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ABSTRACT: The stability, solubility, and function of a protein depend on both its net charge and
the protonation states of its individual residues. pKa is a measure of the tendency for a given
residue to (de)protonate at a specific pH. Although pKa values can be resolved experimentally,
theory and computation provide a compelling alternative. To this end, we assess the applicability
of a nonequilibrium (NEQ) alchemical free energy method to the problem of pKa prediction. On a
data set of 144 residues that span 13 proteins, we report an average unsigned error of 0.77 ± 0.09,
0.69 ± 0.09, and 0.52 ± 0.04 pK for aspartate, glutamate, and lysine, respectively. This is
comparable to current state-of-the-art predictors and the accuracy recently reached using free energy perturbation methods (e.g.,
FEP+). Moreover, we demonstrate that our open-source, pmx-based approach can accurately resolve the pKa values of coupled
residues and observe a substantial performance disparity associated with the lysine partial charges in Amber14SB/Amber99SB*-
ILDN, for which an underused fix already exists.

■ INTRODUCTION
Amino acids with ionizable side chains make up approximately
30% of the residues found in proteins1,2 and play a key role in
maintaining protein stability,3−6 modulating solubility,7,8

mediating protein−protein interactions,9,10 and facilitating
cell signaling.11,12 These amino acids, namely, aspartate,
glutamate, arginine, lysine, cysteine, tyrosine, and histidine,
are functionally dependent on their protonation states, which
vary depending on their local environments. The measure of
this dependence is known as the pKa, which relates the pH of
the solution to the protonation state of a residue via the
H e n d e r s o n − H a s s e l b a l c h e q u a t i o n , i . e . ,
pKa = pH + log[HA]/[A−]. Given its degree of solvent
exposure, Coulombic interactions, and hydrogen bonding, the
pKa of an amino acid residue may be raised or lowered relative
to its reference pKa°�determined using a capped peptide (e.g.,
ACE-AXA-NH2) in solution�resulting in a lower or higher
likelihood of protonation at a given pH. For acidic groups, the
pKa values tend to be elevated relative to their reference,

13−15

while for basic groups, the pKa values tend to be lowered
relative to their reference.16,17 These shifts away from the
reference value can reach up to ±5 pK units, and in many
proteins, key ionizable residues are situated in such a way that
a perturbation of their pKa allows them to perform unique and
specific functions.18−22 The existence of such functional motifs
relies on the alterable stability of the covalent bond between
hydrogen and its heavy atom (e.g., O−H and N−H). The
tendency of a side chain containing these groups to
(de)protonate in a given microenvironment is quantified by
the pKa.
The relationship of protein−ligand binding to pKa is of

particular interest.23−25 Here, the pKas of both the ligand and
the binding site residues as well as the pH- and binding-

induced conformational changes of the protein are all
intimately related. Resolving the precise states of the ionizable
residues, as well as the local conformations of the apo and holo
protein, are active fields of study that involve both
experimental26−28 and computational approaches.29−32

The conventional and often most precise method to
determine the pKa of an ionizable side chain is to measure
the pH dependence of the main or side-chain chemical shifts
using multidimensional nuclear magnetic resonance (NMR)
spectroscopy.33−35 The dependence of the chemical shift on
pH is then fit to the Henderson−Hasselbalch equation, and the
pKa is resolved from the point of inflection. NMR can estimate
the pKa with an accuracy of 0.1−0.2 pK unit;36 however, this
strongly depends on the nuclei considered (i.e., 13C vs 15N)
and the fit to the Henderson−Hasselbalch curve, which can be
difficult due to conformational changes,37 titration coupling,38

or if the chemical shift simply reports a different titration
event.36,39 Even with the above caveats, NMR remains the
experimental method of choice to resolve pKa values in
proteins and is, in general, very reliable. There are alternative
approaches for measuring pKa values including fluorometry,
kinetic assays, and isothermal titration calorimetry.40−42

However, they have their own challenges and generally obtain
pKa values with higher uncertainty compared to the NMR-
based approach.
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Theoretical methods are a compelling alternative to
experiments. Many of these are motivated by a free energy
formalism based on the thermodynamic cycle shown in Figure
1. Here, we consider a residue of interest (A) in both protein

(Figure 1, right) and reference peptide in solution (Figure 1,
left). We assume that the reference pKa° is known, then
pKa(protein) is given by

= ° +

= ° +

K K
G G

RT
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Note that ΔΔGp,s(AH, A−) implicitly contains two terms. The
first (ΔΔGenv) represents the free energy of dissociating a
proton within a protein relative to the reference state (e.g.,
capped peptide), where the protein residues are fixed to some
state such that the value is pH independent; the second
(ΔGtitr(pH)) accounts for the contribution from the titratable
residues in the protein as they (de)protonate with pH. A
cons idera t ion of the firs t component y ie lds a

= ° +K Kp p G
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, which can be further used to

calculate the true pKa
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In most cases, it is safe to assume that the mutual dependence
(or coupling) of a residue A and its protein microenvironment
is small, and by simply assigning residues to the charge state
most likely for a corresponding model compound in solution
(e.g., capped peptide) at pH ≈ 7.4, we can assume
pKa(protein) ≈ pKint. However, there are cases where this
assumption will fail, and a consideration of ΔGtitr(pH), at least

for nearby titratable residues, is necessary to correctly resolve
pKa(protein). To that end, we have elsewhere introduced a
thermodynamic-cycle-based formalism to account for this
additional titration contribution and therein discuss the role
of microscopic pKa values in the context of coupled residues.

