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1 Introduction

Every eucaryotic cell contains a nucleus. It is enclosed by a double membrane, the
nuclear envelope which protects the genetic information stored in the DNA inside the
nucleus. The DNA itself contains the construction plans of all components needed by
a cell, such as proteins or RNA. The production of proteins takes place in ribosomes,
which are not located in the nucleus. Therefore, the RNA has to be transported through
the nuclear envelope. This is done through the nuclear pore complex (NPC), which is
the only type of pore in the nuclear envelope. It is responsible for transport from the
nucleus to the cytoplasm and vice versa. To protect the DNA from harm, this gating
has to be highly selective. Therefore, every molecule that needs to be transported into
the nuclues carries a nuclear localization signal (NLS), whereas molecules that need to
be exported have a nuclear export signal (NES), as can be seen in Figure 1.1. These sig-
nals are special protein sequences that can be recognized by transport receptors. These
receptors can then distinguish between inert proteins and proteins that are intended to
pass through the nuclear pore.
To transport a molecule with a transport signal through the pore, a transport receptor
binds to that molecule and carries it to the opposite side of the NPC. There, the dis-
sociation of the cargo-transporter complex is triggered by binding of RanGTP on the
nucleoplasm side and by the hydrolysis of RanGTP to RanGDP on the cytoplasmic side.
RanGDP (Ran is a small GTPase protein) is then again trasported from the cytoplasm
to the nucleoplasm by the RanGDP importer NTF2, where it is converted to RanGTP
(Miao and Schulten, 2009).

The NPC has a diameter of approximately 120 nm and is composed of about 30
different proteins, the so called nucleoporins (nups). It can be seen in Figure 1.2. The
structure of its cytoplasmic part differs from the one reaching into the nucleus. Where
on one side there are eight long filaments reaching into the cytoplasm, on the other side
there is a so-called basket. The pore has an hourglass shape with a diameter between
45 and 70 nm.

The central pore contains long filaments of nups, which consist of repeating phenyl-
analine glycine sequences connected by polar linkers of varying amino acid composition
(called FG-repeats). The most abundant FG-motifs are FG, FxFG (where x stands for
any amino acid) and GLFG. How these FG-repeats are arranged in the nuclear pore is
not yet clear as they are very flexible and largely disordered and, therefore, their config-
uration is difficult to determine experimentally. So, at present, there are several main
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Chapter 1. Introduction

Figure 1.1: Diagram of the nuclear transport taken from Molecular Biology of the Cell,
Alberts

Figure 1.2: Diagram of the nuclear pore complex adapted from (Peters, 2005)

models of the structure inside the NPC.
Frey and Görlich (Frey et al., 2006) propose that the FG-repeats can form a saturated
hydrogel in vitro. The meshwork is formed due to interactions between the hydropho-
bic FG-motifs, which tend to aggregate and form the joint connections of the FG-FG
network. Newly gained results lead them to the assumption that even the linkers might
be involved in the formation of the network (Ader et al., 2010). They generated a gel in
which nuclear transport receptors diffuse faster than a control protein. A model cargo
that was bound to special nuclear transport receptors (NTR), was even transported
20,000 times faster than the free one. The diffusion of smaller particles is regulated by
the size of the FG mesh. They assume that the transporter protein can dissolve the
FG-FG network of the sieve-like meshwork in the gel. This would allow larger cargoes
to pass through the pore when they are bound to the transporter. The authors propose
that such a gel will also be formed in vivo, in the NPC.
However, the FG concentration in such a gel has to be high and not every FG-hydrogel
showed such a selective behaviour. Additionally, the formation of this gel requires ex-
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treme pH and salt concentrations. It is, therefore, not clear to what extent it reflects
the situation in the nuclear pore.
In contrast to the “selective phase model” mentioned above, the “virtual gating” model
of M. Rout et al. (Rout et al., 2003) regards the NPC as a catalyst which lowers the
activation energy for passage. The entropic barrier for large molecules - those with a
mass larger than 30 to 40 kDa - to pass through the narrow pore is usually very high,
as the centre is already crowded with FG-repeats. In contrast to the model of Frey and
Görlich, the FG-repeats are regarded as mostly non-interacting. This is proposed by
R. Lim and U. Aebi, who performed atomic force microscopy (AFM) experiments on
nucleoporins (Lim et al., 2006). For transporter proteins the entropic barrier is lower,
due to the fact that they are able to bind to the FG-repeats, thus pulling their bound
cargo through the pore.
The third idea was published by R. Peters (Peters, 2005) and is based on a reduction of
dimensionality for diffusion through the pore. The model suggests that the FG-repeats
cover the filaments and the central channel with a coherent FG surface. The FG surface
on the cytoplasmic filaments serves as an antenna for transporter proteins to attract
them and bring them closer to the entrance of the pore channel.
Inside the channel, the FG surface is used to guide transporters through the pore, as
they search the surface by a two-dimensional random walk. To create a selective filter,
long hydrophilic unfolded peptide chains reach into the pore centre. These chains can
be pushed aside by large transport complexes. The selectivity filter will reject neutral
molecules because they are not bound to the FG-surface.
Last but not least, the “forest model”, which was introduced by J. Yamada et al. (Ya-
mada et al., 2010) combines the “selective phase” with the “entropic barrier” model.
They observed that the FG-repeats are mainly in two different conformations. One
is a globular, collapsed coil conformation, which they called “shrubs” and the other is
an extended-coil conformation, which is refered to as “trees”. The “trees” consist of an
uncoiled part reaching from the scaffold of the pore into the central channel, where it
ends up in a coiled conformation that may be able to aggregate, forming a meshwork
with hydrogel-like properties (Wälde and Kehlenbach, 2010). The “shrubs”, however,
are already coiled close to the scaffold and therefore do not reach far into the central
channel.
Both conformations can be found through the entire pore, generating two zones for
transportation. The first is created by the “trees” as they reach far into the pore, leaving
an open pathway in the middle. Transport through the first zone functions as in the
“selective phase” model described above and is mostly used by large cargo.
The second zone contains the “shrubs” and the uncoiled parts of the “trees”. Empty
NTRs or NTRs with just small cargoes may travel through this zone as it works like an
entropic barrier to larger molecules. Regarding the models above, it is not clear which
parameters influence the structure of the selectivity barrier most. It is only known that
the compostion of the FG-repeats plays a role, as well as their length and their density
inside the channel. Even the exact interaction with the transporter receptors remains
unclear. The problem for researchers is that the FG-repeats are highly flexible and even
the most structured model by Görlich and Frey is still disorderd, so that the config-
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Chapter 1. Introduction

