
Fakultät für
Physik

Master’s Thesis

Rekonstruktion von Elektronendichten aus
Rötgenstreuexperimenten an einzelnen
Molekülen bei geringer Photonenzahl

Reconstruction of electron densities from
few photon singular molecule x-ray

scattering experiments

prepared by

Benjamin von Ardenne

from Dresden

at the Max Planck Institute for Biophysical Chemistry - Computational Biophysics

Thesis period: 1st October 2011 until 8th January 2013

First Referee: Hon.-Prof. Dr. Helmut Grubmüller

Second Referee: Prof. Dr. Tim Salditt

Thesis Number: II. Physik-UniGö-Msc-2013/01





Abstract
X-ray free electron lasers in single molecule experiments hold the promise of solving
macromolecular structures. To that aim, reliable structure reconstruction from noisy
scattering images with rigorous bounds for the statistical uncertainty is required,
which in fact represents one of the main challenges in the field. I present studies of
an approach that uses the photon correlation of single x-ray shots to reconstruct the
original electron density. Using the spherical harmonics expansion of the Fourier
transformation of the electron density, an analytical expression of the two and three
photon correlation is derived. With that I demonstrate that the structure can be
retrieved from the correlations and discuss possible solution schemes.
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1 Introduction

From the beginning of their discovery in 1895 by Conrad Röntgen, x-rays have been
used to determine the structure of materials that surround us. One very important
application of x-rays already began in 1912 when Max von Laue discovered that the
radiation is diffracted by crystals. This later led to the x-ray crystallography method
by William Henry and William Lawrence Bragg in which the positions of atoms in a
crystal structure are determined from crystallographic diffraction patterns [1]. The
method became particularly useful for large molecules such as proteins. The first
of such crystallographic experiments with biological molecules were carried out in
1923 on hexamethylenetetramine [2]. Later x-ray crystallography evolved with the
structure determinations of cholesterol, vitamin B12, penicillin and DNA by Dorothy
Crowfoot Hodgkin between 1937 and 1954 at Cambridge University [1].
Today, structure determination is important for biological, chemical and biophys-

ical research because the protein’s function is strongly correlated to its structure.
Learning about the functional behaviors, malfunctions can be understood and spe-
cially engineered drugs can be developed.
There is one problem however. More than 18 million proteins are listed in the

NCBI Reference Sequence database [3] but only the structures of about 0.05% have
been determined to high resolution according to the RCSB protein databank statis-
tics on [4]. The reason is that the purification and crystallization of biological
molecules is experimentally challenging. To circumvent the crystallization problem,
nuclear magnetic resonance (NMR) determines the structure of the proteins in solu-
tion. For that, the resonance of the nuclei spins is measured in an external magnetic
field and the strength of that field determines the quality of the signal. The struc-
tural information is encoded in the resonance frequencies of the spins because they
are shifted by the chemical environment. Interpreting NMR data is challenging be-
cause the spectra of large proteins are complex with many overlapping signals and
the decomposition of the individual contributions is difficult. Due to the limitations
of conventional protein structure determination, new methods are needed.
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To this end, scattering experiments with single biomolecules have been proposed
as a novel approach to study the structure of proteins. They will become possible
because newly developed x-ray sources, such as the free electron laser XFEL in
Hamburg, will provide high intense illumination sources. In the experiment, a stream
of hydrated proteins enters the x-ray beam at a rate of one molecule per pulse
by e.g. applying electrospraying techniques. Due to the high photon flux of the
incident beam, a number of photons will be elastically scattered by the electrons of
the single protein. In that process, ionization destabilizes the atoms and leads to
Coulomb explosion. However, Neutze et al. suggest in [5] that if the pulse is short
enough, radiation damage can be outrun because then most of the incident photons
are scattered by the unperturbed structure before the molecule degenerates.

Two major problems arise, though, which complicate structure reconstruction.
First, the orientation of the molecule during a single shot is unknown. Second, the
number of photons scattered by one molecule is small and this leads to low signal to
noise ratios. Several solutions have been proposed to overcome the two problems.

Ourmazd et al. [6] considered a method in 2007 that is known from electron
microscope imaging. It utilizes the fact that diffraction patterns are dissections of
the molecule’s Fourier space and that therefore two patterns from two different shots
share a common line that allows to orient the patterns with respect to each other.
Unfortunately, the method requires more than 10 photons per detector pixel and
picture which is about three orders of magnitude larger than the expected scattering
count in the experiment. With classification techniques, one could group the images
for fixed angles but it would still require at least 109 scattering images to give a
successful reconstruction which is still not feasible in the experiment.

In 2009 Saldin et al. [7] discussed an approach in which photon correlations of
diffraction patterns are used to reconstruct the shape function of the protein. This
binary function only describes the nonzero regions of the electron density and cannot
be used to retrieve the atomic positions of the molecule. In a follow up paper, Saldin
et al. [8, 9] proposed a method to overcome the orientation problem. They suggested
to conduct scattering experiments on molecules that only rotate about a fixed axis.
This geometrical approach is a feasible method for membrane bound proteins in
situ with the membrane surface perpendicular to the incident beam. The individual
proteins are then assumed to be identical in structure but randomly oriented within
the layer. Suitable proteins for this method are e.g. potassium channel proteins
which are embedded in the membrane. However, the group of target proteins is
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1 Introduction

limited and the method does not apply to proteins that are not membrane bound.
A completely different approach based on a probabilistic Bayesian measure has

first been introduced by Fung et al. in 2008 [10]. With a maximum likelihood
measure, scattering patterns are sorted according to the corresponding molecule
orientation, averaged and put together to reconstruct the reciprocal space of the
protein. Statistical uncertainty is introduced when classifying the scattering images
by orientation, and the method depends on the angular discretization of orientation
space. Also the number of photons per picture needs to be at least in the order of
102. As an example, they claim to have reconstructed the 500 kD chignolin with a
1.8 Å resolution at 4 · 10−2 photons per pixel.
In 2010 Walczak and Grubmüller [11] developed a solution for the classification

uncertainty that utilizes a seed model of the structure. For a given set of diffrac-
tion patterns the posterior probability distribution is calculated that determines the
likelihood of a certain molecule orientation for each pattern. This yields the most
probable orientation for the scattering images and with that information, the three
dimensional Fourier transformation can be reconstructed. The seed model of the
structure can be a low resolution version of the protein, obtained from NMR or
x-ray crystallography, or a homology model. A variant of the method involves a
Monte Carlo search in which the tertiary structure of polypeptides is determined by
using the primary and secondary structure as a starting point and modifying bond
angles. Very few photons per picture in the range of Nphotons ≈ 10 − 100 are nec-
essary to successfully reconstruct viable structure information, but the necessity of
a seed model makes it impractical for the study of large protein structures because
the search space grows combinatorially.

1.1 Project Outline

The previously presented methods, except the model-based Bayesian method by
Walczak, require more than 100 photons per scattering image. This is still beyond
the number that is expected in the experiment, especially for smaller proteins which
scatter less than 70 photons on average (see Section 2.2 for approximations). An
experimentally determined photon scattering number cannot be given yet since the
next generation free electron lasers are still under construction and very few data
could be collected in the high intensity regime to this date.
Thus, the reconstruction problem should be considered in the worst case scenario
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1.1 Project Outline

in which only very few photons per picture (Nphotons � 100 ) are scattered. Addi-
tionally the question should be answered, what the minimum photon number is for
which the atomic positions can still be determined unambiguously.
Here we aim at answering the question of the minimum photon count and devel-

oping such a few photon reconstruction method. The method should further work
without a priori information of the proteins and it should be robust to noisy data.
Walczak [11] has shown that low numbers of photons per scattering image (N < 10)
still allow for structure retrieval which indicates that the minimum number lies in
that region.
Chapter 2 reviews the single molecule scattering setup and how the scattering

images are produced. An approximation of the number of expected photons per
picture is derived and a review of coherent diffraction theory is given, that explains
the analytical connection between the electron density and the diffraction patterns.
Chapter 3 discusses the question of how many photons per shot are needed to

successfully retrieve the structure from the scattering images. For that, scattering
events with only two photons per picture are analyzed with respect to their informa-
tion content. The spatial information of the photons on the detector are collected
for each picture in terms of a histogram of the sampled two photon correlation.
The chapter also presents a mathematical derivation of the correlations in term of

the protein’s Fourier transformation. The mathematical description is facilitated by
using a spherical harmonics representation of three dimensional structures in which
objects are decomposed into shells that are expanded in the basis of spherical har-
monic functions. This framework incorporates the spherical nature of the scattering
process and facilitates the representation of the symmetry of Fourier space. Since
the spherical harmonics expansion is less common in describing objects, an overview
will be given to present the major advantages over previous voxel-based descriptions.
The inversion of the two photon correlation will reveal, however, that the recon-

struction of the original structure is not unambiguous. Thus, two approaches will
be presented that aim at methodically retrieving the missing pieces of information
with Monte Carlo search schemes.
In the end, the expression for the three photon correlation is presented and evi-

dence will be given that it contains all essential information for structure reconstruc-
tion. It turns out that already a degenerate fraction of the three photon correlation
can be used to eliminate the ambiguity of the two photon correlation inversion.
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2 Single Molecule Scattering