43

Whether or not the pH dependence on the pKa is taken into
account, the fundamental aim of most theoretical methods is to
resolve the free energy difference in eq 1 and thus estimate the
pKa. This can be done within a macroscopic or microscopic
framework; we briefly describe both.
Macroscopic frameworks model the entire system, protein,

and solvent as either a regularly shaped or an irregularly shaped
object situated within a dielectric medium. From this, the
energy terms can be resolved using the Poisson−Boltzmann
equation (PBE). For a regularly shaped protein (e.g., idealized
sphere), the PBE can be solved analytically;44,45 however, for a
more realistic, irregularly shaped protein, the PBE must be
solved numerically. The numerical Poisson−Boltzmann (PB)
approach for computing pKa values was pioneered by Bashford
and Karplus46 and has since been continually refined.47

Changes in both the underlying algorithmic and numerical
formalism (e.g., parameter selection, linearized PBE,48 etc.)
and the structural descriptions of the system (e.g., partial
charge changes,49 side-chain rotamers,50 etc.) have aimed to
increase accuracy and applicability.
A microscopic framework based on atomistic simulations,51

unlike a macroscopic one, in theory, does not require the
definition of empirical parameters (e.g., charge density) or
physical quantities (e.g., permittivity). The principal drawback
is the computational cost that can be overcome by
modification of the underlying model representation or
implementation (e.g., the reintroduction of pseudoparameters)
or by improvements in computing power. Molecular dynamics
(MD) simulations offer an attractive solution for sampling
biomolecular ensembles spanning meaningfully long time
scales with fully atomistic representations of both protein
and solvent. These simulations and the resultant ensembles
might be used as an input for a PB-based approach,52−55 or can
be performed in conjunction with a free energy method (e.g.,
thermodynamic integration,56,57 free energy perturbation,58

etc.), allowing for a direct resolution of the ΔΔG between
protonation states. An alternative MD-based approach is
constant pH molecular dynamics (CpHMD) simulations.
Here, Monte Carlo sampling59−62 (discrete CpHMD) or λ-
dynamics63−66 (continuous CpHMD) is used to explicitly
sample protonation events. This allows for an explicit
consideration of the proton concentration, where the
protonation states of titratable residues are not restrained but
are allowed to dynamically follow the free energy gradient.
Empirical (EM) approaches stand in contrast to those

described above, which are primarily based on a rigorous free
energy formalism. Empirical methods tend to rely on sets of
approximate functional forms (e.g., hydrogen bonds) with
knowledge-based parameters that are optimized based on large
training sets of measured pKa values. Such approaches have
generated predictors with impressive accuracy at low computa-
tional cost,67,68 which have been further enhanced with the
advent of machine learning.69,70

It can be said that for all of the methods mentioned above,
the objective is to provide predictive accuracy within the same
range as that reached by experiment (i.e., <0.2 pK units). A
perfect method ought to be system independent and hence not
require fitting to experimental data. It should be able to

Figure 1. Thermodynamic cycle to compute the free energy
difference between protonating a residue in a capped peptide in
solution and the same residue in a protein. This ΔΔG can be related
to pKa(protein) given the reference pKa° via eq 1.
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robustly predict the free energies of protonation in the core of
a protein and in the solvent-exposed regions, which requires
that solute−solvent interactions be accurately represented.
Moreover, the ability to change environmental conditions (e.g.,
temperature and ionic concentration) is another necessary
requirement.
Alchemical free energy calculations based on molecular

dynamics (MD) simulations have the potential to fulfill these
requirements. Previous work has demonstrated that non-
equilibrium (NEQ) free energy methods are able to accurately
estimate the effects of mutations on protein stability,71 as well
as relative72 and absolute protein−ligand binding affinities.73
However, the ability to seamlessly and consistently extend
these free energy frameworks to pH-dependent contexts, where
invariably differences in the residue protonation states will
measurably shift the computed free energies, and where
assignment of the protonation states requires knowledge of the
pKa values, first requires a successful demonstration that plain
pKa values can be resolved using NEQ.
To this end, we use pmx-based NEQ free energy

calculations to compute the ΔΔG and corresponding pKa
values (as described in eq 1) for 144 residues across 13
different proteins in two contemporary force fields. The
calculated free energy differences were combined into a
consensus estimate. We also consider six popular and well-
validated alternative computational methods as a comparison.
Additionally, we compare our results to pKa values computed
using FEP+58 (Schrödinger Inc.) and observe no statistically
significant difference between the accuracy achieved with both
methods. We also report substantial performance disparities for
lysine residues in Amber14SB,74 which are caused by the
partial charge assignment of the backbone and for which
corrections already exist.75 Furthermore, we demonstrate the
ability of our pmx-based approach to accurately resolve the
pH-dependent pKa values of coupled residues, expanding the
potential use for probing amino acids involved in unique redox
or catalysis reactions. The average unsigned error (AUE) of the
pmx-computed pKa values across the residue classes
considered was 0.68 ± 0.05 pK. The open-source pmx
tool76 is freely available at https://github.com/deGrootLab/
pmx.

■ METHODOLOGY
Data Sets. The structures for the pKa calculations were

taken from the PDB database. Identifiers (and the correspond-
ing experimental pKa data) are as follows: 1BPI

77 (data78,79),
1BNR80 (data81), 1BEO82 (data83), 6QFS84 (data84), 3BDC85

(data85), 1CLB86 (data87,88), 1RGG89 (data90), 2LZT91

(data36), 4TRX92 (data93), 2RN294 (data95), 1OMU96

(data97), 1NZP98 (data99), and 1LKJ100 (data18) (see the
Supporting Information (SI) for details about 1LKJ). The list
of proteins, their residues, and the corresponding experimental
pKa values are provided in Table S1.
PDB structure IDs for thermostability calculations and the

corresponding experimental ΔΔG data references are as
follows: 1EY0101 (data17,102), 2LZM103 (data104−110), and
2RN294 (data111). The list of proteins, their residues, and the
corresponding experimental ΔΔG values are provided in Table
S2.
We make reference to four main pKa data sets:

• full: 13 proteins and 144 residues: 57 aspartate, 48
glutamate, and 39 lysine residues (main data set used for
method comparison; all other data sets are subsets)

• FEP+: contains the 65 residues that overlap with a
recent FEP+ publication58 (used to compare NEQ and
FEP+ approaches)

• lysine: contains 13 lysine residues from hen egg-white
lysozyme (HEWL) and calbindin 9k (used to assess the
source of a lysine performance discrepancy)

• reduced: contains 15 aspartate and 14 glutamate
residues from SNase + ΔPHS and HEWL (used to
assess Amber99SB-disp performance)

Nonequilibrium Alchemy. pmx76 was used for the
system setup, hybrid structure and topology generation, and
analysis. Initial structures were taken from the PDB database
(see the Methodology section).
A double system in a single box setup was used; here, both

the protein and peptide (e.g., ACE-AXA-NH2) are situated at a
distance of 3 nm in the same box, which ensures charge
neutrality during the alchemical transition.112 To prevent
consequential protein−peptide interactions, a single Cα in
each molecule was positionally restrained. Given the
thermodynamic cycle used (Figure 1), the free energy cost
associated with this restraint cancels between the two vertical
branches. We used the CHARMM36m113 (with CHARMM-
modified TIP3P114) and Amber14sb74 (with TIP3P115) force
fields.
For all systems, an initial minimization was performed by

using the steepest descent algorithm. A constant temperature
corresponding to the reference experimental setup was
maintained implicitly using the leapfrog stochastic dynamics
integrator116 with an inverse friction constant of γ = 0.5 ps−1.
Pressure was maintained at 1 bar using the Parrinello−Rahman
barostat117 with a coupling time constant of 5 ps. The
simulation time step was set to 2 fs. Long-range electrostatic
interactions were calculated using the particle-mesh Ewald
method118 with a real-space cutoff of 1.2 nm and a Fourier
spacing of 0.12 nm. Lennard-Jones interactions were force-
switched off between 1.0 and 1.2 nm. Bonds to hydrogen
atoms were constrained using the Parallel LINear Constraint
Solver.119

To improve sampling, systems were run for 25 ns in four
independent replicas; in each case, the first 5 ns were discarded
as equilibration. From the remaining 20 ns, 200 non-
equilibrium transitions of 200 ps were generated and work
values from the forward and backward transitions were
collected using thermodynamic integration. These values
were then used to estimate the corresponding free energy
with Bennett’s acceptance ratio120 as a maximum likelihood
estimator relying on the Crooks fluctuation theorem.121

Bootstrapping was used to estimate the uncertainties of the
free energy estimates,112,122 and these were propagated when
calculating the ΔΔG values. By varying the length of
equilibrium and transition simulations as well as the number
of transitions, we ensured that this simulation protocol yields
converged free energy estimates (Figure S1). Equation 1 was
used to convert between ΔΔG and pKa(protein) values using
the corresponding references (i.e., aspartate: 3.94 ± 0.03,
glutamate: 4.25 ± 0.05, and lysine: 10.4 ± 0.08).123,124

Conventional Predictors. In addition to the MD-based
pKa estimation, we also considered an empirical (EM) method
PropKa67,68 (v3.4); four Poisson−Boltzmann (PB) methods:
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DelPhiPKa125,126 (v2.3), H++127 (v4.0), MCCE50,128 (v2.8),
and PypKa129 (v2.9.4); and evaluated a machine-learning-
based predictor pKa-ANI

70 (v.0.1.0).
PropKa is an empirical predictor, where the ΔG

contributions are captured by Coulombic, desolvation, and
intrinsic electrostatic (e.g., hydrogen bonding) energy
equations. Default settings were used when performing the
calculations.
DelPhiPKa, as with all PB methods considered here,

calculates the electrostatic potential by numerically solving
the PBE using a finite difference method. Based on DelPhi
software, this method uses a smooth Gaussian function to
capture the heterogeneous dielectrics of the solute and solvent.
Default settings were used except for the salt concentration,
which was set according to the experimental setup (Table S1).
H++ relies on the single-conformer version of MEAD130 and

assigns charges and parameters based on Amber99SB. Default
settings were used except for the default pH, which was set to
7.4, and the salt concentration, which was set according to the
experimental setup (Table S1).
MCCE, based on DelPhi, uses Monte Carlo simulations to

capture dynamic side-chain conformational changes. Default
settings were used except for the salt concentration, which was
set according to the experimental setup (Table S1).
PypKa uses Monte Carlo calculations to probe the proton

tautomers and employs DelPhi to solve the PBE. Default
settings were used, except for the salt concentration, which was
set according to the experimental setup (Table S1).
pKa-ANI can also be considered an empirical predictor. This

predictor utilizes deep representation learning131 that

combines an atomic environment vector and the neural
network potential ANI-2x.132 Default settings were used when
performing the calculations, including a gas-phase minimiza-
tion of the initial PDB structures in GROMACS using the
Amber14SB force field.

■ RESULTS
Overall Performance. Double free energy differences

(ΔΔG) were calculated for all 144 residues (48 aspartates, 57
glutamates, and 39 lysines), allowing us to robustly evaluate
performance on a large data set. For the MD-based and PB-
based approaches, a consensus estimate was used to make
comparison easier. The EM-based approach corresponds to
PropKa calculations, while the ML-based pKa-ANI method is
discussed in a separate section.
With respect to the MD approach, we observed two

important sources of prediction inaccuracy: residue coupling
and lysine parametrization. Adjusting the pKa calculation
framework to account for these led to an adjusted estimate that
we compare to the unadjusted one. This is extensively
discussed in the Determinants of Accuracy: Lysine Para-
metrization and Determinants of Accuracy: Protonation
Neighborhood and Residue Coupling sections.
Figure 2 summarizes the main findings: in absolute terms,