uration of the selectivity barrier inside the central channel still cannot be resolved by
microscoping and scattering experiments.
For atomistic Molecular Dynamic (MD) simulations the NPC is too large to be simu-
lated as a whole. Additionally, the protein folding lies within timescales of miliseconds,
which is much too long for usual MD simulations.
Therefore, we aim at developing a simple coarse grained (CG) model to carry out Monte
Carlo simulations and study the effect of the different factors mentioned above. With
this model we want to examine the dependency of the selectivity barrier from the cohe-
sion of different parts of the FG-nups. This may help to solve the question of whether the
nups tend to collapse and coil individually or whether they prefer to build a meshwork.
We further want to observe whether the length of the FG-nups influences the assembly
of the barrier.
It is also interesting to know whether there is a difference between the behaviour of
freely moving FG-repeats, as is usually the case in the in vitro experiments of Görlich
and Frey, and FG-repeats that are anchored in the scaffold of the pore. Fixing one end
of the FG-repeats to the scaffold of the pore will lead to a decrease in the degrees of
freedom of the nups. Therefore, a possible gel formation could be hindered.
The experiments of Görlich and Frey lead to another interesting point, as for them it
was not possible to generate a gel-phase with all the FG-repeats they used. Hence,
the structure of the selectivity barrier could be influenced by the amino acid sequence
of the FG-nups. With our Monte Carlo method, we will try to determine the extend
to which the distance between two FG sequences will influence the aggregation of the
FG-repeats. In a first step, the model is parameterized to reproduce results of all-atom
(aa) Molecular Dynamic simulations of smaller FG-repeat model systems. The results
of such a comparison are used to define a set of parameter, which will later describe the
properties of longer FG-repeats. Therefore, we focussed on persistence lengths of single
FG-repeats and clustering properties of small ones.
In a second step, when all the parameters are defined, we will examine which interactions
will have which effect on the network by changing single parameters.
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2 Methods

2.1 Monte Carlo Simulation

The term “Monte Carlo method” is very general, and the different methods only have in
common that they use stochastic techniques to solve a problem.
The way a Monte Carlo simulation is performed depends strongly on the system of inter-
est. It can be used to evaluate definite integrals, especially multi-dimensional ones with
complicated boundaries. It is also suitable for studying systems with a large number of
coupled degrees of freedom and many more.
In biophysics highdimensional integrals, where the calculation cannot be done analyt-
ically and even the numerical solution exceeds computational feasibility, have to be
solved. The partition sum of a system, for example, is such an integral. It is given by

Z = c

∫

dpNdqN exp
[

−βH(qN , pN)
]

, (2.1)

where qN stand for the coordinates of the N particles and pN for the momenta.
H(qN , pN) is the Hamiltonian of the system. It is usually needed to calculate the average
of an observable O

〈O〉 =

∫

dqN exp
[

−βU(qN )
]

O(qN)
∫

dqN exp [−βU(qN )] , (2.2)

where U(qN ) is the potential energy. These high dimensional integrals can only be
solved analytically for a few systems. In general they have to be treated numerically.

