due to the difficulty of obtaining a reliable reference

value. All methods, relying on thermodynamic perturbation theory, are brought to their

limits, when precise free energy differences with precise error estimates for large systems

and perturbations, such as amino acid sidechains, are addressed. These methods as well

as their limitations are briefly introduced in Chapter 2.3. However, the recently developed

non-equilibrium methods to compute free energy differences offer the chance to develop
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improved methods. The calculation of binding free energies is thus still a field of active

research.

One aim of this thesis was to carry out a comprehensive evaluation of the available meth-

ods to compute free energy differences from all atom simulations for three test systems at

different levels of complexity, namely the interconversion of ethane to methanol, of tryp-

tophane to glycine in a tripeptide and of m3GpppG to m7GpppG in the globular protein

snurportin 1. Additionally, an improved method to compute free energy differences from

non-equilibrium simulations was developed and tested with the systems mentioned above.

This newly developed method was then used to compute the binding free energy differences

between the wildtype and eight point mutations in the hemagglutinin peptide HA 307-319

bound towards the major histocompatibility complex (MHC) Class II receptor, which is

one of the key elements in immune response.

In contrast to the broadband affinity of the MHC proteins to peptides, the transport

of RNA in and out of the nucleus is regulated by very specific recognition mechanisms,

involving methyl groups as the only modification. A second aim of this thesis was to

address the binding specificity of snurportin 1 to the different RNA-cap methylization

states. It is still not clear how this specificity is obtained on the molecular level and why

the hypermethylization leads to a higher affinity in the transport protein snurportin 1.

Apart from the calculations of binding free energy differences of the two involved snRNA

caps, the structural mechanisms involved in the function of snurportin 1 when bound to

either the methylated or the hypermethylated cap as well as without a ligand can be

addressed and answered by MD simulations.

This thesis is organized as follows. After a short sketch of the available methods used in

this thesis (Chapter 2), a method to compute free energy differences from non-equilibrium

simulations is described and extensively tested (Chapter 3). In Chapter 4, the free energy

differences of eight mutants of the influenza viral peptide hemagglutinin HA 307-319 bound

to a major histocompatibility complex (MHC) Class II protein are calculated with the

newly developed method and are compared to experimentally derived binding affinities.
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Following the free energy calculations of snurportin 1 in Chapter 3, the structural changes

of the globular protein snurportin 1 upon ligand removal are determined and analyzed.

Moreover, the contribution of the solvation shell of the hypermethylated RNA-cap to the

binding affinity to snurportin 1 is studied (Chapter 5). The biological background and the

questions addressed are described in detail in the introductory sections of the respective

chapters.
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This chapter outlines the general theoretical framework of this thesis and the common

methods applied. Details of the particular simulation setup and the employed free energy

calculations are given in chapters 3 to 5, which address the different biological systems

these free energy calculations have been applied to.

2.1 Molecular Dynamics Simulations

Biolmolecular systems usually consist of several tens to thousands of amino acid residues

concerning proteins, or up to millions of base pairs concering DNA. Over ten times more

atoms are involved in such systems, and they span dynamics from bond vibrations at the

femtosecond timescale up to large-scale conformational changes occuring within microsec-

onds or on even longer time-scales.

From the established atomistic simulation methods, Molecular Dynamics (MD) is the only

one that is able to handle the high complexity of protein structures and is able to assess

relevant time scales up to microseconds on modern parallel computers.

MD simulations describe the time evolution of a molecular system, e.g., a protein, by

numerically solving Newton’s equations of motion for all atoms in the system. Such simu-

lations can accurately describe the dynamics of biological relevant systems by using three

approximations; (a) the Born-Oppenheimer approximation, where nuclear and electronic

motions are decoupled, (b) the approximation that nuclei can be treated as classical parti-

cles, and (c) the use of an empirical force field to describe the interaction between particles.

These approximations are described below.

The Born-Oppenheimer Approximation

The dynamical evolution of any system is described by the time-dependent Schrödinger

equation,

i~
δψ

δt
= Hψ, (2.1)
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where H denotes the Hamiltonian, i.e., the sum of potential and kinetic energy operator,

ψ the wave function, and ~ = h/2π with h as Planck’s constant. The wave function ψ

is a function of the coordinates of all nuclei and all electrons. In the Born-Oppenheimer

approximation51 the fast degrees of freedom are separated from the slow ones. Due to

the high mass of nuclei compared to that of the electrons, the former move much slower

than the latter. This leads to the approximation that electrons can be considered to move

in the field of fixed nuclei, i.e. that the dynamics of the electrons instantaneously adjust

to the much slower nuclei. Accordingly, the electronic wave function ψe depends only

parametrically on the nuclear coordinates and the total wave function ψtot , which hence

can be separated into a nuclear (ψn) and an electronic wave function:

ψtot(r,R) = ψn(R)ψe(r;R). (2.2)

Here, R = (R1,R2, . . . ,RN) denotes the coordinates of theN nuclei and r = (r1, r2, . . . , rM)

the coordinates of the M electrons, respectively. This approximation yields a separation

of Eq. 2.2 into a time-dependent Schrödinger equation for the motion of the nuclei and

a time-independent Schrödinger equation for the electronic dynamics. This potential is

called a potential energy surface (PES) because it is a function of the nucleic position.

Within the Born-Oppenheimer approximation, the nuclei move on this PES obtained by

solving the time-independent electronic problem,

Heψe = Eeψe, (2.3)

with He as the electronic Hamiltonian and Ee the lowest energy eigenvalue, which therefore

parametrically depends on the nuclear positions R.
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Classical Dynamics

The huge size of biomolecules like proteins or DNA renders the solution of the time-

dependent Schrödinger equation (Eq. 2.1) for the nuclear motion still prohibitively expen-

sive. Therefore, as an additional approximation in MD simulations, the nuclear dynamics

is described classically and obeys Newton’s equations of motion

−∇iV (R) = mi
d2Ri(t)

dt2
, (2.4)

where Fi = −∇iV (R) is the force onto atom i as a function of all atomic coordinates,

and Ri and mi are the coordinates and mass of atom i, respectively. The acceleration

d2Ri(t)/dt
2 leads to a change in the atoms velocity and position within a discrete time step

∆t, chosen sufficiently short such as to capture the fastest motions in the system. These

motions are usually the bond and angle vibrations. Especially bond vibrations involving

the light hydrogen atoms occur at the femtosecond timescale and therefore restrict the

timestep to about 1 fs. To extend the timestep length beyond 1 fs, a number of algorithms to

constrain bond lengths and therefore remove these fast degrees of freedom, e.g., SHAKE52

and LINCS53 have been developed. The latter was used for all underlying simulations in

this thesis. For an efficient numerical integration of Newtons’s equation of motion, the

leap-frog algorithm54 is applied,

R(t+ ∆t) = R(t) + v

(
t+

1

2
∆t

)
∆t (2.5)

v

(
t+

1

2
∆t

)
= v

(
t− 1

2
∆t

)
+

Fi(t)

mi

∆t, (2.6)

where the position R(t) and force Fi(t) are calculated together with the velocities

v(t−∆t/2).
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Force Fields

Although the Born-Oppenheimer approximation allows the treatment of an electronic wave

function as a function of the nuclear coordinates, the evaluation of the potential V (R)

by solving the time-independent Schrödinger equation (Eq. 2.3) for the electrons is still

required. This, however, is currently still too expensive for the large number of electrons

in biomolecular systems, rendering their extended quantum-mechanical MD simulation

unfeasible.

Therefore, as a third and last approximation, the potential energy of the system as a

function of the nuclear coordinates is expressed as the sum of simple analytical functions.

These functions in combination with a corresponding set of empirical parameters, compose

the molecular mechanical (MM) force field,

V (R) =
∑

bonds i

1

2
ki(li − l0i )

2

+
∑

angles i

1

2
ki(θi − θ0

i )
2

+
∑

impropers i

1

2
ki(ξi − ξ0

i )
2

+
∑

dihedrals i

1

2
Vi(1 + cos(nφi − φ0

i ))

+
∑

pairs ij
i6=j

(V ij
LJ + V ij

Coul),

(2.7)

where li, θi, and ξi are the individual bond lengths, angles, and out-of-plane-angles, and

l0i , θ
0
i , and ξ0

i their equilibrium values, respectively. The ki denote the respective force

constants. Vi states the barrier height, n the multiplicity, φi the plane-angle and φ0
i the

phase of the respective dihedral. The electrostatic interaction between atomic (partial)

charges qi,j is described by the Coulombic law

VCoul(rij) =
qiqj

4πε0εrrij

. (2.8)
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The Pauli repulsion and van der Waals attraction are given by the Lennard-Jones term,55

VLJ(rij) = 4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]
, (2.9)

where rij is the distance between the two particles i and j. εij and σij define the depth

and position of the potential minimum, respectively. These force field components are

illustrated in Fig. 2.1.

Fig. 2.1: Illustration of the interactions in a typical mechanical force field. The black arrows
denote the bonded interaction potentials: bond-stretching, V B, angle-bending, V A, dihedral
(out-of-plane), V dih, and improper (plane-plane), V imp. The grey arrows denote the non-bonded
potentials: Coulomb, V coul and Lennard-Jones, V LJ.

Numerous force fields have been developed, differing in the way they were parameterized.

The exact functional forms and individual parameters vary between the different force

fields and may deviate from the more general Eq. 2.7. In this thesis, the OPLS-AA56

and the AMBER9957,58 force fields have been used. These force fields contain a large set

of parameters, which are usually determined by multi-dimensional fitting to experimental

data and to the results from quantum mechanical calculations. Whenever available, exper-

imental and theoretical data for the condensed phase are used, since biomolecular systems

are generally not in the gas phase.

The force fields described above have been developed for proteins on the basis of their
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building blocks, amino acids. Furthermore, the AMBER99 force field has been developed

for the nucleotides forming nucleic acids (DNA/RNA). Other molecules, present in many

biological systems, require additional parameters. Since the force field parameters are de-

termined by multi-dimensional fitting, single parameters of atoms have limited physical

meaning, and only make sense if the force field is regarded as a whole. The parameteriza-

tion of molecules not included in a force field, therefore, needs a careful adjustment to that

respective force field. Depending on the desired accuracy, such parameters can be either

derived ab initio from experimental data and quantum mechanical calculations, or if avail-

able, adopted from parameters of other available molecules – e.g. amino acids or nucleotides

– in the force field. To circumvent the costly parameterization of single molecules, the gen-

eral AMBER force field (GAFF)59 has recently been developed and yields parameters for

most organic molecules, compatible with the AMBER force field series.

2.2 Simulation details

About 70% of the mass of mammal bodies is composed of water. Approximately 2/3

of this water can be found within cells. Water therefore is the natural environment of

proteins in a cell. To obtain a correct model system for MD simulations which resembles

the in vivo system best, the proteins and their ligands used in the underlying simulations

have been simulated in water and a 150mM sodium-chloride salt concentration, mimicking

the physiological solvent environment.

To be computationally feasible, MD simulations of biomolecular systems require much

smaller system sizes than corresponding experiments. Hence, artifacts from the system

boundaries have to be minimized by introducing appropriate boundary conditions. The

common method to cope with these boundaries is the application of periodic boundary

conditions. Here, the simulation system is surrounded by periodic images of itself, allowing

atoms which leave the simulation box on one side to re-enter instantaniously on the opposite

side. The box shape of such simulation systems is limited to space-filling geometrical forms,
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like a triclinic, a dodecahedric, or a truncated dodecahedric unit cell. While the use of

periodic boundaries is an effective approach to eliminate surface artifacts, care has to

be taken to minimize arti.facts which arise from the artificial periodicity.60,61,62 A cubic

simulation box was used for all systems assessed in this thesis.

The calculation of the two non-bonded force terms, Coulomb (Eq. 2.8) and Lennard-Jones

(Eq. 2.9) interactions, make up the computationally most expensive part of each integration

step. It requires N2 summations for the N atoms in a system. Hence, the computational

effort quickly becomes too large to treat huge systems like proteins or nucleic acids in

explicit solvent environment. Typically, a cut-off of 1.0 to 1.4 nm63 around each particle

is taken for the explicit non-bonded calculations to enhance the computational efficiency.

Since the Lennard-Jones potential decays with r−6, additional forces can be neglected for

larger r. However, the use of such a cut-off for the Coulomb potential is known to cause

severe artifacts64,62,65 due to its slow 1/r decay.

Such long-range artifacts are avoided by the use of Ewald summation,66 which originally

was derived for the calculation of electrostatic potentials in periodic crystals. The similar

periodicity in simulation systems with periodic boundaries therefore renders this method

particularly well suited. When using Ewald summation, the electrostatic interaction is

splitted into two contributions, of which those interactions within the cut-off are computed

directly via Eq. 2.8 and the long-range interactions outside the cut-off are computed in

reciprocal space. The use of fast Fourier transformations for the calculation of the recip-

rocal sum in the related Particle Mesh Ewald (PME)67 is even more efficient than Ewald

summation and scales with N logN .

The numerical integration of Newton’s equations of motion and the approximations in

the evaluation of the non-bonded interactions introduce additional uncontrolled forces,

which typically heat up the system and thus lead to a non-conserved total energy. This is

prevented by adjusting the systems temperature T at each integration step via coupling

the system to a heat bath with a reference temperature T0 and a coupling time constant

τT . The algorithm of Berendsen et al.68 was used in this work, which rescales the atomic
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velocities according to

v′ = v

√
1 +

∆t

τT

(
T0

T
− 1

)
, (2.10)

where ∆t is the integration time step, v the initial and v′ the resulting velocity, respectively.

This temperature coupling method assumes the system to be thermally equilibrated, and

removes temperature differences occuring between adjacent time steps from the system.

The proper protein function in experiments and living cells is usually not only coupled

to a relatively constant temperature but also to a constant pressure of ≈ 1 bar. Similar

to keeping the temperature of a simulation system constant by the described temperature

coupling, a barostat is introduced to keep the pressure of the system constant. In this

work, the Berendsen barostat68 has been used, which controls the pressure by rescaling the

atomic positions analogous to the velocity scaling for the temperature coupling.