2.1 Free Electron Laser

The development of x-ray sources will reach a new level with the completion of the
European XFEL in Hamburg. The free electron laser will produce 27 000 flashes
per second and reach a brilliance that is 109 times higher than that of the best
conventional x-ray radiation sources [12].
There are three important steps involved in creating such highly intense beams.

First, a fine and dense electron beam has to be emitted from a high voltage electron
gun. For that, an UV laser knocks out electrons of a Cs2Te cathode surface which
is exposed to a high accelerating electrical field of up to 60 MV/m. In the next
step, the electrons are brought to high speed in a linear accelerator comprised of
resonators. They typically consist of superconducting materials such as niobium and
are cooled by superfluid helium at 2 K. In this superconductive state, the resonator
carries a strong oscillating microwave that transfers the energy to the electrons in
the process. The resonators also focus the electrons and produce a very fine and
homogeneous beam.
The emission of the actual x-rays occurs in the undulators which are periodic

arrangements of magnets that force the electrons onto a tight slalom course due to
the transverse Lorentz force. The sinusoidal path leads to synchrotron radiation in
a narrow cone in the forward direction which overlaps with the traveling electrons.
In this process, self-amplified stimulated emission (SASE) occurs in which electrons
that are out of phase with the radiation get accelerated or decelerated, respectively.
As a consequence, the electrons form a longitudinal fine structure which is referred
to as micro-bunching. Therefore the grouped electrons emit radiation synchronously
and send out high intense coherent x-ray beams whose wavelength depend on the
spatial periodicity of the undulators magnets. The expected photon fluence at the
XFEL will be as high asW = 1.8·1012 photon/pulse for a beam diameterD = 0.1µm
with a pulse duration as short as 100 fs [12].
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2.2 Single Molecule Scattering

2.2 Single Molecule Scattering

In the experiment, a synchronized and hydrated stream of single proteins will be
brought into the beam line and probed with a high intense x-ray pulse [13]. The idea
to experiment with single molecules was first proposed in 2000 by Neutze et al. [5].
New techniques had to be developed to produce the finely bunched proteins streams
by using electrospraying or Raleigh-droplet formation [14, 15]. Due to diffusive
particle motion in the liquid, the orientation of the individual proteins cannot be
controlled and is therefore unknown. Since the beam is short with respect to the
motion of the protein, its orientation throughout a single x-ray shot is considered
fixed.

Figure 2.1: Sketch of single-particle coherent diffractive imaging with an XFEL
pulse. The droplets with the single proteins are brought into the beam
line and exposed to high intense x-rays. The scattered photons are
recorded on a pixel detector with 10 × 10µm2 pixel size. (Figure ex-
tracted with permission from Ref. [16])

Three types of interactions of the incident x-ray beam (λ = 1 − 5 Å) with the
bound electrons of the molecules atoms need to be considered, the photoelectric
effect, inelastic scattering, and elastic scattering. Only the latter contributes to the
diffraction image while the former constitute noise [17].
The photoelectric effect is a process in which a bound electron of the core shell

completely absorbs the energy of an incoming photon and leaves the molecule’s
atomic shell as an Auger electron due to excitation. In a cascading process electrons
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2 Single Molecule Scattering

of higher shell fill the vacant position and emit a characteristic recombination radi-
ation. As a consequence, highly charged ions are created which results in a rapid
Coulomb explosion of the protein. The time scale of these Auger decay processes is
approximately 100 fs and thus in the time span of the beam duration [17, 18]. In
the experiment, 90% of the photons are absorbed due to the photoelectric effect and
therefore add substantial noise to the recorded data.
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Figure 2.2: Cross sections of coherent/incoherent scattering as well as the photoelec-
tric absorption of carbon atoms as a function of the photon energy. The
energy of the XFEL radiation ranges from 2 keV to 12 keV. The data
is taken from the XCOM Photon Cross Sections Database maintained
by Berger et al. which archives scattering cross sections for all types of
atoms and energy ranges [19].

If high energy photons interact with a weakly bound electrons, inelastic scatter-
ing may only transfer a part of the photons energy onto the electron, altering the
momentum of the photon. In the energy range of the XFEL, about 3% of all the
photons are scattered inelastically, loose their phase and cannot be used for structure
reconstruction either.
For structure determination, one is interested in elastically scattered photons be-

cause they undergo a well understood momenta change (see Section 2.3 for coherent
diffraction theory) and therefore sample the non-disturbed protein structure. Be-
cause the signal-to-noise ratio determines the quality of the reconstruction process,
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2.3 Coherent Diffraction

we want to estimate the number of elastically scattered photons by a simple model:

n = NatomsWσC (2.1)

where Natoms is the number of atoms in the protein, W is the photon fluence of the
beam and σC the elastic photon scattering cross section.
Here the protein model consists of 1000 Carbon atoms (average atom number ac-

cording to PDB statistics [4]) with the scattering cross section of σC = 2.6 barns/atom =
2.6 ·10−22mm2/atom. As a result approximately 68 photons are elastically scattered
during a single scattering shot.
Because, at wavelengths of λ ≈ 1 − 5 Å, the cross section of photoelectric ab-

sorption σC,photoelectric = 23 barns/atom is about 10 times larger than the elastic
scattering cross section (see Figure 2.2) a very low signal to noise ratio of 0.1 is
expected. Furthermore, at photon energies over 2 keV, the scattering cross section
depends on the scattering angle and for larger angles, corresponding to higher res-
olution structure information, the number of scattered photons will be even lower.
It is therefore crucial to understand the low photon count regime in order to be
able to reconstruct the structure from the sparse scattering images. In this work we
will first focus on solving the reconstruction problem without the presence of the
discussed noise.

2.3 Coherent Diffraction

Here we review the connection between the diffraction images and the Fourier trans-
formation of the molecule. Often the terms diffraction and scattering are used inter-
changeably but while diffraction describes the directional change of the light wave,
scattering refers to the momentum change of the photonic particles. Still diffraction
patterns are scattering images in the limes of Nphotons → ∞ and here we will use
both terms to refer to the scattering data recorded by the detector.
In the experiment, a coherent planar x-ray wave is diffracted by the electron

density of the protein structure. The distance between the object plane and detector
is considered to be large in comparison to the size of the molecule and the detector.
When regarding elastic scattering, the diffracted beam has the same wave number
k = 2π/λ as the incident beam and in the far field on the detector, the scattered
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2 Single Molecule Scattering

wave is proportional to the Fourier transformation of the electron density [20]:

E (kx, ky) =
ˆ
ρ (x′) e−ik·x′dx′ (2.2)

= F (ρ) .

Mapping the detector to Fourier space yields a spherical dissection, called Ewald
sphere, which radius is proportional to the inverse wavelength of the photons. Here
we consider the limit of a very small wavelengths of λ = 1 Å such that the cut can
be assumed planar.

Figure 2.3: Scattering of a single photon by the electron density of the protein in
the object plane. The superposition of many scattered photons give the
Fourier transformation of the electron density ρ (x).

