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Abstract

In a protein, nearby titratable sites can be coupled: the (de)protonation of one may

affect the other. The degree of this interaction depends on several factors and can

influence the measured pKa. Here, we derive a formalism based on double free

energy differences (ΔΔG) for quantifying the individual site pKa values of coupled

residues. As ΔΔG values can be obtained by means of alchemical free energy calcula-

tions, the presented approach allows for a convenient estimation of coupled residue

pKas in practice. We demonstrate that our approach and a previously proposed

microscopic pKa formalism, can be combined with alchemical free energy calculations

to resolve pH-dependent protein pKa values. Toy models and both, regular and

constant-pH molecular dynamics simulations, alongside experimental data, are used

to validate this approach. Our results highlight the insights gleaned when coupling

and microstate probabilities are analyzed and suggest extensions to more complex

enzymatic contexts. Furthermore, we find that naïvely computed pKa values that

ignore coupling, can be significantly improved when coupling is accounted for, in

some cases reducing the error by half. In short, alchemical free energy methods can

resolve the pKa values of both uncoupled and coupled residues.
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Protein function is known to depend on the acidity of the medium.1–5

Such a pH dependence is caused by the (de)protonation of amino acid

residues, whereby a proton is added or removed from an amino

acid side chain. As this process is pH-dependent, at certain pH levels,

the event will be more or less favorable and, by definition, at the pKa,

it will be equally probable (i.e., ΔGdeprot ¼0). Knowledge of the residue

pKa values in a protein is essential for understanding function. It not

only allows for a rationalization of protein properties (e.g., stability,6

solubility,7 etc.) and interactions at a specific pH,8,9 but in the context

of enzymatic and redox reactions, pKa values can provide insight into

how favorable a proton transfer will be under certain conditions.10,11

As alluded to, the pKa is fundamentally a free energy relationship;

for an isolated, protonatable group, the value is proportional to the

free energy of deprotonation:

ΔGdeprot ¼RT logð10Þ pKa�pHð Þ: ð1Þ

This relationship suggests that the free energy is linearly depen-

dent on the solution pH; as the pH moves farther away from

pKa, the free energy required to (de)protonate also shifts. A purely lin-

ear relationship between pH and ΔG implies a joint relationship with

the probability of finding a protonatable group i in a given state;
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this follows from the rearranged Henderson–Hasselbalch

(HH) equation:

pKi
a ¼ pHþ log10

hxii
1�hxii

� �
, ð2Þ

where hxii is the probability that residue i is protonated. However, such a

curve, when computed from experiment, may be flatter or irregularly

shaped,12 often necessitating the application of specialized fitting proce-

dures.13,14 In such cases, not only does the curve suggest a non-linear

dependence, an analysis of the complete pH-dependent behaviour is

often more insightful than defining the residue by a single pKa value.

In proteins and, in particular, enzymes, protonatable residues can,

in only a few cases, be separated from their interactions with one

another.15–18 Although these associations will be more pronounced at

an active site, even more distant residues can experience some degree

of coupling,19 interacting more or less strongly depending on their

microenvironment, the pH of the solution, and their own protonation

state. Indeed, this could result in a more challenging resolution of “the
pKa”;14 however, such interactions may provide insight into a reaction

mechanism or suggest the functional importance of a residue pair.20,21

In these scenarios, a modified HH-curve may still yield two clear

inflection points; however, the assignment of pKa values to specific

residues could remain a challenge. Moreover, the protonation proba-

bility of a coupled residue, although potentially described by an HH-

curve, is nonetheless a composite probability of microstates. As T. L.

Hill,22,23 J. T. Edsall,24–26 and more recently G. Matthias Ullmann and

co-workers27–29 have helped formalize, these states are in a pH-

dependent equilibrium with each other and collectively comprise the

macroscopic probability observed experimentally. This knowledge gap

between the measurable macrostates and the cryptic microstates sug-

gests a potential role for theoretical and computational methods,

which may help to resolve both the macroscopic pKa and the micro-

scopic pKa values.

In this work we explore the effects of coupling on the shifts in pKa

between spatially neighbouring residues. We begin by illustrating the

potential magnitude of such effects on a set of toy systems by sys-

tematically altering coupling strength. We then focus on two proteins

where similar coupling behaviour between amino acid residues are

observed. We demonstrate that explicitly accounting for the coupling

between titratable sites significantly improves accuracy of the pKa

prediction and highlight the potential insights associated with coupling

analysis (e.g., buffering between residues). Finally, we provide a practi-

cal guide for using alchemical free energy calculations to: (1) account

for pKa shifts in coupled residues based on the formalism derived in

this work; and (2) compute the probabilities of individual protonation

microstates based on an existing partition function framework.

THEORY

While from the perspective of statistical mechanics the behav-

iour of coupled titratable sites is well understood,22,23,25,28,30,31

the subsequent challenge arises: What is the best way to extract

information about changes in residue protonation using existing

computational approaches? Molecular dynamics (MD) simulations

offer an attractive solution to this question by providing efficient

sampling of well defined thermodynamic ensembles. Over the

years, several approaches have emerged to quantify pKa shifts

based on MD simulations, among the most popular are constant-pH

simulations (CpHMD)32–43 and alchemical free energy

calculations.44–46 While CpHMD explicitly models protonation

changes dynamically over the course of a simulation, an alchemical

approach considers discrete protonation states and computes the free

energies between them (see Appendix A in the Supporting Informa-

tion for additional details). Here, we focus on the latter approach and

demonstrate how to connect double free energy differences with a

statistical mechanics description of population changes in coupled res-

idue protonations.

pKa values and free energies

Consider the thermodynamic cycle given in Figure 1. To calculate the

absolute protein pKa value of a single residue (A), we must consider

the free energy of proton transfer from the gas (g) phase into the solu-

tion ðsÞ phase and then from the solution into the protein (p) phase.