If not explicitly mentioned elsewhere, the short-range Coulomb as well as the Lennard-

Jones interactions were computed explicitely within a cutoff of 1.0 nm, and with Particle-

Mesh-Ewald with a grid spacing of 0.12 nm and an interpolation order of 4 for long-range

electrostatics.67 All simulations were carried out in anNpT ensemble using Berendsen pres-

sure and temperature coupling,68 p=1bar with a pressure coupling coefficient of τp=1ps,

and T0=300K with a temperature coupling coefficient of τT =0.1 ps. The simulations in

this thesis were carried out with the GROMACS software-package (version 3).69

For the free energy calculations, a hardcore, i.e., an unmodified Lennard-Jones potential,

and, where necessary, a softcore potential70 was used. A softcore potential (Vsc) modifies

the Lennard-Jones potential to allow the overlap of the van der Waals spheres of adjacent

atoms. The softcore potential in this work was used with α = 0.25 and, for hydrogens,

with σ = 0.3. The two parameters are defined as

Vsc(r) = (1− λ)V A(rA) + λV B(rB) (2.11)
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with

rA =
(
ασ6

Aλ+ r6
) 1

6 (2.12)

and

rB =
(
ασ6

B(1− λ) + r6
) 1

6 , (2.13)

where V A and V B denote the Lennard-Jones potential (Eq. 2.9) for an arbitrary atom pair

in state A and B, respectively, α is the soft-core parameter, σ the radius of interaction,

and rA and rB the distance of an arbitrary atom pair in state A and B, respectively.

A softcore potential was used for perturbations involving changes of the number, i.e., ap-

pearing and disappearing, of atoms with van der Waals interactions. For the softcore

potential a 3-step scheme was used to avoid Coulomb interaction singularities for overlap-

ping atoms. Accordingly, the switching process from state A to state B was split into three

steps, involving two intermediate states. In the first step, the charges of all perturbed

atoms of state A were switched to zero. In the second step, we switched the Lennard-Jones

parameters, masses, as well as all bond, angle, and dihedral parameters of the perturbed

atoms. Masses of dummy atoms and the parameters of bonds involving dummy atoms

were not changed. In the last step, the charges of the perturbed non-dummy particles

were switched from zero to their state B value. If no softcore potential was necessary, the

conventional 1-step scheme was used.

The simulation of a protein or nucleic acid requires the explicit spatial coordinates and

initial velocities of every atom in such a molecule. While the initial velocities can be

obtained from a Maxwell-Boltzmann distribution, the spatial coordinates were obtained

from x-ray structures stored in the Protein Data Bank.10 Such structures may lack heavy

atoms from amino acid side chains or even whole loop regions, depending on their reso-

lution. The addition of such side-chain heavy atoms can be obtained by smart software

algorithms which compute the most likely coordinates for these atoms, depending on their

environment. Loop modeling, in contrast, is a still highly problematic and difficult task.

The intrinsically high flexibility of loops in proteins renders the determination of the atoms
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spacial coordinates often challenging. Moreover, since the resolution of these structures is

most often too low to contain hydrogen atoms, the structure has to be protonated before a

simulation. Such structural repair and protonation has been performed with the software

WHATIF71 which optimizes the spatial placement of heavy atoms and protons by analyz-

ing the environment for the energetically most favorable position at a given pH. The x-ray

structures of the biomolecules, simulated in this work, are taken from the Protein Data

Bank, and the respective PDB codes are given in the respective chapters 3 to 5.

The limited resolution of typically 1.0 to 3.0 Å and the necessary addition of missing atoms,

protonation, and addition of solvent require further processing of the system. A short

energy minimization using a steepest descent algorithm has been applied to each structure

to remove possible van der Waals overlaps and bond-angle deformations, which could

otherwise lead to unreasonably high forces in the simulations. Afterwards, the resulting

structures have been simulated for 0.5 ns, where all heavy atoms of the solute have been

restrained to their initial position, to allow the relaxation of the surrounding solvent.

Furthermore, the unrestrained system was equilibrated to remove possible artifacts, e.g.,

non-native side-chain positions due to crystal-packing or other conditions, necessary for

solving the structure. All simulations were performed with explicit water as referenced in

the respective chapters.

2.3 Free energy calculations

The importance of the free energy for biochemical quantities has been described in detail

in the introduction of this thesis. In contrast to the potential or kinetic energy, which can

directly be computed from statistical averages of a MD trajectory, the (Gibbs or Helmholtz)

free energy (G, F ) cannot be computed from such a statistical average. The free energy

and the entropy (S), which is connected to it via

G = H − TS, (2.14)
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is an ensemble property, which depends on the extent of configurational space (or phase

space) accessible to the system. Therefore, computation of the absolute free energy of a

biomolecular system is still a quite challenging task.

However, over the past few decades, statistical mechanical procedures have been developed

for the calculation of relative free energies. The methods described below aim to compute

the free energy changes, related to perturbations of a system, from MD simulations. De-

pending on the explicit method, the potential energy function V (R) (Eq. 2.7) is changed,

either slow or fast, from state A to B. Accordingly, the classical Hamiltonian H(p,R), is

made a function of a coupling parameter λ, such that HA(p,R, λ = 0) and HB(p,R, λ = 1)

describe the system in state A and B, respectively,

H(p,R, λ) =
N∑

i=1

p2
i

2mi(λ)
+ V (R, λ). (2.15)

The free energies of state A and B are defined as

FA,B = − 1

β
lnZA,B, (2.16)

where ZA,B is the canonical partition function,

ZA,B =

∫
e−β(HA,B(p,R))d(p,R), (2.17)

with the inverse temperature β = 1
kBT

. The free energy difference therefore is

∆F = FB − FA = − 1

β
ln
ZB

ZA

. (2.18)

Methods to calculate free energy differences between two states A and B fall into two

classes, equilibrium methods and, developed more recently, non-equilibrium methods. These

methods will be briefly discussed in the following chapters. For a detailed overview of free

energy calculations, Ref. 72 is suggested.
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2.3.1 Equilibrium methods

Free Energy Perturbation (FEP)

Free Energy Perturbation (FEP) was developed by Zwanzig,40 showing that the free energy

difference can be computed directly via

∆F = − 1

β
ln
〈
e−β(HB(p,R)−HA(p,R))

〉
A
, (2.19)

where 〈〉A denotes an ensemble average of the system at state A. FEP has been widely used

to calculate free energy differences for amino acid substitutions in proteins.73,74,75 This

method, however, suffers particularly from sampling problems, which become increasingly

severe for larger systems such as proteins, mainly due to insufficient overlap of the involved

thermodynamic phase space densities. Because of the exponential growth of statistical

uncertainty with decreasing phase space density overlap, this method requires excessive

sampling, especially if the size of the perturbation is large.76,77,78

Slow Growth Thermodynamic Integration (SGTI)

Thermodynamic Integration (TI)39 rests on the generalized force (δH(p,R, λ)/δλ) with

respect to the coupling parameter λ rather than on finite differences and can be computed

by

∆F =

∫ 1

0

δH(p,R, λ)

δλ
dλ. (2.20)

Here λ is either varied continuously (slow-growth), or, similarly to FEP, sampled at discrete

values (see next subchapter). One consequence of the continuous shift of λ in slow-growth

TI (SGTI) is that, strictly speaking, the system is never in equilibrium, as is assumed in

the construction of the method. Therefore, accurate results are expected only for small

systems or very long simulation times.79,80
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Discrete Thermodynamic Integration (DTI)

Discrete TI (DTI) circumvents the problems mentioned for SGTI in the previous paragraph

by sampling at discrete λ values instead of a continuously variation:

∆F =

∫ 1

0

〈
δH(p,R, λ)

δλ

〉
λ

dλ ≈
N∑

i=0

〈
δH(p,R, λ)

δλ

〉
λi

∆λ, (2.21)

Here, gradients of the free energy F are calculated at discrete λ values, and ∆F is obtained

from numerical integration (summation) of these gradients. In regions of λ where these

gradients are large, insufficient sampling and numerical integration may cause problems

and, hence, require increased computational effort. This effect is often very large for λ=0

and λ=1, in particular when the number of atoms differs between the two involved states.48

In this context, the Bennett Acceptance Ratio81 typically provides an improved free energy

estimate compared to numerical integration.50

2.3.2 Non-equilibrium methods

Exponential work averaging using a Gaussian approximation (EXP)

Jarzynski has shown that the Helmholtz free energy difference ∆F can be derived from a

series of non-equilibrium work measurements or computations,82,83

e−β∆F =
〈
e−βWτ

〉
, (2.22)

where 〈〉 denotes an average over an ensemble of N trajectories which were started from

an equilibrated canonical ensemble. Here, Wτ is the work

Wτ =

∫ 1

0

δHλ

δλ
dλ (2.23)
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over a switching process of arbitrary length τ , which may be very short. In Eq. (2.23), λ

is again the coupling parameter which switches the system during a simulation of length

τ from state A to state B (defined by Hamiltonians HA and HB, respectively), e.g., via

Hλ = (1− λ)HA + λHB.

For very long switching times the system stays sufficiently close to equilibrium, such that

the dissipated work is negligible and ∆F = W . In this case, Eq. (2.23) describes Thermo-

dynamic Integration (Eq. 2.20).84,85

Rather than spending computational effort on one long TI trajectory, Hendrix and Jarzyn-

ski suggested to carry out many short Fast Growth TI (FGTI) simulations from state A

to B and to calculate the free energy difference between these two states via the Jarzyn-

ski equality (Eq. 2.22).82,86 Unfortunately, however, from the resulting set of trajectories,

those which occur only rarely carry most of the statistical weight. Therefore, the severe

sampling problem persists87,88 and renders the treatment of larger biomolecules often still

as computationally demanding, as for FEP.

It has been suggested to alleviate this problem by combining forward (A→B) and reverse

(B→A) switching simulations as well as by using Gaussian approximations of the work

distribution.89 For the method EXP, the distribution P (W ) of values for the work obtained

from the trajectory ensemble is approximated by a Gaussian function,

Pf,r(W ) ≈ 1

σf,r

√
2π

exp

[
−(W −Wf,r)

2

2σ2
f,r

]
, (2.24)

where Wf,r and σf,r are the means and the standard deviations of the work distributions,

respectively. The index f denotes the forward ensemble, where λ = 0 → 1, and r the

reverse ensemble, where λ = 1 → 0, respectively.

As has been shown by Hummer,89 Eq. (2.22) yields for this approximation

∆Ff = Wf −
1

2
βσ2

f (2.25)
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and

∆Fr = −Wr +
1

2
βσ2

r . (2.26)

With the statistical accuracy of the two above expressions,

σ̄2
f,r =

σ2
f,r

N
+

β2σ4
f,r

2(N − 1)
, (2.27)

and using standard error propagation theory, we suggest to improve Hummer’s estimate

by using the weighted mean

∆FEXP =

(
∆Ff

σ̄2
f

+
∆Fr

σ̄2
r

)/(
1

σ̄2
f

+
1

σ̄2
r

)
(2.28)

with statistical accuracy

σ̄2
EXP =

(
1

σ̄2
f

+
1

σ̄2
r

)−1

. (2.29)

The latter two expressions have been used as method EXP in our simulations. It should

be noted that also Hummer89 has derived an expression for σf 6= σr; however no error

estimate has been derived for this case.

Bennett acceptance ratio with a maximum likelihood estimator (BAR)

Rather than relying on Jarzynski’s equality, several methods are based on the more general

Crooks Fluctuation Theorem (CFT, see Chapter 2.3.3).90 Accordingly, the forward and

reverse work distributions obey

Pf (W )

Pr(−W )
= eβ(W−∆F ). (2.30)

Following Eq. (2.30), Bennett’s acceptance ratio81 – which was originally proposed and ap-

plied for equilibrium Monte Carlo simulations – is also applicable to non-equilibrium work

(NEW) calculations. Recently, this approach was combined with a maximum likelihood

estimate,91 and accurate free energy differences were obtained.92



2.3. FREE ENERGY CALCULATIONS 25

Using Eq. (2.30), and assuming sufficiently smooth a priori distributions, a maximum

likelihood approach on Bennett’s Acceptance Ratio yields

〈
1

1 + exp [β(W −∆FBAR)]

〉
f

=

〈
1

1 + exp [−β(W −∆FBAR)]

〉
r

, (2.31)

assuming an equal number of forward (f) and reverse (r) simulations. From Eq. (2.31)

∆FBAR is calculated numerically.

Following Shirts91 and Anderson,93 the statistical error of ∆FBAR is estimated by

1

β2N

[〈
1

1 + cosh[β(W −∆FBAR)]

〉−1

− 2

]
, (2.32)

where 〈〉 denotes the average over all (i.e., forward and reverse) work calculations. We will

refer to this method as BAR in our work.

2.3.3 Crooks’ Theorem

One goal of this work was to construct a non-equilibrium method for computing free energy

differences between to states A and B, which performs better, especially with respect to

the computation of precise errors, than the established methods discussed above. Because

the newly developed method strongly exploits and relies on Crooks’ fluctuation theorem

(CFT),90 this theorem will be described in more detail here.

The Crooks relation (Eq. 2.30) follows from the derivation of Jarzynski’s equation (Eq. 2.22)

using path-sampling ideas. A discrete trajectory t0
H1→ t1

H2→ · · · HN→ tN , generated, e.g. by

using Newtonian dynamics integrators, as described in section 2.1, proceeds for each step

ti−1
Hi→ ti according to Hamiltonian Hi. After each such time step, the Hamiltonian

is changed in an designated way. If each of these time steps is path-independent, i.e.,

Markovian, in the full phase space, the probability Pf of computing a particular trajectory
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can be obtained by

Pf

(
t0

H1→ t1
H2→ · · · HN→ tN

)
= p0(t0)

N∏
i=1

pi(ti|ti−1), (2.33)

where p0(t0) = exp[−β(H0(t0)−F0)] is the normalized equilibrium Boltzmann probability

density at the initial state t0 with the according free energy F0, and pi(ti|ti−1) the proba-

bility for a transition from ti−1 to ti under the force of Hamiltonian Hi. If these transition

probabilities satisfy the need for detailed balance, which is true for Newtonian dynamics,

pi(ti|ti−1)

pi(ti+1|ti)
= e−β[Hi(ti)−Hi(ti−1)], (2.34)

then the probability Pr of choosing the time-reversed path affected by the associated time-

dependent Hamiltonian can be related to the probability Pf of the forward path:

Pf

Pr

=
P
(
t0

H1→ t1
H2→ · · · HN→ tN

)
P
(
tN

HN→ tN−1
HN−1→ · · · H1→ t0

) =
p0(t0)

∏N
i=1 pi(ti|ti−1)

pN(tN)
∏N

i=1 pi(ti−1|ti)
. (2.35)

Using Eq. 2.34 and the fact that the work W of bringing a system from state A to state B

is the accumulated change in energy

W =
N−1∑
i=0

[Hi+1(ti)−Hi(ti)] , (2.36)

Pf

Pr

= exp

[
β

N−1∑
i=0

[Hi+1(ti)−Hi(ti)]− β(FN − F0)

]
= eβ(W−∆F ) (2.37)

is obtained, where p0(t0) and pN(tN) are substituted by F0 and FN , respectively, which

are the free energies corresponding to Hamiltonians H0 of state A and HN of state B, with

∆F = FN − F0.