MD-based nonequilibrium free energy calculations perform
comparably to conventional in silico predictors, with an overall
adjusted predictive AUE of 0.68 ± 0.05 pK taken as an average
over each residue class (compared to 0.74 ± 0.07 and 0.70 ±
0.06 pK for the consensus of the Poisson−Boltzmann (PB)
methods and empirical (EM) PropKa method, respectively)

Figure 2. Full data set residue-wise performance. (a) Correlation between the calculated and experimental pKa values. MD values are adjusted for
residue coupling and lysine parametrization. Marker color indicates deviation from experiment. Regression lines are indicated in red. The
proportion of residue 1 pK units from experiment is indicated. (b) Average unsigned errors (AUEs) and Pearson correlation coefficients computed
for the various methods: molecular dynamics (MD), Poisson−Boltzmann (PB), and the empirical PropKa approach (EM). (c) AUEs and Pearson
correlation coefficients were computed for the two force fields: CHARMM36m and Amber14SB, and their consensus. Transparent markers
indicate the unadjusted estimates. Numerical values indicate the number of residues considered. When available, bootstrapped standard errors are
depicted.
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(Figure 2a,b). Regarding the individual residue classes
computed using the MD approach, for the adjusted estimate,
AUEs were 0.77 ± 0.09 pK (aspartate), 0.69 ± 0.09 pK
(glutamate), and 0.52 ± 0.04 pK (lysine) (Figure 2a,b).
The unadjusted force-field differences revealed that

CHARMM36m performed as well or better for each residue
class compared to Amber14SB (Figure 2c). The most notable
differences were evident for lysine, where Amber14SB
significantly underperformed compared to CHARMM36m
(AUE: 0.42 ± 0.05 vs 1.48 ± 0.18 pK).
The Pearson correlation coefficients revealed a similar trend;

for aspartate and lysine, the adjusted MD-based estimate gave
values of 0.81 ± 0.04 and 0.48 ± 0.12, respectively, performing
as well or better than the alternative approaches (PB: 0.61 ±
0.16 and 0.52 ± 0.13; EM (PropKa): 0.67 ± 0.08 and −0.09 ±
0.19). For glutamate, weaker correlations with the MD-based
approach (0.33 ± 0.19) were evident. Regardless of the
method, the highest correlations were for aspartate, where the
experimental pKa values had the largest dynamic range, while
the weakest correlations were for lysine, where the dynamic
range of the experimental values was narrower (Figure 3).

We did not observe a strong dependence of the prediction
accuracy on the protein system. Rather, the systems for which
higher accuracy was observed (Figure S2) contained a higher
proportion of probed lysine residues (e.g., 1NZP and 1LKJ),
again illustrating disparate pKa prediction accuracy for different
residue types. In general, residues with larger ΔpKa values
(Figure S3) and lower solvent exposure (Figure S4) tended to
be predicted worse. We note that these two variables are
related: probed residues with smaller ΔpKas were also found to
be more solvated (Figure S5).
Determinants of Accuracy: Lysine Parametrization.

As discussed above, Amber14SB provided markedly poorer
estimates of the ΔΔG compared with CHARMM36m for most
of the lysine residues considered, significantly underestimating
the pKa values (Figure 4a,d). We conceived of two potential
sources of error: (1) environmental and (2) residue para-
metrization. Given the discussions in the literature pertaining
to ion overbinding133−135 and the role of a solvent model on
protein solvation,136 we began by assessing the role of
environmental conditions. Specifically, we probed K+ (rather
than Na+) counterions, NBFIX parameters,134 Åqvist137

(rather than Joung/Cheatham138) ion parameters, and
TIP4P-D water139 (rather than TIP3P). Using these variants,
the pKa values of lysines from a 13 residue data set (i.e., hen
egg-white lysozyme (HEWL) and calbindin 9k) were
computed. No significant improvement in the estimates was
observed (Figure 4a,c).
To consider the role of parametrization, simulations were

performed with three different versions of Amber, namely,
Amber99SB*-ILDN,140−142 Amber03*,141,143 and Am-
ber99SB-disp.144 On the same lysine data set, a dramatic
improvement was observed with Amber99SB-disp (Figure
4a,c). Given that differences in the dihedral parametrization
between Amber99SB*-ILDN and Amber14SB appeared to
confer almost no performance improvement, this narrowed the
likely cause of the difference to the nonbonded interactions.
Regarding the Lennard-Jones terms, Amber99SB-disp alters the
parameters of aspartate, glutamate, and arginine, leaving open
the possibility of more accurate interactions between lysine
and other charged residues in the protein as the source of this
discrepancy. However, more notable was the inclusion of the
Best et al. lysine partial charges (i.e., Amber99SB*-ILDN-Q75)
with Amber99SB-disp. Although both Amber14SB and
Amber99SB*-ILDN have the same partial charge assignment,
Amber99SB-disp uses altered backbone charges for aspartate,
glutamate, lysine, arginine, and doubly protonated histidine
(Figure 4b). These were originally developed in the
Amber99SB*-ILDN-Q force field to correct for aberrant
helical propensities and create consistency among the amino
acids. In both Amber99SB*-ILDN and Amber14SB, with the
exception of proline, all but these five charged residues have
the same assigned backbone partial charge set for C, O, N, and
HN. By using the updated parameters by Best et al., both
protonated (LYS) and deprotonated (LYN) lysine in
Amber99SB*-ILDN-Q and Amber99SB-disp have the same
charge assignment for C, O, N, and HN.
Such a backbone partial charge assignment is akin to that in

the CHARMM36m force field, which has the same backbone
partial charge sets (including the Cα and Hα atoms) for all
residues except proline and glycine.
We constructed a hybrid Amber14SB-K force field with the