However, for many model compounds, the free energy associated

with the proton transfer in solution is known. Using this reference

pKa value (pK ∘
a ) allows us to only consider the free energies associ-

ated with the rightmost cycle, thus reducing our problem to solving

ΔΔGs;pðAH !A�Þ — the free energy difference between a deprotona-

tion event in the solution phase and in the protein phase—which is

related to the protein pKa by

pKa ¼pK ∘
a þ

ΔGs,pðA�Þ�ΔGs,pðAHÞ
RT log 10ð Þ

¼pK ∘
a þ

ΔΔGs,pðAH !A�Þ
RT log 10ð Þ :

ð3Þ

From here we will refer to ΔΔGs;pðAH !A�Þ as ΔΔG. Equa-

tion (3) implicitly contains two terms, which we here call ΔΔGenv and

ΔGtitr, following the notation of Sharp and Honig.47 The first (ΔΔGenv)

represents the free energy of dissociating a proton within a protein

relative to the solvent environment, which we represent by a

capped peptide. It is assumed that the protein is fixed in some pro-

tonation state and, based on Tanford and Kirkwood,48 has often

been taken to be the state in which all titratable sites in the protein

are neutralized. Because these sites are fixed to some state, this

free energy is pH-independent. The second free energy compo-

nent (ΔGtitr) reintroduces pH dependence by capturing how the free

energy of dissociating the proton within the protein will be more or

less favorable, depending on the states of the other protonatable

sites.

Once a reference protonation state is set, the ΔΔGenv can be

resolved and an intrinsic pKa (pKint) can be defined:

2 WILSON ET AL.
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pKint ¼pK ∘
a þ

ΔΔGenv

RT log 10ð Þ : ð4Þ

As all other residues are in a fixed protonation state without the abil-

ity to titrate, this value is pH-independent. The true pKa for a residue

in a protein will depend on the dynamic protonation state of these

other residues and will have a pH dependence:

pKa ¼ pKintþΔGtitrðpHÞ
RTlog 10ð Þ : ð5Þ

Although the pKint is pH-independent, it may still provide a strong

estimate of the true pKa depending on the reference protonation

state assigned to the protein. Indeed, recent work44,45 has demon-

strated that alchemical free energy calculations can resolve protein

pKa values relying on the assumption: pKa ≈ pKint. Nevertheless, it is

inevitable that in some instances this will break down, and only by

considering ΔGtitrðpHÞ can an accurate pKa be resolved. Here, we

investigate whether coupling can be meaningfully resolved within an

alchemical free energy framework and assess the relative importance

of this contribution for computing protein pKa values.

In the following section, we outline two complementary

approaches for extracting insights related to residue coupling from

alchemical free energy calculations.

Partition function approach

We offer only a brief outline, additional details are provided in

Appendix A in the Supporting Information.

As mentioned in the introduction, both the macroscopic and

microscopic pK values are of interest. A partition function approach

can account for coupling between residues and the microscopic pK

values between individual states.23,25,28,30

Note that the (de)protonation of the sidechain of an amino acid

can be described using a standard equilibrium binding formalism. Spe-

cifically, the “binding” of protons can be fully described by the proton

concentration (c) and the binding constant (K), from which it follows

that the grand partition function is ξ¼1þKc.

This can be extended to a coupled residue system (Figure 2) in

which the protonation of one site can influence the other. Given two

residues, four protonation microstates are possible and the corre-

sponding partition function is given by:

ξ¼1þK1cþK2cþe�βwK1cK2c: ð6Þ

Unlike in the single-site case, we now include an (un)cooperativ-

ity term that follows from the fact that: (1) the cycle is closed (i.

e., K1þK3 ¼K2þK4), and (2) there is an “interaction free energy”, w,
associated with the second (de)protonation event given the first.

Given that we can define the standard free energy of deprotona-

tion as: ΔG ∘ ðpHÞ ¼ΔGð0Þ�μHþ , where μHþ is the chemical poten-

tial of the protons in solution: μHþ ¼RTlogð10ÞpH, we can resolve

the probabilities of the four protonation microstates:

F IGURE 1 Complete pKa

thermodynamic cycle. The
horizontal arrows mark the
transfer of a titratable residue
(A) between different
environments: gas (g), solution (s),
protein (p). The vertical arrows
denote the free energy difference
between the deprotonated and

protonated form in a
corresponding environment.

F IGURE 2 Two-site protonation dyad. Equilibrium constants K
describe the unbinding of a proton. Values in brackets indicate the
microstate (e.g., [11]: doubly protonated, [10]: first residue
protonated, etc.).

WILSON ET AL. 3
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hAHBHi ¼1
ξ
,

hA�BHi ¼ e�β ΔG ∘
01ð0Þ�μHþð Þ
ξ

,

hAHB�i ¼ e�β ΔG ∘
10ð0Þ�μHþð Þ
ξ

, and

hA�B�i ¼ e�β ΔG ∘
00ð0Þ�2μHþð Þ
ξ

,

and the macroscopic protonation probabilities:

hAHi ¼ hAHBHiþhAHB�i
hBHi ¼ hAHBHiþhA�BHi:

Thermodynamic cycle approach

We offer only a brief outline, additional details are provided in

Appendix A in the Supporting Information.