On the detector only the absolute square of the Fourier transformation is recorded

I ∝ |F (ρ)|2 . (2.3)

This data will be referred to as intensity in this work. Speaking in terms of photons,
the probability of the incidence of a single photon on a particular detector pixel is
proportional to the Fourier intensity at a corresponding point on the planar cut in
Fourier space.
Since the experiment only yields intensities, the phase of the complex Fourier space

is lost which is a common problem that also arises in classical x-ray crystallography.
Methods based on Fineup’s algorithm [21] have been developed to overcome this
lack of the phase information but they are not in the focus of this work and will not
be discussed further.
In the experiment, the molecular orientation determines the orientation of the pla-
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2.3 Coherent Diffraction

nar dissection in Fourier space that is observed on the detector. This is because the
rotation and the Fourier transform commute, i.e. R (F (ρ)) = F (R (ρ)). However,
the fact that the orientation for a given pattern is unknown implies that we can-
not directly relate the photon counts at the pixels with the points in Fourier space.
Figure 2.4 illustrates the geometrical connection between the scattering images and
the intensity in Fourier space.

Figure 2.4: If the orientation of molecule would be known for each diffraction pat-
tern, the images could be put together to reconstruct the 3D Fourier
transformation of the molecule as sketched in the figure.1

Due to the stochastic nature of the experiment, the scattering images are in fact a
noisy version of the planar cuts with noise according to a Poisson distribution. This
effect is called shot noise and introduces additional uncertainty in the reconstruc-
tion. While it is important to keep the effect in mind, this work will only consider
scattering images without this noise.

1Fourier pattern taken from ’SLAC National Accelerator Laboratory provides library of ultra-
fast images to speed lasting insights.’, http://science.energy.gov/news/in-focus/2011/
12-19-11/
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3 Correlation Method

The diffraction patterns are the raw data of the experiment and record the photon
counts per pixel for a given shot. The fact that the detector is able to count the
photonic hits allows us to decompose each pattern into its single photons. The
following chapter focuses on extracting photon correlations from this data and using
it for structure reconstruction. It is motivated by the fact that in one dimension
function correlations carry all essential information about the originating function.

Figure 3.1: A two photon scattering event on the detector screen. One can extract
the distances from the center ki =

√
k2
x,i + k2

y,i and the angle between
the two photons. The axis of the detector are denoted kxand ky in
accordance with the reciprocal frequencies of Fourier space. At each
shot, the detector pattern is proportional to the intensities of a distinct
planar cut in Fourier space.

In the most basic scenario, we look at two photon scattering events. As sketched
in Figure 3.1, one extracts three parameters, namely the two distances from the
beam center and the angle α between the two k-vectors. Scattering images with
more photons can always be decomposed into its two photon pairs. By counting
the occurrence of two photon events with a particular relationship, one creates a
histogram c (k1, k2, α) from the data that represents the two photon correlation of
the structures intensity.
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3.1 Spherical Harmonics Representation

Before the correlation is derived analytically in Section 3.2, we will discuss the
most suitable representation framework for the structural data, both in real and
Fourier space. The way we describe the data mathematically is important for the
analytical description as well as the numerical storage of the data.

A voxel-based representation is usually the first choice when describing and storing
complicated three dimensional functions. The space is divided into cubic cells that
sit on a regular three dimensional grid and the function values are stored for each
cell. The size of the voxels then limit the resolution of the description.

There are two major problems with the cubic representation that makes it im-
practical for this work. First, the photon information is encoded by the distance
of the pixel to the beam center pixel. This distance represents a sphere in three
dimensional Fourier space which is difficult to represent in a cubical framework.

Second, the photon counts near the center of the detector will be much higher
due to the physics of low and high angle scattering. This effect means that the
space closer to the center has a higher information density that requires a different
sampling. The cubic framework, however, samples the whole space with even res-
olution and makes it difficult to oversample the central region without using more
sophisticated dynamic cube size systems.

Also, due to the properties of the transformation, the intensity is highly symmetric
with I (k) = I (−k). Consequently the representation should incorporate these
symmetries, be spherical by nature and allow for adaptive resolutions both for the
whole structure and for particular shells. In light of these requirements, we choose
the spherical harmonics framework for structure representation and review it in the
following section.

3.1 Spherical Harmonics Representation

The spherical harmonic functions, denoted Y m
l (θ, ϕ), are a basis of the Hilbert

space of square-integrable functions. They allow to expand any function on the unit
sphere and will be used to describe the three dimensional electron densities and their
Fourier transformations in this work.
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3 Correlation Method

Figure 3.2: Nodal line plot of Y m
l (θ, ϕ) on the unit sphere. Re [Y m

l ] is equal to 0
along the black circles. There are m great circles passing through the
poles and l−m circles of equal latitude. The function changes sign each
time it crosses one of these lines and the number of “patches” increases
with l and m [22].

The spherical harmonic functions are comprised of a θ-dependent Legendre poly-
nomial and a ϕ-dependent complex exponential part:

Ylm(θ, ϕ) =

√√√√(2l + 1)
4π

(l −m)!
(l +m)! P

m
` (cos θ) eimϕ. (3.1)

These functions form an orthonormal basis of the euclidean space with the orthog-
onality theorem: ˆ π

θ=0

ˆ 2π

ϕ=0
Ylm Y

∗
l′m′ dΩ = δ``′ δmm′ . (3.2)

This allows us to expand any square-integrable function on the unit sphere in terms
of spherical harmonic functions:

I(ϕ, θ) =
∞∑
l=0

l∑
m=−l

flmYlm(ϕ, θ) (3.3)
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3.1 Spherical Harmonics Representation

with the spherical harmonics coefficients flm specifying the contributions of the
correpsonding harmonic basis function Ylm. In Figure 3.2 the first modes of the
spherical harmonics are depicted. The so called magnetic number m modulates the
function in azimuthal direction whereas the orbital momentum number l varies it
in longitudinal direction. With increasing indices l and m the spherical harmonics
exhibit higher modes and are therefore used to express finer structures. This fact
allows to control the resolution of the description by limiting the orbital momentum
number l with a bandlimit L.

To describe a three dimensional object with spherical harmonics, one needs to
decompose the structure into shells with different radii. Each shell with radius r is
then described by a separate set of spherical harmonics (SH) coefficients flm (r) and
the number of shells determine the resolution in radial direction.

The expansion a three dimensional structure with a finite number of spherical
harmonics coefficients is expressed as follows:

I (r (r, ϕ, θ)) =
L∑
l=0

l∑
m=−l

flm(r)Ylm(ϕ, θ) (3.4)

where L is the bandlimit, K the number of shells and flm(r) the coefficients of
the equidistant shells at radii r = k · ∆r with 1 < k < K. An illustration of the
dependency of the resolution on the number of coefficients will be given in Section
3.4.2.

Rotations are going to be important in our usage of spherical harmonics. To
describe all possible rotations of a point on a sphere, two angular coordinates are
necessary. The angle α describes a rotation about the y-axis which is in plane with
the equator, while the angle β denotes the rotation about the polar z-axis. With
the help of the rotation factors Rl

m′m (ω) [23]

Rl
m′m (α, β) = eimβrlm′m (α) (3.5)

= eimβ
ˆ 2π

0

ˆ π

0
Ylm (Ry (α) (θ, ϕ))Ylm′ (θ, ϕ) sin (θ) dθdϕ (3.6)

the spherical harmonic coefficients can be expressed after an arbitrary rotation as

f ∗lm =
l∑

m′=−l
flmR

l
m′m. (3.7)
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3 Correlation Method

The new coefficients are then a linear combination of the unrotated coefficients for
a fixed index l.

3.1.1 Spherical Bessel Transformation

In the next step, we will review the expression of the Fourier transformation and
the intensity in spherical harmonics representation so all calculations can be done
in this framework. We start with the spherical harmonics coefficients of the electron
density ρ (r) that are given by the integrals with the corresponding basis functions:

ρlm (r) =
ˆ
ρ (r)Y ∗lm (ω) dω. (3.8)

The Fourier transformation of the density ρ, [F (ρ)] (k), is important for the exper-
iment but conventional Fast Fourier Transform algorithms work with voxel-based
structures only. To avoid back and forth transformation, the spherical Bessel trans-
formation is used to calculate the coefficients Flm describing the Fourier transfor-
mation from the coefficients ρlm describing the electron density [7, 23–26]:

Flm (k) = il
√

2
π

ˆ
ρlm (r) jl (kr) r2dr. (3.9)

Figure 3.3: Connection between real space, the Fourier transformation and the
spherical Bessel transformation.