altered lysine partial charges but only for the probed residue.
We found that this force field performed markedly better on
the lysine data set, cutting the average unsigned error by
almost half, from 1.48 ± 0.18 to 0.81 ± 0.08 pK (Figure 4a,c).
The improvement was most pronounced for lysine residues in
the helical regions (Figure S6). This result, in addition to that
from Best et al.,75 suggested that the default partial charges of
lysine were erroneous. To further assess the effect of partial
charges, we computed the thermostability of 15 lysine
mutations using CHARMM36m, Amber14SB, and Am-
ber14SB-K. We again observed a marked improvement in
the AUE using the altered lysine partial charges, which shifted
the value from 10.42 to 5.54 kJ/mol (Figure 4e).
While Amber99SB-disp exhibited the highest accuracy on

the lysine data set (Figure 4c), suggesting its general use for
pKa prediction, this behavior did not hold for aspartate and
glutamate. On a reduced data set (i.e., SNase + ΔPHS and
HEWL), Amber99SB-disp exhibited below-average accuracy
(Figure S7).
Determinants of Accuracy: Protonation Neighbor-

hood and Residue Coupling. Overall, alchemical free
energy calculations and conventional pKa predictors provide
comparable accuracy. However, unlike many alternative

Figure 3. Performance of methods on coupled residues. Average
unsigned errors (AUEs) and Pearson correlation coefficients were
computed for both the coupled data set (i.e., 18 aspartates and
glutamates) and the full data set aspartate and glutamate residues,
with the coupled set discarded. Dashed lines indicate the performance
of the MD-based approach before coupling was accounted for (see
text). Bootstrapped standard errors are depicted.
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approaches, the alchemical method described here allows for
the resolution of conditional pKa values. The consideration of
such values may not only improve the estimates but also allow
one to determine the pH-dependent pKa of a residue. Recently,
we derived a formalism to conveniently combine double free
energy differences from alchemical calculations in order to
account for coupling between residues when predicting the
pKa.

43

In this work, we selected 18 residues, including several acidic
dyads across the data set, for which the deviation from
experiment was >1 pK. We further calculated the pKa values of

these residues by taking into account possible couplings with
the protonatable residues in their neighborhood. For residues
neighboring a histidine, standard pKa calculations were
performed in the presence of doubly protonated histidine,
i.e., we assume this to be the protonation state at the pH where
aspartate and glutamate titrate. For pairs of nearby (i.e., <0.5
nm) acidic residues, we applied the aforementioned
thermodynamic formalism, while for apparent triads, an
assessment of the most probable deprotonation event was
first determined, followed by an application of the formalism
on the remaining dyad. Explicitly accounting for residue

Figure 4. Calculating lysine pKa values with different force fields. (a) Correlation between the calculated and experimental pKa values. Marker color
indicates deviation from experiment. Regression lines are indicated in red. The proportion of residues 1 pK unit from experiment is indicated. (b)
Partial charge assignment differences between Amber14SB and Amber14SB-K. Numeric values correspond to backbone atoms. (c) Average
unsigned errors (AUEs) and Pearson correlation coefficients computed for the various force-field combinations: five variants of Amber14SB (with
TIP4P-D (D), with NBFIX (N), with K+ counterions (+), with Åqvist ions (A), or with Best et al. charges assigned to the probed lysine (K)), as
well as “plain” (p) CHARMM36m, Amber14SB, Amber03*, Amber99SB*-ILDN, and Amber99SB-disp. (d) Distribution of differences between
the unadjusted MD-based and experimental pKa values. (e) AUEs and Pearson correlations computed on a lysine thermostability data set. When
available, bootstrapped standard errors are depicted.
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coupling reduced the AUE from 1.28 to 0.76 pK of the
residues considered, bringing the accuracy close to the AUE
observed over the full data set (Figure 3). For all of the
methods considered, this coupled residue subset had higher
errors than those observed on the remaining aspartate and
glutamate residues (i.e., full data set minus coupled subset).
We note that this analysis was retrospective, where we have a

priori access to the correct pKa values, i.e., we could preselect
which residues to subject to these more involved calculations
involving inter-residue couplings. However, in principle, such
calculations can be applied to any residues with nearby
protonatable neighbors. Our formalism43 ensures that if
alchemical calculations suggest no coupling, the final pKa
estimate will remain similar to that of a standard calculation
without coupling considerations.
Method Comparison. Recently, FEP+ was used to

compute the pKa values of 79 aspartate and glutamate
residues.58 We observed comparable performance on the
overlapping 65 residue data set (referred to as the FEP+ data
set); the average unsigned error was 0.65 ± 0.08 for NEQ and
0.61 ± 0.07 for FEP+ (Figure 5a), and the Pearson correlation
coefficients were 0.74 ± 0.06 and 0.80 ± 0.09, respectively.
These represented the two strongest performing methods on
the FEP+ data set. We also assessed the degree of correlation
between the ΔpKa estimates for both methods; here, the
Pearson correlation coefficient was 0.83 ± 0.05, suggesting a
strong relationship (Figure 5a). This was the second strongest
correlation between any two methods on the FEP+ data set.