As can be seen from Eq. 2.37, a backward path with a path probability differing exactly

by a factor exp [β(W −∆F )] exists for every equivalent forward path. It can be seen that
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the work distribution of the forward paths thus can also be obtained by sampling the

reweighted backward paths. This reweighting factor apparently only depends on the work

W and ∆F . Therefore it can be applied directly to obtain Crooks relation (2.30).

2.4 Analysis Methods

The positions and velocities of every atom of a simulation system are specified for every

time step by the simulations trajectory. The structural changes of a protein can thus be

obtained from such a trajectory, and are characterized by the methods introduced below.

Root Mean Square Deviations The root mean square deviation (RMSD) of a structure

with atomic coordinates ri with respect to a reference structure with its atoms coordinates

r0
i yields a quantitative measure for the structural difference between both,

RMSD =

√√√√ 1

N

N∑
i=1

(ri − r0
i )

2. (2.38)

The definition of the RMSD requires the rotation and translation of the structure towards

its best fit to the reference structure. The calculation of an appropriate RMSD of a proteins

structure along its trajectory with respect to its crystal structure, e.g., yields a measure for

conformational changes. Typically, an RMSD of 2–3 Å is caused by thermal fluctuations,

whereas larger values point towards conformational changes.

To obtain informations about the globular motion of the structure, a subset of atoms from

the system is chosen for the calculation of the RMSD via Eq. 2.38. This subset consists out

of the amino acid backbone atoms, due to the noise induced by the fluctuations of amino

acid side-chains. However, if a certain region in the protein is expected to contribute

strongly to the total RMSD, a subset of atoms from that particular region can be used to

calculate a more specific RMSD of that region.



28 2. THEORY AND METHODS

Even though the RMSD can indicate general motions or conformational changes, the spe-

cific motions in phase space cannot be exactly determined. It is, therefore, not possible to

correlate the globular motions of a protein from two ore more independent trajectories by

their respective time resolved RMSD.

Principal Component Analysis One major technique to extract and classify information

about large conformational changes from an ensemble of protein structures, generated

either experimentally or theoretically, is principal component analysis (PCA). A detailed

mathematical description of PCA is given in Ref. 94, 95. Principal component analysis is

based on the observation that the largest part of positional fluctuations in biomolecules,

like proteins, occurs along a small subset of collective degrees of freedom. The presence of

a large number of internal constraints, defined by the atomic interactions in a biomolecule,

leads to the dominance of this small subset of degrees of freedom (essential subspace)

in the molecular dynamics of a protein. In particular, these interactions range from the

strong covalent bonds to the weaker non-bonded interactions. PCA identifies the collective

degrees of freedom that most contribute to the total amount of fluctuations. Typically, a

small subset of 5–10% of the total degrees of freedom accounts for more than 90% of the

total fluctuations within a protein.94,96,97

In general, PCA can be regarded as a multi-dimensional linear least squares fit procedure in

configuration space. After fitting each configuration to a reference structure, the covariance

matrix of the atoms positional fluctuations is build and diagonalized,

C =
〈
(R(t)− 〈R〉)(R(t)− 〈R〉)T

〉
, (2.39)

where R(t) resembles the fitted ensemble (e.g. from a MD trajectory) of internal motions

and 〈〉 an ensemble average. Here, R is a column vector of size 3N , describing the co-

ordinates of N atoms, and thus representing every structure of the ensemble. Because

the collective motions of a protein are described very well by their backbone motions, the

covariance matrix was made up by the proteins backbone atoms in this work. The sym-
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metric 3N × 3N matrix C is diagonalized by an orthogonal coordinate transformation D,

containing the eigenvalues λi of matrix C. The ith column of D contains the normalized

eigenvector, i.e. principal component, µi of matrix C corresponding to λi.

The eigenvalues λi describe the mean square fluctuations along the respective eigenvector

µi. Hence, they contain each principal component’s contribution to the total fluctuation.

Sorting the eigenvectors µi according to their corresponding eigenvalue λi from large to

small, therefore, yields a description of the collective motions of the system by the first

eigenvectors.

These principal components comply with collective coordinates, including contributions

from every atom of the protein, and were shown to make up for the functional dynamics

of proteins in several cases.94,98,99,100
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3.1 Introduction

In this chapter, we derive our new method to calculate free energies from non-equilibrium

trajectories. The details of the available perturbation theory based methods, used below,

have been described in Chap. 2.3. Here, we focus on the development of a new non-

equilibrium method to compute free energy differences from MD simulations.

To compare the accuracy of our method with existing methods from both, the equilib-

rium and the non-equilibrium class, four established methods are considered and used for

extensive test simulations. Recently proposed non-equilibrium methods include Jarzyn-

ski’s work averaging and Bennett’s Acceptance Ratio; established equilibrium methods are

Slow Growth Thermodynamic Integration (SGTI) and Discrete Thermodynamic Integra-

tion (DTI).

3.2 Theory

The new method developed here, Crooks Gaussian Intersection (CGI) is an alternative

set of methods which employs CFT (Eq. (2.30)) more directly. As well as for other non-

equilibrium methods, for each trajectory the mechanical work for the switching process is

calculated via Eq. (2.20). As can be seen from Eq. (2.30), ∆F is the work W for which

Pf (W ) = Pr(−W ), i.e, the intersection point of the two work distributions (Fig. 3.1).88

Direct determination of the intersection point (e.g., from histograms) is prone to large

statistical errors, however, because only those work values are used which fall into the

bin containing the intersection point. Particularly if the forward and reverse distributions

exhibit only a small overlap, this number can be very small or even zero.

In analogy to method EXP, we here propose to use Gaussian approximations. This ap-

proach has the advantage that the assumption of a Gaussian work distribution has been

shown to hold in the limit of large numbers of degrees of freedom.101 Furthermore, as we

will show below, this assumption can be tested through a Kolmogorov-Smirnov test.102
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Fig. 3.1: Schematic Gaussian work distributions for the switching from state A to B for a forward
(Pf (W ), solid line) and a reverse (Pr(−W ), dashed line) process. Wf , σf , −Wr and σr are the
means and standard deviations of Pf (W ) and Pr(−W ), respectively. These values are used to
calculate the free energy difference ∆FCGI.

The intersection point is given by

∆FCGI =

Wf

σ2
1
− −Wr

σ2
2
±
√

1
σ2
1σ2

2
(Wf +Wr)

2 + 2
(

1
σ2
1
− 1

σ2
2

)
ln σ2

σ1

1
σ2
1
− 1

σ2
2

, (3.1)

where Wf and −Wr are the means, and σf and σr the standard deviations of the respective

Gaussian functions, as also defined in Fig. 3.1.

We note that for σf 6= σr, two intersection points will generally be found, whereas ∆F is

of course uniquely defined. Only for σ2
f = σ2

r a unique solution, ∆FCGI = (Wf −Wr) /2,103

is obtained. Typically, one intersection point is located between Wf and −Wr, and is close

to (Wf −Wr)/2. The second intersection point is located far in the tail region and in this

case is an artifact of our Gaussian approximation, which often fails in the tail region.101

Accordingly, we chose the intersection value which is closest to (Wf−Wr)/2 as our estimate

for ∆FCGI.

If both Gaussians were too close to compute a proper intersection point, i.e., if Wf and

−Wr were closer to each other than to one of the two intersection values, we empirically
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chose the mean of both as the best estimate for ∆FCGI.

To estimate the statistical accuracy of ∆FCGI, we resorted to a Monte Carlo approach.

Accordingly, 10 000 synthetic sets of work values were generated, each set containing N

values that were randomly chosen from a Gaussian distribution with meanWf and standard

deviation σf for the forward simulation, and, similarly, N values for the reverse calculations.

Both, Wf , −Wr and σf,r, were taken from the above Gaussian fits to the work distribution

obtained from the simulations. For each of the 10000 synthetic forward/reverse work

distributions, intersection points were calculated from the respective means and standard

deviations. The standard deviation of this ensemble of synthetic intersection points was

used as an estimate for the expected statistical error of ∆FCGI.

3.3 Simulation details

Test systems To evaluate the accuracy and convergence of the described CGI method

as well as the conventional ones, we considered two small test systems and a large one (see

Tab. 3.1). The first, “E2M”, involves the interconversion of one solvated ethane into a

methanol molecule, which affects essentially all eight atoms (Fig. 3.2, E2M). The second,

“W2G”, is a tripeptide, Gly-Trp-Gly, which is “mutated” into Gly-Gly-Gly. Here, 19 atoms

are involved, where 17 were transformed into dummy particles which keep their mass and

bond parameters, but do not interact via Lennard Jones or via Coulomb interactions

(Fig. 3.2, W2G). For both systems the OPLSAA force field was used.56

As a third, large test system of biological relevance we chose the protein snurportin 1

(SPN) (PDB entry 1XK5104). The ligand from the SPN crystal structure, m3GpppG, was

transformed to a modified form, m7GpppG. Here, ten atoms are affected by the pertur-

bation, and six become dummy particles (Fig. 3.2, SPN). For this system the AMBER99

force field58,57 was used.
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System A-state B-state Force field Water
model

Ion conc.
(mmol/L)

# atoms

E2M C2H6 CH3OH OPLSAA TIP4P - 1432
W2G GWG GGG OPLSAA TIP4P - 1389
SPN m3GpppG m7GpppG AMBER99 TIP4P 150 63642

Tab. 3.1: Summary of simulation system details of the test-systems ethane (E2M), tripeptide
(W2G), and snurportin 1 (SPN). The tripeptide in the A- and B-state is given in the one-letter-
code for amino acids.

For both SPN ligands, m3GpppG (resolved in the crystal structure) and

m7GpppG (not resolved in the crystal structure), no force field parameters were avail-

able. We therefore used the standard AMBER99 values for guanosine and ribose. The

m3G- and m7G-nucleoside parameters were taken from Ref. 105, and the parameters for

triphosphate, connecting the two nucleotides, from Ref. 106. Additionally, we scaled the

charges of the molecule at the connecting phosphates such that a net charge of -2 was

obtained.

Fig. 3.2: Structures of the tested systems. A: A-state of the free energy calculations for E2M,
W2G and SPN. B: Respective B-state. The dark grey ellipsoids denote the atoms, which con-
tribute most to the perturbation. The light gray ellipsoids indicate regions of minor perturbations.
Rx denotes the rest of the respective molecule, D the dummy particles. In W2G B the complete
imidazole ring is composed of dummy particles.

Simulation setup All simulations were carried out in explicit solvent, except one SGTI

simulation of E2M, which was additionally carried out in vacuum in order to compute
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solvation free energies. All non-vacuum simulations were treated with the parameters as

given in Chapter 2.2. The TIP4P water model107 was used and, in the case of snurportin 1,

a 150mmol NaCl salt-concentration to mimic physiological solution. The E2M and W2G

systems were equilibrated for one nanosecond; the SPN system was equilibrated for 50 ns.

All test simulations were started from these equilibrated systems.

For the free energy calculations, we used a hardcore and, where necessary, a softcore

potential. For the softcore potential a 3-step scheme as described in Chapter 2.2 was used.

For the hardcore potential, the conventional 1-step scheme was used. The simulation length

of all these steps was always chosen to be equal, and Gaussian error propagation was used

to estimate the total error of ∆F .

Comparison to experiment As a control, solvation free energies were calculated for

ethane and methanol, respectively, and compared to experiments. To this aim, nine SGTI

simulations were carried out for system E2M in solvent and one in vacuo. All SGTI simu-

lations were performed in a 1-step process over 10 ns in the forward and reverse direction,

yielding a total simulation time of 200 ns.

Test of the Gaussian approximation To test the assumption that the obtained distri-

butions of non-equilibrium work values can be approximated by Gaussian functions, 1000

forward and 1000 reverse FGTI simulations of τ=50ps each were carried out for system

E2M, using a 1-step switching process. After equilibrating the two states A and B for 11 ns,

1000 starting snapshots were extracted from the last 10 ns of each of the two trajectories.

To the obtained set of work values, a Kolmogorov-Smirnov (KS-) test102 was applied.

Convergence of trajectories: varying number and lengths For the two small systems,

E2M and W2G, extended test simulations with comparable total simulation times were

carried out. FGTI was used to compute trajectories for the NEW methods, and SGTI

for comparison. To assess the effect of the number of used trajectories, the number of
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trajectories for the non-equilibrium simulations was varied and a constant switching time

τ=50ps was used. 12, 25, 50, and 150 trajectories were used, yielding a total simulation

time of 3.6, 7.5, 15, and 45 ns, respectively, for both the forward and reverse simulations.

In the SGTI simulations, switching times τ were chosen to be 3.84, 7.5, 30, 37.5, 48, 60,

and 75 ns, respectively, for the forward and reverse path. To allow proper comparison, the

3-step scheme was used for all simulations in this paragraph.

The effect of trajectory length (for a fixed number of trajectories) was assessed for all three

systems, E2M, W2G, and SPN. The 3-step scheme was used for systems E2M and W2G;

the 1-step scheme was used for system SPN. Switching times τ of 1, 5, 10, 25, 50, 80, 100,

128, 160, and 200 ps were used for all FGTI calculations. For each value of the switching

time, 50 trajectories were calculated. The total simulation times for E2M and W2G were

thus 0.3, 1.5, 3, 7.5, 15, 24, 30, 38.4, 48, and 60 ns, respectively.

For SPN, we additionally computed the interconversion of the two ligands m3GpppG and

m7GpppG, bound to snurportin 1 and in solution to calculate their binding free energy

difference. The total simulation times for these simulations were 0.6, 1, 2, 5, 10, 16, 20,

25.6, 32, and 40 ns.