2.1.1 Metropolis Algorithm

The Metropolis algorithm provides a way of calculating the average of an observable
without the need to calculate the partition sum. Therefore it is neccessary to generate
random points in configurational space according to the probability distribution given
by
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Chapter 2. Methods

ρ =
exp

[

−βU(qN )
]

Z
, (2.3)

where Z =
∫

dqN exp
[

−βU(qN )
]

. It can easily be seen that ρ is nonnegative. The mean
value of the observable can then be written as

〈O〉 =
1

L

L
∑

i=1

niO(r
N
i ). (2.4)

L is the total number of generated points ni. To sample the region of interest in
our phase space a starting conformation rN , further declared as o, with a non-vanishing
Boltzmann factor exp [−βU(o)] is generated. Then a new configuration n is generated
by adding a small random displacement ∆ to o. Clearly the Boltzmann factor of the
new state is exp [−βU(n)]. To decide whether the new state is accepted or rejected, the
Metropolis algorithm is used, as it is simple and generally applicable.

Detailed Balance and Acceptance Criteria

The acceptance criteria of a metropolis algorithm are directly connected to a principle
called “detailed balance”. In equilibrium, the probability of being in state o and going
to state n must be the same as the probability of being in state n and going to state o

ρ(o)π(o→ n) = ρ(n)π(n→ o) (2.5)

ρ refers to the equilibrium probability to be in state o, j and π describes the
transition probability to go from one state into another. In a Monte Carlo simulation
the transition probability is split into two parts. The first part describes the probability
to perform the trial move from o to n. This probability is denoted as α(o → n) below.
The second part is the probability acc(o → n) to accept the trail move from state o to
state n. Now the transition probability π can be rewritten as follows:

π(o→ n) = α(o→ n)× acc(o→ n). (2.6)

If we now choose α to be a symmetrical probability matrix, equation 2.5 can be
rewritten as
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2.1. Monte Carlo Simulation

ρ(o)× acc(o→ n) = ρ(n)× acc(n→ o), (2.7)

which will lead to

acc(o→ n)

acc(n→ o)
=

ρ(n)

ρ(o)
= exp {−β [U(n)− U(o)]} (2.8)

Still, there are many choices left for the acceptance probability that will satify this
condition and, of course, the one that it must not be larger than 1. The choice that
Metropolis et al. used and which I will also use as acceptance criterion is

acc(o→ n) =
ρ(n)

ρ(o)
for ρ(n) < ρ(o)

= 1 for ρ(n) ≥ ρ(o),

(2.9)

because the acceptance probability turns out to be rather simple

acc(o→ n) = exp {−β [U(n)− U(o)]} for U(n) > U(o) (2.10)

and the partition sum is also no longer needed. If the potential energy of the new
state is equal to or even lower than that of the old state, it will be accepted right away.

2.1.2 MC Move Methods

In order to reduce the size of the conformational space that needs to be sampled, we
decided to build a simplified coarse grained model of the nucleoporins. Therefore, we
replaced the single atoms of an amino acid by three beads on a straight line. The first and
the last bead deal as junctions to the previous and the following segments, respectively.
In nature these beads would be best described by the peptide bond between the carbon
C of the carboxyl groub and the nitrogen N of the following amino acid. The distance
between them is kept fixed at length lseg. The bondangle, however, is flexible, as it is
only restricted by harmonic potential.

The second bead is a property bead used for the calculation of the energies, as
it contains the information about the Lennard-Jones and the Coulomb interaction. In
our model there are 4 different types of property beads: neutral, polar, charged and
hydrophobic. These four are chosen because amino acids of these types can mainly be
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α

Figure 2.1: A general composition of an amino acid. The R stands for a specific side
chain. In the MC simulation a the backbone N-Cα-C is represnted by the line and the
information of the side chain is written on the middle bead.

Figure 2.2: Simple model of an amino acid chain used in the MC simulation. The dark
grey circles represent the property beads containing the information of the underlying AA.
The red circles represent the junctions.

found in FG-repeats. In nature the property of an amino acid is given by its specific side
chain, which is bonded to the Cα. Thus, the property bead can be understood as the
coarse grained sidechain. A diagram of what a nup would look like in the MC simulation
can be seen in Figure 2.2.

For MC simulations of nonbonded systems, the MC move can easily be performed
by just randomly displacing particles. However, in bonded systems, the displacement
has to be more restrained, as the bondlength has to stay fixed. Therefore, the problem
arises of how to obtain meaningful conformations with reasonable acceptance ratios,
while still sampling enough of the conformational space.
To deal with this problem, we had two main ideas for performing a Monte Carlo move.
The first idea was to rebuild the chain, starting from a randomly chosen number, and
the second was a so-called fixed end method.