Regarding residues, glutamate pKa values were predicted with a
higher accuracy than aspartate (Figure 5b).
We also considered our NEQ approach in relation to

individual computational methodologies (rather than a
consensus), including the popular PropKa software. Given
the computational efficiency of this empirical method, it
presents a compelling approach for large-scale pKa calculations.
We found that NEQ and FEP+ could outperform PropKa on
the FEP+ data set (Figure 5a,b); however, PropKa still showed
strong performance on the full data set (Figures S8 and S9).
For the full data set, while the AUE values for PropKa
predictions were small, the correlations also tended to be
weaker. This was particularly evident for lysine, where the
Pearson correlation coefficient was near zero. For the precise
discrimination of individual residues and an absolute ordering
of pKa values, an MD-based free energy approach may be
warranted.
As with FEP+, we evaluated the degree of correlation and

deviation between the ΔpKa values computed using various
methods. The strongest correlations were observed within
method classes (e.g., DelPhiPKa/MCCE) rather than between
them (e.g., DelPhiPKa/NEQ). Strong correlations were
particularly evident within the PB-based approaches when
evaluating on both the FEP+ data set and the full data set
(Figures 5a and S9).
Probing the full data set revealed a general decrease in the

AUE and stronger correlations with experiment (Figure S9).
Given that the FEP+ data set contains a higher proportion of

Figure 5. Comparison of the ΔpKa predictions by each method. (a) Pearson correlations (upper right triangle) and AUEs (lower left triangle)
between ΔpKa estimates were calculated for each method over the FEP+ data set. Comparison with experiment means that the bottom row and
rightmost column correspond to the overall performance. DelPhiPKa is abbreviated DelPhi. (b) Individual residue-wise error plot of the NEQ,
FEP+, and PropKa methods on the FEP+ data set. Numerical values (i.e., 28 and 37) indicate the number of residues considered. (c) Pearson
correlations and AUEs for the three ΔpKa consensus estimates were calculated over the full data set; note that EM corresponds to PropKa.
Comparison with experiment means that the bottom row and rightmost column correspond to overall performance. Bootstrapped standard errors
are indicated.
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glutamates to aspartates and no lysines, this result suggests that
data set composition can impact performance and should
warrant consideration in future benchmarks.
Both MD-based methods, NEQ and FEP+, showed high

levels of agreement with each other and with experiment. The
rather weak intermethod correlation is further emphasized by
comparing consensus results from the method families over the
full data set (Figure 5c).
Comparison with a null model revealed stronger correlations

over the FEP+ and full data sets for all methods considered
(Figures 5a and S9). However, the average unsigned errors for
several approaches were not significantly different from the
errors of the null model. The MD-based approach exhibited
consistent performance even for residues with |ΔpKa| > 1
(Figure S3), performing significantly better than the null
model, where the AUE degrades linearly with ΔpKa.
Overall the MD-based approach was the only method to

match or significantly exceed the null model with respect to the
average unsigned error and Pearson correlation coefficient
across all three residue classes (Figure S10). Among the
predictors, both PropKa and PypKa performed well on the
FEP+ and full data sets; with the exception of pKa-ANI, these
represent the two strongest performing, non-MD methods
evaluated here.
Machine Learning Predictor pKa-ANI.We also evaluated

the performance of a promising, recently developed machine-
llearning-based predictor, pKa-ANI. Unfortunately, the set of
pKa values collected in this work largely overlapped with the
training set of pKa-ANI. As the evaluation of an ML approach
on its training set should not be used to judge the accuracy of
the method, we present this evaluation only for the sake of
completeness (Figure S8). As expected, pKa-ANI performance
on the full data set was strong, exceeding the other methods
with respect to AUE (0.44 ± 0.07 pK) and Pearson correlation
coefficient (0.87 ± 0.05).
To gain a more realistic insight into the performance of

pKa-ANI, we considered a small subset of 14 pKa values from
the full data set that did not appear in the training set of pKa-
ANI. This set, however, contains only lysine residues from two
protein systems. The observed accuracy on this subset was 0.49
± 0.10 pK with a correlation of −0.18 ± 0.27 (compared to
0.48 ± 0.07 and 0.71 ± 0.16 with the MD-based approach)
(Figure 6).

We can assess the accuracy difference between the “train”
and “test” sets by evaluating the performance of pKa-ANI on a
lysine pKa subset that was used to train the predictor.
While in terms of AUE the performance of the ML-based

predictor becomes only insignificantly worse, the reduction in
the Pearson correlation coefficient between the “test” subset
and the “training” set is significant. Given the small size of the
“test” data set and bias toward only one residue type, this
evaluation of pKa-ANI accuracy should not be overinterpreted.
Nevertheless, our analysis suggests a reduction in prediction
accuracy when using independent test data, a result consistent
with the original pKa-ANI publication.

70

■ DISCUSSION
Here, we assess the ability of NEQ-based free energy
calculations to resolve the pKa values of 144 residues across
13 proteins. Although large-scale studies on the application of
NEQ alchemical calculations for predicting mutagenic folding
free energy changes and relative and absolute ligand-binding
affinities already exist, such an extension to protein pKa values
has been absent from the literature. A seamless free energy
workflow that can probe the role of protonation on ligand
binding, particularly relevant at an enzymatic active site, and
resolve the underlying pKa values of both individual residues
and bound molecules is highly desirable. Here, we take a step
toward that goal. Although (de)protonation is the smallest
topological change that a residue can undergo, it results in a
significant charge shift. We find that such perturbations and the
corresponding free energies can be readily resolved using our
pmx-based approach (i.e., AUE: 0.68 ± 0.05 pK), with
accuracy comparable to FEP+,58 and demonstrate the ability of
this approach to resolve the pKa of coupled residues. While the
MD-based approach can capture protein dynamics and
account for residue coupling, with both contributing to the
accurate pKa predictions, it is a computationally expensive
method. Based on the timings from the current work, running
simulations for 1 week on a single GPU (RTX 2080 Ti) would
allow for computing 12 pKa differences in an average-sized
protein domain (≈100 residues).
Our results reveal that the Amber14SB74/Amber99SB*-

ILDN142 partial charges for lysine are likely erroneous, yielding
pKa and thermostability estimates that deviate significantly
from experiment. Importantly, we demonstrate that this error
c a n b e r e s o l v e d u s i n g c h a r g e s a s s i g n e d i n
Amber99SB*-ILDN-Q.75 Taken alongside those by Best et
al., our results do suggest that the Amber14SB backbone partial
charges warrant further investigation; however, we do not
advocate the use of Amber14SB-K until further validation is
performed. One interesting point of investigation could be
determining whether these modified charges resolve previously
documented ion-overbinding problems135 and conformational
discrepancies in polyelectrolytes.145