Consider a relabelled version of the same coupling scenario pre-

sented in Figure 2: residues A and B are close together, and their pro-

tonation free energies depend on the state of the other residue

(Figure 3).

Here, ΔΔG0 corresponds to ΔΔGenv: the free energy of deproto-

nating residue A while in the presence of protonated B. Similarly,

ΔΔG3 corresponds to the deprotonation of A in the presence of

deprotonated B. For all branches in the cycle, the remaining proto-

natable sites in the protein are fixed to their model states at

pH 7.4. Notice that ΔΔG1 and ΔΔG2 will shift the populations of

“reactants” and “products” with respect to ΔΔG0 and ΔΔG3. Follow-

ing a derivation provided in Appendix A in the Supporting Information,

we resolve a pH-dependent ΔΔGðpHÞ:

ΔΔGðpHÞ ¼ ΔΔG0þ1
β
log 1þe�βΔG1ðpHÞ

� �

�1
β
log 1þe�βΔG2ðpHÞ

� � ð7Þ

Considering Equation (7) and Equations (4) and (5) we note the

equivalence:

ΔΔGenv ¼ΔΔG0, and

ΔGtitrðpHÞ ¼1
β
log 1þe�βΔG1ðpHÞ

� �

�1
β
log 1þe�βΔG2ðpHÞ

� �
:

The free energy of deprotonating residue A in the protein with

coupling accounted for can then be expressed as a function of pH:

ΔGproteinðpHÞ¼ΔΔGðpHÞþΔGdeprotðpHÞ, ð8Þ

where ΔGdeprotðpHÞ corresponds to Equation (1) with a reference pK ∘
a

corresponding to residue A.

Equation (8) provides a family of solutions that depend on the pH

value. To determine the pKa, we find the point where

ΔGproteinðpHÞ¼0. This pH corresponds to the pKa that would be

observed in a titration experiment and follows from the Henderson-

Hasselbalch equation (Equation 2).

Computationally, we also have access to the whole set of pKa

solutions which are not necessarily limited by this Henderson-

Hasselbalch relation. We can combine Equations (3) and (8) and com-

pute these pKa values at various pH:

pKa ¼pK ∘
a þ

ΔGproteinðpHÞ�ΔGdeprotðpHÞ
RT log 10ð Þ ð9Þ

METHODOLOGY

Non-equilibrium alchemy setup

pmx49 was used for the system setup, hybrid structure and topol-

ogy generation, and analysis. Initial structures: Δ+PHS Staphylo-

coccal nuclease (SNase) variant50 (PDB: 3BDC50) and protein

deglycase DJ-151 (PDB: 1P5F52), were taken from the PDB database;

in the case of 3BDC, the thymidine diphosphate molecule and calcium

ion crystalized in the structure, but absent during the titration experi-

ments,50 were removed. A double system in a single box setup was

used, with a 3 nm distance between the protein and peptide (ACE-

AXA-NH2); this ensured charge neutrality during the alchemical transi-

tion.53 To prevent consequential protein–peptide interactions, a single

Cα in each molecule was positionally restrained. We used the

CHARMM36m54 (with CHARMM-modified TIP3P55 water model)

force field. A salt concentration consistent with the experimental

setup was used. If no salt concentration was reported only Kþ or Cl�

counterions were added.

For all systems, an initial minimization using the steepest descent

algorithm was performed. A constant temperature corresponding to

the reference experimental setup was maintained implicitly using the

leap-frog stochastic dynamics integrator56,57 with an inverse friction

constant of γ¼0:5 ps�1. The pressure was maintained at 1 bar using

the Parrinello-Rahman barostat58 with a coupling time constant of

F IGURE 3 Free energy cycle for a coupled residue scenario. The
branches report the free energy change associated with the
deprotonation of one residue, while the other is kept fixed with
respect to the free energy change associated with the corresponding
deprotonation in a capped peptide.

4 WILSON ET AL.
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5ps. The integration time step was set to 2 fs. Long-range electro-

static interactions were calculated using the Particle-mesh Ewald

method59 with a real-space cut-off of 1.2 nm and grid spacing of

0.12 nm. Lennard-Jones interactions were force-switched off between

1.0 and 1.2 nm. Bonds to hydrogen atoms were constrained using the

Parallel LINear Constraint Solver.60

To improve sampling, systems were run for 50 ns in four indepen-

dent replicas, and the first 10 ns of each simulation were discarded as

equilibration. From the remaining 40 ns, 400 non-equilibrium transitions

of 500 ps each were generated and work values from the forward and

backward transitions were collected using thermodynamic integration.

These values were then used to estimate the corresponding free energy

difference with Bennett's acceptance ratio61 as a maximum likelihood

estimator relying on the Crooks fluctuation theorem.62 Bootstrapping

was used to estimate the uncertainties of the free energy estimates,53,63

and these were propagated when calculating ΔΔG values.