All coefficients for a fixed lm-combination, lying on different shells r, will be con-
volved with the spherical Bessel function jl of order l. While the spherical harmonics
transformation can be seen as a 2D Fourier transformation on the sphere, the spher-
ical Bessel transformation is the Fourier transformation of the radial part. Figure
3.3 summarizes the connection between Fourier (F), spherical harmonics (SH) and
spherical Bessel (SB) transformation.
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3.1 Spherical Harmonics Representation

3.1.2 Intensity in Spherical Harmonics

In the next step, we want to express the spherical harmonics coefficients Alm (k) of
the intensities I (k) = |F (ρ)|2 in terms of the coefficients of the complex Fourier
transformation Flm (k). This operation involves a more complex convolution of
coefficients Flm as shown by Stuhrmann et. al. in [27]:

Alm (k) = (−1)m
∑

l1l2m1m2

(−1)m1

√
(2l1 + 1) (2l2 + 1) (2l + 1)

4π (3.10)
 l1 l2 l

0 0 0

 l1 l2 l

m1 m̄2 m̄

Fl1m1 (k)F ∗ll2m2 (k) .

The quantities in the parenthesis are scalar numbers called Wiegner-3j symbols that
are products of integrals over 3 spherical harmonics basis functions according to the
following equation1:

ˆ
Yl1m1(θ, ϕ)Yl2m2(θ, ϕ)Yl3m3(θ, ϕ) sin θ dθ dϕ =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4πl1 l2 l3

0 0 0


 l1 l2 l3

m1 m2 m3

 .
The calculation of a single coefficient Alm (k) involves the summation over many
coefficients which makes it computationally expensive. In this case, the simple
operation of taking the absolute square of a function becomes more complicated in
spherical harmonics representation but the following section will show, that other
operations, such as the convolution of functions, are represented much simpler.
Incorporating the symmetry of the molecule’s intensity with Friedel’s rule I (k) =

I (−k) [7] leads to a reduction of descriptors in spherical harmonics representation.
This is easily shown by expressing the rule in the spherical harmonics expansion of
the intensity:

∑
lm

Alm (k)Ylm
(
k̂
)

=
∑
lm

Alm (k)Ylm
(
−k̂

)
=

∑
lm

Alm (k) (−1)l Ylm
(
k̂
)
. (3.11)

1http://en.wikipedia.org/wiki/Wigner_3-j_symbols
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3 Correlation Method

This expression only holds for even l which is why spherical harmonics coefficients for
l = 1, 3, 5, ... will be zero when describing symmetric functions. With the presented
framework, it is now possible to to describe and calculate the electron density,
its Fourier transformation and the intensity exclusively with spherical harmonics
coefficients.

3.2 Two Photon Correlation

With the spherical harmonics representation of the intensity at hand, we now want to
derive the two photon correlation in terms of the intensity coefficients in this section.
Then one can study the inversion of this equation and the question will be answered,
if the structure can be retrieved from the two photon correlation exclusively.
We start with spherical harmonics expansion of the intensity (see Section 3.1):

I (κ) =
∑
lm

Alm (|κ|)Ylm (θ, ϕ) (3.12)

in which the coefficients Alm (|κ|) describe the structure. As discussed in Section 2.2,
the orientation of the molecule during a single scattering shot is unknown. Therefore
we introduce an arbitrary 3-dimensional rotation ω of the expansion:

Iω (κ) =
∑
lmm′

Alm (|κ|)Ylm′ (θ, ϕ)Rl
m′m (ω) . (3.13)

In this case, the rotation Rl
m′m changes the basis functions Ylm and expresses the

rotated spherical harmonics as linear superposition of harmonics with the same
orbital number l. In the experiment, we observe data that is proportional to a
planar dissection of the intensity. Thus, without loss of generality, we look at points
that lie in the xy-plane (θ = π/2 ):

Iω (K) =
∑
lmm′

Alm (|K|)Ylm′

(
π

2 , ϕ
)
Rl
m′m (ω) (3.14)

= Iω(k1, ϕ).

Here we choose the xy-plane as the planar cut because it is simple to describe.
Later, the averaging over all possible orientations of that plane makes this choice
irrelevant. The 2-dimensional vector in this plane is denoted K to distinguish it
from the 3-dimensional vector κ. Now, the projection is exactly the planar cut that
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3.2 Two Photon Correlation

is sampled during a single molecule scattering shot.

As stated before, the correlation entries are proportional to products of intensities.
Thus, with the xy-plane in Fourier space, we can write a two photon correlation entry
as the average over all possible orientations of the product of two points in that plane
with the respective angle α and distance k1 and k2 to the center:

ck1,k2,α = 〈Iω (K1) · I∗ω (K2)〉ω (3.15)

=
〈 ∑
l1m1m′

1

Al1m1 (k1)Yl1m′
1

(
π

2 , 0
)
Rl1
m′

1m1
(ω) (3.16)

∑
l2m2m′

2

A∗l2m2 (k2)Y ∗l2m′
2

(
π

2 , α
)
Rl2∗
m′

2m2
(ω)

〉
ω

.

In other words, for a given (k1, k2, α)-characterization, the above equation sums
up the probabilities of all possible two photon pairs with this particular property by
going over all molecule orientations.

Figure 3.4 illustrates the averaging process of these pairs and shows how the
2-dimensional projection of the Fourier transformation is connected with the 3-
dimensional structure. After rewriting Equation 3.16 to:

ck1,k2,α =
∑

l1m1m′
1

∑
l2m2m′

2

Al1m1 (k1)Yl1m′
1

(
π

2 , 0
)

(ω)A∗l2m2 (k2)Y ∗l2m′
2

(
π

2 , α
)

〈
Rl1
m′

1m1
(ω)Rl2∗

m′
2m2

(ω)
〉
ω

(3.17)

one sees that the averaging only concerns the rotation factors. They are defined via
integrals over spherical harmonic functions and a distinct orthogonality relation for
rotation averages exists, that facilitates the equation above:

〈
Rl1
m′

1m1
(ω)Rl2∗

m′
2m2

(ω)
〉
ω

= 1
2l + 1δl1l2δm1m2δm′

1m
′
2
. (3.18)

This relation eliminates the averaging term in the correlation and is one of the
reasons why the spherical harmonics representation is so powerful in expressing the
two photon correlation. After inserting Equation 3.18 into 3.17, a much simplified
version of the two photon correlation is obtained:

ck1,k2,α =
∑
lmm′

Alm (k1)Ylm′

(
π

2 , 0
)

(ω)A∗lm (k2)Y ∗lm′

(
π

2 , α
)
. (3.19)
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(a) Detector screen with a two photon
event, its mirrored counterpart and
the two reciprocal shells k1 and k2
depicted in dashed red lines. Rotat-
ing the molecule around an axis that
rotates the Fourier projection around
the center of the detector produces
photon pairs originating from different
Fourier points but that have the same
(k1, k2, α) characterization as the oth-
ers.

(b) The solid points denote the same two
photon event (k1, k2, α) as in Figure
(a) but depicted in the 3-dimensional
Fourier space with the two exemplary
k1 (blue) and k2 (green) shells. The
circle illustraltes that upon rotation
about the axis parallel to the k2 in-
tensity vector other two photon pairs
are sampled that still have the same α-
angle. The opaque copies of these two
photon scenarios show that an addi-
tional moving of the points on shell k2
is necessary to gather all possible com-
binations for a single (k1, k2, α) slot.

Figure 3.4: Averaging over all possible orientations of two photon pairs on shell k1
and k2 that have an α distance.

It is further simplified by using the fact that a summation of products of spherical
harmonics over the magnetic number m′ facilitates to [28]

l∑
m′=−l

Ylm′

(
π

2 , 0
)

(ω) · Y ∗lm′

(
π

2 , α
)
m′

= 2l + 1
4π Pl (cos (α)) , (3.20)

which gives to a compact expression for the two photon correlation that is comprised
only of a sum of products of spherical harmonics coefficients of the intensity:

ck1,k2,α =
∑
l

Pl (cos (α))
∑
m

Alm (k1) (ω)A∗lm (k2) . (3.21)

This equation now allows us to analyze the information content of the correlation
by looking at the inversion.
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3.3 Inversion Problem

In this section, the inversion of the two photon correlation from Equation 3.21 is
discussed. A successful inversion would allow to retrieve the coefficients of the
intensity from the two photon correlation alone.
As a start, we rewrite the two photon correlation in vector and matrix form. For

that, we define al (k):

al (k) =



Alm (k)
Al(m−1)

...