While our results and the recent work of others58,146

underscore the pKa prediction accuracy attainable by MD-
based free energy methods, the gap between prediction and
experiment remains larger than the experimental error of 0.1−
0.2 pK units.36 In the current work, we have identified two
main sources contributing to the pKa prediction error: residue
coupling and force-field parametrization.
With respect to the first, we have demonstrated that

accounting for the coupling of nearby titratable sites plays a
crucial role in accurate pKa prediction. While this requires
additional calculations within the alchemical free energy

Figure 6. Performance of methods on the lysine subset (14 values),
which were not in the pKa-ANI training set. The performance on the
rest of the lysine set (25 values) is shown as a reference. Bootstrapped
standard errors are depicted.
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framework,43 it brings a significant improvement to the
prediction accuracy (Figure 3).
Regarding the second, we found that the deprotonated lysine

backbone partial charges in Amber14SB are more favorable
relative to the protonated backbone charges, which, in turn,
results in a pKa underestimation. In support of this hypothesis
was the observation that the effect was largest for residues
situated in regions where backbone interactions are most
prominent (e.g., α-helix). Our finding underscores the
importance of accurately parametrizing both the protonated
and deprotonated forms of the amino acids and the sensitivity
that relative free energy calculations can have to seemingly
minor parametrization differences. Suggestive of this phenom-
enon was the recent demonstration147 that modification of the
Amber14SB cysteine thiolate parameters�to agree more
closely with ab initio solvation data�could improve the pKa
prediction accuracy by 0.5 pK units when combined with an
MD-based approach.146 The use of polarizable force fields
might also improve pKa estimates;

148 however, recent work
using Monte Carlo simulations with the Drude force field and
a Poisson−Boltzmann continuum solvent model did not show
a significantly improved prediction accuracy.149

We note that conformational sampling may also play a role;
however, this is less significant in the systems probed here. For
proteins with more pronounced pH-dependent conformation
shifts, local rearrangements over tens of nanoseconds may be
insufficient to capture the end-state distributions and would
result in poorer estimates of the pKa.

150,151

In summary, we have shown that our open-source, pmx-
based NEQ free energy method performs on par with state-of-
the-art commercial software and achieves an average unsigned
error that meets or exceeds alternative in silico predictors when
assessed on independent test data. Furthermore, this MD-
based approach yielded markedly stronger correlations with
experiment, suggesting better performance for the discrim-
ination of residues with similar pKas. Additionally, our
observation of a significant partial charge discrepancy suggests
that high-quality experimental pKa values may constitute a
compelling data set to be used during force-field para-
metrization.
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(129) Reis, P. B. P. S.; Vila-Viçosa, D.; Rocchia, W.; Machuqueiro,
M. PypKa: A Flexible Python Module for Poisson−Boltzmann-Based
pKa Calculations. J. Chem. Inf. Model. 2020, 60, 4442−4448.
(130) Bashford, D. An Object-Oriented Programming Suite for
Electrostatic Effects in Biological Molecules An Experience Report on
the MEAD Project. In Scientific Computing in Object-Oriented Parallel
Environments. ISCOPE 1997; Ishikawa, Y.et al., Ed.; Lecture Notes in
Computer Science; Springer: Berlin, Heidelberg, 1997; pp 233−240.
(131) Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT
Press, 2016.
(132) Devereux, C.; Smith, J. S.; Huddleston, K. K.; Barros, K.;
Zubatyuk, R.; Isayev, O.; Roitberg, A. E. Extending the Applicability
of the ANI Deep Learning Molecular Potential to Sulfur and
Halogens. J. Chem. Theory Comput. 2020, 16, 4192−4202.
(133) Catte, A.; Girych, M.; Javanainen, M.; Loison, C.; Melcr, J.;
Miettinen, M. S.; Monticelli, L.; Määttä, J.; Oganesyan, V. S.; Ollila,
O. H. S.; Tynkkynen, J.; Vilov, S. Molecular electrometer and binding
of cations to phospholipid bilayers. Phys. Chem. Chem. Phys. 2016, 18,
32560−32569.
(134) Yoo, J.; Aksimentiev, A. New tricks for old dogs: improving
the accuracy of biomolecular force fields by pair-specific corrections
to non-bonded interactions. Phys. Chem. Chem. Phys. 2018, 20, 8432−
8449.
(135) Tolmachev, D. A.; Boyko, O. S.; Lukasheva, N. V.; Martinez-
Seara, H.; Karttunen, M. Overbinding and Qualitative and
Quantitative Changes Caused by Simple Na+ and K+ Ions in
Polyelectrolyte Simulations: Comparison of Force Fields with and
without NBFIX and ECC Corrections. J. Chem. Theory Comput. 2020,
16, 677−687.
(136) Florová, P.; Sklenovsky,́ P.; Banás,̌ P.; Otyepka, M. Explicit
Water Models Affect the Specific Solvation and Dynamics of
Unfolded Peptides While the Conformational Behavior and Flexibility
of Folded Peptides Remain Intact. J. Chem. Theory Comput. 2010, 6,
3569−3579.
(137) Åqvist, J. Ion-water interaction potentials derived from free
energy perturbation simulations. J. Phys. Chem. A 1990, 94, 8021−
8024.