Chain Rebuilding

This method is based on rebuilding the chain starting from a randomly chosen startpoint.
From here on, all the following segments are deleted and a set of k random vectors bi
is generated. Between all these vectors and the previous segment the anglepotential
is calculated. To calculate the acceptance probability of a new segment, the potential
energy has to be split into an orientantional part Uor and into a part that only depends
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2.1. Monte Carlo Simulation

on the position of the atoms Upos. A new segment is then accepted with the probability
of

p(bn) =
exp [−βUor(bn)]

∑k
i=1

exp [−βUor(bi)]
(2.11)

where Uor is the energy that depends on orientations and the sumW (n) =
∑k

i=1
exp [−βUor(bi)]

denotes the so-called Rosenbluth factor.
This is done until the whole chain is rebuilt. The acceptance criteria has changed to

acc(o→ n) = min

(

1,
W (o)

W (n)
exp {−β [Upos(o)− Upos(n)]}

)

(2.12)

with

W (o) = exp [−βUor(bo)] +

k
∑

j=2

exp [−βUor(bj)]. (2.13)

We found that this method works well for single chains, but leads to high rejection
rates when multiple chains are involved. This arises because the step size for a move
cannot be defined. Additionally, as the whole chain is rebuilt, even small changes can
lead to very large changes in the overall conformation, which again can cause clashes
with other chains.
However, a positive aspect of this method is that it has low correlation times, as the
conformational changes from the old state to the new one are usually very large.

Fixed End Method

The Monte Carlo steps in the fixed end method are performed as follows. First, a random
number nseg between 1 and Nseg, which is the total amount of segments of the chain, is
generated. nseg refers to the first bead of the segment which will be changed. There are
now three possible cases.

• The first possibility is that the randomly chosen segment lies between 1 ≤ nseg ≤
Nseg−2 as shown in Figure 2.5. In this situation, three segments will be displaced.
The endpoint j2 of segment s1 is moved according to a gaussian distribution. After
displacement, it is projected back on a sphere around its first junction j1. The
sphere has the radius of a segment length. After that, a vector t is generated from
the endpoint of the newly created segment s1,new to junction j4. The length of ~t
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Chapter 2. Methods

may not exceed the length of two segments. Otherwise, the displacement of j2 has
to be repeated until a connection ~t between the two mentioned junctions can be
made. After that, the new segments s2,new and s3,new are generated so that they
span an isosceles triangle. The junction j3,new is put into a plane spanned by ~t and
the old junction j3. Even by not moving the junction out of the mentioned plane,
the simulation is still ergodic. So it is not neccessary to introduce yet another
random number that would move the junction out of the plane. The displacement
described here can be seen in Figure 2.5 and 2.6.

• When the chosen segment is the penultimate segment, the method above cannot
be applied. In this case, we move the endpoint of the chain. Again this point
may not be moved further away from the first junction than twice the length of a
segment. This is guaranteed by the connecting vector ~t. The displacement is now
carried out by randomly choosing the length of ~t between 0 and its maximal length
(Figure 2.3). All lengths are equally distributed. After this, the new endpoint of
~tnew is displaced on a sphere with the radius of | ~tnew|.

Again, the newly generated segments s1,new and s2,new form an isosceles triangle
and the junction between them is put into the plane spanned by the old junction
and the connecting vector ~tnew (figure 2.4).

Figure 2.3: First part of the second possible fixed end move. The vector t is shortend to
tnew.

Figure 2.4: Second part of the second possible fixed end move. The the new endpoint
j3,new is diplaced and the segments s1,new and s2,new are generated, so that they form an
isosceles triangle.

• The third and also the last possibility is to move only the last segment. Here, the
endpoint of the segment is moved on a sphere, as already described in the first
option.

To determine the parameters, we introduced another random number. This number
is either one or zero and dictates whether the MC move is done forwards or backwards.

14



2.1. Monte Carlo Simulation

s1 s2 s3

s1,new t

j1

j2,new

j2 j4

j3

Figure 2.5: The displacement of the first segment s1 is based on a gaussian distributed
random number that is added to junction j2. The length of the new segment s1,new is then
reduced to the fixed segment length. The connecting vector t may not exceed a length of
twice a segment length.

s1,new t
s2,new

s3,new

Figure 2.6: The second part of the segment displacement of the fixed end method.

Therefore, the enumeration of all junctions and segments is mirrored and both ends will
be moved equally.
For a better description of the situation inside the nuclear pore, this random number is
switched off, so that the first bead of each chain stays fixed. It can be understood as
the junction between the nups and the nuclear pore itself.
If more than a single chain is simulated, yet another random number is generated right
at the beginning of an MC move. This number nchain then defines on which chain the
MC move is carried out and it is essential that 1 ≤ nchain ≤ Nchain, where Nchain is
the total number of chains in the simulation.

To finally perform an MC step I chose the fixed-end method, as the stepsize of
a single displacement can easily be determined by width of the gaussian distributions.
Additionally, as only three segments are displaced within a single MC step, the newly
generated conformations are close to the old one. Therefore, in systems with more than
one chain, clashes can be avoided. However, as the conformational changes are rather
small, the correlation times are high.