Accuracy for given computational effort To evaluate the accuracy of all five methods

SGTI, DTI, EXP, BAR, and CGI for given computational effort, the test systems E2M

and W2G were used. A total simulation time of roughly 20 ns was spent for each method.

The 3-step scheme was used for these simulations.

The SGTI simulation times for both systems were 9.6 ns each for the forward and reverse

process, yielding a total simulation time of 19.2 ns. For the DTI simulations, the switching

process was split into 11 equally spaced discrete λ values. For each of these values, the

system was sampled for 600 ps, yielding a total simulation time of 18.6 ns. The first 200 ps

of each simulation were discarded as additional equilibration time and were not used for

the calculation of the intermediate free energies Fλ and their statistical accuracies.

For EXP, BAR, and CGI, identical trajectories were used as input. For the 1-step process
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(system SPN), the A- and B-states were equilibrated for 1 ns. For the 3-step process (sys-

tems E2M and W2G), the intermediate states were also equilibrated for 1 ns. From the

last 100 ps of each equilibration trajectory 50 snapshots were extracted as starting struc-

tures for the subsequent 50 ps FGTI simulations. Statistical independence was assessed

via an autocorrelation analysis of dH/dλ which yielded an autocorrelation time well below

100ps/50 = 2 ps. The total simulation time including the necessary equilibration runs was

21 ns.

3.4 Results

Comparison to experiment As a check, we compared computed free energies with exper-

imental solvation free energies for E2M. The appropriate thermodynamic cycle (Fig. 3.3A)

required interconversions of ethane into methanol both in solvent and in vacuum.

Fig. 3.3: Used thermodynamic cycles. A: switching from ethane (Eth) to methanol (MeOH) in
vacuum (g) and aqueous solution (aq), B: switching from m3GpppG to m7GpppG bound to SPN
(b) and unbound (u) in solution.

From nine SGTI simulations in solvent, ∆G4=-21.91± 0.09 kJ/mol was obtained. Here, the

error of the mean was estimated from the standard deviation

(σ=0.27 kJ/mol) of the obtained nine free energy values. The observed value for the

hysteresis was 0.09 kJ/mol on average, which agrees with this estimate. The vacuum free

energy difference was ∆G1=6.72± 0.03 kJ/mol, with the error estimated from the hystere-

sis. The resulting solvation free energy difference ∆∆G = ∆G1−∆G4=28.63± 0.10 kJ/mol
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agrees well with the experimental

value of ∆∆G=29.01 kJ/mol108 as well as with earlier simulations,

∆∆G=28.25± 1.13 kJ/mol.41 We note that we consider Gibbs’ free energies here, as the

experiments refer to constant pressure conditions. Because only double differences are

considered, the p∆V term is not expected to affect our results.

Test of the Gaussian approximation Methods EXP and CGI rely on the assumption that

the distribution of work values from non-equilibrium switching processes can be approxi-

mated by Gaussian functions. To test this assumption, 1000 independent simulations for

the system E2M were performed, from which 1000 work values were obtained. Figure 3.4A

shows the obtained distributions as well as the Gaussian fits.

Fig. 3.4: A: Distribution of 1000 work measurements for the switching process of ethane to
methanol in aqueous solution, forward (f) and reverse (r). A Gaussian function was fitted to
the forward and reverse data, with their intersection yielding the free energy. B: Distribution
functions for the same data, which are assessed by the Kolmogorov-Smirnov-test. For compar-
ison, the respective cumulative distribution function (error function) of the respective Gaussian
functions is shown in grey.

To test the hypothesis that these 1000 values are actually distributed according to a Gaus-

sian function, the Kolmogorov-Smirnov-test was applied (Fig. 3.4B). The obtained sig-

nificance levels of αf=0.10 and αr=0.50 for the forward and, respectively, reverse work

distributions imply that the hypothesis cannot be rejected at the usual 5% (or lower) sig-

nificance level. We thus assume that the Gaussian approximation holds for the case at
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hand as well as for the other test systems considered here. We note that the limited set

of work values lacks data points in the far tail regions of the distributions, which therefore

cannot be reliably assessed by the KS-test. Because the intersection of the forward and

reverse distribution falls typically within the “main body” of the Gaussian function and

not in the tails, however, this uncertainty will not affect our free energy estimates.

Convergence for varying numbers of trajectories To assess the accuracy and conver-

gence behavior of the three NEW methods, test simulations were carried out for the two

test systems E2M and W2G. SGTI was used as a reference. Figure 3.5 shows the conver-

gence of ∆F for the four methods as a function of the total computational effort spent.

For SGTI, convergence is reached for both systems after about 40 ns. The mean and sta-

tistical accuracy of the last four energy values are ∆F=-21.89± 0.20 kJ/mol for E2M and

∆F=-16.54± 1.31 kJ/mol for W2G, respectively. We used these two mean values as our

best reference estimates, against which convergence of the NEW methods is assessed.

Fig. 3.5: Comparison of 3-step free energy calculations. A: System E2M, B: System W2G.
The total simulation time is shown on a logarithmic time scale. The upper scale shows the
corresponding number of FGTI trajectories used (uni-directional). For each SGTI free energy
calculation, one trajectory was used.

As can be seen, beyond 7.5 ns, all NEW methods, except EXP for system W2G, yield free

energy estimates, which agree with the reference within their respective statistical accuracy.

Accordingly, for the systems at hand we consider 25 trajectories for the forward process

and 25 for the reverse, respectively, sufficient to obtain reasonably converged results for
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the NEW methods. Next, we studied the effect of trajectory length for a given number of

50 trajectories for systems E2M, W2G, and SPN. As can be seen in Figure 3.6, all NEW

methods converge for all three systems at about 80 ps trajectory length. However, for the

large system SPN, as well as for the large perturbation in system W2G, CGI turns out

to converge markedly faster, such that accurate results are obtained already from quite

short trajectories. Closer analysis reveals that CGI provides the same accuracy as EXP or

BAR at about half of the computational effort. Furthermore, CGI provides reliable error

estimates, whereas EXP drastically underestimates the statistical error.

Accuracy for given computational effort We compared the accuracy of both equilibrium

(SGTI, DTI) and non-equilibrium methods (EXP, BAR, CGI) for given computational ef-

fort. For systems E2M and W2G, a total simulation time of roughly 20 ns was spent as

described in the methods section. Table 3.2 shows the free energy contributions of the 3

steps as well as the total free energy difference obtained from the 3-step switching processes

for system E2M. Table 3.3 shows the same results for system W2G. As can be seen from Ta-

ble 3.2, for system E2M all applied methods yield free energy differences which converge to

∆GTot ≈ -21.9 kJ/mol. For a larger perturbation (system W2G), however, convergence to

∆GTot ≈ -15.2 kJ/mol with reasonable statistical accuracy was only reached by the NEW

methods (Tab. 3.3). In addition to the DTI result using 11 discrete λ values listed in

Tab. 3.3, DTI was also used with 21 discrete λ values, sampling each for 300 ps. However,

no significant differences in the resulting free energies were seen (data not shown).

We finally applied the NEW techniques to SPN using the thermodynamic cycle shown in

Figure 3.3B. As can be seen from Tab. 3.4, the free energy differences obtained for all

three NEW methods are sufficiently accurate to allow a reliable calculation of the required

double differences ∆∆G. Despite the fact that quite small differences of large values are

involved, CGI provides reliable values already for much shorter trajectory lengths than

EXP and BAR. Comparison with the measured value of 5.61 - 11.22 kJ/mol109,104 suggests

that, given the relatively large experimental uncertainty, good agreement is obtained for
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Fig. 3.6: Convergence of NEW free energies for differing FGTI trajectory lengths on a logarithmic
scale. A: system E2M, B: system W2G, C: system SPN. Trajectory lengths vary from 1 ps to
200 ps. The errors of the BAR method for the very short trajectories (1-25 ps) are often very
large and are therefore not shown in the plot.
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Method ∆GQQoff
σ ∆GVdW σ ∆GQQon σ ∆GTot σ

SGTI -8.44 0.01 -0.77 0.09 -12.86 0.17 -22.07 0.19
DTI -8.43 0.05 -0.70 0.49 -12.68 1.51 -21.81 1.59
EXP -8.43 0.01 -0.77 0.05 -12.80 0.12 -22.00 0.13
BAR -8.43 0.001 -0.78 0.002 -12.70 0.01 -21.91 0.01
CGI -8.43 0.01 -0.78 0.24 -12.33 0.20 -21.54 0.31

Tab. 3.2: Free energy contributions of a 3-step switching process of system E2M. “QQoff” denotes
switching the charges of the perturbed atoms in the state A to zero, “VdW“ the interconversion of
the Lennard Jones parameters from state A to B with softcore potentials, ”QQon“ the switching
of the charges to their values in state B, and ”Tot“ the sum of these three contributions, yielding
the total free energy difference. All free energies are given in kJ/mol. The estimated error for all
values is σ. For slow growth TI, σ provides a lower bound error estimate.

Method ∆GQQoff
σ ∆GVdW σ ∆GQQon σ ∆GTot σ

SGTI 26.61 0.3 -52.00 4.17 6.39 1.13 -19.00 4.33
DTI 26.79 2.94 -48.42 9.46 7.68 1.66 -13.95 10.04
EXP 25.55 0.21 -46.84 1.52 6.86 0.05 -14.43 1.54
BAR 25.54 0.03 -48.38 1.24 7.24 0.02 -15.60 1.24
CGI 25.53 0.20 -47.63 0.92 7.24 0.16 -14.98 0.96

Tab. 3.3: Free energy contributions of a 3-step switching process of system W2G. Symbols are
defined as in Tab. 3.2.
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both, CGI and BAR.

Method ∆GCpx σ ∆GSol σ ∆∆G σ

EXP -427.35 1.51 -441.18 0.67 13.83 1.65
BAR -429.52 1.29 -440.91 0.17 11.39 1.30
CGI -430.34 0.86 -441.16 0.51 10.82 1.00

Tab. 3.4: Free energy contributions of a 3-step switching process of SPN. ”Cpx“ denotes the free
energy difference calculated for the ligands bound to the protein, and ”Sol” for the ligands in
solvent, respectively. All free energies are given in kJ/mol. The estimated error for all values is
σ.

3.5 Discussion & Conclusions

We compared established equilibrium (SGTI, DTI) and non-equilibrium (EXP, BAR) free

energy calculation methods. Based on our results, an improved non-equilibrium method,

CGI, has been derived and tested, which combines the advantages of existing methods.

Interconversions between ethane and methanol (E2M), between tryptophane and glycine

within a tripeptide (W2G), and between m3GpppG into m7GpppG bound to the globu-

lar protein snurportin 1 (SPN) were used as test cases. The main aim here was to assess

recently proposed non-equilibrium methods, particularly for large perturbations which typ-

ically occur in the context of complex biomolecular systems.

For system E2M, the calculated free energy difference of 28.63± 0.1 kJ/mol agrees well

with the measured value of 29.01 kJ/mol, which suggests that the used force field and

simulation times provide sufficiently accurate results for our further assessments.

To assess their convergence behavior, the three NEW methods as well as SGTI were com-

pared by calculating the free energy of the two systems E2M and W2G for different simula-

tion times. Extended SGTI simulations were found to converge after about 40 ns and were

therefore taken as reference. All NEW methods, except EXP for system W2G, yielded

converged and, compared to SGTI, accurate free energies (within the error bars) already

above 7.5 ns, i.e., for five times shorter simulation times.
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The effect of trajectory length on the convergence behavior of the NEW methods was

then studied in more detail by varying the trajectory length of the FGTI simulations per-

formed for the systems E2M, W2G, and SPN. Using ensembles of 50 trajectories, all NEW

methods converged for all studied systems for trajectory lengths above 80 ps. Remarkably,

our new method CGI converged significantly faster, particularly for the more complex

perturbations.

Both equilibrium (SGTI, DTI) and non-equilibrium methods (EXP, BAR, CGI) were then

compared for given computational effort. To compute the free energy differences for the

systems E2M and W2G, a total simulation time of roughly 20 ns was spent. For the very

small system E2M, all five methods turned out to perform reasonably well. For such a small

system, convergence after 20 ns is indeed expected. Importantly, for the larger perturbation

of system W2G, the NEW methods provide significantly more accurate results than the

equilibrium methods. Among the equilibrium methods, DTI was found to provide the

most accurate free energy values; however, the very large statistical uncertainty involved

is clearly a disadvantage.

As our new method CGI (as well as EXP) relies on the validity of the Gaussian approxi-

mation of work distributions, this assumption deserved particular attention. To test this

assumption, Kolmogorov-Smirnov-tests were applied to the work distributions calculated

for the systems mentioned above. 1000 forward and 1000 reverse work values were obtained

from a corresponding number of FGTI trajectories, and their distributions were subjected

to a Kolmogorov-Smirnov-test. Indeed, the hypothesis of an underlying Gaussian distri-

bution could not be rejected, such that the Gaussian approximation for work distributions

seems to be sufficiently accurate, which is in line with the accurate values obtained by

CGI.

We attribute the improved accuracy of CGI over EXP to the fact that CGI is derived

directly from the more general Crooks’ theorem rather than from Jarzynski’s equality, in

particular, CGI exploits the relation between forward and reverse distributions, which is

not implied in Jarzynski’s equality.
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As a check against experiment involving a large system, we finally calculated binding free

energies for two ligands, m3GpppG and m7GpppG, bound to the globular protein snur-

portin 1 (SPN). The obtained values of 11.39± 1.3 kJ/mol (BAR) and 10.82± 1.0 kJ/mol

(CGI), respectively, agree with the estimate from experiments of 6 - 11 kJ/mol, albeit such

large experimental error does not allow to attribute a pronounced significance to this re-

sult. Nevertheless, the value of 13.83± 1.65 kJ/mol obtained from method EXP, is clearly

too large.

Overall, for the three test systems considered, the non-equilibrium methods were shown

to outperform the traditional equilibrium methods. The best results were obtained for

our newly proposed CGI method. We attribute the substantially faster convergence of the

non-equilibrium methods to the fact that these do not rely on the assumption that the

system is sufficiently close to equilibrium at all times. Rather, only the ensembles from

which the required sets of trajectories are started need to be sufficiently equilibrated.