(138) Joung, I. S.; Cheatham, T. E. Determination of Alkali and
Halide Monovalent Ion Parameters for Use in Explicitly Solvated
Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020−9041.
(139) Piana, S.; Donchev, A. G.; Robustelli, P.; Shaw, D. E. Water
dispersion interactions strongly influence simulated structural proper-
ties of disordered protein states. J. Phys. Chem. B 2015, 119, 5113−
5123.
(140) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.;
Simmerling, C. Comparison of multiple Amber force fields and
development of improved protein backbone parameters. Proteins:
Struct., Funct., Bioinf. 2006, 65, 712−725.
(141) Best, R. B.; Hummer, G. Optimized Molecular Dynamics
Force Fields Applied to the Helix-Coil Transition of Polypeptides. J.
Phys. Chem. B 2009, 113, 9004−9015.
(142) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.;
Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Improved side-chain torsion
potentials for the Amber ff99SB protein force field. Proteins: Struct.,
Funct., Bioinf. 2010, 78, 1950−1958.
(143) Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G.;
Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang,
J.; Kollman, P. A point-charge force field for molecular mechanics
simulations of proteins based on condensed-phase quantum
mechanical calculations. J. Comput. Chem. 2003, 24, 1999−2012.
(144) Robustelli, P.; Piana, S.; Shaw, D. E. Developing a molecular
dynamics force field for both folded and disordered protein states.
Proc. Natl. Acad. Sci. U.S.A. 2018, 115, E4758 DOI: 10.1073/
pnas.1800690115.
(145) Lukasheva, N.; Tolmachev, D.; Martinez-Seara, H.; Karttunen,
M. Changes in the Local Conformational States Caused by Simple
Na. and K+ Ions in Polyelectrolyte Simulations: Comparison of Seven
Force Fields with and without NBFIX and ECC Corrections. Polymers
2022, 14, No. 252, DOI: 10.3390/polym14020252.
(146) Awoonor-Williams, E.; Golosov, A. A.; Hornak, V.
Benchmarking pKa Tools for Cysteine pKa Prediction. J. Chem. Inf.
Model. 2023, 63, 2170−2180.
(147) Pedron, F. N.; Messias, A.; Zeida, A.; Roitberg, A. E.; Estrin,
D. A. Novel Lennard-Jones Parameters for Cysteine and Selenocys-
teine in the AMBER Force Field. J. Chem. Inf. Model. 2023, 63, 595−
604.
(148) Kaminski, G. A. Accurate Prediction of Absolute Acidity
Constants in Water with a Polarizable Force Field: Substituted
Phenols, Methanol, and Imidazole. J. Phys. Chem. B 2005, 109, 5884−
5890.
(149) Aleksandrov, A.; Roux, B.; MacKerell, A. D. pKa calculations
with the Polarizable Drude Force Field and Poisson−Boltzmann
Solvation Model. J. Chem. Theory Comput. 2020, 16, 4655−4668.
(150) Sarkar, A.; Roitberg, A. E. pH-Dependent Conformational
Changes Lead to a Highly Shifted pKa for a Buried Glutamic Acid
Mutant of SNase. J. Phys. Chem. B 2020, 124, 11072−11080.
(151) Di Russo, N. V.; Estrin, D. A.; Martí, M. A.; Roitberg, A. E.
pH-Dependent Conformational Changes in Proteins and Their Effect
on Experimental pKas: The Case of Nitrophorin 4. PLOS Comput.
Biol. 2012, 8, No. e1002761, DOI: 10.1371/journal.pcbi.1002761.

■ NOTE ADDED AFTER ASAP PUBLICATION
This paper was published ASAP on October 11, 2023, with
errors in Table S1. The corrected version was reposted on
October 16, 2023.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00721
J. Chem. Theory Comput. 2023, 19, 7833−7845

7845

https://doi.org/10.1021/ct700200b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct700200b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0021-9991(76)90078-4
https://doi.org/10.1016/0021-9991(76)90078-4
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.7554/eLife.57589
https://doi.org/10.7554/eLife.57589
https://doi.org/10.7554/eLife.57589
https://doi.org/10.7554/eLife.57589?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1110/ps.051840806
https://doi.org/10.1110/ps.051840806
https://doi.org/10.1002/pro.19
https://doi.org/10.1002/pro.19
https://doi.org/10.1002/pro.19?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp010454y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp010454y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp010454y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/prot.24935
https://doi.org/10.1002/prot.24935
https://doi.org/10.1002/prot.24935
https://doi.org/10.1093/nar/gks375
https://doi.org/10.1093/nar/gks375
https://doi.org/10.1093/nar/gks375
https://doi.org/10.1002/jcc.21222
https://doi.org/10.1002/jcc.21222
https://doi.org/10.1021/acs.jcim.0c00718?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c00718?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00121?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C6CP04883H
https://doi.org/10.1039/C6CP04883H
https://doi.org/10.1039/C7CP08185E
https://doi.org/10.1039/C7CP08185E
https://doi.org/10.1039/C7CP08185E
https://doi.org/10.1021/acs.jctc.9b00813?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00813?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00813?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00813?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct1003687?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct1003687?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct1003687?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct1003687?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100384a009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/j100384a009?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp8001614?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp8001614?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp8001614?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp508971m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp508971m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp508971m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/prot.21123
https://doi.org/10.1002/prot.21123
https://doi.org/10.1021/jp901540t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp901540t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/prot.22711
https://doi.org/10.1002/prot.22711
https://doi.org/10.1002/jcc.10349
https://doi.org/10.1002/jcc.10349
https://doi.org/10.1002/jcc.10349
https://doi.org/10.1073/pnas.1800690115
https://doi.org/10.1073/pnas.1800690115
https://doi.org/10.1073/pnas.1800690115?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.1800690115?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3390/polym14020252
https://doi.org/10.3390/polym14020252
https://doi.org/10.3390/polym14020252
https://doi.org/10.3390/polym14020252?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.3c00004?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c01104?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c01104?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp050156r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp050156r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp050156r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00111?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00111?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00111?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.0c07136?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.0c07136?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.0c07136?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1371/journal.pcbi.1002761
https://doi.org/10.1371/journal.pcbi.1002761
https://doi.org/10.1371/journal.pcbi.1002761?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00721?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