After a move is completed, the energy Enew of the new state is calculated. The
energy function includes the bondangle potential between all neighbouring segments and
the Lennard-Jones potential for all beads that contain the information of the segment.
For the Lennard-Jones potential we weakened the interaction between neighbouring
particles by a factor of 4. Such a scaling is commonly applied in MD and MC calculations
to avoid artificially high energies. Then the Boltzmann weight referring to the old state is
calculated. The new state is accepted if an equally distributed random number between
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0 and 1 is smaller than the Boltzmann factor. If the new state is accepted, it is stored
and replaces the old state. Otherwise, a new MC move is carried out, starting from
the old confirmation. The functions describing the interactions are explained in detail
in section 2.2.3. To account for the effect of the solvent, the Coulomb interaction is
extended by the Debye Hückel equation, which describes the weakening of the Coulomb
interaction due to the surrounding material. The extended equation is given by

UDH,coul = exp (−κr) q1q2

4πǫ0ǫrr
, (2.14)

where qi are the charges, ǫ0 is the dielectric constant and ǫr is the relative per-
mittivity, which is set to ǫr = 80. In the exponential function, κ stands for the inverse
Debye Hückel length. It is calculated via

κ =

√

NAe2
∑

cizi2

ǫ0ǫrkBT
. (2.15)

In this equation, the concentration of the salt ions is denoted as ci with their charge
number zi.
The results of a Monte Carlo simulation strongly depend on random numbers. Therefore,
the quality of the algorithm of the random number generator needs to be high. In our
simulaiton, we used the Mersenne twister mt 19937 algorithm which has a long period.
It was especially designed to meet the needs of Monte Carlo simulations.
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2.1. Monte Carlo Simulation

Figure 2.7: Flowchart of the Monte Carlo simulation. The second and the third case of
an MC move are combined in a single box, as no displacement is possible, which will not
lead to the calculation of the Boltzmann weight.

17



Chapter 2. Methods

2.2 Molecular Dynamic Simulation

Molecular dynamics (MD) simulations describe molecular systems as they develop in
time. Due to the large number of atoms in these systems, Newton’s equations of motion
are calculated numerically. Therefore, it is neccessary to apply three basic approxima-
tions. The first is called the Born Oppenheimer Aproximation, which allows a decoupling
of nuclear and electronic motion. Secondly, it is assumed that the nuclei behave in a
classical way, and thirdly, that all interactions between particles can be described in
empirical force fields. The three approximations are detailed below.

2.2.1 Born-Oppenheimer Approximation

On an atomistic level, the evolution of a system in time is described by the time depen-
dent Schrödinger equation.

Ĥψ = i~
∂ψ

∂t
(2.16)

Here, Ĥ is the Hamiltonian operator, i.e the sum of the potential and the kinetic
energy operators, ψ is the wavefunction and ~ is Planck’s constant divided by 2π. The
wavefunction ψ depends on the coordinates and momenta of the nuclei and electrons.
The slowly moving nuclei are much heavier than the fast moving electrons. For such a
situation, the Born Oppenheimer approximation allows us to separate the two systems.
The general idea behind this is that the electrons will adjust instantaneously to the
nuclei. Consequently, the electronic wavefunction depends only parametrically on the
coordinates of the nuclei, so that the total wavefunction can be written as

ψtot = ψn(R)ψe(R; r), (2.17)

where R = (R1,R2, ...,RN ) denotes the coordinates and momenta of N nuclei
and r = (r1, r2, ..., rM) stands for the coordinates and momenta of M electrons. The
electronic coordinates can now be approximated by their average values, due to their
fast motion. The nuclei move in the potential which is created by the average field
of the electrons. Using the Born Oppenheimer approximation, the so-called potential
energy surface is obtained by solving the time independent Schrödinger equation for the
electronic system

Ĥeψe = Eeψe (2.18)

where Ĥe is the electronic Hamiltonian and Ee is the energy eigenvalue, which
depends on the nuclear postions R.
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2.2. Molecular Dynamic Simulation

2.2.2 Classical Approximation

As already mentioned above, we assume that the nuclei can be treated as classical
particles, i.e. they obey Newton’s equations of motion.

−∇iV (R) = mi
d2Ri(t)

dt2
, (2.19)

Fi = miai, (2.20)

where V (R) equals the potential energy and Ri and mi are the coordinates and
mass of the atom i. A change in the potential energy results in a force Fi acting on
atom i, which is then accelerated by ai. The acceleration again leads to a change in the
atom’s velocity and position within a discrete time step ∆t. During a simulation, this
time step has now to be small enough to include even the fastest motions of the system.
Usually, these are the bond and angle vibrations of the lightest atoms, in biological
systems mostly hydrogens. This restriction causes time steps of about 1 fs.

2.2.3 Force Fields

In MD simulations, force fields contain all information about particle interactions. These
can be split into two main groups, bonded and non-bonded interaction. Although there
are already numerous quantum mechanical methods available, they are still too expensive
to calculate them on a whole system. This is why the bonds are dealt with in a classical
approximation.

Bonded Interactions

Figure 2.8: Graphical description of the potentials used in MD simulations

Instead of solving Schrödinger’s equation to get the potential energy of each bond,
they are approximated by different classical potentials.

19



Chapter 2. Methods

• Pair bonds
Covalent bonds are treated as springs with a certain spring constant kb,ij and a
relaxed bond length b0,ij .