Constant-pH setup

Constant-pH (CpHMD) simulations were performed using a GRO-

MACS 2021 implementation with a modified CHARMM36m force

field.43 This approach is based on the λ-dynamics method developed

by Brooks and co-corkers.32,35,38 The system setup was similar to that

discussed in the above section; however, to agree with the recom-

mended CpHMD setup, both the leapfrog integrator and velocity

rescaling with a 0.5 ps coupling time, as well as a PME Fourier spacing

of 0.14 nm were used. Because only aspartate and glutamate were

considered, a single-site representation (i.e., the proton can be bound

to only one heavy atom in the residue) was employed; here, the A and

B states represent the protonated and deprotonated forms of the

titratable residue. The mass of the λ particle was set at 5AU, and its

temperature was maintained at 300K using velocity rescaling with a

2 ps coupling time. The barrier height of the double-well potential was

set at 5.0 kJ/mol. 50 buffer particles were used. For all systems, a min-

imization was performed using the steepest descent algorithm fol-

lowed by a 100ns simulation in the NpT ensemble.

We considered three SNase dyads and one DJ-1 dyad, resulting

in four sets of simulations. SNase simulations were performed at pH

values from �1 to 7 with 0.25 pH increments and from 7 to 14 with

0.5 pH increments, while DJ-1 simulations were performed from 0 to

14 with 0.5 pH increments. Regarding SNase, both residues in the

dyad (i.e., D21–D19, D21–D40, and D21–D83) were allowed to (de)

protonate as a function of pH, which in two cases resulted in non-

sigmoidal curves. In the case of DJ-1, we allowed only E18 to titrate,

while holding C106 fixed to a protonated or deprotonated state; this

resulted in sigmoidal curves.

Block averaging was used to determine the protonation probabili-

ties and standard deviations at each pH value. Following Ullmann28

and similar to previous work,64,65 constant-pH titration curves were

fit to the pH-dependent protonation probabilities corresponding to

the partition function in Equation (6). Specifically for each coupled

pair we determine values for pK1, pK2, and w that best fit both titra-

tion probability curves hx1i and hx2i:

hx1i ¼ 1þ10pK1�pH

Z

hx2i ¼ 1þ10pK2�pH

Z

ð10Þ

with Z¼1þ10pK1�pHþ10pK2�pHþ10pK1þpK2�w�2pH. These micro-

scopic pK values and the interaction energy w can then be used to

resolve the macroscopic pKa values (see Appendix A in the Supporting

Information for additional details).

In the case of DJ-1, where only a single residue titrates, curves

were fit to the sigmoidal pH equation:

hXi¼ 10pKa�pH

1þ10pKa�pH : ð11Þ

RESULTS

Toy models

As has been considered previously66 we illustrate the effects of cou-

pling on several two residue (R1, R2) systems, of type A, B, or C, with

corresponding reference pK ∘
a values of 3, 4, and 8, respectively. ΔΔG

values can be related to the dissociation constants that link micro-

states via Equation (5).

Model 1: Similar reference pK ∘
a values: No coupling

Consider the system given in Figure 4.

Note that the interaction energy between the states is zero, as evi-

denced by the equality of opposite paths; the protonation of A1 has no

effect on the free energy required to protonate B2 and vice-versa. It

follows that ΔGtitrðpHÞ is zero for all pH and ΔGproteinðpHÞ is constant,
implying pKa ¼pKint (Figure 6A). Computing the pKa, we obtain values

of approximately 3 and 2.6 for A1 and B2, respectively, unchanged

and decreased from their respective reference values according to

Equation (9).

Model 2: Similar reference pK ∘
a values: Weak coupling

Consider the system given in Figure 5.

In this example, unlike in the first, the interaction energy is non-

zero. The free energies suggest that the first deprotonation event

F IGURE 4 Thermodynamic cycle for toy model 1. ΔΔG values
(kJ/mol) are indicated along the branches.

WILSON ET AL. 5
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results in a less favorable second deprotonation. This is to be

expected for nearby coupled residues, where the electrostatic repul-

sion associated with the introduction of a second negative charge

would result in a less favorable free energy change. Instead of report-

ing a linear dependence, the ΔGproteinðpHÞ curves each have an inflec-

tion point and two asymptotic values, corresponding to the

protonation free energy of one residue, while the other residues

remain in the same protonation state (Figure 6B, top). These asymp-

totic values correspond to the microscopic pKa values (Figure 6B, mid-

dle), which put a bound on the range of computed pKa values.

At low pH, both A1 and B2 are protonated, with large, unfavor-

able ΔGprotein values (Figure 6B, top). As the pH increases, ΔGprotein of

deprotonating B2 becomes more favorable, reaching ΔGprotein ¼0 near

pH≈3; at this point, B2 begins to deprotonate. This deprotonation

will result in a more unfavorable protonation free energy for A1, as

evidenced by the flattening in the ΔG curve and an increase in the

apparent pKa of A1: the formation of B�
2 makes the formation of A�

1

less favorable. Because the reference pK ∘
a values of A1 and B2 are

similar, this flattening occurs almost simultaneously with that of B2. In

this regime, the ΔGprotein for both residues changes slower and, in this

example, remains relatively close to zero. We can think of this as the

pH range over which the groups buffer each other, altering the favor-

ability of protonation. As the pH continues to increase, a linear depen-

dence is restored. Construction of the titration curves computed from

the microscopic pKa values reveals the coupling between residues

(Figure 6B, bottom). The non-sigmoidal form of the curves follows

from the fact that the singly protonated microstates for both residues

occur with a similar probability.

Model 3: Different reference pK ∘
a values: Weak

coupling

Consider the system given in Figure 7.

In this example, the ΔΔG values along the branches are the same

as in Example 2; however, the reference pK ∘
a values have changed.