A further advantage of the non-equilibrium methods is that they are inherently parallel,

and therefore scale optimally on parallel machines, in contrast to calculations of single long

trajectories.
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Major Histocompatibility Complex II
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4.1 Introduction

The CGI method for computing free energy differences, developed in the previous chapter,

has provided encouraging results, even for large sidechain perturbations or large globular

proteins. In this chapter, the CGI method will be applied to compute free energy differ-

ences for several sidechain mutations in a large globular protein. To this end, the major

histocompatibility complex was chosen as simulation system which is very important for

the function of the immune system of humans and therefore is a well-suited target for drug

development.

The immune system of vertebrates is a complex assembly of molecules and cells. Its

major function is to protect the organism against microorganisms like viruses, bacteria,

and parasites. The membrane bound major histocompatibility complex (MHC) is one of

the key elements in the recognition and response mechanism, triggered by peptides of such

microorganisms. There are two related, but structurally distinct, families of MHC proteins,

divided into Class I and Class II.110

The recognition of peptides by MHC varies by individual differences in the amino acid

sequence of the protein binding site. The human genome contains six different genes

for MHC Class I and Class II proteins, respectively. The three loci on each of the two

chromosomes for Class I genes are human leukocyte antigen(HLA)-A, HLA-B, and HLA-

C. Those for Class II genes are HLA-DP, HLA-DQ and HLA-DR. These loci are highly

polymorph and have been extensively studied, resulting in a detailed physical map of the

region.111 Every human therefore owns six MHC Class I and II receptors, mainly differing

in the amino acid sequence of the peptide binding domain.

This enables the recognition of a multitude of peptides by the MHC proteins which lead to

an immune response of the system. In the case of morbid germs this is a volitional reaction

and very important for the survival of the organism. In the case of pollen or auto-immune

response this feature is nowadays a growing civilizational problem. It is still not clear,

how this broad peptide recognition with only 12 different receptors works on molecular
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level. Due to the peptide ligands which have an intrinsically high variation in amino acids,

the MHC Class II receptor is a very promising target for free energy calculations, yielding

insight in the binding affinity differences on the molecular level.

MHC Class I presents peptides derived from endogenously synthesized proteins, such as

viral compounds produced upon infection of the cell, to the extracelluar space. Cytotoxic

T cells recognize these complexes on the surface and initiate lysis of the infected cell.112 In

contrast, MHC Class II presents peptides derived from degradation of endosomal proteins

coming from, e.g., immunoglobuline-virus complexes, and stimulates helper T cells which

then stimulate antibody production.113 Therefore, MHC Class II receptors are expressed

exclusively in B-cells, macrophages and dendritic cells.114,115

The MHC Class II protein consists of a 33 kD α-chain and a non-covalently bound 30 kD

β-chain. Each of these chains contains two extracellular domains, one transmembrane

segment, and a short intracellular tail. The petide binding region consists of two N-terminal

domains (α1, β1) which display a remarkably high sequence variability. The folding of the

α1 and β1 region results in a collective peptide-binding domain. Multiple MHC Class II

structures as well as diseases, associated to different alleles, have been recently reviewed.116

The influenza virus is one of a larger number of viruses hosted by humans. Influenza

belongs to the class of negative-strand RNA orthomyxoviruses and infects mucous mem-

brane cells of the respiratory tract. Hemagglutinin (HA) which is part of the influenza

viruses nucleocapsid envelope binds to sialic acid which is common in the membranes of

these mucous membrane cells as well as in those of red blood cells. Peptide fragments of

hemagglutinin, such as HA 307-319 are presented by MHC Class II proteins to helper T

cells. The antibodies against hemagglutinin resulting from the induced immune response

prevent cell infection, and thus neutralize the virus.117

The efficiency of vaccines against influenza varies between individuals, due to the highly

polymorph binding sites of MHC Class II. It is therefore conceivable that a HA peptide,

which is used as vaccine, binds well to many variants of MHC II. To design vaccines with

increased broadband binding performance, it is important to understand the structural
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determinants of the binding affinity changes and thus enhance the overall binding due to

mutations in the peptide.

Here, we investigate the changes in binding affinity of certain mutants of the HA 307-319

peptide to a MHC Class II HLA-DR1 protein.

4.2 Methods

We used the structures 1DLH118 and 1KLU119 of the MHC Class II HLA-DR1 receptor

from the PDB database10 to construct the simulation system. The receptor in 1KLU

has a better resolution (1.93 Å) than 1DLH (2.80 Å). However, since the 1KLU structure

does not contain the proper hemagglutinin ligand, the peptide HA 307-319 (sequence:

PKYVKQNTLKLAT) from 1DLH was fitted on the triosephosphate isomerase peptide

(sequence: GELIGTLNAAKVPAD) in 1KLU, neglecting the N- and C-terminal residue of

the latter for the fit. After removal of the original ligands, the modified 1KLU structure

(Fig. 4.1) was used as starting structure for the MD simulations, together with the OPLS-

AA56 force field.

All simulations were carried out with the parameters as given in Chapter 2.2. The simula-

tions were carried out in explicit solvent with the TIP4P water model107 and a 150mmol

NaCl salt concentration to mimic a physiological environment. For the free energy calcu-

lations, the 3-step scheme described in Chapter 2.2 was used.

Eight point-mutations of the wildtype HA 307-319 were selected according to their mea-

sured120 binding affinities, as described below. As can be seen from Tab. 4.1, the mutations

were chosen such that they fit into the four regimes of better, equal, or worse binders, com-

pared to the wildtype, as well as negative binders, which couldn’t be specificly measured.

Two mutations for each of these four classes are studied in this work.

To let the protein adapt to the exchanged ligand, the system was equilibrated for 20 ns.

The resulting structure was used to generate eight systems with point mutations in their
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Fig. 4.1: Structure of MHC Class II with bound HA 307-319. The structure of the last frame
from a 20 ns equilibration trajectory is shown. The α- and β-chains are colored in blue and red,
respectively. The hemagglutinin peptide ligand is shown as surface representation in green.

B-state for the MHC Class II/HA 307-319-complex and the unbound HA 307-319 peptide

according to Tab. 4.1. Figure 4.2 shows the positions of the amino acids in the complex

which were chosen for mutations in HA 307-319.

Mutation Y309A Y309S N313Q T314A T314Y L315I K316R L317Q
Rel. affinity <0.001 <0.001 0.92 3.0 0.026 1.1 4.4 0.009

Tab. 4.1: Selective mutations of HA 307-319. The relative binding affinity is compared to the
wildtype affinity of 4.3± 0.43 nM. Values > 1 and < 1 denote a better and worse binding affinity,
respectively. For the absolute binding affinity, the WT affinity has to be divided by the relative
binding affinity of the according mutant.

To obtain an equilibrium ensemble to start the free energy calculations from, the A-state

(wildtype) and the B-state (mutant) as well as two intermediate states of the sixteen sys-

tems were equilibrated for 5 ns each. From the last nanosecond of the resulting trajectories,

50 independent and equally distributed snapshots were taken to compute the free energy

difference of each point mutation with the previously introduced Crooks Gaussian Inter-
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Fig. 4.2: Mutated residues in HA 307-319. The peptide is shown in green, the MHC Class II
receptor in gray. The wildtype amino acids for the studied mutations are labeled by the 3-letter
code and their position in the peptide.

section (CGI) method. The length of each of the underlying Fast Growth Thermodynamic

Integration simulations was 50 ps. The single free energy contributions from (1) switching

off the charges of the system in state A (∆GQQoff
), (2) transfering the Lennard-Jones and

bonded parameters from state A to B (∆GVdW), and from (3) switching the charges to

their final values in state B (∆GQQon) were added to obtain the total free energy differ-

ence (∆GTot) between the two states A and B. The error (σ) of ∆GTot was computed by

Gaussian error propagation as described in Chap. 3.

For comparison to experiment, the binding free energy double differences (∆∆G) for each

mutation were calculated according to the thermodynamic cycle shown in Fig. 4.3. To

compute ∆∆G for the experimental values,120 the measured 50% inhibitory dose (ID50) for

the wildtype and each mutant was used to estimate the equilibrium dissociation constant

(KD). This rests on the assumption that, in the case of MHC proteins, it is likely that

inhibitory peptides bind to the same binding site as native ones. Hence, the ID50 describes

not only the 50% loss of activity of the protein at a certain ligand concentration, but also the
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ligand concentration for which half of the ligand is bound to the protein (50% inhibitor,

50% ligand). The latter is equivalent to the definition of the dissociation equilibrium

constant (KD). The temperature for the experiments was not given in the literature and

therefore assumed to be room temperature, 300K. Taken together, these two assumptions

allow the usage of the relationship between KD and ∆G to compute the binding free energy

double differences from the experimental values.

Fig. 4.3: Thermodynamic cycle. Switching of a single amino acid from hemagglutinin (HA 307-
319) wildtype (WT) to a different amino acid (Mutant), bound to MHC Class II (b) and unbound
(u) in solution.

4.3 Results & Discussion

Differences in binding affinities for eight point mutations in the influenza viral peptide

HA 307-319 bound to the MHC Class II protein have been calculated.

To validate the stability of the constructed structure used as starting structure for the

MD simulations, the backbone root mean square deviations (RMSD) with respect to the

crystal structure of chain A and chain B in the MHC Class II protein as well as for the

HA 307-319 peptide were calculated. Figure 4.4 shows the respective RMSDs over the

equilibration time of 20 ns.

Despite the strong differences in amino acid composition of the triosephosphate isomerase
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Fig. 4.4: RMSD of HA 307-319 bound to the MHC Class II protein. The backbone RMSD for
chain A and B are shown in blue and red, respectively. The backbone RMSD for the peptide is
shown in black. All RMSDs have been smoothed with a running average using 100 datapoints
for the averaging procedure.

and hemagglutinin peptide, the constructed structure displays only little structural fluc-

tuations around the equilibrium configuration. Moreover, the low RMSDs and the small

drifts of the chains are remarkable, and therefore render the system well suited as starting

point for the free energy calculations.

Tables 4.2 and 4.3 show the binding free energy differences of all simulated mutants (Y309A,

Y309S, N313Q, T314A, T314Y, L315I, K316R, and L317Q), computed for the complex and

the unbound peptide in solvent, respectively.

With the thermodynamic cycle shown in Fig. 4.3, the free energy double differences (∆∆G)

were calculated from the measured, as well as the simulated free energy differences (Tab. 4.4

and Fig. 4.5). For the two mutants Y309A and Y309S, experimental measurements yielded

a lower bound ∆∆GEXP =17.23 kJ/mol. No error estimates for the experimental values

were available.

As can be seen in Fig. 4.5, the computed double differences (∆∆G) systematically deviate

from the experimental values. However, the tendency of the calculated ∆∆G agrees very

well with experimental results. Despite the differences between large numbers in some

cases, the calculations are thus sufficient to predict the qualitative trend correctly.

The computed ∆∆G for the mutants N313Q, L315I, and K316R, however, strongly diverge

from the experimental values. Although it is noticeable that these mutants are character-
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Mutant ∆GQQoff
σ ∆GVdW σ ∆GQQon σ ∆GTot σ

Y309A 42.25 0.37 11.51 2.70 -0.34 0.17 53.41 2.73
Y309S 41.48 0.39 19.15 3.13 42.46 0.48 103.09 3.19
N313Q 163.83 1.44 19.90 0.58 -180.93 0.60 2.80 1.66
T314A -0.90 0.39 19.62 0.78 -3.32 0.08 15.40 0.87
T314Y 11.08 0.75 -58.36 2.80 -32.33 1.25 -79.60 3.15
L315I -8.03 0.07 39.04 0.30 14.76 0.10 45.77 0.32
K316R -74.22 1.76 15.27 0.70 30.21 0.67 -28.75 2.01
L317Q -11.56 0.06 -42.23 0.46 -161.32 0.43 -215.11 0.63

Tab. 4.2: Free energy contributions of a 3-step switching process for HA 307-319 bound to MHC.
“QQoff” denotes switching the charges of the perturbed atoms in the state A to zero, “VdW“
the interconversion of the Lennard Jones parameters from state A to B with softcore potentials,
”QQon“ the switching of the charges to their values in state B, and ”Tot“ the sum of these three
contributions, yielding the total free energy difference. All free energies are given in kJ/mol. The
estimated error for all values is σ.

Mutant ∆GQQoff
σ ∆GVdW σ ∆GQQon σ ∆GTot σ

Y309A 41.04 0.22 -22.37 0.94 -0.76 0.13 17.91 0.97
Y309S 42.10 0.28 -16.04 0.94 25.68 0.49 51.74 1.10
N313Q 152.55 0.61 21.83 0.35 -178.49 0.36 -4.11 0.79
T314A -0.67 0.34 23.04 0.55 -2.56 0.08 19.82 0.65
T314Y 1.55 0.41 -43.81 0.79 -44.06 0.30 -86.32 0.94
L315I -5.71 0.25 26.18 0.43 15.04 0.03 35.52 0.50
K316R -57.77 1.65 12.67 0.28 28.53 1.18 -16.57 2.05
L317Q -10.67 0.04 -40.34 0.41 -181.28 0.45 -232.30 0.62

Tab. 4.3: Free energy contributions of a 3-step switching process for unbound HA 307-319 in
solvent. Symbols are defined as in Tab. 4.2.

Mutant ∆∆GEXP ∆∆GSIM σ

Y309A 17.23 35.50 2.90
Y309S 17.23 51.35 3.37
N313Q 0.21 6.91 1.84
T314A -2.74 -4.42 1.09
T314Y 9.10 6.72 3.29
L315I -0.24 10.25 0.59
K316R -3.70 -12.18 2.87
L317Q 11.75 17.19 0.88

Tab. 4.4: Comparison of ∆∆G between simulations and experiments. ∆∆GEXP and ∆∆GSIM

denote the binding free energy double differences from experiments and simulations, respectively.
All values are given in kJ/mol. The estimated error for ∆∆GSIM is σ.
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Fig. 4.5: Comparison of ∆∆G from experiments and simulations. The data from Tab. 4.4 is
shown in a bar-plot. The error bars for the simulations denote the σ values. No error bars are
available for the experimental values.

ized by a similar functional group in both states (wildtype and mutant), and an overall

trend to overestimate the ∆∆G in the simulations, except for T314Y, is observed. This

overestimation was quantified by a correlation analysis of the experimental and simulated

data sets where the values for Y309A and Y309S were excluded from the analysis due to

the missing accurate experimental values. The correlation coefficient was r2=0.58 and the

simulated values overestimate the experimental values by a factor of ≈ 1.2.