...

Al−m (k)

(k)


(3.22)

as the (2l+ 1)-dimensional coefficient vector with all the spherical harmonics coeffi-
cients Alm of fixed l and {m ∈ Z| − l < m < l}. Then we can write the correlation
partly in vector form:

ck1,k2,α =
∑
l

Pl (cos (α)) al (k1) a∗l (k2)︸ ︷︷ ︸
Al(k1,k2)

(3.23)

by expressing the sum over m as a scalar product of coefficient vectors. If we further
use the vectors with correlation entries ck1,k2 =

(
ck1,k2,α1 ... ck1,k2,αN

)
and scalar

product entries a (k1, k2) =
(
A0 (k1, k2) ... Al (k1,k2)

)
as well as the matrix

P =


P0 (cos (α1)) ... P0 (cos (αN))

... ... ...

Plmax (cos (α1)) ... Plmax (cos (αN))

 , (3.24)

we can use the correlation to retrieve the scalar products Al (k1, k2) by solving the
following linear problem:

ck1,k2 = Pa (k1, k2) . (3.25)

In Equation 3.25 the vector c is known from the experiment and the matrix P
is fixed. For structure reconstruction we are interested in the individual Alm (k)
because those coefficients carry the structure information of the molecule but the
vector a, that is the solution of the linear equation above, only contains scalar
products. Still, for a given orbital momentum number l and the case that we have
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sampled enough shells, namely kmax = 2l + 1, there are enough scalar products
Al (ki, kj) are present to express the Gram matrix [29]

Gl = FT
l Fl (3.26)

=


Al (k1, k1) ... Al (k1, kkmax)

... ... ...

Al (kkmax , k1) ... Al (kkmax , kkmax)

 . (3.27)

It is comprised of the known scalar products between the coefficients vectors be-
longing to a shell k and an index l gathered from the solutions from Equation 3.25.
The matrix Fl with

Fl =
(

al (k1) al (k2) ... al (kkmax)
)

(3.28)

contains the original spherical harmonics coefficients for a fixed l. So we want to
solve this system for the matrix Fl which can be done by diagonalizing Gl

Ll = YlGlYT
l . (3.29)

Solving this eigenvalue problem gives

Fl =
√

LlYl (3.30)

with the diagonal matrix Ll and the transformation matrix Yl. The solution matrix
Fl contains a valid set of spherical harmonics coefficients that represent an intensity
structure that produces the originating two photon correlation. However, this is an
eigenvalue problem and the solution is only obtained up to an arbitrary rotation in
the 2l+1-dimensional eigenspace. There exists an infinite set of additional solutions
that also produces equivalent correlations and is therefore valid. This degeneracy
originates from the fact that we only have scalar products between all the coefficient
vector that only give us the relative position of the vector in terms of the respective
angles. Unfortunately, the scalar products carry no information about the overall
orientation of the connected set of coefficient vectors but the appearance of the un-
derlying structure depends on the correct rotation in that space. Thus, we now have
only found the correct spherical harmonics coefficients up to an unknown rotation
Ul for each l separately:

Al (k) = UlA0
l (k) . (3.31)
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The fact that the arbitrary rotation can not be retrieved from the two photon cor-
relation itself means that it is not possible to retrieve all the structural information
from such a two photon correlation.
The degeneracy of the reconstruction is not directly connected to the arbitrary

rotation of the molecule during a scattering shot, as one might think. Here we
have one unknown 2l+ 1-dimensional rotation for every l which leads to many more
unknown than the 3 missing Euler rotations of the molecule.
The main problem with the two photon correlation in spherical harmonics repre-

sentation is that the scalar products only concern coefficients with equal momentum
numbers l. Thus, the problem is decomposed into sub-problems for each l and coef-
ficients for different l cannot be related. In other words, the rotation of the different
2l+ 1-dimensional spaces cannot be correctly aligned relative to each other because
no information is available in the correlation that interconnects these spaces.
A different approach to explain the information deficiency of the the two photon

correlation using mode counting was given by Elser 2011 [30]. He brought the
correlation expression in the form

c (k1, k2, l) = Nk1k2l

l∑
m=−l

AklmA
∗
klm (3.32)

in which the α-dependency in Pl (cos (α)) was integrated out due to orthogonality.
The resulting independent constraint equations are counted as

E =
L∑
l

K(l)∑
k1=1

K(l)∑
k2=k1

1 (3.33)

with upper limits L and K (l) determined by mode counting. Comparing with the
number of free variables in intensity space, V = (π/6) R̃3, with R̃ being the dimen-
sions of the box the covers the particle, one sees that the reconstruction problem is
underdetermined: E/V ≈ 0.698.
After all, it seems additional angular information needs to be extracted from the

experiment in order to unambiguously reconstruct the structure analytically. Hence,
Section 3.6 will continue with the analysis of the three photon correlation. Before-
hand, the question will be addressed if the remaining unknown orientations can be
retrieved by a method that poses additional constraints on the search in the solutions
and that exploits additional knowledge of the protein systems such as positivity of
the electron density and the known support. For that, a numerical implementa-
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tion of the discussed processes was programmed and will be briefly discussed in the
following section.

3.4 Numerical Evaluation

In the next section, the computational tools are presented that were used to nu-
merically implement the mathematics presented in the previous sections. Then,
an evaluation of the resolution capabilities of spherical harmonics descriptions was
carried out and is discussed in Section 3.4.2. With the help of the two photon cor-
relation form found in Equation 3.21, a brief comparison between an analytically
calculated correlations and Monte Carlo generated one will also be shown. In all
evaluations, a Glutathione molecule as well as some smaller atom aggregations were
used as simple test systems.

3.4.1 Tools

The underlying code was written in the Lua scripting language2 which was used with
a genius Just-In-Time compiler LuaJIT 3 that generates system-dependent bytecode
before running the instructions. On top of that, the GSL-Shell extension4 offered
fast access to the mathematical library GSL (GNU Science Library)5 from within
Lua [31]. GSL contains advanced functions for random numbers (taus2 a maximally
equidistributed combined Tausworthe generator by L’Ecuyer was used) and spatial
functions such as Legendre Polynomials, Spherical Bessel functions and Wiegner-3j
symbols which are necessary to carry out the introduced calculations. Spherical
harmonics transformations of a given structure can be computationally expensive.
Highly optimized algorithms have been developed and implemented for that purpose
and can be reviewed in [32–34]. A well tested implementation is the S2Kit Lite6

which was used in this project for fast back-and-forth transformation in spherical
harmonics space. The library is implemented in Standard C and was easily imported
via the FFI library which allows calling external C functions and using C data
structures from native Lua code.

2http://www.lua.org/about.html
3http://www.luajit.org
4http://www.nongnu.org/gsl-shell/
5http://www.gnu.org/software/gsl/
6http://www.cs.dartmouth.edu/~geelong/sphere/
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3.4 Numerical Evaluation

3.4.2 Spherical Harmonics Resolution

The resolution of a spherical harmonics description is influenced by two different
factors. First, the number of coefficients that is used to describe the structure and
second, the accuracy with which the single coefficients are determined experimen-
tally.
In the experiment, the bandlimit L is determined by the number of shells K the

experiment can resolve (as discussed in Section 3.3). Here, we first want to illustrate
the influence of the number of coefficients on the quality of the description. For that,
we look at a simple tripeptide called Glutathione (GSH) and vary the bandlimit L
and number of shells K.
For a given set of spherical harmonics coefficients with l < L and k < K, there

are
K

L∑
l=0

(2l + 1) = K (L+ 1)2 (3.34)

different complex numbers describing the structure. Glutathione consists of 20 atoms
which means that we have 60 unknown parameters in the three dimensional position
space. Using the same number of coefficients would equal an upper limit for the
coefficients of K = L ≈ 4. However, the spherical harmonics basis functions are not
a suitable descriptor for atomic positions in space and therefore we will need more
than 60 coefficients.

Figure 3.5: Comparison of the resolution of the structure description with L,K = 6
and L,K = 4 for Glutathione sampled with high resolution.