We now consider the coupling between a residue C that has a refer-

ence value 5 pK units higher than B. Although ΔGproteinðpHÞ does

report a non-linear dependence, the large difference in reference

values means that the pH effects dominate; both inflection points of

(A) (B) (C) (D)

F IGURE 6 pH-dependent free energy, pKa, and protonation probability curves: toy systems. The upper plots (solid lines) depict ΔGproteinðpHÞ
(Equation 8), which varies as a function of pH between its asymptotic values (dotted). The zero point of this curve (single dot) is used to resolve
the corresponding pKa value. The middle plots (solid) depict the pH-dependent pKa value (Equation 9). Each residue has two limiting pKa values
(dotted) which correspond to the cases when the other coupled residue is protonated or deprotonated. As the pH changes, the probability that
the other residue is deprotonated shifts, resulting in a pH-dependent pKa. The lower plots depict several probabilities. The solid lines correspond
to the protonation probabilities of the individual sites; these are a composite probability of the doubly protonated (i.e., hAHBHi) and singly
protonated (i.e., hAHB�i) microstates (see Equation 6). Singly protonated probabilities are indicated with dashed-dotted lines. The dashed lines
correspond to the standard Henderson-Hasselbalch curve computed for the pKa determined by the point ΔGprotein ¼0. Because we resolve the
pKa at a single pH, these curves are sigmoidal. Observe that with no coupling (left column), the pKa values are constant; however, when coupling
is introduced, this is no longer the case. Columns (A)–(D) correspond to four different coupling scenarios.

F IGURE 5 Thermodynamic cycle for toy model 2. ΔΔG values
(kJ/mol) are indicated along the branches.

6 WILSON ET AL.
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the free energy curves and the inflection point of the pH-dependent

pKa values occur far from one another. As a result, the titration curves

computed from the microscopic pKa values suggest that there is no

coupling between residues. The singly protonated microstates for

each residue occur with a dramatically different probability, that is,

residue B2 is never protonated while C1 deprotonates.

Model 4: Different reference pK ∘
a values: Strong

coupling

Consider the system given in Figure 8.

Relative to Example 3 we have altered the ΔΔG values along the

branches, while maintaining the reference pK ∘
a values. Here, the inter-

action between the residues is much stronger and a more favorable

ΔΔG is assigned to the initial deprotonation of C1. Unlike in Example

3, where the titration events occurred far from one another, both the

ΔGprotein and pKa curves resemble those in Example 2. However,

unlike Example 2 the reference pK ∘
a values differ by 5 pK units; in this

case, the reference pKa gap is compensated by significant shifts in the

ΔΔG values. Here, also note that the buffer region over which cou-

pling occurs is larger than in Example 2 (Figure 6B, middle). In this

region, the effect of pH on ΔGprotein is much less pronounced, and the

ΔGprotein of protonation remains relatively constant (i.e., slope of

ΔGprotein is zero), within 1 pK unit from zero.

As in Example 2, constructing the titration curves computed from

the microscopic pKa values reveals the coupling between residues

(Figure 6C, bottom). Here, plateaus are evident for both residues over

pH� ½6,9�, implying the existence of both singly protonated micro-

states. Moreover, the residue with the higher reference pK ∘
a , perhaps

counterintuitively, titrates first.

Application to proteins

Alchemical free energies

We consider four potential dyads: three from the SNase

variant50 (PDB: 3BDC50) and one from protein deglycase DJ-

151 (PDB: 1P5F52). These pairs are D19–D21, D21–D40, and

D21–D83 in SNase and E18–C106 in DJ-1. In SNase, D19 and

D21 are spatially adjacent to each other within the turn (T1)

between β1 and β2, while D40 is located in the turn between β3 and

α1, which puts it close to D21 but farther away than D19 (Figure 9,

top). D83 is located in the long linker between β4 and β5, and is the

farthest from D21 of the dyads considered here. Although sequen-

tially distant, E18 and C106 in DJ-1, located within α1 and near α4,

respectively, are directly adjacent in space (Figure 9, bottom).

The three SNase pairs exhibited different levels of coupling:

the D21–D83 dyad showed almost no coupling (Figure 10A), as

evidenced by the absence of inflection points in the ΔGprotein

and pKa curves, the D21–D40 showed moderate coupling (Figure

10B), and the D21–D19 dyad showed significant coupling

(Figure 10C). In this latter case, as in the second toy example, the resi-

dues clearly acted to buffer one another, resulting in a flattening of

ΔGprotein for both curves around pH� ½3,5�. Moreover, computing pro-

tonation probabilities for the individual sites revealed a non-sigmoidal

form of the curves. We note that the coupling of these residues was

F IGURE 7 Thermodynamic cycle for toy model 3. ΔΔG values
(kJ/mol) are indicated along the branches.

F IGURE 8 Thermodynamic cycle for toy model 4. ΔΔG values
(kJ/mol) are indicated along the branches.

F IGURE 9 Coupled residues considered. Upper: ΔþPHS SNase
(PDB: 3BDC); lower: monomeric DJ-1 (PDB: 1P5F). Carbon atoms are
shown in blue, oxygen atoms in red, and sulfur atoms in yellow.
Residue dyads are considered independently and are indicated with
dashed lines.

WILSON ET AL. 7
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also observed in the experiment. The calculated pKa values for SNase

were: D19: 3:69�0:09pK, D21: 5:34�0:16pK, D40: 3:88�0:05pK,

D83: 1:17�0:16pK, in good agreement with experiment

(D19: 2:21�0:01pK, D21: 6:54�0:02pK, D40: 3:87�0:09pK, and

D83: < 2:2pK) (Figure 11A).