However, the observed deviations between the values computed by the simulations and

from experiments can be attributed to the missing error estimates for the experimental

values. All computed free energy difference values, except for L315I, are comparable to

the experimental ones within 2σ, even if only small experimental errors would have been

observed.

Our results therefore predict the binding affinity differences between the wildtype and the

two mutants Y309A and Y309S which could not yet be accurately measured in experiments,

and hopefully will be measured soon. In summary, these results provide the first semi-
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quantitatively correct first principles calculation of peptide binding free energy differences

and show that CGI free energy simulations are a valuable method to assess ligand binding

affinities.
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Snurportin 1



60 5. SNURPORTIN 1

5.1 Introduction

Snurportin 1 (SPN) was used as a test case for the CGI method, derived in Chapter 3,

with a large globular protein. The results for the computed binding affinities of the two

ligands m3GpppG and m7GpppG to SPN lead to the investigation of the causes for this

selective binding in this chapter.

Transporting macromolecules in and out of the nucleus is known to be highly important for

eukaryotic cells to function properly. Hence, these transport processes have been intensively

investigated and reviewed.121,122

Fig. 5.1: Reduced nucleocytoplasmatic cycle of snRNA. In the nucleus, an exporting complex
(red) is formed, which binds to the m7G-capped snRNA and transports it through the nuclear pore
complex (NPC). After dissociation, cap hypermethylation and Sm-core assembly, the importing
complex (purple and green) is formed by aggregation of the SMN complex with importin β and
snurportin 1 (SPN), which binds the m3G-capped snRNA. After transport of the snRNA back
into the nucleus, the importing complex dissociates.

The splicosome is a complex consisting out of proteins and small nuclear RNA molecules,
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the snRNAs. It removes non-coding sequences, i.e. introns, from pre-mRNA. Subsequently,

this processed mRNA contains only the coding sequences of a protein. The splicosome is

formed by several ribonucleoprotein subunits called U snRNPs or “snurps” (uridine-rich

small nuclear ribonucleoproteins). These U snRNPs have to be assembled in the cytoplasm

and transported into the nucleus afterwards. Hence, a nucleocytoplasmic cycle has been

postulated for these transport processes123 (see Fig. 5.1).

The exporting complex is built up by the phosphorlyated adaptor for RNA export (PHAX),

the export receptor chromosome region maintenance-1 (CRM1), the GTP-bound form of

Ran GTPase and the cap-binding complex (CBC), which recognizes and binds 7-methyl-

guanosine(m7G)-labeled RNA.

Fig. 5.2: Crystal structure of human snurportin 1 with bound m3GpppG ligand (1XK5). The
α-helices are colored in red, β-sheets in green and loop-regions are colored in grey. m3GpppG is
shown in a ball-and-stick model.

This hypermethylation is the key step to trigger the reimport of the cytosolic modified

RNA and is carried out by the TGS1 protein. The importing complex consists of the

survival motor neuron (SMN) complex and snurportin 1 (SPN), binding to the 2,2,7-

trimethyl-guanosine-capped RNA (m3G-RNA).121,122 The proteins involved in binding to
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these different caps are highly selective.

Recent experiments,124 as well as the crystal structure of snurportin 1104 (Fig. 5.2) suggest

that the 2,2,7-trimethyl-guanosine-cap dinucleotide (m3GpppG) prevents the binding of

m3G-capped U snRNA to snurportin 1 with a similar affinity and therefore is an intrinsic

inhibitor candidate. Furthermore, it is a reasonable model system to investigate the effects

of hypermethylation of the m7G-capped RNA on binding to snurportin 1.

Unexpectedly, the hypermethylated cap binds better to snurportin 1 than the methylated.

Despite the ability of an amino group to be both donor and acceptor for hydrogen bonding,

the binding affinity of m7GpppG (Fig. 5.3B), in contrast to m3GpppG (Fig. 5.3A), could

not be measured yet. Strasser et al. suggested the entropic penalty of the watershell in

Fig. 5.3: Chemical structure of m3GpppG (A) and m7GpppG (B). The difference of both
molecules is shown in the grey ellipsoids, where A represents the N2-nitrogen in the hyper-
methylated and B in the non-methylated state.

the vicinity of the free ligand to be the driving force of ligand-binding in the case of snur-

portin 1. The effective “shielding” of the hypermethylated guanosine-cap by a tryptophane

residue of the protein therefore is a reasonable explanation for the observed behaviour of

ligand binding and could be supported by mutation experiments.104 Due to the low bind-

ing affinity of m7GpppG to snurportin 1, a crystal structure of this complex could not be

solved yet and the proof for this hypothesis on the structural level is still missing. As for

the m7GpppG/snurportin 1 complex, a crystal structure for the ligand-free SPN is still not

available. The latter was suggested to be due to an effect of the dinucleotide on the struc-

tural integrity of the protein. Additionally, an unusually highly twisted conformation of
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the β-strand 1 (Fig. 5.2), containing the “cap-shielding” tryptophane residue was observed,

which enforces the assumption of an enhanced flexibility of snurportin 1 with no ligand

bound.104 To address these issues, insight into the dynamics of the protein upon ligand

unbinding would be very interesting and helpful for the understanding of the problems

occuring in the crystalization process.

In our work we investigate the dynamics of the protein upon ligand unbinding with the

help of molecular dynamics simulations. To gain insight into the dynamics and overall

flexibility of the ligand-free snurportin 1, we compute a trajectory of the protein without

ligand. From this trajectory the globular motions as well as the dynamics of several amino

acids in the binding pocket and the C-terminal region are investigated in more detail. By

analyzing the watershell in the vicinity of the two methyl groups added to the methylated

cap in solvent, as well as bound to the protein, we intend to gain insight in the contribution

of the protein as a “shielding” factor of water from the ligand. We estimate the difference in

binding free energy of m3GpppG and m7GpppG together with the enthalpic contributions

to obtain evidence whether the binding process is driven either enthalpically or entropically.

5.2 Methods

We used the snurportin 1 structure 1XK5104 from the PDB database10 (Fig. 5.2) as start-

ing structure and the AMBER99 forcefield58,57 for our MD-simulations. The force field

parameters for the ligands as in chapter 3 m3GpppG and m7GpppG were used.

All simulations were treated with the parameters as given in Chapter 2.2. The simulations

were carried out in explicit solvent with the TIP4P water model107 and a 150mmol NaCl

salt-concentration to mimic a physiological environment. We performed MD simulations

of m3GpppG bound to snurportin 1 with a total length of 650 ns, as well as ten 50 ns

simulations of m7GpppG. Additionally, 20 ns of each ligand in solvent and 6 trajectories

with varying length (see Tab. 5.1) of the protein structure without ligand.
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Trajectory # 1 2 3 4 5 6
Length (ns) 634 640 527 641 557 551

Tab. 5.1: Trajectory length of ligand-free snurportin 1 simulations

To get information about the overall stability and the changes in amino acid-mobility

of the protein between the ligand-bound and -unbound systems, we calculated the root

mean square deviation (RMSD) of the ligand-free protein, as well as with m3GpppG and

m7GpppG bound to snurportin 1 along the respective trajectories. Furthermore, the back-

bone RMSD of every single amino acid was calculated to characterize relaxation motions

upon ligand removal.

To quantify the intrinsic flexibility of the ligand-free structure of snurportin 1, we per-

formed principal component analysis (PCA)94 on the 650 ns equilibration trajectory of the

snurportin 1-complex structure as well as on the trajectories 1, 2 and 6 of the protein

without ligand. Five representative parts with a length of 5 ns each from the trajectories

were taken at 50, 150, 250, 350, and 450 ns and the backbone atoms were used for the PCA.

Because of the high and presumably functionally irrelevant fluctuations of the truncated

termini, ten residues from both, the N- and C-terminus, were excluded from the PCA. All

twenty 5 ns trajectory segments of the four simulations mentioned above were concatenated

and subjected to one single PCA.

Furthermore, the distribution of water molecules in the vicinity of m3G and m7G, which is

the only chemical difference in the ligand molecules, was analyzed in solution and bound

to the protein. To this end, we extracted the water molecules from the trajectories of both

ligands in pure solvent (20 ns each) and in solvated protein environment (50 ns for state A

and 500 ns for state B) in a sphere with a radius of 1 nm around the N2-atom of the mono-

and the trimethylated Guanine-nucleoside (see Fig. 5.3). To obtain the density distribution

of water molecules, a three-dimensional grid, consisting of 100 bins in each dimension, was

laid upon the spatial coordinates of the oxygen atoms of the water molecules and smoothed

with a three-dimensional gaussian function of 0.01 nm width, which was chosen to trade
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off resolution and statistical noise.125

To address the question whether the binding of m3GpppG is mainly driven either enthalpi-

cally or entropically, we calculated the potential energies from the equilibrium simulations

of m3GpppG and m7GpppG in pure solvent and bound to the protein. These potential

energies are an estimate for the enthalpy (∆H) of the system and were used together with

the Gibbs’ free energy (∆G) from the free energy calculations in chapter 3 to estimate the

entropic contribution (T∆S). To compute a reasonable error estimate for ∆H, we com-

puted the standard error via an autocorrelation analysis of the trajectories, taking into

account the underlying statistical uncertainty for a time series of correlated measurements,

introduced by.126,127

5.3 Results

Root Mean Square Deviations To obtain quantitative informations of the difference

in flexibility of the protein bound to m3GpppG and without a ligand, the RMSD was

calculated for the ligand-free and the m3GpppG-bound trajectories. After the usual fast

increase within the first few ns due to thermal fluctuations, the RMSD of the ligand-bound

and of five ligand-free trajectories stays below 3 Å.

As can be seen in Fig. 5.4, in one trajectory (blue curve), the system rapidly escapes from

the initial minimum towards a different minimum with an RMSD of 4 Å, whereas in an-

other trajectory (red curve), the system stays in the first minimum for 300 ns. To identify

the regions in the structure which are mainly involved in the destabilization motions upon

ligand removal, the backbone RMSD for each amino acid was calculated. Figure 5.5 shows

the time resolved backbone RMSD for each amino acid in the structure of snurportin 1

bound to m3GpppG and without ligand. Since the termini exhibit an intrinsically high

RMSD, 10 amino acid from each terminus were excluded from this analysis. To improve

the statistics, the RMSD values from the six ligand free trajectories were averaged.
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Fig. 5.4: Backbone root mean square deviations (RMSD) of snurportin 1 with and without
m3GpppG ligand. The black curve denotes the RMSD of the ligand bound protein. The remaining
curves show the RMSD of six independent trajectories of snurportin 1 without a ligand. The
trajectories with the highest RMSD are shown in red and blue; the most stable trajectory is
shown in green.

As can be seen, only few, local regions contribute markedly to the observed flexibility.

Figure 5.6 highlights in color these flexible regions. In the protein without a ligand, they

are much more pronounced than in the ligand bound complex, but occur in similar regions.

Accordingly, destabilization starts from enhancing fluctuations of the equilibrium motions,

and not by an onset of new motions. This result is supported and quantified in Fig. 5.5 C,

which shows a correlation coefficient of r2=0.54.

The largest destabilization motions are seen in the C-terminal domain (Fig. 5.6, blue).

Indeed, closer inspection of the trajectories reveals a structural rearrangement in that part

of the protein upon ligand removal. Furthermore, a region of the β 10-strand and adjacent

loops become more flexible (Fig. 5.6, red). One further region of high flexibility is a solvent

exposed loop built up from residues 161-167, shown in green in Figure 5.6. In contrast

to the other flexible regions, which show enhanced flexibility upon ligand removal, this

loop shows a similar flexibility in the ligand-bound structure. Furthermore, a small loop

region, containing LYS144 (Fig. 5.6, yellow), exhibits a larger flexibility upon removal of the
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Fig. 5.5: Time resolved backbone RMSD for each amino acid. A shows the RMS deviations
of SPN bound to m3GpppG. B shows the ligand free protein, where the RMSD from all six
trajectories was averaged. The first ten amino acids from each terminus have been removed
in this analysis. For a better resolution in the lower RMSD regions, all values above 4 Å have
been truncated to this value. C: Correlation of RMSD. The RMSD of each amino acid from the
ligand-free trajectories (-lig) is plotted against those of the ligand-bound (+lig). The dashed line
is the linear fit to the data points. The correlation coefficient from the linear regression of the
data points is r2=54%.
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ligand. In the bound state, LYS144 interacts with the phosphate backbone of m3GpppG

via a saltbridge.

Fig. 5.6: Color coded structure of SPN. Selected high RMSD amino acids from the ligand free
SPN trajectories are colored according to their position in the structure. Blue: C-terminal
domain, Red: β 10-related region, Green: Loop region, Yellow: LYS144-Loop, Pink: N-terminus,
Lightblue: C-terminus, Tranparent: m3GpppG (for guidance).

Principal Component Analysis Principal Component Analysis (PCA) was used to com-

pare the global motions of ligand-free and m3GpppG-bound snurportin 1 in a common

subspace. Figure 5.7 shows the projection of four trajectories onto eigenvectors 1 and 2 of

this subspace. As can be seen (Fig. 5.7, inset), these eigenvectors describe already 48% of

the atomic motion.

The system with m3GpppG bound to SPN (black cloud) remains close to the x-ray structure

(yellow dot), with rare transient transitions to an adjacent shallow minimum. In contrast,

removal of the ligand from the original structure leads to an extensive sampling of phase
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Fig. 5.7: PCA of snurportin 1. The black cloud resembles the 650 ns trajectory of the protein with
m3GpppG ligand bound, projected onto the first two eigenvectors, and the yellow square as the
general starting configuration. The clouds colored in red, green and blue display the trajectories
1, 2, and 6 of the protein without ligand as in Fig. 5.4. Every 10th frame of the respective
trajectories has been used in the projections. Inset: The first 10 eigenvectors of the covariance
matrix. The dashed line is the cumulative sum of the contribution to the total fluctuations. The
first two eigenvectors describe 48% of the main global motion.

space until the system reaches different local minima on the energy landscape (red and

blue dots in Fig. 5.7). This drift motion was observed for two out of six trajectories. One

trajectory of the remaining four is shown (green dots in Fig. 5.7).