To evaluate the dependency on the coefficient number, the Glutathione tripeptide
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was sampled at high resolution (K,L = 16 ≡ 4624 coefficients). In Figure 3.5 the
original electron density is plotted on the left side as an isosurface plot.
Next, the spherical Bessel transformation was carried out to obtain the coefficients

describing the peptide’s Fourier transformation. In this coefficient set, higher order
terms above L,K were removed and the coefficients were back transformed. This
operation is equivalent to deleting Fourier data above a certain radii and reducing
the resolution of the remaining spherical data, just like a low pass filter.
For a cutoff at K,L = 4, which equals 100 coefficients, we clearly see that the rod

like shape of the protein cannot be sufficiently described and the resulting structure
is more dense in the center. The angular resolution as well as the radial resolution of
the structure is compromised, as one would expect. However, quite remarkably with
K,L = 6, i.e. 294 coefficients, the overall structure of the protein is reconstructed
well with most losses in the outer regions of the structure and the thickness of
the strand. This visual evaluation supports, that already for a limited amount of
coefficients, one can gain valuable information about the tertiary structure such
as the approximate position or bending of the backbone strands. Using the same
number of descriptors in a cubic framework equals an approx. 6x6x6 cube which
would not represent the structure with the same quality of resolution as the spherical
harmonics description.
The second important influence on the resolution of a structure is the accuracy of

the coefficient determination. Photons scattered by small angles which correspond
to low k will occur more likely in the experiment, as discussed in Section 2.2. Thus,
the experiment will collect more photons in that region and reconstruct coefficients
for low k with higher statistical accuracy due to better sampling.
As a consequence, we will have a higher certainty about low resolution descrip-

tion of the data in analogy to classical x-ray crystallography where higher resolved
structure information can only be obtained from intensities farther away from the
detector origin where naturally the signal-to-noise ratio is worse.

3.4.3 Monte Carlo Method

To simulate the experiment, two points on the sphere were generated with an even
distribution. This was done by choosing a random polar angle ϕ ∈ [0, 2π] and
another random number x ∈ [−1, 1] that converts to the azimuthal angle θ = acos (x)
and ensures that that the equator region is as densely sampled as the poles. Then
the product of the intensity at the two points was sorted into the corresponding
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(k1, k2, α) entry of the histogram and afterwards the data was normalized by the
number of sampled pairs per slot.

Figure 3.6: Two photon correlation of Glutathione analytically calculated and Monte
Carlo generated ( Npairs = 104 samples per (k1, k2)pair).

On the left side of Figure 3.6, the two photon correlation calculated from Equa-
tion 3.21 is shown, while the right part shows the same correlation generated by
the Monte Carlo scheme with Npairs = 104 two photon pairs for each (k1, k2)-
combination. Both correlations were generated from a structure with a limit on
the number of coefficients of K,L = 16 and an angular discretization Nα = 16.
Each frame in the graph shows a single α-slice of the correlation.
The two correlation datasets exhibit the same fundamental features. In analogy

to Fourier space, most of the intensity is close to the origin which is why each frame
shows significant peaks in the lower k region. The varying shapes of these peaks
encode parts of the Fourier data but with a lack of information as shown before.
For high Npairs > 105 both correlations became visibly indistinguishable for the
structure of Glutathion which is why they are not shown here. Figure 3.6 depicts
the Monte Carlo generated correlation with a low Npairs to see a sparsity and to
emulate the low photon count of the experiment. The value 104 is chosen such that
an effect due to sparse sampling becomes visible without making the correlation
unrecognizable. In the experiment, the number of photon pairs Npairs for a (k1, k2)-
combination is determined by the number of shots and the number of photons per
shot. In comparison to other methods, this method can compensate low photon
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numbers per picture with many pictures.
A k-dependent scattering intensity is not included in the Monte Carlo model.

Taking this effect into account would lower the signal in the upper regions of k1

and k2. Both shot noise and background noise have not been considered in these
comparisons.

3.5 Solution Schemes

This section addresses the question, if the missing information of the two photon
correlation, namely the orientations in the 2l+ 1-dimensional coefficient spaces, can
be retrieved with additional constraints or adequate iteration/Monte Carlo schemes.
Before the two different approaches will be discussed, a suitable metric will be
presented to evaluate the difference between two correlations.

3.5.1 Comparing Correlations

Suppose an experiment produces a correlation cexp for a given structure. With a
model structure at hand, one could calculate the two photon correlation cmod of that
model. When comparing the experimental with the model correlation, a suitable
metric is needed to measure how similar the two correlations are. The hypothesis is
that a similarity in correlations also means a similarity in structure.
The most basic idea is to sum up the differences of the correlation entries:

∆ =
∑
|ci,mod − ci,exp| . (3.35)

This does not consider, that some regions in the correlation (such as the high k

regions) generally have smaller intensities but are equally important in the compar-
ison. One could compensate for that with a k-dependent normalization factor but
here we introduce a completely different metric based on probabilities which is more
intuitive[35]. Consider the probability p that a set of diffraction patterns with many
two photon pairs give rise to a certain reference correlation cref .

p =
∏

j(pairs in exp.)
cmod (k1,j, k2,j, αj) (3.36)

ln p =
∑

j(pairs in exp.)
ln cmod (k1,j, k2,j, αj) (3.37)
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Now suppose in our set of pairs, we have multiple two photon events that belong
to one k1, k2, α characterization. The number of those pairs is proportional to the
cexp (k1, k2, α) value. With that factor, we can let the sum run over all correlation
entries:

ln p =
∑
{ri}

cexp (ri) · ln cmod (ri) (3.38)

to get the log of the probability p in terms of the model and experimental data. This
value gives a measure for how close the two correlations are and it reaches maximum
when the correlations cexp = cmod are identical.

3.5.2 Interatomic Distance Variations

In structure determination experiments, the sequence of the proteins is always
known. With that information one can use a model in which the inter-atomic dis-
tances are the unknowns instead of the coefficients describing the Fourier intensity.
This saves the work for phase retrieval and the fitting of the atom positions in the
back transformed electron density. Working with atom distances also lowers the
space of unknowns drastically in comparison to spherical harmonics descriptions.
Each set of atomic positions maps to a two photon correlation and the correct po-
sition set yields the reference correlation cref . The question remains how distinct
the atomic position are in terms of their correlation difference in this interatomic
distances space.
The Monte Carlo search in atom position space looked as follows:

1. Start by obtaining the experimental correlation cref either directly in the ex-
periment or with Equation 3.21 for simulation purposes.

2. Initialize the atomic positions of the model with an educated guess according
to typical interatomic distances or purely random with overlap restrictions.

3. Repeat:

a) Modify atomic positions by moving each atom into a random direction
with Gaussian distributed displacements ∆dgauss. Avoid drifting by elim-
inating the center of mass motion of the system.

b) Calculate the resulting model correlation cmod and the corresponding dif-
ference to the experimental results ln p . If the proposed step increases the
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Figure 3.7: Interatomic distance variation scheme in which at each step, the po-
sitions of all atoms were varied with random direction and Gaussian
distributed displacements.

similarity between the correlations, meaning ∆ = ln p− (ln p)previous < 0,
accept the step. If rand () ∈ [0, 1] < exp (−∆/T ) also accept the step
with appropriate temperature T to avoid being stuck in local minimum.

c) Decrease temperature after each accepted step for a “simulated anneal-
ing” method.

d) Adjust displacement ∆dgauss to keep acceptance rate in the range of 20
- 50 % .