Vb =
∑

bonds

1

2
kb,ij(bij − b0,ij) (2.21)

The spring constant defines how strong a bond between two atoms i,j is. Usually,
this parameter is quite high, so that only an oscillation around its equilibrium
length is tolerated. The amplitudes of such an oscillation are small at room tem-
perature, where most simulations are carried out. Bonds that are defined cannot
be broken during a simulation.

• Bond angle potential
The potential energy of the bond angle is also approximated by a harmonic po-
tential.

Va =
∑

angles

kθ,ijk

2
(θijk − θ0,ijk) (2.22)

Here, the spring constant kθ,ijk characterizes the stiffness of the bond angle θijk
between atoms i, j and k, as shown in Figure 2.8.

• Dihedral potential
Another potential energy dealing with angles is the dihedral potential. Dihedral
angles are shown in Figure 2.8. They describe the potential energy, which depends
on the angle between plane A that is spanned by the atoms i,j and k and plane B
spanned by atoms j,k and l. In contrast to the bond angle potential, the dihedral
potential does not behave like a harmonic potential, but is commonly described
by a cosine function.

Vdih =
∑

dihedrals

Vn

2
(1 + cos [nω − γ]) (2.23)

• Improper Dihedrals
With the potentials described above, it is not possible to stabilise planar rings.
Therefore, a harmonic potential for the angle between the planes spanned by three
out of four consecutively bound atoms is defined. The potential for the so-called
improper dihedrals is given by

Vid =
∑

improper dih.

kφ

2
(φijkl − φ0)

2 (2.24)

20



2.2. Molecular Dynamic Simulation

Non-bonded Interactions

Two different types of non-bonded interactions are commonly used in MD simulations,
i.e. the Lennard-Jones potential and the Coulomb interaction.

• Lennard-Jones potential
The Lennard-Jones potential is defined in the following way

VLJ = 4ǫij

(

(

σij

rij

)12

−
(

σij

rij

)6
)

(2.25)

It is used to describe all neutral interaction between two particles. The 1

r12
term is a

repulsive term that comes from Pauli’s principle, which characterizes the repulsion
of electrons surrounding a nucleus. 1

r12
is chosen for computational efficiency. The

attractive 1

r6
term arises from the Van der Waals interaction, which is a classical

description of induced dipole-dipole interactions. The values for the parameter ǫ
and σ are specified for each atom type individually.
As can be seen, the Lennard-Jones potential is very short ranged, due to its high
exponents. Therefore, a cut-off point for the calculation is usually set at large
distances, as it hardly contributes to the potential energy.

• Coulomb interaction
The potential that describes the interaction of two point charges qi,j is called
Coulomb interaction

VCoul =
qiqj

4πǫ0ǫr

1

rij
, (2.26)

where ri,j is the distance between the two charges and ǫ0 is the electric constant.
ǫ is called the dielectric constant, which represents the weakening of the interac-
tion due to the surrounding material. For calculations in a vacuum, the dielectric
constant is given as ǫr = 1.
As can be seen, the Coulomb interaction is a long-range interaction. This means
that its contribution to the total energy of the system cannot be neglected even
for large distances. To reduce the computational costs for the calculation, new
techniques were developed. The Ewald Summation reduces the scaling for com-
putational costs from an order of N2 to O(N3/2). The Ewald summation can only
be used in periodic systems. MD simulations often use periodic boundaries, so that
an artificial periodic system is generated to which this method can be applied. It
splits the electric potential into two parts. One part, dealing with short-range
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Chapter 2. Methods

interactions, stays in real space and the second part will be converted into Fourier
space. The Fourier calculation can be further improved by introducing a mesh on
which the charges are positioned. An algorithm using this method would be the
Particle Mesh Ewald algorithm which only scales with O(N lnN).

Parameters

The parameters that are neccessary for the force field can be obtained in two differ-
ent ways. The experimental methods calculate them via a multi-dimensional fitting to
experimental data. The other method is to derive them from quantum mechanical ab
initio calculations. Once a set of parameters is gained, they only make sense as a whole,
i.e. one single parameter does not need to have a real physical meaning, but when all
parameters are taken into account, they can reproduce experimental observations.

2.2.4 Virtual Interaction Sites

Virtual interaction sites, short vsites, are dummy atoms in MD simulations. They can
carry charges or be involved in any other interaction. In our case we replaced hydrogens
by vsites to remove the fastest degrees of freedom, allowing us to use larger integration
steps during the simulation. The dummy atoms are constructed in different ways for
different types of hydrogens that are to be replaced.

d

d

α

A B
C

Figure 2.9: The three different types of virtual site construction for hydrogens. The black
circles represent the atoms which are used to construct the virtual sites (grey circles). The
larger circles stand for heavy atoms.

• single amine or amide hydrogens: The hydrogen is placed on a line going through
the heavy atom and a point on the line through both second bonded atoms. The
distance between the hydrogen and the heavy atom is fixed (Figure 2.9A).