In the case of E18–C106, again a flattening in the ΔGprotein buffer

region and, evidently, non-sigmoidal individual site pK titration curves

suggested a coupling between the residues (Figure 10D). Here, com-

puting the adjusted pKa downshifts C106 from 12:18�0:07pK to

8:84�0:04pK, bringing the estimate closer to the experimental value

of 5:4�0:2pK (Figure 11A). However, this still leaves more than a 3

pK unit discrepancy between calculation and experiment. Previous

work on homodimeric DJ-1 has revealed that two arginine residues

(R48 and R28 from the other monomer) facilitate anion binding, which

results in pKa elevation51 (Figure S1, right). In our simulations only

positive counterions (i.e., no salt concentration) were present; how-

ever, through-space interactions as a result of a second arginine may

also play a role in affecting the pKa. To this end, we probed the pKa of

monomeric DJ-1. We found similar qualitative agreement in the

curves between the dimeric and monomeric forms; however, rather

than raising the pKa, the elimination of the second arginine shifted the

pKa of C106 down to 6:78�0:19pK (Figure S1, left).

We note that in both cases an exceptionally high pKa for E18 is

predicted. While previous work on DJ-1 has suggested that E18 is

protonated over the titration regime of C10351 and glutamate resi-

dues have been reported with pKa values greater than 9,67 it would

seem improbable that the pKa is actually this high. Structurally, a

(A) (B) (C) (D)

F IGURE 10 pH-dependent free energy, pKa, and protonation probability curves: protein systems. The upper plots (solid lines) depict
ΔGproteinðpHÞ (Equation 8), which varies as a function of pH between its asymptotic values (dotted). The zero point of this curve (single dot) is
used to resolve the corresponding pKa value. The middle plots (solid) depict the pH-dependent pKa value (Equation 9). Each residue has two
limiting pKa values (dotted) which correspond to the cases when the other coupled residue is protonated or deprotonated. As the pH changes,
the probability that the other residue is deprotonated shifts, resulting in a pH-dependent pKa. The lower plots depict several probabilities. Solid
lines correspond to the protonation probabilities of the individual sites; these are a composite probability of the doubly protonated (i.e., hAHBHi)
and singly protonated (i.e., hAHB�i) microstates (see Equation 6). The singly protonated probabilities are indicated with dashed-dotted lines.
Dashed lines correspond to the standard Henderson-Hasselbalch curve computed for the pKa determined by the point ΔGprotein ¼0. Because we
resolve the pKa at a single pH, these curves are sigmoidal. Observe that with no coupling (left column), the pKa values are constant; however,
when coupling is introduced, this is no longer the case. Vertical spans in the lower row indicate experimental pKa values and uncertainties (note
that D83 has a pKa < 2:2pK). Error bands were bootstrapped. (A)–(C) correspond to the SNase + ΔPHS system, while (D) corresponds to the DJ-1

system.

(A)

(B)

F IGURE 11 Performance of various methods for calculating
protein pKa values. Three methods are compared with experiment:
NEQ with (solid) and without (dashed/transparent) coupling
accounted for, constant-pH MD (CpHMD), and PropKa. Note that the
pKa of D83 is < 2:2pK. (A) Residue-wise performance. (B) Overall
performance with or without cysteine included. Bootstrapped
standard errors are depicted.
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second glutamate (E18) and a nearby histidine (H126) likely play roles

within the lower pH regime (i.e., < 7). We preface the following sec-

tion by noting that a high glutamate pKa value is also suggested by

the CpHMD simulations and PropKa as described further.

Constant-pH molecular dynamics and PropKa

To further investigate the reliability of our approach, we performed

constant-pH molecular dynamics simulations of the same systems.

Here, we found good agreement with the alchemical calculations.

We computed macroscopic pKa values for D19/D21, D21/D40,

and D21/D83 of: 2:98�0:29=5:53�0:16pK, 5:20�0:10=

3:51�0:21pK, and 5:54�0:16=0:31�0:44pK. In the case of D19/

D21 we computed a non-zero interaction energy of w¼1:83�0:23.

Pairwise comparison between the CpHMD and experimental values

revealed a good agreement: 2:98�0:29versus 2:21�0:07 (D19),

5:42�0:09versus 6:54�0:02 (D21), 3:51�0:21versus 3:87�0:09

(D40), and 0:31�0:44 versus < 2:2 (D83).

Regarding DJ-1, the large pKa value of E18 implied by free energy

calculations is also suggested by the constant-pH simulations on mono-

meric DJ-1, where values of 8:75 � 0:27pK and >14 � 0:05pK were

calculated in the cases of protonated C106 and deprotonated C106,

respectively. C106 was not probed as cysteine residues are not yet

supported by the current CpHMD implementation.43

In addition to the protonation probability we can also directly

apply Equation (2) to each CpHMD pH simulation, this yields the pH-

dependent pKa. As discussed above, in the ideal case, uncoupled resi-

dues will have constant pKa values while coupled pairs will exhibit sig-

moidal behaviour. Computing these for the CpHMD simulations and

the corresponding model curves revealed good agreement with those

curves implied by the alchemical free energy calculations (Figure S2).

In particular, for the coupled pairs (i.e., D19–D21 and D21–D40), we

observed sigmoidal behavior.