For a two and three atom system, this approach correctly determines the interatomic
distances with correlation as the correct measure. For more than 3 atoms however,
multiple local minima of the measure lnp become visible in the space of distances.
Repeating the simulation with different initial atomic coordinates and randomly
permuting atoms in the simulation does not yield convergence to the known solution.
Due to the variety of minima, the time to find the global minima with a slow

temperature decrease seems to become extremely long with just as few as 5 atoms
in the system (N (N + 1) /2 = 15 unknown distances). For such a system the sim-
ulations never found the correct set of interatomic distances. However, correlations
are found that belong to a different set of distances and still coincides with the orig-
inal correlation up to small fluctuations. For this solution scheme, the correlation
does not seem to hold enough detailed information to distinguish between these fine
distances in the range of Ångström.
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3.5.3 Coefficients Monte Carlo

-200

-150

-100

-50

 0

 50

 100

 150

 200

0345 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
ge

d 
C

oe
ffi

ci
en

ts

Index(l,m)

k=1

Real
Complex

-25
-20
-15
-10

-5
 0
 5

 10
 15
 20
 25

0345 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
ge

d 
C

oe
ffi

ci
en

ts

Index(l,m)

k=5

Real
Complex

-15

-10

-5

 0

 5

 10

 15

0345 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
ge

d 
C

oe
ffi

ci
en

ts

Index(l,m)

k=10

Real
Complex

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

0345 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
ge

d 
C

oe
ffi

ci
en

ts

Index(l,m)

k=15

Real
Complex

Figure 3.8: Spherical harmonics coefficients averaged over 129 small proteins from
the PDB with K,L = 16 and rmax = 45 Å. The coefficients are plotted
as a function of their indices. The tics count the l and coefficients in
between tics range from m = [−l, l].

The second solution scheme aims toward exploiting the resolution property of the
spherical harmonics framework. Instead of modifying atomic positions, a Monte
Carlo search is performed on the spherical harmonics coefficients of complex Fourier
space. Each step, the coefficients are varied with a small Gaussian distributed
change. The changes are l,m-dependent and their values were chosen to be pro-
portional to the average value of such a coefficient when averaging over 100 small
proteins from the PDB (see Figure 3.8). An advantage of this method is to have the
phases in complex Fourier space without the need of phasing algorithms.
After each coefficient modification, the ln p is calculated and compared to the

previous one. To lower the search space and to introduce additional constraints on
the coefficients, each proposed set of coefficients is forced to give a positive electron
density with the correct support. The support is defined to be the space in which the
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electron density ρ (x) is nonzero. This procedure was implemented by transforming
the coefficients from spherical harmonics to real space, imposing the constraints and
back transforming. A convenient feature of this solution scheme is, that the search
process can be started with a small bandwidth L meaning that the Fourier structure
is determined at low angular resolution. The idea is to increase L progressively once
the lower lm-coefficients have converged.

As a result, this method also renders multiple solutions that produce similar
correlations but represent different structures that differ from each other in more
than just a three dimensional Euler rotation as can be seen in Figure 3.9. Despite
additional constraints the correct solution could not be successfully isolated.

Figure 3.9: Isosurface plot of 3D intensity of the Glutathion and a solution found in
the coefficient space Monte Carlo search. Both intensities differ in shape
but give the same two photon correlations.

The two presented approaches have shown that this is a general problem and that
it is hard to solve the problem of degeneracy with additional constraints. However,
it is not a proof that such constraints, that unambiguously isolates the correct
structure in terms of its two photon correlation, do not exist. Still the studies were
carried out with small proteins whereas common applications would face much larger
proteins in which the degeneracy would be even larger and harder to compensate
for. Therefore, the next section will analyze the triple photon correlation to see if
the inversion is possible and if this data structure represents a unique descriptor of
the molecule structure.
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3.6 Three Photon Correlation

3.6 Three Photon Correlation

It has been shown that the two photon correlation lacks information about the
structure. The missing information has been identified as the unknown rotations in
the cryptic 2l + 1-dimensional space of coefficients. The question remains, if these
unknowns can be obtained from higher order correlations or if reconstruction from
the next higher triple correlation is possible all together. To answer that, we derive
the analytical expression of the three photon correlation in analogy to Section 3.2.

Figure 3.10: Three photon scattering event on the detector screen. One can extract
the distances to the center k1, k2 and k3 and the respective angular
relationships α ∈ [0, π] and β ∈ [0, 2π].

The definition of the correct angle assignment in the three photon correlation has
to be chosen carefully. The two photon correlation uses the smallest angle between
two points in the plane. However, introducing a third point relative to the two
makes it important to distinguish between then two situations sketched in Figure
3.11. Using the smallest angle definition for β ∈ [0, π] would introduce ambiguity.
Therefore β needs to be defined clockwise in the range [0, 2π] to cover the complete
circle.

To calculate the triple correlation, one averages again over all rotations of the
product of three intensities in the 2-dimensional Fourier projection corresponding
to a certain angular relation (α, β):

ck1,k2,k3,α,β = 〈Iω (k1, 0) · Iω (k2, α) · I∗ω (k3, β)〉 . (3.39)

32



3 Correlation Method

Figure 3.11: Two three photon scenarios that would not be distinguishable in a
smallest angle definition framework because the angle β would be iden-
tical in both cases although photon k3 is positioned at two different
positions relative to the other two photons.

By averaging, every possible triplet combination that contributes to a correlation
entry is accounted for. Inserting the spherical harmonics expansion of the projection
from Equation 3.14 into Equation 3.39 then yields:

cα,β =
∑
l1 l2 l3

∑
m1m2m3

∑
m1′ m2′ m3′

Al1m1 (k1)Al2m2 (k2)A∗l3m3 (k3) (3.40)

Yl1m1′

(
π

2 , 0
)
· Yl2m2′

(
π

2 , α
)
· Y ∗l3m3′

(
π

2 , β
)

〈
Rl1
m1m1′ ·Rl2

m2m2′ ·Rl3
m3m3′

〉
ω
.

The averaging again only concerns the rotation factors and therefore the coeffi-
cients as well as the basis functions with fixed parameters can be pulled out of the
averaging operator. It is possible to rewrite the product of two rotation factors R
into one as follows[36]:

Rl1
m1m1′Rl2

m2m2′ =
l1+l2∑

L=|l1−l2|

∑
MM ′

(2L+ 1) (−1)M−M
′
· (3.41)

 l1 l2 L

m1 m2 −M


 l1 l2 L

m′1 m′2 −M ′

RL
MM ′ .

Together with the simple orthogonality theorem of two such rotations:

〈
RL
MM ′Rl3∗

m3m3′

〉
ω

= 1
2L+ 1δl3Lδm3Mδm3′M ′ , (3.42)
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the integral free version of the three photon correlation can be expressed as follows:

ck1,k2,k3,α,β =
∑
l1 l2 l3

∑
m1m2m3

Al1m1 (k1)Al2m2 (k2)A∗l3m3 (k3)
 l1 l2 l3

m1 m2 −m3


∑

m1′ m2′ m3′
(−1)m3−m3′

 l1 l2 l3

m′1 m′2 −m′3


Yl1m1′

(
π

2 , 0
)
· Yl2m2′

(
π

2 , α
)
· Y ∗l3m3′

(
π

2 , β
)
. (3.43)

To facilitate the analysis the basis function is merged into the complex function
f (l1, l2, l3,m1,m2,m3, α, β):

ck1,k2,k3,α,β =
∑
l1 l2 l3

∑
m1m2m3

Al1m1 (k1)Al2m2 (k2)A∗l3m3 (k3) · (3.44)

f (l1, l2, l3,m1,m2,m3, α, β) .

In comparison to the two photon correlation, coefficients for different l appear in
the same product and the basis function f determines the index combination for
which this is the case. The Wiegner-3j functions are well studied and give nonzero
functions for cases in which m1 + m2 = m3 and |l1 − l2| ≤ l3 ≤ l1 + l2 (triangular
inequality). Further analysis on the triple correlation basis function f needs to be
done to determine if inversion of this equation is possible. In analogy to Section 3.5
Monte Carlo schemes could be used to search for a distinct structure with the triple
correlation as a similarity measure. However there is one approach that is presented
in the following section that only utilizes parts of the three photon correlation to
eliminate the missing rotations of the reconstruction from the two photon cases.

3.7 Degenerate Three Photon Correlation

Equation 3.43 contains the sum over an irregular set of coefficient indices combina-
tions which makes it difficult to invert. Already in 1980 Kam discussed a similar
problem in the context of electron micrography imaging [37]. Experimentally, more
photons are available for such a setup which is why he proposed to only regard the
degenerate form of the triple correlation. In a degenerate event two out of the three
photons hit the same detector pixel and overlap K1 = K2 (see Figure ). In these
cases the mathematical description of the problem can be facilitated.
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Figure 3.12: Degenerate three photon event with two photons detected at the same
detector pixel.