• planar amine hydrogens: In this case, the nitrogen is only bonded to a single other
heavy atom. So the method described above cannot by applied because of the
missing second heavy atom. Hence, the hydrogens are again placed in a certain
fixed distance to the nitrogen but this time with a fixed angle to the carbon atom
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2.2. Molecular Dynamic Simulation

and in the plane spanned by the nitrogen, carbon and one of the other heavy atoms
(Figure 2.9B).

• amine group hydrogens: To keep the rotational degree of freedom, the three hy-
rogens are replaced by two virtual sites to keep the rotational freedom, while
removing the bond angle degrees of freedom. The two dummy atoms contain the
same masses, moment of inertia and centre of mass as the three hydrogens and the
nitrogen, but they have no other interaction than a connection to each other and
to the carbon. The replaced atoms can be reconstructed by a linear combination
of the two carbon mass vectors and their outer product (Figure 2.9C).
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3 Results

After implementing the MC scheme (Fig. 2.7) for our CG-model described in section
2.1.2, the bond-angle, LJ, charge etc. parameters had to be determined to describe the
behaviour of FG nups. To this and, we carried out aa-MD simulations of small model
peptides and adjusted the parameters of the CG model to reproduce the aa calculations.
We focussed on the aggregation of small peptides and on the persistence length of single
large molecules as both characteristics are from a special point of interest to describe
the seletivity barrier of the NPC.

3.1 Aggregation of Small Peptides

To observe the aggregation of small peptides, we set up MD simulation of six heptamers.
Each heptamer was built the same way. To cover all the parameters we wanted to imply
in the Monte Carlo simulation, we used four different heptamers in the MD simulations.
The first heptamer was completely built of alanine. For the remaining 3 heptamers we
exchanged the middle amino acid by either lysine, asparagine or aspartic acid. These
4 amino acids represent the following characteristics: hydrophobic, positively charged,
polar and negatively charged. On both ends of a heptamer, we added caping groups.
The simulations were done using Gromacs with the amber99 force field. They were
performed in “SPC” water at a physiological salt concentration of 150 mM NaCl. The
temperature was kept constant using V-rescale coupling at T = 300 K with a coupling
time of τT = 0.1 ps. The pressure was coupled to a Parrinelly Rahman barostat with
a coupling time of τp = 4 ps and an isotropic compressibility of 4.5 × 10−5 bar−1.
Long range interactions were calculated by particle-mesh Ewald summation with a grid
spacing of 0.12 nm and fourth order B-spline interpolation. The structures were written
out every 10 ps. In all simulations we replaced the hydrogens by virtual sites to remove
the fastest degrees of freedom. Because of this, an intergration time step of 4 fs could
be used. The construction of the virtual sites used in the simulations is explained in
section 2.2.4.

Each heptamer was equilibrated separately in a simulation of 20 ns before they
where put together in one dodecahedral simulation box with periodic boundaries. The
dodecahedral shape has the advantage that it fits the shape of the proteins better than
a cubic box. Therefore, less water has to be simulated, which leads to a decrease of
computational costs.
The 6 heptamers were placed randomly inside the simulation box. The cluster sizes were
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Chapter 3. Results

determined by using the g_mindist program, which computes the minimum distance be-
tween two chosen groups. If the distance is shorter than 4 Å, the two groups are assumed
to form a cluster. This calculation is done for each possible pair of peptide chains in
each frame. If more than one cluster is found in a single frame, the two clusters are
analyzed to determine whether they are two idependent clusters or whether they belong
to a single, but larger cluster. To give an example, if the program finds chain A and
chain D to be in a cluster, but also finds chain D and F to form a cluster in the same
frame, then the new cluster will be ADF, having a cluster size of 3. In contrast, if the
program finds A and D to form a cluster and B and E, then it will treat them as two
separate clusters, each having a cluster size of 2.
In Figure 3.1 the clustering behaviour of the observed heptamers is shown. It stands out
that heptamers where the middle alanine was replaced by aspartic acid aggregate less
than the others. In fact it seems that this set up prefers a cluster size of two heptamers.
The largest clusters are formed by the pure alanine heptamers, followed by aspartic acid
containing heptamers.
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Figure 3.1: Clustering of heptamers
observed with MD
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Figure 3.2: Clustering of nonamers
observed with MC

In the MC simulation nonamers were used instead of heptamers. The two addi-
tional amino acids represent the capping groups in the MD simulation. Therefore, the
peptide chains in the MC simulation consist of 9 alanines, where the middle one is again
replaced by the amino acid of interest. Each simulation was performed at T = 300 K,
and a step size of 0.15, leading to a gaussian distribution with a mean value of 0 and
a variance of 0.152, was used to perform 10,000,000 Monte Carlo steps. The nonamers
were placed randomly, but not further away than

√
30 Å. Before they were put together

in a single simulation, the nonamers were equilibrated in an additional MC simulation.