The projection of the ligand-free trajectory of SPN onto its first two principal components

was used to select structures for detailed analysis. The largest motions were seen for

trajectory 6 (blue) cloud) which, therefore, was chosen for closer analysis. Accordingly,

two further snapshots from the trajectory were chosen. These snapshots have been selected

because they are close to the center of the respective substate.

We first investigated the amino acids in direct interaction with the m3GpppG ligand. In the

bound state t=0ns, the N7-methyl-group of the m3G-nucleobase is buried in a hydrophobic

pocket, build by the residues CYS124, ILE175, LEU186 and LEU264. After removal of the
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ligand at 79.7 ns, this hydrophobic pocket is exposed to the surrounding water. TRP276,

moves towards the pocket, undergoing a local hydrophobic collapse. Additionally, the

flexibility of LYS144 increased due to the lack of the ligand as interaction partner (Fig. 5.5

and 5.6). By moving closer to ASP173, LYS144 weakens the ionic interaction between

ARG129 and ASP173. As a condequence, ARG129 can detach from ASP173 and form an

new, π-stackinginteraction to TRP276. This structural rearrangement is supported by a

motion of TRP276 into the binding pocket (Fig. 5.8 A).

Fig. 5.8: Snapshots of the binding pocket and C-terminus of snurportin 1 at 0, 79.7 and 148 ns.
A: TRP107 and 276 are shown in orange, the residues CYS124, ILE175, LEU186 an LEU258,
building a hydrophobic pocket, in black, ARG129 and LYS144 in blue and ASP173 in red. The
β-strand 1 is colored purple. B: VAL111(yellow), LEU115(orange), VAL282(red), VAL285(blue)
and LEU286(light-blue).

Further rearrangement is seen for the N-terminal β-strand β 1 (Fig. 5.8 A, purple). After
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removal of the ligand from the binding pocket, a relaxation of this originally twisted β-

strand is observed. TRP107 moves into the now unoccupied binding pocket, losening the

strain on β-strand β 1. This movement leads to a loss of structural stability of the β-sheet

(β-strands β 1 and β 10), resulting in a further distortion of β 10. This finding confirms

and explains the suggestion by Strasser et al.,104 that this β-sheet should untwist upon

ligand removal.

After 148 ns no major structural changes are seen in the vicinity of the binding pocket.

One exception is LYS144, which moves to a purely solvent interacting position, which

leads to a loss of the saltbridge between LYS144 and ASP173. This is compensated by

reformation of the ionic interaction of ARG129 and ASP173, after moving away from its

former cation-π-interaction-partner TRP276. In summary, a highly dynamic structure in

the vicinity of the empty binding pocket is seen.

A second quite flexible region is seen near the C-terminus (Fig. 5.6, blue and 5.8 B).

The previously described movement of TRP107 and TRP276 towards the binding pocket

coincides with a shift of the hydrophobic residues VAL111, LEU115, VAL282, VAL285

and LEU286. These motions destabilize the hydrophobic region, which connects the C-

terminal part to the rest of the protein, resulting in a higher flexibility of the C-terminal

region. Remarkably, an α-helical structure of residues 113 to 118 is formed, followed by a

reorientation of LEU115, turning away from the hydrophobic interaction region. After this

transient rearrangement, the initial hydrophobic cluster is reformed, albeit with reduced

stability.

Water Shell We now turn to the unexpectedly strong binding of the hypermethylated

m3GpppG cap. It has been suggested104 that the entropic penalty of the watershell in the

vicinity of the free ligand is the driving force for binding to snurportin 1 in order to test

this hypothesis, we compared the solvation shell around the two ligands in solvent and

bound to snurportin 1.

Upon binding of m3GpppG to SPN, the volume of the solvation shell is significantly reduced
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Fig. 5.9: 3-dimensional density distribution of water molecules around the m3GpppG and
m7GpppG ligands. A and B show the m3G-nucleoside in water and complexed to snurportin 1; C
and D the m7G-nucleoside, respectively. The left column shows 15% of the total solvation shell,
starting from the highest to lower densities, as a qualitative isosurface view. The right column
shows 60% of the density in a quantitative plot. For clarity of presentation, a logarithmic color
scale was chosen.
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(Fig. 5.9 A/B). This release of water molecules from the shell to the bulk is entropically

favorable. Also for m7GpppG (Fig. 5.9 C/D), a decrease of the volume of the solvation

shell upon binding is seen. However, to a markedly smaller extent than for m3GpppG . Ac-

cordingly, the entropy gain due to water release is larger for m3GpppG than for m7GpppG,

rendering m3GpppG binding favorable.

Moreover, one hydrogen bond of the N2 amino-group to water molecules is lost upon

binding (Fig. 5.9 D). This is also evident from the density plots, which show two high-

density peaks in Fig. 5.9 C, but only one in Fig. 5.9 D. These high-density peaks indicate

the positions of the hydrogen-bonded water molecules. In contrast, bound to the protein,

m7GpppG exhibits only one stable hydrogen bond indicated by the high density peak

(Fig. 5.9 D). The second donor formas hydrogen bond to the protein, which is less stable

and, therefore, entails a small enthalpic loss upon ligand binding.

Both effects combine to and explain the unexpectedly strong bind of m3GpppG. This

result is further supported by recent mutation experiments,104 which have shown that the

binding affinity of SPN to m3GpppG is significantly reduced when TRP107 is mutated into

ALA107. This finding confirms the crucial role of TRP107 as key residue for the desolvation

of the di-methylated N2-nitrogen of m3GpppG. The flexibility of TRP107 should therefore

be larger for bound m7GpppG where shielding is less pronounced.

We tested this prediction by comparing the RMSD of TRP107 from ten 50 ns trajectories

of m7GpppG bound to SPN with the RMSD of the trajectory of m3GpppG bound to SPN

(Fig. 5.10). Indeed, 8 out of 10 show a significant increase of the RMSD (blue and red);

four of these even very large (red). These large deviations thus indicate the loss of the

hydrophobic interaction between the ligand and TRP107.

Binding thermodynamics To confirm that the observed effects in the simulations ac-

tually cause the selective SPN binding affinity, we have taken the binding free energy

difference for the two ligands m3GpppG and m7GpppG, computed in chapter 3. We cal-

culated via Crooks Gaussian Intersection (CGI) simulations the free energy differences
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Fig. 5.10: Root mean square deviations of TRP107. The RMSD curves were smoothed with
a running average, where 100 data points where used for averaging. The coloring indicates
the deviation of TRP107 in trajectories with m7GpppG, where green resembles a small, blue a
medium and red a strong deviation. Black shows the deviation of TRP107 with m3GpppG.

between m3GpppG, bound to the protein (∆Gb) and in solvent (∆Gu), and m7GpppG,

respectively, as described in chapter 3, yielding ∆Gb=-430.34±0.86 kJ/mol and ∆Gu=-

441.16±0.51 kJ/mol, respectively. With the thermodynamic cycle shown in Fig. 3.3 B,

a binding free energy difference ∆∆G=10.82±1.00 kJ/mol is obtained. Using the known

dissociation constant104 for m3GpppG/SPN, KD=1.00±0.03µM, this free energy differ-

ence translates into KD=72–152µM for m7GpppG/SPN. This value is consistent with the

estimate of 100µM–1000µM derived from UV cross-linking studies.109

With this result at hand, the simulations serve to dissect the binding free energies into the

corresponding enthalpic and entropic contributions. The enthalpic contributions ∆H were

estimated from the averaged total energies of the respective simulations, and the entropic

contributions T∆S from T∆S = ∆H−∆G. The obtained ∆∆H=12.95±17.92 kJ/mol and

∆(T∆S)=2.13±17.95 kJ/mol

(Tab. 5.2) suggest that the entropic and enthalpic contributions are similar within the

obtained accuracy. Apparently, and in contrast to our initial expectation, the binding
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selectivity (given by ∆∆G) is not entropically driven, although the underlying free energy

differences are.

System ∆H σ ∆G σ T∆S σ

Bound 418.74 4.50 -430.34 0.86 849.08 4.58
Unbound 405.79 17.35 -441.16 0.51 846.95 17.36
Diff.(∆∆) 12.95 17.92 10.82 1.00 2.13 17.95

Tab. 5.2: Enthalpy, free energy, and entropic contribution to ligand binding and respective
differences. All units are in kJ/mol, temperature T is at 300K, σ is the standard error. Differences
refer to the two ligands, i.e., m3GpppG - m7GpppG.

5.4 Discussion & Conclusions

Several open questions concerning snurportin 1 have been addressed in this work. The m3G-

cap-binding domain of human snurportin 1 bound to the inhibitor m3GpppG was chosen

to investigate the effects of RNA-cap hypermethylation on binding to SPN. Extended

molecular dynamics simulations of SPN were performed for the ligand-free protein as well

as for the protein with bound ligands m3GpppG and m7GpppG.

Principal Component Analysis (PCA) and RMSD calculations were carried out on the

trajectories with m3GpppG bound to SPN, and with the ligand-free structure to reveal the

ligand-dependent structural changes of the systems. Comparison of the complexes with

simulations of the solvated two ligands showed that the solvation shell plays a crucial role

for binding selectivity. Also, TRP107 was shown to be crucial for binding.

Our simulations, furthermore, served to study possible structural changes upon ligand

removal for the apo protein construct, whereas the complex structure remained stable.

Remarkably, a large fraction of this structural destabilization seems to be already contained

in the equilibrium fluctuations of the stable complex. Indeed, in terms of RMSD values of

the individual amino acids, a strong correlation of 54% is observed. The largest deviations

occured in the C-terminal domain, in several residues next to the N-terminus, in a solvent
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exposed loop, and in a small loop harbouring LYS144.

These large structural fluctuations also provide a likely explanation why crystallization of

the apo protein was up to now unsuccessful,104 and suggest possible constructs for further

crystallization attempts. In particular, due to the observed motions of the amino acids in

the binding pocket and in the C-terminal region, the K144A mutation as well as mutations

of hydrophobic residues into polar ones in the C-terminal cluster, may lead to a more stable

ligand-free protein construct.

PCA further served to characterize the observed structural changes. Compared to the

m3GpppG-bound dynamics, the ligand-free trajectories showed extensive sampling, ad-

ditionally testifying its drastically and collective enhanced flexibility. Closer analysis of

the ligand-free trajectory enabled us to characterize the amino acid rearrangements in the

binding pocket and the C-terminal domain in more detail.

The destabilization of a hydrophobic cluster in the C-terminal region indicates a major

conformational change upon ligand unbinding. Recent experiments have shown that the

export receptor chromosome region maintenance-1 (CRM1) is highly competitive to m3G-

capped RNA in binding to SPN. Although the binding affinity of CRM1 to SPN was

strongly dependent on the existence of the full N-terminal domain, the deletion of the

C-terminus beyond residue 285 resulted in an affinity decrease of 60%.128 The structural

rearrangement observed here in the C-terminal domain upon ligand unbinding can explain

both, the observed binding affinities of CRM1 as well as the competitive behavior to m3G-

capped RNA. Whether the observed structural rearrangements in the C-terminal domain

occur in the truncated protein only or are maintained in the full length protein, can, due

to lack of a suitable full length structure, not rigorously be decided.

In any case, these rearrangements provide a possible explanation for the in vivo binding

mechanism leading to the cluster formation of an export complex consisting out of Ran-

GTP, CRM1, and snurportin 1.

The role of the solvation shell in the binding thermodynamics is indeed remarkable. Both
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ligands, m3GpppG and m7GpppG, are surrounded by an ordered watershell around the N2-

nitrogen, differing in its methylation state. In contrast, when bound to SPN, the volumes

of the remaining water shells are quite different for the two ligands. As a result, the protein

shields m3GpppG to a much larger extent than m7GpppG, from the surrounding water.

As revealed by its differential flexibility, TRP107 appears to be crucial for this shielding.

Indeed, the W107A mutant has been shown to bind m3GpppG with markedly reduced

binding affinity.104 Taken together, we suggest TRP107 as the key residue for the shielding

of the two N2-methyl-groups in m3GpppG.

To validate our simulations, binding free energy differences between m3GpppG and m7GpppG

were taken from chapter 3. From these calculations, the binding affinity of m7GpppG to

SPN, quantified by the equilibrium dissociation constant KD, is reduced by approximately

two orders of magnitude with respect to m3GpppG. This result agrees well with estimates

from UV cross-linking experiments,109 for which a decrease by 2–3 orders of magnitude

is reported. Further splitting into entropy and enthalpy shows that the desolvation of

the di-methylated N2-nitrogen is indeed the main driving force for the better affinity of

m3GpppG to SPN.

In summation, the free energy calculations support the experimental findings of Huber et

al.109 as well as Strasser et al.104 for the selective binding of m3GpppG which mimics

the m3G-cap as an important part of the nuclear localization signal specific for UsnRNP

nuclear import129.130
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Despite a considerable amount of studies in the field of free energy calculations from molec-

ular dynamics simulations using a wide array of methods, it was still difficult to judge how

these methods perform for larger and more complex systems such as biological macro-

molecules.

One aim of this thesis was to carry out a comprehensive evaluation of these methods for

test systems at different levels of complexity, and, guided by the obtained insights, to

develop an improved and efficient new method suitable to compute sufficiently accurate

free energy differences for the binding of complex ligands such as peptides for qualitative

prediction of binding behaviour.

To this end, a comprehensive evaluation of methods to compute free energy differences, in-

cluding Slow Growth Thermodynamic Integration (SGTI), Discrete Thermodynamic Inte-

gration (DTI), Jarzynski’s work averaging (EXP), and Bennett’s Acceptance Ratio (BAR),

has been carried out for three test systems at different levels of complexity. For this eval-

uation we used the interconversion of ethane to methanol, of tryptophane to glycine in a

tripeptide and of m3GpppG to m7GpppG in the globular protein snurportin 1.

Due to the accuracy of the free energy calculations performed with the established meth-

ods, as well as due to problematic error estimates provided by some of these methods,

we developed a new method to calculate free energies from non-equilibrium trajectories,

Crooks Gaussian Intersection (CGI), and tested this method with the same systems. This

new method was shown to accurately compute the solvation free energy difference between

methanol and ethane, compared to experiments. Moreover, the calculated binding affinity

difference between m3GpppG and m7GpppG to snurportin 1 was in very good agreement

with estimates from experiments.