We close this section by briefly comparing our results with the

popular computational pKa predictor PropKa (version 3.4).68 Overall,

for PropKa, we find good agreement for the SNase dyads, but a worse

accuracy for C106 in DJ-1. We preface by noting that in the case of

D19/D21, Propka identifies these as coupled and we can compute

the pKa values associated with the four underlying microstates: two

values are computed by running default Propka and two are com-

puted by running Propka with the �d flag, which probes an alterna-

tive protonation state. In default mode, D21 is protonated when D19

titrates (i.e., D19: 3:42 pK, D21: 5:65 pK) while in �d mode, D19

titrates after D21 (i.e., D19: 4:63 pK, D21: 4:44 pK). Given these

microscopic values (i.e., pK1 ¼4:63, pK2 ¼5:65) we can employ the

Hill/Ullmann formalism with w¼4:63�3:42¼5:65�4:44¼1:21 and

resolve the macroscopic pKas (see Appendix A in the Supporting

Information for details). This yielded values of 3:38pK and 5:69pK for

D19 and D21, respectively, and values of 4:30pK, 1:21pK, and

14:19pK for D40, D83, and C106, where coupling was not assumed

by PropKa (Figure 11A). In the case of E18 in DJ-1, PropKa estimates

a pKa of 8:73pK and 7:38pK for the homodimeric and monomeric

forms, respectively.

Here, our NEQ approach provided estimates of both D40 and

C106 that were in closer agreement with the experimental values

while exhibiting comparable performance on the other three resi-

dues. Considering the overall performance we found that the

introduction of coupling dramatically improves agreement with

experiment reducing our NEQ average unsigned error from

2:10�0:42pK to 0:69�0:34pK when cysteine is excluded and from

3:05�0:88pK to 1:23�0:57pK when it is included; with regard to

the former, this performance was comparable to PropKa (AUE:

0:61�0:22pK) (Figure 11B). We also found that CpHMD could accu-

rately resolve the four aspartates with an unsigned error of

0:57 � 0:26pK. It is probable that both a limited training set and a

less frequent dyad (i.e., a large difference in reference pK ∘
a values)

results in the markedly poorer estimate for C106 from PropKa.

Practical guide to using alchemical ΔΔG to account for
residue coupling

We describe how to compute the pKa corresponding to the upper

branch in Figure 3. More specifically, we are interested in the pH at

which ΔGproteinðpHÞ¼0 (see Appendix A in the Supporting Informa-

tion for details).

This function has a pH-independent component which captures

the free energy of deprotonation that arises due to the local environ-

ment (e.g., ΔΔG0) without accounting for coupling, and a pH-

dependent component that captures the coupling contribution arising

due to nearby residues that shift the favorability of the underlying

deprotonation reaction (e.g., ΔΔG1 and ΔΔG2). We resolve this func-

tion accordingly:

1. We run three variant protonation simulations using the double-

system single-box setup:

a. AHþBH !A� þBH

b. AHþBH !AHþB�

c. A� þBH !A� þB�

and compute the corresponding ΔΔG values in each case: ΔΔG0,

ΔΔG1, and ΔΔG2. A fourth ΔΔG is implied by cycle closure; how-

ever, this can also be explicitly computed. Note that these are dou-

ble free energy differences because of the simulation setup, where

both the protein and peptide are present.

2. In the absence of any coupling, as the pH changes, the free energy

of deprotonation in the protein shifts linearly according to

ΔGiðpHÞ¼ ΔΔGiþRTlogð10ÞðpK ∘
a �pHÞ

where pK ∘
a is the reference pKa of the residue under consideration.

We can use this relationship to calculate

ΔG1ðpHÞ ¼ ΔΔG1þRTlog 10ð Þ pK ∘
a �pH

� �

WILSON ET AL. 9
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and

ΔG2ðpHÞ¼ΔΔG2þRTlog 10ð Þ pK ∘
a �pH

� �
;

here, pK ∘
a corresponds to the reference pKa of residue B.

Note that ΔG1ðpHÞ and ΔG2ðpHÞ act on the “reactants” and “prod-
ucts” of the upper branch in Figure 3: a more favorable ΔG1ðpHÞ will

increase ΔΔGðpHÞ while a more favorable ΔG2ðpHÞ will decrease

ΔΔGðpHÞ, and vice-versa.

3. We can resolve ΔGproteinðpHÞ according to

ΔGproteinðpHÞ¼ΔΔGðpHÞþΔGdeprotðpHÞ

where

ΔΔGðpHÞ¼ΔΔG0 þ1
β
log 1þe�βΔG1ðpHÞ

� �

�1
β
log 1þe�βΔG2ðpHÞ

� �
:

and

ΔGdeprotðpHÞ¼RT log 10ð Þ pK ∘
a �pH

� �
;

here, pK ∘
a corresponds to the reference pKa of residue A.

4. We can find the pH at which ΔGproteinðpHÞ¼0; this pH will corre-

spond to the apparent pKa.