The following identity is used:

Yl1m1′ (Ω1) · Yl2m2′ (Ω1) =
∑

λ=|l1−l2|

λ∑
µ=−λ

(−1)µ (3.45)
√

(2l1 + 1) (2l2 + 1) (2λ+ 1)
4π

 l1 l2 λ

0 0 0


 l1 l2 λ

m′1 m′2 −µ

Yλµ (Ω1) .

that expresses the product of two spherical harmonics with different indices l1,m
′
1

and l2,m
′
2 at a particular point on the sphere Ω1 as a sum of single harmonic

functions going over a range of indices. Additionally, the sum over Wiegner-3j
symbols can be facilitated with the following expression:

∑
m′

1m
′
2

 l1 l2 λ

m′1 m′2 −µ

 l1 l2 l3

m′1 m′2 −m′3

 = 1
2l3 + 1δλl3δµm

′
3
. (3.46)

Inserting the two equations above into the triple correlation from Equation 3.20,
one finds the following form:

ck1,k1,k3,α,α =
∑
l1 l2 l

∑
m1m2m

Al1m1 (k1)Al2m2 (k1)A∗l3m3 (k3)Pl (cos (α))

(−1)m
√√√√(2l1 + 1) (2l2 + 1) (2l + 1)

(4π)3 l1 l2 l

0 0 0

 l1 l2 l

m1 m2 −m

 . (3.47)
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In this degenerate version, the triple correlation ck1,k1,k3,α,α = tk1,k3,α entries con-
tains the same number of unknowns as the conventional two photon correlation
ck1,k3,α, namely the spherical harmonics coefficients Alm (k1) and Alm (k3) of only
two shells. The idea is to use this additional information to eliminate the missing
rotations Ul

mm′ of the two photon reconstruction by iteratively inverting the triple
correlation and solving for the rotations. In this approach, the rotations are the
only unknowns while the coefficients A0

l (k) are considered to be known and chosen
as one of the many degenerate solutions:

Al (k) = UlA0
l (k) . (3.48)

More detailed information about the equations required for this iterative rotation
retrieval can be found in Kam’s work Appendix B [37]. The simulations that have
been done for this work have revealed that the correct rotations are no fixed points
and convergence was never reached although Kam claims that reconstruction is pos-
sible. More fundamentally, in the experiment there will not be sufficient numbers of
degenerate three photon pairs to determine this part of the triple correlation up to
necessary accuracy. Still, the degenerate photon correlation is sufficient to obtain
the missing information from experimental scattering images and this fact indicates
that three photon correlations has all information to unambiguously reconstruct the
electron density. However, it will require a more detailed analysis to completely un-
derstand the information content of the triple correlation. If no analytical inversion
can be found, a nonlinear solver might be applied to find the correct coefficients.
Unfortunately, due to the number of unknown coefficients, the search space is large
which is a problem for most solvers. Finding a solution for low resolution coefficients
might be a feasible solution for that problem.
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4 Summary and Conclusion

Single molecule scattering experiments hold the promise of protein structure deter-
mination without the need of crystallization. However, the experimental setup has
two major problems. The orientation of the protein at the moment of exposure is
unknown and the expected number of scattered photons per image is small with
approximately 68 photons for a protein with 1000 atoms. Averaging over diffrac-
tion patterns that belong to the same molecule orientation involves an error-prone
orientation classification of the pictures. A reconstruction method is needed, that
is rotation invariant, stable to noise and capable of structure reconstruction from
scattering images with small number of photons.
Here we have presented the idea to use two and three photon correlations for the

reconstruction. The correlations are histograms of photon pairs and triplets in the
pictures with particular distances from the detector center and angles between the
photons. The approach makes it unnecessary to determine the most probable protein
orientation belonging to each picture because it operates on the level of photon pairs
and triplets. Also, by using the relative photon positions in the correlation, one
ensures that the resulting data is rotation invariant.
In order to assess the information content of the two and three photon correlation,

an expression of the correlations in terms of the Fourier intensity was derived. To
facilitate the calculations, a spherical harmonics representation of three dimensional
structures was utilized because the description framework supports the spherical
nature of the correlation, incorporates the symmetry of the intensity and allows to
vary the resolution of the description by limiting the number of coefficients.
In a next step, the inversion of the two photon correlation was analyzed to answer

the question if the spherical harmonics coefficients of the intensity can be retrieved.
The derivation showed that the two photon correlation is comprised of quasi scalar
products of spherical harmonics coefficients with the same orbital momentum num-
ber l. As a result, upon reconstruction, these coefficients can only be retrieved up
to an arbitrary rotation in the high dimensional coefficient spaces. Thus, we showed
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that the two photon correlation itself does not contain all necessary information to
reconstruct the electron density unambiguously.
The arbitrary rotations represent a set of unknowns. In this thesis two ideas

have been discussed to overcome that information deficiency by using the correla-
tion as a similarity measure in two different Monte Carlo search schemes. In the
first approach, a model of the protein was built as a linear superposition of Gaus-
sian spheres representing the electron densities of the atoms. The atomic positions
were varied until the two photon correlation of this model structure coincided with
the correlation of the reference structure. For that purpose, a difference measure
based on probability was proposed to compare correlations and to determine their
similarity.
Although the correlation could be used to determine the distances of a 3 atom

system, for more than 3 atoms, the atomic position displacement method has not
converged to the correct solution. Instead structures were found which render very
similar correlations but which are different from the original system.
A second approach performed a search in the spherical harmonics coefficient of

the complex Fourier space. The idea was to first optimize the low resolution coef-
ficients in a hierarchical approach and later proceed with higher order coefficients
to increase the resolution of the solution. Unfortunately, this scheme also rendered
many solutions. Posing additional constraints on the coefficients such that they
make the corresponding electron density positive and within the correct support,
did not eliminate the multitude of solutions.
The two presented solution approaches were not able to eliminate the missing

unknowns but this work cannot exclude that constraints exist that allow to use the
two photon correlation for structure reconstruction. Here we showed however, that
the degeneracy of the solution space is difficult to eliminate with constraints and is
expected to grow combinatorially with molecule size.
The derivation of the three photon correlation in Section 3.6 has given a similar

sum of products like the two photon correlation. The resulting form consists of triple
products which make the inversion mathematically more challenging. In comparison
to the two photon case, the triple correlation links coefficients belonging to different
orbital momenta numbers l. The loss of these mixed products was the reason why a
complete reconstruction of the coefficients from two photon correlations was impos-
sible. Hence, the occurrence of these coefficient products with different l indicates
that the structure can be retrieved from this correlation. Furthermore the study
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4 Summary and Conclusion

of the degenerate three photon correlation revealed that it can be used to retrieve
the arbitrary rotations of the solution of the two photon correlation inversion. This
fact answers one of the main question of this work, namely that three photons per
picture are sufficient to unambiguously reconstruct the protein structure. Unfortu-
nately, the studied iterative solver did not converge and this problem remains to be
solved.

4.1 Outlook
In the follow up work of this thesis, a suitable solution scheme to retrieve the coeffi-
cients from the two and three photon correlation needs to be developed. There are
two possible ways to proceed.

Figure 4.1: A method summary for the reconstruction of protein’s electron density
with the help of two and three photon correlations.

First, one might develop a solver for the unknown rotations with the help of the
degenerate triple correlation. Unfortunately, this degenerate part is only a small
fraction of the experimental histogram data and methods are preferred in which all
the acquired data, i.e. the whole three photon correlation, is used.
Thus the second path aims toward inverting the whole triple correlation. Equa-

tion 3.44 expressed the correlation in its most basic form in which triple products
belonging to a set of indices contribute to a certain entry according to a complex
basis function f (l1, l2, l3,m1,m2,m3). Studying the orthogonality of these functions
might open a way to invert the equations. Figure 4.1 summarizes the steps that are
involved in retrieving a protein structure from a single molecule scattering experi-
ment along the two described paths.
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4.1 Outlook

As an alternative approach to the analytical solution, a Monte Carlo search could
be performed on the complex Fourier space coefficients in analogy to the two photon
case in Section 3.5.3. The hypothesis is that the three photon correlations can
distinguish different structures better than the two photon version and thus the
degeneracy of solutions is lower or nonexistent.
For future photon correlation based reconstruction schemes, the shot noise needs

to be considered. As a simple denoising scheme one may simply calculate the cor-
relations of Poissonian noise and subtracting it from the experimental correlation
with the signal to noise ratio as a scaling factor.
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