In general, the non-equilibrium methods were shown to outperform the traditional equilib-

rium methods. The best results were obtained for the newly proposed CGI method. Fur-

thermore, the advantage of extended parallel computations, inherent to all non-equilibrium

methods, is also fully exploited by CGI.
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The fast and precise computation of binding free energy differences for protein-ligand

complexes is an important task for the development of specific drugs or vaccines in phar-

maceutical applications. To evaluate, if sufficiently accurate results by the CGI method

can also be obtained for large sidechain perturbations inside a large globular protein, the

binding affinities for eight mutants of the influenza hemagglutinin 307-319 peptide to a

human MHC Class II HLA-DR1 protein were computed.

The computed binding affinity differences for these mutants to the wildtype peptide agreed

semi-quantitatively with those from experiments. Moreover, we predict the binding affini-

ties of two mutants which could not be quantified precisely in experiments. Hence, CGI

free energy simulations can semi-quantitatively distinguish between better or worse binders

in comparsion to the wildtype. Compared to complementary docking approaches, the CGI

approach has two major advantages. First, the free energy difference is obtained by first

principles free energy calculations, and, secondly, it can be further optimized via longer

simulation times.

A second aim of this thesis was to investigate the dynamics of the globular protein snur-

portin 1 upon ligand unbinding, and to get insights into the role of the solvation shell

around the hypermethylated RNA-cap upon binding to snurportin 1. Extensive simula-

tions of the two ligands m3GpppG and m7GpppG bound to snurportin 1 as well as the

ligand free protein were carried out. These simulations, together with the free energy dif-

ferences computed in Chap. 3, allowed to conclude that the binding selectivity (given by

∆∆G) is not entropically driven, although the underlying free energy differences are. Ad-

ditionally, the globular motions as well as the motions of single amino acids in the binding

pocket were investigated.

The simulations of the ligand free protein also served to study possible structural changes

upon ligand removal for the apo protein construct. Remarkably, a large fraction of this

structural destabilization seems to be already contained in the equilibrium fluctuations of

the complex which remained stable in our simulations. These large structural fluctuations

provide a likely explanation why crystallization of the apo protein was up to now unsuc-
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cessful. This result enables us to suggest possible constructs for further crystallization

attempts of an apo protein construct.

The role of the solvation shell in the binding thermodynamics was found to be indeed

remarkable. Both ligands, m3GpppG and m7GpppG, are surrounded by an ordered water-

shell around the N2-nitrogen, differing in its methylization state. In contrast, when bound

to SPN, the volumes of the remaining water shells are quite different for the two ligands.

As a result, the protein shields m3GpppG from the surrounding water to a much larger

extent than m7GpppG. In this context, TRP107 appears to be crucial for this shielding

as revealed by its differential flexibility, and can therefore be suggested as the key residue

for the shielding of the two N2-methyl-groups of m3GpppG when bound to snurportin 1.

The splitting of the thermodynamic observables into entropy and enthalpy shows that the

desolvation of the di-methylated N2-nitrogen is indeed the key aspect for the better affinity

of m3GpppG to SPN.

The investigation of the binding free energies, and the development of the new CGI method

to compute these efficiently and reliably, significantly extends the applicability of MD

simulations towards pharmaceutical applications. Moreover, extensive exploration of the

dynamics of proteins with and without bound ligands by means of MD simulations yielded

a microscopic picture of the underlying structural mechanisms of complex formation and

therefore contributed to the understanding of regulative mechanisms in cells.

Although the applications presented in this thesis clearly represent promising first steps

for sufficiently accurate free energy calculations, there are still questions which cannot be

answered by all-atom MD simulations yet. One aspect is the calculation of absolute bind-

ing free energies as well as the precise entropy estimation. Another one is the well known

sampling problem, which restricts the interpretations made with the help of simulations

mostly to one or rarely few minima on the free energy landscape.

Therefore, a main future task is to extend this sampling to enable the calculation of

quantitatively correct free energy differences.
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A large variety of systems can be addressed with the CGI method. One very interest-

ing application is, e.g., the computation of free energy differences between DNA-binding

proteins, like transcription factors, to differing DNA-sequences, or the yet not properly

solved calculation of free energy differences between ATP and ADP in proteins like the

F1-ATPase. However, it is still an open question which perturbation size in a simulation

system will limit our current free energy calculations with the CGI method, although the

free energy calculations made for the MHC Class II protein in Chap. 4 hint towards such

limits. However, improved sampling of the involved systems in these calculations will likely

provide more accurate, and possibly quantitative results.

With the continuous increase in computational power, simulations will eventually be able to

sample systems with millions of atoms on a microsecond timescale in a reasonable amount

of computer time. Such extended simulations, as suggest by our evaluations in Chap. 3,

would improve the computation of thermodynamic properties like the entropy and the

absolute free energy, and will inspire the development of further and even more accurate

methods to address these biologically most relevant properties.
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Parameters for m3GpppG and m7GpppG

Fig. 7.1: Schematic drawing of m3GpppG.

Fig. 7.2: Schematic drawing of m7GpppG.

Element type mass LJ σ LJ ε

Carbon amber99 98 12.01 3.39967e-01 4.57730e-01
Nitrogen amber99 99 14.01 3.25000e-01 7.11280e-01

Tab. 7.1: Mass and Lennard-Jones (LJ) parameters for new amber99 force field atom types.
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m3GpppG/m7GpppG
Atom # name type charge Atom # name type charge

1 N2 amber99 38 -0.9672 23 H3* amber99 19 0.0615
2 H21 amber99 17 0.4364 24 O3* amber99 43 -0.6541
3 H22 amber99 17 0.4364 25 HO*3 amber99 25 0.4376
4 C2 amber99 3 0.7657 26 O4* amber99 44 -0.3548
5 N3 amber99 37 -0.6323 27 C4* amber99 11 0.1065
6 C4 amber99 4 0.1222 28 H4* amber99 19 0.1174
7 N1 amber99 35 -0.4787 29 C5* amber99 11 0.0558
8 H1 amber99 17 0.3424 30 H5*1 amber99 19 0.0679
9 C6 amber99 2 0.4770 31 H5*2 amber99 19 0.0679

10 O6 amber99 41 -0.5597 32 O5* amber99 44 -0.5987
11 C5 amber99 4 0.1744 33 PAT amber99 46 1.2532
12 N7 amber99 36 -0.5709 34 OAU amber99 45 -0.8799
13 C8 amber99 6 0.1374 35 OAS amber99 45 -0.8799
14 H8 amber99 24 0.1640 36 OAX amber99 44 -0.4831
15 N9 amber99 40 0.0492 37 PAZ amber99 46 1.5851
16 C1* amber99 11 0.0191 38 OBA amber99 45 -0.8894
17 H1* amber99 20 0.2006 39 OAY amber99 45 -0.8894
18 C2* amber99 11 0.0670 40 OBD amber99 44 -0.4831
19 H2*1 amber99 19 0.0972 41 PBK amber99 46 1.2532
20 O2* amber99 43 -0.6139 42 OBJ amber99 45 -0.8799
21 HO*2 amber99 25 0.4186 43 OBL amber99 45 -0.8799
22 C3* amber99 11 0.2022

Tab. 7.2: Amber99 common force field parameters of m3GpppG and m7GpppG (see Fig. 7.1&7.2).
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m3GpppG
Atom # name type charge Atom # name type charge

44 OBU amber99 44 -0.5987 65 CBC amber99 11 -0.1996
45 CBT amber99 11 0.0558 66 HBC1 amber99 19 0.1492
46 HBT1 amber99 19 0.0679 67 HBC2 amber99 19 0.1492
47 HBT2 amber99 19 0.0679 68 HBC3 amber99 19 0.1492
48 CBS amber99 11 0.1065 69 CBG amber99 4 -0.0086
49 HBS amber99 19 0.1174 70 CBF amber99 2 0.5158
50 CBY amber99 11 0.2022 71 OBB amber99 41 -0.5055
51 HBY amber99 19 0.0615 72 NBE amber99 35 -0.4104
52 OCB amber99 43 -0.6541 73 HBE amber99 17 0.3284
53 HCB amber99 25 0.4376 74 CBM amber99 3 0.5142
54 CBX amber99 11 0.0670 75 NBV amber99 38 -0.1392
55 HBX amber99 19 0.0972 76 CBW amber99 98 -0.1783
56 OCA amber99 43 -0.6139 77 HBW1 amber99 19 0.1129
57 HCB amber99 25 0.4186 78 HBW2 amber99 19 0.1129
58 OBR amber99 44 -0.3548 79 HBW3 amber99 19 0.1129
59 CBQ amber99 11 0.0191 80 CBZ amber99 98 -0.1783
60 HBQ amber99 20 0.2006 81 HBZ1 amber99 19 0.1129
61 NBP amber99 38 0.1804 82 HBZ2 amber99 19 0.1129
62 CBI amber99 10 -0.0231 83 HBZ3 amber99 19 0.1129
63 HBI amber99 24 0.2450 84 NBN amber99 37 -0.5167
64 NBH amber99 99 -0.0480 85 CBO amber99 4 0.1801

Tab. 7.3: Amber99 force field parameters of m3GpppG (see Fig. 7.1).
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m7GpppG
Atom # name type charge Atom # name type charge

44 OBU amber99 44 -0.5987 62 CBI amber99 10 -0.0231
45 CBT amber99 11 0.0558 63 HBI amber99 24 0.2450
46 HBT1 amber99 19 0.0679 64 NBH amber99 99 -0.0480
47 HBT2 amber99 19 0.0679 65 CBC amber99 11 -0.1996
48 CBS amber99 11 0.1065 66 HBC1 amber99 19 0.1492
49 HBS amber99 19 0.1174 67 HBC2 amber99 19 0.1492
50 CBY amber99 11 0.2022 68 HBC3 amber99 19 0.1492
51 HBY amber99 19 0.0615 69 CBG amber99 4 -0.0086
52 OCB amber99 43 -0.6541 70 CBF amber99 2 0.5158
53 HCB amber99 25 0.4376 71 OBB amber99 41 -0.5055
54 CBX amber99 11 0.0670 72 NBE amber99 35 -0.4104
55 HBX amber99 19 0.0972 73 HBE amber99 17 0.3284
56 OCA amber99 43 -0.6139 74 CBM amber99 3 0.7902
57 HCB amber99 25 0.4186 75 NBV amber99 38 -0.9672
58 OBR amber99 44 -0.3548 76 HBV1 amber99 17 0.4364
59 CBQ amber99 11 0.0191 77 HBV2 amber99 17 0.4364
60 HBQ amber99 20 0.2006 78 NBN amber99 37 -0.5167
61 NBP amber99 38 0.1804 79 CBO amber99 4 0.1801

Tab. 7.4: Amber99 force field parameters of m7GpppG (see Fig. 7.2).

atom i atom j length (nm) fc
amber99 10 amber99 99 0.13910 344008.5
amber99 10 amber99 38 0.13640 375723.2
amber99 4 amber99 38 0.13640 375723.2
amber99 98 amber99 19 0.10900 284512.0
amber99 98 amber99 38 0.14630 282001.6
amber99 4 amber99 99 0.13740 364844.8
amber99 11 amber99 99 0.14750 282001.6

Tab. 7.5: Amber99 force field bond parameters. fc denotes the force constant for bond stretching
in kJ mol−1 nm−2.
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atom i atom j atom k angle (◦) fc
amber99 24 amber99 10 amber99 99 123.050 418.400
amber99 24 amber99 10 amber99 38 123.050 418.400
amber99 38 amber99 10 amber99 99 113.900 585.760
amber99 4 amber99 99 amber99 10 103.800 585.760
amber99 4 amber99 38 amber99 10 105.400 585.760
amber99 4 amber99 4 amber99 99 110.400 585.760
amber99 4 amber99 4 amber99 38 106.200 585.760
amber99 10 amber99 99 amber99 11 128.800 585.760
amber99 10 amber99 38 amber99 11 128.800 585.760
amber99 4 amber99 99 amber99 11 125.800 585.760
amber99 4 amber99 38 amber99 11 125.800 585.760
amber99 2 amber99 4 amber99 99 130.000 585.760
amber99 38 amber99 4 amber99 37 126.200 585.760
amber99 3 amber99 38 amber99 98 120.000 418.400
amber99 19 amber99 98 amber99 19 109.500 292.880
amber99 38 amber99 11 amber99 44 109.500 418.400
amber99 20 amber99 11 amber99 38 109.500 418.400
amber99 19 amber99 11 amber99 99 109.500 418.400
amber99 98 amber99 38 amber99 98 120.000 292.880
amber99 19 amber99 98 amber99 38 109.500 418.400

Tab. 7.6: Amber99 force field angle parameters. fc denotes the force constant for angle bending
in kJ mol−1 rad−2.
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atom i atom j atom k atom l C0 C1 C2 C3 C4 C5

X a99 10 a99 38 X 14.22560 0.00000 -14.22560 0.00000 0.00000 0.00000
X a99 10 a99 99 X 10.46000 0.00000 -10.46000 0.00000 0.00000 0.00000
X a99 11 a99 99 X 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
X a99 4 a99 99 X 21.33840 0.00000 -21.33840 0.00000 0.00000 0.00000
X a99 98 a99 38 X 2.51040 7.53120 0.00000 -10.04160 0.00000 0.00000

a99 19 a99 11 a99 38 a99 10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
a99 19 a99 11 a99 99 a99 10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
a99 35 a99 3 a99 99 a99 11 20.08320 0.00000 -20.08320 0.00000 0.00000 0.00000
a99 38 a99 10 a99 99 a99 11 15.48080 0.00000 -15.48080 0.00000 0.00000 0.00000
a99 10 a99 38 a99 4 X 17.57280 0.00000 -17.57280 0.00000 0.00000 0.00000

X a99 11 a99 38 X 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
X a99 38 a99 10 X 5.02080 0.00000 -5.02080 0.00000 0.00000 0.00000
X a99 38 a99 4 X 5.02080 0.00000 -5.02080 0.00000 0.00000 0.00000
X a99 38 a99 11 X 5.02080 0.00000 -5.02080 0.00000 0.00000 0.00000

Tab. 7.7: Amber99 force field Ryckaerd-Bellemans dihedral parameters. All constants C are
given in kJ mol−1. X denotes any atom type and amber99 is abbreviated a99. The upper part
contains general parameters and the lower part parameters for specific atom combinations as
given in Ref. aduri2007aff.
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