We can also compute the pKa at arbitrary pH and construct a pH-

dependent curve via

pKa ¼pK ∘
a þ

ΔGproteinðpHÞ�ΔGdeprotðpHÞ
RT log 10ð Þ :

(Note that if we are only interested in the pKa, we can stop here. In

order to resolve the individual site and microstate probabilities we

need to follow the next three steps.)
5. Consider that the deprotonation free energy is related to the stan-

dard deprotonation free energy via

ΔGi ¼ΔGiðpH¼0Þ�μHþ ,

where ΔGiðpH¼0Þ values are from Step 2 of this protocol (at

standard conditions, pH¼0) and μHþ is the chemical potential of

the protons in the solution: μHþ ¼RTlogð10ÞpH:

6. We then have direct access to the partition function

ξ¼1 þ e�β ΔG0ð0Þ�μHþð Þ
þ e�β ΔG1ð0Þ�μHþð Þ
þ e�β ΔG0ð0ÞþΔG2ð0Þ�2μHþð Þ,

and corresponding microstate probabilities

hAHBHi ¼1
ξ
,

hA�BHi ¼ e�β ΔG0ð0Þ�μHþð Þ
ξ

,

hAHB�i ¼ e�β ΔG1ð0Þ�μHþð Þ
ξ

, and

hA�B�i ¼ e�β ΔG0ð0ÞþΔG2ð0Þ�2μHþð Þ
ξ

:

7. The overall protonation probability for an individual site can be

computed from:

hAHi ¼ hAHBHiþhAHB�i
hBHi ¼ hAHBHiþhA�BHi

DISCUSSION

The importance of accounting for residue coupling is multifaceted

and particularly relevant in the context of enzymatic active sites that

are often enriched in protonatable residues. The theoretical formalism

to describe such couplings in polyprotic acids has been detailed by

Ullman.28 Based on earlier work by Hill,22,23 Edsall,24–26 and co-

workers, Ullman defines equilibrium protonation constants for all

microstates and derives partition functions that fully describe the

thermodynamics of these systems. This approach was then applied in

a protein context using continuum electrostatics calculations to

resolve the free energies between microstates.29

Here, we demonstrate that such a framework can be readily

extended to double free energy difference calculations based on

molecular dynamics simulations and introduce a thermodynamic cycle

approach that allows one to resolve the apparent pKas of coupled res-

idues. This demonstration and extension is particularly relevant in the

context of alchemical free energy calculations, which give access only

to such ΔΔG values. Our overall aim was to demonstrate that insights

into residue coupling can be resolved by means of alchemical free

energy calculations. While such insights can be directly resolved via

constant-pH molecular dynamics simulations—an exceedingly power-

ful method—we demonstrate with both toy examples and real protein

systems that similar insights can be extracted via a different approach.

One such insight is the buffering of a residue dyad which main-

tained the free energy of protonation near zero (e.g., DJ-1:

C106-E18). In various protein contexts, tuning the local residue envi-

ronment surrounding pairs or groups of titratable residues to create

large buffer regions over which the ΔG of protonation is close to zero

could make the binding of a substrate more than sufficient to signifi-

cantly alter the (de)protonation of a residue and ultimately the enzy-

matic activity.

Comparison with a recent GROMACS-based CpHMD implementa-

tion43,69 also revealed a good pKa prediction accuracy for coupled

10 WILSON ET AL.
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residues. This result suggests that both CpHMD and alchemical free

energy methods can resolve pKa values in both coupled and

uncoupled contexts. The observation that CpHMD is capable of

describing protonation coupling phenomena is not new and indeed

such methods have been previously employed in this capacity.38,70,71

Moreover, CpHMD has the distinct advantage that all residues can be

simultaneously assessed for coupling, with deprotonation dynamically

occurring over the course of a simulation due to changes in the pro-

tein or environment.70,72 For instance, the ability to capture structural

reorganizations due to (de)protonation has helped rationalize enzyme cat-

alytic function: robustly identifying those residues that act as proton

donors or nucelophiles and determining the basis for their pKa shifts.73

In addition to resolving coupled pKa values,
71,73–76 CpHMD can accu-

rately describe pH-dependent conformational changes,77–81 protein

interactions,82,83 and ligand binding.84–87 As CpHMD has developed,

methodological refinements and extensions have improved perfor-

mance and accuracy.65,88–94 Nevertheless, the approach can still

remain computationally expensive, necessitating multiple simulations

across a pH spectrum, and requires residue-specific parameterizations

(e.g., correction potentials,35,69 empirical energy offsets39,41), which

must be adjusted if the underlying residue parameters (e.g., partial

charge) change. Here, we demonstrate that pKa coupling insights can

be extracted from “plain” molecular dynamics simulations paired with

alchemical free energy methods; such an approach requires at most

four ΔΔG evaluations per coupled pair.

A second comparison with PropKa suggested that although accu-

rate estimates could be made for SNase, the pKa of C106 in DJ-1 was

significantly overestimated, possibly due to the limited cysteine data

in the PropKa training set and the implicit assumption that E18 is

deprotonated at the pH where C106 deprotonates.

The role of MD simulations and free energy calculation methods

such as those employed here may provide insight not readily accessi-

ble to conventional prediction methods. One particular insight, namely

the pKa values of coupled residues, requires careful consideration of

the role of nearby protonatable residues. Moreover, given that these

residues are often found at the active site—frequently the target of

engineered therapeutics—the relevance of this problem extends

beyond basic research.

We underscore that while here we have employed non-

equilibrium free energy calculations, the approaches outlined can

be employed alongside any alchemical-based free energy method

(e.g., FEP); however, the cost associated with converging such

calculations should be further investigated. The ability to seam-

lessly and consistently integrate pH-dependent calculations into

existing alchemical free energy workflows may prove useful for

accurately resolving binding affinities or enzyme activities and

thermostabilities.

To this end, we have elsewhere investigated the ability of alchem-

ical free energy calculations to compute a large number of pKa values

in a variety of protein contexts. As with the results here, our approach

showed strong performance, further suggesting the potential for a

consistent integration of pH-dependent calculations into a broader

alchemical free energy framework.45
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