The first set of parameters for MC simulation was taken from Bellesia and Shea
(Bellesia and Shea, 2007), who examined the structure and stability of chiral β-tapes
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3.2. Persistence Length
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Figure 3.3: Aggregation of the peptide chain containing lysine in MD and MC simulation

using a coarse-grained model.
Figure 3.2 shows the cluster sizes obtained for the nonamers, except the ones made of
pure alanine. Only for the negatively charged amino acid aspartic acid are the results
nearly identical to the MD simulations. The behaviour of the set up where an asparagine
replaced the middle alanine is close to the result found with MD simulations. The
aggregation of pure alanine nonamers and of the nonamers where the middle amino acid
is a lysine (Fig. 3.3) are completely different. Therefore, we focussed on generating a
parameter set-up that will describe the aggregation as predicted by the MD simulations
predict.
To this end, we performed MC simulations in which the interaction of two hydrophobic
parts are made stronger. The results can be seen in Figure 3.4. With rising interaction
strength, the clustering of the nonamers got closer to that observed in MD simulations.
However, the difference in the size of the clusters is still too large. Therefore, the strength
of the hydrophobic interaction has yet to be increased.

3.2 Persistence Length

The persistence length lp describes the stiffness of a peptide or chain. It is given by

〈cos β〉 = e
l
lp (3.1)

where β is the bondangle and l is the length of a segment. Now, the persistence
length is the length where the correlation between the bondangles has dropped to 1

e
. For

computation of the persistence length, we only used the Cαs of the peptide chains.
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Figure 3.4: clustering of pure alanine peptide chains in MD and MC simulations. The
strength of the hydrophic interaction used in the MC simulation rises from parameter 1 to
4

3.2.1 Vacuum Coiled Peptide

To begin with, we computed the the persistence length of a protein with 263 amino acids.
Therefore, the protein was generated in pymol and first simulated in a vacuum to speed
up the folding. The vacuum simulation was done at a temperature of 500 K using a
temperature coupling time τT = 0, 1 ps for the Berendsen thermostat. The integration
time step was chosen to be 2 fs. No periodic boundary conditions were applied. We let
the simulation run until the linear starting structure was completely coiled. After this, a
new simluation was started using the folded structure in a dodecahedral box. This time
the simulation was done in “SPC” water at 300 K and a salt concentration of 150 mmol/L.
The pressure was controlled by using Parrinello-Rahman isotropic pressure coupling with
a coupling constant of τp = 5 ps at a compressibility of 4.5 × 10−5 bar−1. For V-rescale
temperature coupling, we used a coupling time of τT = 2.5 ps. The integration time
step was again chosen to be 2 fs. For computation of the long range interactions we used
fourth order particle-mesh Ewald summation, with a grid spacing of 0.12 nm and cut
off of 10 Å. The structure was written out every 2 ps.
The persistence length was then calculated using only every tenth frame of the trajectory
and we obtained a persistence length of lp = 1.23 ± 0.02 amino acids, which will lead

to a persistence length of about 4 Å. A similar persistence length of lp = 3.9 ± 1.4 Å,
which is that of the length of an amino acid, was also found by Roderick Y. H. Lim
et al (Lim et al., 2006), who determined the persistence length by using atomic force
microscopy.
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4 Discussion and Outlook

We showed that it is generally possible to reproduce the clustering behaviour of short
peptide chains. The persistence lengths of longer molecules are of the same order of
magnitude as found by experimentalists. According to the clustering behaviour of the
peptide chains, where the middle alanine was replaced by a different amino acid, it
seems that the ratio between the non-hydrophobic hydrophobic interaction and the hy-
drophobic hydrophobic interaction was already described well by the first parameter
set. However, some parameters still need to be determined before simulations of a large
network can be carried out. At present, we are continuuing zo perform MC simulations
on pure alanine chains, until the clustering of this system, obtained by MD simulations,
can be reproduced. After that, we we will go on with the parametrisation of lysine,
which will be more difficult, as it also contains a coulomb interaction. In alanine the
coulomb interaction was set to zero as it does not contain charged groups. Therefore,
only a single parameter has to be changed in order to obtain a different aggregation.
However, even in a set up of pure lysine chains, two different parameters have to be
taken into account.
After the parameters have been set, we will simulate long peptide chains to determine
the persistence length, as we did with MD simulations. We have already tried to compare
peptides with a length of 20 amino acids regarding their persistence length. However,
the obtained persistence lengths were much shorter than a segment length and in most
cases it was not even possible to fit the persistence length to datapoints. Therefore, to
calculate reliable values for the persistence length, the peptide chains have to be much
larger than 20 amino acids.
As already mentioned in 2.1.2, we have the possibility to let the first part of a chain stay
fixed. Later, we want to use this option to see whether the clustering of longer chains
behaves differently when one end of them is fixed, compared to a situation in which
the chains may move around freely. Furthermore, we want to observe how a change in
the parameters will influence the properties of a meshwork. Last but not least, it has
to be noted that the simulations of even short peptide chains are very time consuming.
Therefore, the source code of the MC simulation will be optimized to reduce the compu-
tational time needed for a single MC step. This will allow simulations of larger systems,
in which we are interested, in an appropriate amount of computational time.
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